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Abstract

An accurate prediction of well flowing bottom-hole pressure (FBHP) is highly needed in petroleum engineering applica-

tions such as for the field production optimization, cost per barrel of oil reduction, and quantification of workover remedial 

operations. A good number of empirical correlations and mechanistic models exist in the literature and are frequently used 

in oil industry to estimate FBHP. But majority of the empirical models were developed under a laboratory scale and are 

therefore inaccurate when scaled up for the field applications. The objective of this study is to present a new computational 

intelligence-based model to predict FBHP for a naturally flowing vertical well with multiphase flow. The present study 

shows that the accuracy of FBHP estimation using PSO-ANN is better than the conventional ANN model. A small average 

absolute percentage error of less than 2.1% is observed with the proposed model, while comparing the previous empirical 

correlations and mechanistic models on the same data gives more than 15% error. The new model is trained on a surface 

production data, which makes the prediction of FBHP in a real time. A group trend analysis tests were also carried out to 

assure that the proposed model is accurately capturing the underline physics behind the problem.

Keywords Flowing bottom-hole pressure · Real time · Artificial neural network · Particle swarm optimization · Empirical 

model · Vertical well

Abbreviations

AAPE  Average absolute percentage error

ANFIS  Adaptive neuro-fuzzy interference system

ANN  Artificial neural network

API  American Petroleum Institute

BHP  Bottom-hole pressure (Psia)

BTM  Bottom-hole temperature (°F)

CC  Correlation coefficient

CI  Computational intelligence

FBHP  Flowing bottom-hole pressure (Psia)

FFNN  Feed-forward neural network

GLR  Gas–liquid ratio

GMDH  Group method of data handling

ID  Internal diameter

IPR  Inflow performance relationship

LM  Levenberg–Marquardt learning algorithm

Logsig  Logistic sigmoid activation/transfer function

PETE  Petroleum engineering

PSO  Particle swarm optimization

P
wh

  Wellhead pressure (Psia)

RMSE  Root-mean-square error

STM  Surface temperature (°F)

Std  Standard deviation

SVM  Support vectors regression

Tansig  Tangential sigmoid activation/transfer function

x  Input parameters

y  Output variable

List of symbols

�  Learning rate

b
1
  Biases vector between the input layer and the 

single hidden layer of ANN
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2
  Bias value between the single hidden layer and 

an output layer of ANN
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1
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2
≤ 1.2)

Emax  Maximum error
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Emin  Minimum error

i  Index used for total number of neurons

j  Index used for number of inputs

J  Total number of input parameters

n  Normalized value

N
h
  Total number of neurons

N
p
  Total number of input parameters

pi  Particle i position at any iteration

pb
i
  Particle best solution

pgb  Global best solution

q
o
  Oil production rate (bbls/day)

q
g
  Gas production rate (MScf/day)

q
w
  Water production rate (bbls/day)

R2  Coefficient of determination

v
i
  Particle velocity

w
1
  Weights matrix between the input layer and the 

single hidden layer of ANN

w
2
  Weights vector between the single hidden layer 

and an output layer of ANN

x  Input parameters

y  Output variable

�
o
  A transfer function between the hidden layer and 

an output layer of FFNN

�
L
  A transfer function between the input layer and 

the hidden layer of FFNN

∅  Tubing internal diameter (inches)

�  Weight (0 ≤ w ≤ 1.2)

Introduction

Estimation of well bottom-hole pressure at any existing 

operating conditions is continuously needed in oil and gas 

wells to monitor fluid movements inside the wellbore and 

the nearby wellbore regions. Petroleum wells normally pro-

duce a mixture of liquids and gases at the surface. The phase 

distribution typically changes due to the pressure variations 

along the course of the flow. At pressure above the bubble 

point pressure of the liquid phase, particularly at the bottom 

of the well, the flow is the single phase, i.e., oil phase only, 

but as oil moves up inside the vertical well, the hydrostatic 

pressure drop causes liberation of gases from the oil phase 

which resulted in the multiphase flow of oil and gas (Hage-

dorn and Brown 1965; Govier and Fogarasi 1975). Mul-

tiphase flow is a simultaneous flow of two or three phases 

such as oil, gas, and water which can start producing any 

time in the life of well (Beggs and Brill 1973). Multiphase 

flow phenomenon has also gained considerable attention in 

many other science fields including mechanical, civil, chem-

ical, and nuclear engineering (Jahanandish et al. 2011). The 

representative prediction of the pressure drop in a vertical 

well during the simultaneous multiphase flow of fluids is a 

well-known problem in the petroleum industry (Hagedorn 

and Brown 1965). The need to properly estimate pressure 

drop in a vertical well is very necessary for the accurate 

forecast of production performances and for the appropriate 

well completions design and artificial-lift systems (Ansari 

et al. 1994).

Nowadays, smart well completion is very common, in 

which down-hole pressure gauges are permanently installed 

at the bottom of the well to measure FBHP. However, these 

pressure gauges need constant calibration and maintenance 

to prevent malfunctioning and misleading readings (Davies 

and Aggrey 2007; Al-Shammari 2011). In case of conven-

tional well completions, frequently intervening a well to 

measure FBHP is an exhaustive job which is linked with sev-

eral risks like production interruptions and economic losses. 

For these purposes, the real-time information of FBHP is 

very handy for production engineers.

Numerous mechanistic and empirical models were devel-

oped to estimate the pressure drop inside the tubing in a 

vertical well. Most of the empirical models and correlations 

were formulated under laboratory scale, which eventually 

become less accurate when up-scaled to field situations 

(Pucknell et al. 1993). The most commonly used correlations 

are Duns and Ros (1963); Hagedorn and Brown (1965); Aziz 

and Govier (1972); Beggs and Brill (1973); and Mukher-

jee and Brill (1983). Several studies have shown that these 

empirical correlations estimate pressure drop in multiphase 

flowing wells with large errors and high level of uncertainty 

(Asheim 1986; Pucknell et al. 1993; Takacs 2001; Lawson 

and Brill 1974). Mechanistic models are based on theoreti-

cal approaches to calculate multiphase flow characteristics 

such as mixture densities, flow patterns, and liquid hold ups. 

The most commonly used mechanistic models in petroleum 

engineering calculations are Kabir and Hasan (1986), Ansari 

et al. (1994), Chokshi et al. (1996), and Gomez et al. (1999).

The past two decades have seen significant increase in 

computational intelligence (CI) applications in various areas 

of geosciences and petroleum engineering (PETE). The rel-

evance of CI in PETE applications stems from CI’s ability to 

handle the huge streams of data generated in the field such as 

seismic data, petrophysical well log data, and injection and 

production data. Every wiggle in the log and every blip in the 

data signify something and have the potential to be used in 

addressing pertinent issues. Also, in the real world, the basic 

assumptions used in the derivation of the physical equations 

may be violated, due to numerous reasons such as anisot-

ropy, heterogeneity, nonlinearity, nonelasticity, and nonideal 

fluid behavior. CI can address such complications with rela-

tive ease (Anifowose et al. 2017). Some of the domains of 

the petroleum engineering in which CI techniques brought 

new innovations include porosity–permeability predictions 

(Abdulraheem et al. 2007; El-Sebakhy et al. 2012; Noorud-

din et al. 2013; Helmy et al. 2013; Anifowose et al. 2013, 

2014, 2017), hydraulic flow unit identification (Shujath Ali 
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et al. 2013), rock mechanical parameters estimation (Yang 

and Rosenbaum 2002; Sonmez et al. 2004; Abdulraheem 

et al. 2009; Cevik et al. 2011; Tariq et al. 2018b), missing 

petrophysical well logs estimation (Tariq et al. 2019), well-

testing parameters estimation (Artun 2017; Bazargan and 

Adibifard 2017), asphaltene and wax precipitation predic-

tions (Rezaian et al. 2010; Adeyemi and Sulaimon 2012; Fat-

tahi et al. 2015; Alimohammadi et al. 2017), water saturation 

prediction (Adebayo et al. 2015; Bageri et al. 2015; Baziar 

et al. 2016, 2018; Khan et al. 2018), gas compressibility fac-

tor (Mohagheghian et al. 2015; Tariq and Mahmoud 2019), 

oil well drilling rate of penetration optimization (Gidh et al. 

2012), and many other oil and gas applications (Ashena et al. 

2010; Jahanandish et al. 2011; Asoodeh 2013; Rammay and 

Abdulraheem 2016).

An artificial neural network (ANN) is one of the most 

powerful and robust CI tools for solving complex nonlinear 

problems, including function approximation, pattern recog-

nition, parameter selection, and automated control and opti-

mization (Maren 1990; Huang et al. 1996). This technique is 

originated from the learning principles of biological neurons 

found in human body (Graves et al. 2009). Recent advances 

in the mathematics of neural network and its ability to solve 

complex and nonlinear problems have gained wide recogni-

tion in the petroleum industry (Anifowose et al. 2014).

Petroleum industry has paid significant attention to use 

CI technique to predict FBHP in oil and gas wells. Osman 

et al. (2005) developed the model for estimating bottom-

hole flowing pressure using artificial intelligence (AI) tools. 

Their model was based on 300 data points. Jahanandish et al. 

(2011) presented an ANN model for the estimation of the 

BHP. Their model was developed on 413 data points. Al-

Shammari (2011) predicted BHP using adaptive neuro-fuzzy 

interference system (ANFIS) on 596 data points obtained 

from Middle Eastern fields. He used Genfis-2 (subtractive 

clustering) to develop ANFIS model for BHP prediction. 

Bello and Asafa (2014) predicted the FBHP and bottom-hole 

temperature using functional network technique. They have 

used 200 data points from multiple wells. Li et al. (2014) 

designed a calculation procedure to predict BHP using mul-

tiphase correlation and trained ANN model. They predicted 

BHP with 23% average absolute percentage error (AAPE) 

and 0.176 std. Ebrahimi and Khamehchi (2015) used ANN 

technique on the data obtained from Middle Eastern field to 

improve the prediction of BHP. Their objective was to test 

several optimization algorithms to optimize ANN param-

eters and then compare their results with conventional meth-

ods in oil and gas industry. Memon et al. (2015) created 

dynamic well surrogate reservoir models (SRM) to predict 

flowing well bottom-hole pressure using radial basis func-

tion neural network (RBF). The input data of their model 

were porosity and permeability of different layers in SRM 

and production rate. The output data of their model were 

extorted from a SRM model. Ayoub et al. (2015) presented 

the model to predict the pressure drop in a multiphase flow 

vertical well using the group method of data-handling 

(GMDH) approach. The GMDH is a commonly used regres-

sion technique based on constructing high-order polynomials 

(Karnazes and Bonnell 1982; Assaleh et al. 2013). Ahmadi 

et al. (2016) predicted FBHP at different time steps for an 

initially undersaturated reservoir using surrogated reservoir 

modeling and radial basis neural network approach. They 

have used the output of reservoir simulator such as oil rate, 

gas rate, and saturation to predict FBHP. Chen et al. (2017) 

used support vector regression (SVR) to predict FBHP in gas 

wells. They have used the measured FBHP data from Sulige 

gas field as an output parameter. Their model was based on 

the well perforation depth, flowing water rate, flowing gas 

rate, relative gas density, average wellbore temperature, cas-

ing pressure, and gas compressibility factor.

It can be inferred from the literature survey that CI meth-

ods can be applied to estimate FBHP. The previous analyti-

cal and mechanistic models (Duns and Ros 1963; Hagedorn 

and Brown 1965; Beggs and Brill 1973; Mukherjee and Brill 

1985; Kabir and Hasan 1986; Ansari et al. 1994; Gomez 

et al. 1999) are built on the parameters which can be deter-

mined from the laboratory analysis. This means that they are 

not capable of giving real-time FBHP values under existing 

operating conditions. Also, these models are computation-

ally very expensive to execute. Two major problems with 

the previous works are going to be addressed in this study. 

Firstly, previous CI research studies predicted the FBHP 

using laboratory-dependent inputs, so the first objective is 

to identify the real-time input parameters that are readily 

available on the surface to estimate the real-time FBHP with 

good accuracy. Secondly, previous researchers (Osman et al. 

2005; Davies and Aggrey 2007; Jahanandish et al. 2011; Al-

Shammari 2011; Adebayo et al. 2013; Bello and Asafa 2014; 

Memon et al. 2014, 2015; Li et al. 2014; Ayoub et al. 2015; 

Ebrahimi and Khamehchi 2015; Awadalla and Yousef 2016; 

Chen et al. 2017) proposed a black box type of CI models. 

In all these papers, authors only mentioned the approach 

they have used to train their models. Readers of their papers 

cannot use them to predict FBHP on a new dataset, so the 

second objective is to develop robust ANN-based mathemat-

ical model to predict real-time flowing bottom-hole pressure 

(FBHP) by using real-time surface production data param-

eters. To improve the accuracy of the ANN model, particle 

swarm optimization (PSO) algorithm is used to optimize the 

weights and biases of the trained neural network to predict 

FBHP; previously, Ebrahimi and Khamehchi (2015) and 

Awadalla and Yousef (2016) used optimization algorithms 

to optimize the parameters of ANN model. In this study, 

ANN model is translated into simple mathematical model 

by extracting optimized weights and biases. This will allow 
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readers to use proposed model without the need for any CI 

software.

Methodology

Data acquisition and preprocessing

Data analysis and preprocessing are the key steps to perform 

carefully, since the prediction performance of CI models is 

highly dependent on the quality of the data. A total of 206 

data points were obtained from published sources (Govier 

and Fogarasi 1975; Asheim 1986). In these sources, the pres-

sure data were obtained from the BHP surveys by lowering 

the down-hole pressure gauges inside the well just above the 

perforations to record the well bottom-hole flowing pressure. 

Table 1 lists some of the data points used for FBHP predic-

tion modeling. To scrutinize the quality of the obtained data 

and to remove any suspicious outliers, various mechanistic 

and empirical models were used to predict the FBHP and 

their results were then compared with the measured actual 

values. Data points which constantly caused poor predictions 

by all mechanistic models and correlations were assumed 

to be erroneous and therefore deleted. The mechanistic and 

empirical models used to check the quality of the data were 

Duns and Ros (1963), Hagedorn and Brown (1965), Beggs 

and Brill (1973), Mukherjee and Brill (1985), Kabir and 

Hasan (1986), Ansari et al. (1994), and Gomez et al. (1999).

Data analysis and description

The real-time production data used in this study were taken 

from the perfectly vertical wells with no any form of arti-

ficial lift, and all wells were completely naturally flowing. 

FBHP was measured at the depth of perforation. Dataset 

consists of total of nine input parameters such as well per-

foration depth, flowing oil rate (qo), flowing gas rate (qg), 

flowing water rate (qg), production tubing internal diameter 

( ∅ ), surface temperature (STM), well bottom-hole tempera-

ture (BTM), oil gravity (API), and wellhead pressure ( P
wh

 ). 

The output is measured FBHP. The ranges of input param-

eters employed are perforation depth, 4500–7550 ft, qo, 

280–19,800 bbl/day, qg, 33.6–27,400 MScf/D, qg, 0–11,000 

bbl/day, ∅ , 1.995–4.000 inches, STM, 76–160 °F, BTM, 

157–215 °F, and P
wh

 , 80–960 psia. The ranges of all investi-

gated input parameters are considered practically reasonable 

in the petroleum field and are comparable with previously 

published studies. A complete statistical description of the 

data used in the training of the model is given in Table 2.

The next most imperative step taken in the data analysis 

process of this study was to determine the relative impor-

tance (in terms of correlation coefficient (CC)) of each input 

parameter with the FBHP. The CC was calculated between Ta
b
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the FBHPs with each input using Pearson’s correlation coef-

ficient method. The definitions of CC and other statistical 

parameters are given in “Appendix A.” In general, the CC 

value ranges from − 1 to 1, in which the values close to 

+ 1 show strong direct relationship between two param-

eters while the CC values close to zero show no relation-

ship between two parameters and the CC values close to 

− 1 show strong indirect relationship between two variables. 

Figure 1 shows that the FBHP is a good direct function of 

perforation depth, oil rate, and wellhead pressure. The CC 

values for perforation depth, oil rate, and wellhead pressure 

with FBHP are 0.65, 0.56, and 0.56, respectively. FBHP is 

a weak function of surface temperature and bottom-hole 

temperature as shown in Fig. 1. The CC values for surface 

and bottom-hole temperature with FBHP are 0.29 and 0.35, 

respectively. However, the rest of the parameters have mod-

erate relationship with FBHP.

ANN algorithm

In this study, ANN model is designed on the three com-

ponents, namely learning algorithm, transfer function, and 

a signal processing element termed as neurons. Network 

consists of three structural layers: an input layer, a hid-

den layer, and an output layer. Input layer consists of nine 

input parameters which are well perforation depth, flowing 

oil rate (qo), flowing gas rate (qg), flowing water rate (qw), 

tubing string internal diameter ( ∅ ), surface temperature 

(STM), well bottom-hole temperature (BTM), oil gravity 

(API), and wellhead pressure ( P
wh

 ). The learning rate and 

the number of neurons inside the hidden layer are the key 

components in ANN structure (Gitifar et al. 2013; Ashena 

and Thonhauser 2015). During training of the model, data 

were transferred from input layer to the single hidden layer 

and from the hidden layer to the output layer to get required 

output (Jorjani et al. 2008). Each layer connects with subse-

quent layer by connections termed as weights and auxiliary 

functions termed as biases (Lippman and Lippman 1987). 

Network functionality strongly depends on the tuning of 

these weights and biases (Hinton et al. 2006). At the output 

layer, the predicted and actual values were compared and 

the difference between the two calculated is called as error. 

To improve the predictive capability of the system, the error 

was transferred back to the layers to tune up the weights and 

Table 2  Statistical description of (a) training dataset and (b) testing dataset

Variables Minimum Maximum Mean Range SD Kurtosis Skewness

(a) Training dataset

Inputs

Depth (ft) 4550.00 7100.00 6361.04 2550.00 563.49 − 1.66 1.98

Oil rate (bbls/day) 280.00 19,618.00 6497.97 19,338.00 5101.40 0.76 − 0.54

Gas rate (Mscf/day) 33.60 13,562.20 3595.11 13,528.60 3301.76 1.12 0.59

Water rate (bbls/day) 0.00 11,000.00 2494.76 11,000.00 2580.46 0.90 0.01

Tubing diameter (inches) 2.00 4.00 3.65 2.01 0.62 − 1.86 1.85

Oil gravity (API) 30.00 37.00 33.96 7.00 2.37 − 0.06 − 1.35

Surface temperature (°F) 76.00 160.00 120.31 84.00 31.28 0.16 − 1.88

Bottom-hole temperature (°F) 161.00 215.00 203.94 54.00 16.60 − 1.96 2.14

Wellhead pressure (Psi) 80.00 960.00 324.29 880.00 153.49 1.37 1.95

Output

Flowing bottom-hole pressure (Psi) 1227.00 3124.00 2483.88 1897.00 293.08 − 0.54 1.28

(b) Testing dataset

Inputs

Depth (ft) 4650.000 7079.000 6357.082 2429.000 577.561 1.701 − 1.552

Oil rate (bbls/d) 1041.000 18,146.000 5902.082 17,105.000 4143.083 0.715 1.090

Gas rate (Mscf/day) 124.920 9998.450 2990.485 9873.530 2396.573 0.918 1.192

Water rate (bbls/day) 0.000 10,785.000 3187.902 10,785.000 3213.975 − 0.727 0.662

Tubing diameter (inches) 1.995 4.000 3.676 2.005 0.547 2.387 − 1.899

Oil gravity (API) 30.000 37.000 33.338 7.000 2.152 − 0.796 0.391

Surface temperature (°F) 90.000 160.000 111.607 70.000 28.939 − 1.311 0.756

Bottom-hole temperature (°F) 157.000 215.000 202.934 58.000 17.910 1.368 − 1.746

Wellhead pressure (Psi) 95.000 780.000 313.443 685.000 154.737 1.336 1.324

Output

Flowing bottom-hole pressure (Psi) 1911.000 3217.000 2501.295 1306.000 324.945 − 0.751 0.139
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biases. This process of iteration is called as epoch. ANN 

then self-corrects iteratively and becomes better with pro-

gressive training runs. The final model at the end of training 

phase is a representation of the transfer function between the 

inputs and the desired output (Rao and Ramamurti 1993). In 

the current study, it is found that fewer number of neurons 

result in underfitting problem while excessive number of 

neurons cause more computational time with memorization 

or overfitting problem, which is also proved by other studies 

(Mohaghegh 2017).

Mathematically, the signal of neuron can be expressed 

by Eq. 1:

where

where wij is the weight of input j of neuron i and xj is the 

input parameter, b
i
 is the bias. Z

i
 is the output signal of neu-

ral network, and �(x) is the transfer function. There are three 

types of transfer function, namely: piecewise linear func-

tion, sigmoidal function, and threshold function (Yang et al. 

1996). The most commonly used transfer function employed 

in feed-forward neural network (FFNN) is sigmoidal func-

tion (Ashena and Thonhauser 2015), given by Eq. 3:

where ‘s’ is the slope parameter of the sigmoid function. By 

changing the parameter, a different slope of sigmoid function 

can be achieved.

In ANN, two types of models were investigated, namely 

radial basis function neural network function and FFNN. A 

(1)Z
i
= �(�

i
+ b

i
)

(2)�k =

Nh
∑

j=1

wijxj

(3)�(x) =
1

1 + e
−sx

comparison between these two models based on minimum 

averaged absolute percentage error (AAPE) and highest 

coefficient of determination (R2) was made between actual 

and predicted values. FFNN model was based on three struc-

tural layers, namely an input layer, a single hidden layer 

and an output layer. Sensitivity of number of neurons in the 

single hidden layer was performed by varying them in the 

range of 5 to 30. The optimum number of neurons was found 

to be 20, since this combination ended up in highest R2 and 

lowest AAPE in training/testing phases of the modeling. 

Sensitivity for selecting optimum transfer function between 

input layer and the single hidden layer was also executed 

between log-sigmoidal- and tan-sigmoidal-type transfer 

functions. Tan-sigmoidal-type transfer function performed 

better than the log-sigmoidal. To get the initial weights and 

biases, back-propagation Levenberg-Marquardt (LM) learn-

ing algorithm was selected. To further tune the weights and 

biases to improve the quality of prediction, PSO a computa-

tional evolutionary algorithm was coupled with ANN.

Design of hybrid PSO‑ANN model

In this study, particle swarm optimization (PSO) algorithm is 

used to optimize the weights and biases of the trained ANN 

model. PSO is a stochastic population-based evolutionary 

algorithm, motivated by the societal attitude of fish school-

ing and birds clustering (Kennedy 1997; Shi and Eberhart 

1998; Abido 2002). ANN coupled with PSO has proved to 

be better and faster predictive tool in comparison against the 

conventional ANN technique (Catalao et al. 2010; Vasum-

athi and Moorthi 2012; Wang et al. 2015; Tariq et al. 2016; 

Jahed Armaghani et al. 2017; Chatterjee et al. 2017; Tariq 

et al. 2018a; Ethaib et al. 2018). PSO represents population 

of random solutions in the search space as particles assign-

ing random velocities to them and iteratively tuning the 

Fig. 1  Relative importance of 

input parameters with flowing 

bottom-hole pressure
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fitness of the particles until the best solution called global 

best is achieved. PSO initializes based on predefined algo-

rithm parameters (i.e., population, weight, cognitive param-

eters, etc.). It then randomly generates particle locations in 

the solution search space for initial objective function evalu-

ation. Particles velocity term is given by Eq. 4:

where � is the weight (0 ≤ w ≤ 1.2) , v
i
 particle velocity, c

1
 

cognitive parameter (0 ≤ c
1
≤ 1.2) , c

2
 cognitive parameter 

(0 ≤ c
2
≤ 1.2) , n iteration number, pb

i
 particle best solution, 

pgb global best solution, and pi particle i position at any 

iteration.

The inertia term in the particle velocity equation (wv
i
(n)) 

ensures the particle moves toward its original direction, 

whiles its weight (w) ensures the particle rate of accelera-

tion moves toward its original direction. The cognitive com-

ponent c1 × rand[0, 1] × (pb
i
− pi(n)) memorizes the particle 

previous best solution obtained. The social component 

c2 × rand[0, 1] × (pgb − pi(n)) moves the particle toward the 

global best fitness. New position for each candidate solution 

in the solution search space is generated by sum of the cur-

rent position and velocity:

An objective function (a function that is desired to be 

minimized) is determined to assign the global best value, if 

the current best value is better than the values obtained in the 

previous iteration. The pseudocode for PSO-ANN algorithm 

is given in Table 3. After optimization, tuned weights and 

biases from the optimized model were retrieved.

(4)
vi(n + 1) = �vi(n) +

{

c1 × rand[0, 1] ×
(

pb
i
− pi(n)

)}

+
{

c2 × rand[0, 1] ×
(

pgb − pi(n)
)}

(5)pi(n + 1) = pi(n) + vi(n).

Results and discussion

A total of 206 data points were divided randomly into two 

sets with the proportion of 70:30. The set with 70% of the 

dataset (145 data points) were used for training of the mod-

els, and the other set with 30% of the dataset (60 data points) 

were used to test the prediction capabilities of the trained 

models. The histogram plots for training and testing datasets 

are given in Figs. 2 and 3.

In ANN, two types of models, FFNN and RBF, were 

tested. During training, FFNN predicted FBHP with AAPE 

of 10% and R2 of 0.90, while RBF type of ANN predicted 

FBHP with AAPE of 13.6% and R2 of 0.853. During testing, 

FFNN predicted FBHP with AAPE of 12.3 and R2 of 0.89 

while RBF predicted FBHP with AAPE of 13.6% and R2 of 

0.879, as shown in Table 4. Based on the lowest AAPE and 

highest R2, FFNN was selected as better ANN type com-

pared to RBF for the prediction of FBHP

To improve the accuracy of the model, the hybrid PSO-

ANN algorithm is applied for the prediction of FBHP in a 

vertical well. On a set of random data which is 70% the total 

data (145 data points), PSO-ANN predicted FBHP with the 

AAPE of 2.0% while ANN predicted the FBHP with the 

AAPE of 10% as shown in Fig. 4. For the set of data which 

were dedicated for testing the generalization capabilities 

and stability of the trained model (30% of the total data, 

60 data points), PSO-ANN predicted FBHP with AAPE of 

3.1%, while ANN predicted FBHP with the AAPE of 12% 

as shown in Fig. 5.

Comparing the performance of two models; PSO-ANN 

and ordinary ANN, during training ANN model predicted 

FBHP with less AAPE than ordinary ANN, respectively, 

on the other hand PSO-ANN gave R2 of 0.98 which is 

Table 3  Pseudocode for PSO-ANN algorithm

Step 1 Set number of input parameters

Step 2 Initialize all parameters of ANN

Step 3 Select number of hidden layers and number of neurons (sensitivity of number of neurons between 5 and 30)

Step 4 Select ANN training algorithm and ANN learning rate [0,1]

Step 5 Train neural network and extract weights and biases

Step 6 Set parameters of PSO algorithm, population of particles, number of iterations, social acceleration, cogni-

tive acceleration, and initial and final inertia weights values

Step 7 Set sample search space range for each weight and bias

Step 8 Input weights and biases of ANN matrix in PSO as initial population

Step 9 Define AAPE as on objective function to be minimized

Step 10 Check for convergence of error (minimum convergence)

Step 11 Repeat the iterations until stopping criteria are met (maximum number of iterations reached, or maximum 

number of inactivity reached)

Step 12 Select the global optimum solution as final weights and biases matrix

Step 13 Set final weights and biases in the ANN model for the prediction of FBHP

Step 14 End
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higher than the R2 produced by ordinary ANN which is 

0.9. During testing the unseen data, PSO-ANN also out-

performed ANN and yielded lower AAPE and higher R2. 

Figure 6 shows the comparison cross-plots between actual 

and predicted FBHP for both during training and testing 

phases.

Fig. 2  Frequency histograms of training dataset (145 data points)

Fig. 3  Frequency histograms of testing dataset (60 data points)
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Development of an ANN‑based mathematical model 
for FBHP prediction

A FFNN model is created by a series of three layers, an input 

layer, a single hidden layer, and an output layer. Hidden layer 

neurons use their weights w
1
 and biases b

1
 . These parameters 

are described by Eq. 6:

where N
P
 is the total number of inputs, x are the input 

parameters, and �
L
 is the transfer function between the input 

layer and the single hidden layer. The output of the whole 

network ‘ �
P
 ’ can be expressed as in Eq. 7:

where �
o
 is a transfer function between the single hidden 

layer and the output layer and N
h
 is the hidden layer number 

of neurons. Weights between the input layer and the hidden 

layer are a matrix denoted by w
1
 , and weights between the 

hidden layer and the output layer are a vector denoted by 

w
2
 . Biases between the input layer and the hidden layer are 

denoted by b
1
 , and bias between the hidden layer and the 

output layer is termed as b
2
.

The proposed PSO-ANN model is trained with nine input 

parameters which are Depth , q
o
 , q

g
 , q

w
 , ∅

n
 , API , STM , BTM , 

(6)�L

(

NP
∑

j=1

w
1j

xj + b
1

)

(7)�P(�) = �o

[

Nh
∑

i=1

w2i
�L

(

NP
∑

j=1

w1i,j
xj + b1i

)

+ b2

]

Table 4  Prediction comparison 

of ANN types, FFNN and RBF
ANN type Training set Testing Set

AAPE CC R2 AAPE CC R2

Feed-forward neural 

network (FFNN)

10.0 0.95 0.90 12.3 0.94 0.89

Radial basis func-

tion (RBF)

13.6 0.924 0.853 15.9 0.938 0.879

Fig. 4  FBHP prediction using optimized and unoptimized models 

(training dataset)

Fig. 5  FBHP prediction using optimized and unoptimized models 

(testing dataset)

Fig. 6  Training and testing cross-plot of FBHP prediction using PSO-

ANN and ANN models
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and P
wh

 , with one hidden layer containing 20 neurons, tan-

sigmoidal as a transfer function between input layer and hid-

den layer, and pure linear as a transfer function between the 

hidden layer and the output layer. Figure 7 shows the general 

architecture of the proposed model. Table 5 shows the list of 

learning parameters involved in the training and testing of 

the proposed model. An empirical correlation is developed 

from the proposed PSO-ANN model. An empirical correla-

tion depends on the associated weights and biases which are 

listed in Table 6. The proposed equation can be written more 

specifically as in Eq. 8:

Fig. 7  Architecture of PSO-

ANN model for FBHP
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where �
L
(x) = (2∕1 + e

−2x) − 1 , �
o
(x) = x 

The detailed procedure to use the proposed equation is 

given in “Appendix B.”

Evaluation and validation of the proposed 
model to predict FBHP

Evaluation and validation of new equation is based on pub-

lished data and group trend analysis.

Comparison of the proposed FBHP model with other 
correlations and mechanistic model

A total of 50 data points from the published data by Pef-

fer et al. (1988) were utilized to validate the generalization 

capability of the proposed PSO-ANN model. To achieve this 

purpose, various mechanistic and empirical models were 

tested on the same dataset. The mechanistic and empirical 

models tested were Duns and Ros (1963), Hagedorn and 

Brown (1965), Beggs and Brill (1973), Mukherjee and Brill 

(1985), Kabir and Hasan (1986), Ansari et al. (1994), and 

Gomez et al. (1999). Table 7 shows the list of various statis-

tical parameters obtained from the comparison for evalua-

tion purposes. To demonstrate the strength of the proposed 

(8)

FBHPn = �o

[

Nh
∑

i=1

w2i
�L(w1i,1

Depthn + w1i,2
qon

+ w1i,3
qgn

+w1i,4
qwn

+ w1i,5
�n +w1i,6

APIn + w1i,7
STMn

+w1i,8
BTMn + w1i,9

Pwhn
+ b1i

) + b2

]

(9)FBHP =
(3217 − 1227)(FBHP

n
+ 1)

2
+ 1227

model, R2 and AAPE were used as suitable pointers of 

robustness. Analysis of Table 7 shows that PSO-ANN model 

outperforms all other investigated mechanistic and empirical 

models by giving less AAPE and high R2 between actual and 

predicted datasets.

Group trend analysis

A group trend analysis was carried out to assess the strength 

of the proposed empirical model and to make sure that how 

effectively the proposed model captures the physical phe-

nomenon behind each scenario. To achieve this, synthetic 

datasets were created, where in every set of data only one 

input parameter was varied from its minimum to maximum 

values while all other parameters were kept constant at their 

average values. FBHP is calculated and plotted in Figs. 8, 9, 

10, 11, and 12 with different scenarios which are changing 

flow rate of oil, changing flow rate of gas, changing flow 

rate of water, changing depth of perforations, and changing 

GLRs with different tubing IDs.

Effect of changing oil flow rate on FBHP curve

Figure 8 shows the effect of increasing oil rate on FBHP 

with three different tubing IDs of sizes 2.875, 3.5, and 4.0 

inches. Increase in tubing diameter reduces frictional losses 

which helps in increasing the flow rate. For instance, at the 

FBHP of 2500 psi, the 2.875” tubing gives 8500 bbls/day, 

the 3.5” tubing gives 13,200 bbls/day, and 4” tubing gives 

18,700 bbls/day. Figure 8 also shows that as the oil flow rate 

is increasing, the FBHP is decreased to certain value and 

then starts increasing. The value at which FBHP is minimum 

at increasing oil flow rate is known as liquid loading point. 

It is a minimum oil rate needed to keep the well unloaded. 

For example, in case of 2.875 inches tubing, the minimum 

of 4000 bbls/day of flow rate is needed to keep the well 

unloaded. This information is needed to evaluate the size of 

tubing which is going to be installed in a well and to deter-

mine the rate at which the well starts to deliver for a specific 

size of tubing. PSO-ANN model accurately predicted the 

effect of liquid loading on FBHP with the increase in oil 

production rate.

Effect of changing gas flow rate on FBHP curve

Figure 9 shows the effect of increasing gas rate on FBHP 

with three different tubing IDs of sizes 2.875, 3.5, and 4 

inches. Figure 9 shows that as the gas flow rate is increasing, 

the FBHP is also increasing. This type of trend is also justi-

fied by general energy equation. PSO-ANN model predicted 

Table 5  PSO-optimized neural network architecture

Neural network parameters Ranges

Number of inputs 9

Number of outputs 1

Number of neurons 20

Number of hidden layer(s) 1

Training algorithm Levenberg–Marquardt

Learning rate ( �) 0.12

Hidden layer transfer function Tan-sigmoidal

Outer layer transfer function Pure linear

Training ratio 0.7

Testing ratio 0.3

Number of iterations 500

CPU time 60 s
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the correct trend of increasing FBHP with the increasing gas 

production rate.

Effect of changing water flow rate on FBHP curve

Figure 10 shows the effect of increasing water rate on FBHP 

with three different tubing IDs of sizes 2.875, 3.5, and 4 

inches. Again, PSO-ANN model predicted the accurate trend 

with the sensitivity of water rate which shows that the higher 

water rate gives higher FBHP.

Effect of changing perforation depth on FBHP curve

Figure 11 shows the effect of changing tubing perforation 

depth on FBHP. Sensitivity analysis with five different 

tubing IDs of sizes 1.995, 2.375, 2.875, 3.5, and 4.0 inches 

was performed. It is a well-documented fact that the pres-

sure drop inside the vertical well is a result from three 

components which are hydrostatic pressure loss, frictional 

pressure loss, and kinetic pressure loss. For the case of 

vertical well, pressure losses due to kinetics are very mini-

mal and can be neglected. Increase in perforation depth 

increases the hydrostatic component (function of the fluid 

density and depth) and therefore increases the FBHP. As 

can be depicted from Fig. 11, the proposed PSO-ANN 

model can capture the right physics which shows the 

increase in tubing pressure with the increase in perfora-

tion depth.

Table 7  Statistical analysis of the comparison between empirical cor-

relations, mechanistic models, and proposed ANN model on testing 

dataset

Models R2 AAPE

Kabir and Hasan (1986) 0.7502 19.53

Ansari et al. (1994) 0.8178 8.856

Chokshi et al. (1996) 0.8836 8.26

Gomez et al. (1999) 0.8324 13.95

Hagedorn and Brown (1965) 0.8508 9.96

Duns and Ros (1963) 0.8495 9.026

Orkiszewski (1967) 0.9015 15.65

Beggs and Brill (1973) 0.8647 10.56

Mukherjee and Brill (1983) 0.8792 7.89

Proposed PSO_ANN equation 0.983 2.566

Fig. 8  Effect of changing oil rate on flowing bottom-hole pressure at 

tubing IDs of 2.875, 3.500 and 4.000 inches

Fig. 9  Effect of changing gas rate on flowing bottom-hole pressure at 

tubing IDs of 2.875, 3.500 and 4.000 inches

Fig. 10  Effect of changing water rate on flowing bottom-hole pres-

sure at tubing IDs of 2.875, 3.500 and 4.000 inches
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Effect of changing gas–liquid ratio (GLR) with perforation 

depth on FBHP curve

Figure 12 shows the effect of changing gas–liquid ratio 

(GLR) with the changing depth on FBHP curve using con-

stant tubing ID of 4.0 inches. As expected and depicted from 

Fig. 12, the increase in GLR results in decrease in FBHP.

Conclusions

The real-time prediction of the FBHP with real-time 

surface production data parameters helps in minimizing 

the cost of conducting sequential pressure surveys via 

running expensive wireline tools (having pressure-meas-

uring gauges) inside the down-hole. The new approach 

avoids the need for unnecessary production interruptions 

to record bottom-hole pressures. Real-time assessment of 

FBHP allows engineer to model real-time inflow perfor-

mance relationship curves (IPR), which in turn helps in 

identifying early well problems, and hence, prompt inter-

ventions can be taken to uphold the potential of the well. 

This method of estimating FBHP is also a good alternative 

in areas of high security concerns and adverse weather 

situations. The dataset used to develop proposed model is 

based on the true vertical depth of the tubing where the 

perforation was done, however the new model can also be 

used to measure the FBHP at the heel of the horizontal 

well, while the pressure drop from the toe to the heel of the 

horizontal well can be estimated from existing analytical 

equations (Ozkan et al. 1995, 1999; Su and Gudmundsson 

1998) based on the dip angle that includes friction losses 

and gravity values in cases when perfect horizontal well 

was not drilled. The approach used in this study can also 

be extended to the inclined wells by training the model on 

a measured depth with the additional input of inclination 

angles. Based on observations and results, the following 

conclusions can be inferred:

1. A hybrid application of ANN and PSO served as one of 

the robust CI techniques to predict FBHP in a producing 

well.

2. PSO-ANN model predicted FBHP with a R2 of 0.98 and 

AAPE of 2.0%.

3. The proposed PSO-ANN model outperformed former 

mechanistic and empirical models for FBHP predictions.

4. The accurate prediction by the proposed model in a 

group trend analysis shows that the proposed model is 

capturing the right physics.

5. The new model can be applicable for a wide range of 

operating conditions as defined in Table 2a.

6. From overall results, it can be said that the new model 

can be used as a cost-effective alternative in terms of 

eliminating the need for intervening the well to record 

FBHP by running pressure-measuring tools.

7. The new mathematical model formulated from tuned 

weights and biases of PSO-ANN can be utilized to pre-

dict FBHP in new wells without the need for expensive 

commercial software for AI training purposes.
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Fig. 12  Effect of changing depth with different gas–liquid ratios 

(GLRs) on flowing bottom-hole pressure at tubing diameter of 4.000 

inches



1425Journal of Petroleum Exploration and Production Technology (2020) 10:1411–1428 

1 3

Compliance with ethical standards 

Conflict of interest The authors declare that they have no conflict of 

interest.

Open Access This article is distributed under the terms of the Crea-

tive Commons Attribution 4.0 International License (http://creat iveco 

mmons .org/licen ses/by/4.0/), which permits unrestricted use, distribu-

tion, and reproduction in any medium, provided you give appropriate 

credit to the original author(s) and the source, provide a link to the 

Creative Commons license, and indicate if changes were made.

Appendix A

Averaged absolute percentage error (AAPE) is defined as 

follows:

where  FBHPmeasured is the measured value of FBHP and 

 FBHPpredicted is the estimated value from the models. k is 

the total number of data points.

Correlation coefficient CC between two variables was 

defined as follows:

where x and y are two variables.

Coefficient of determination R2 between two variables 

was defined as follows:

Appendix B

Steps to use new mathematical model for FBHP 
prediction

Step 1 Normalize input parameters between − 1 and 1. 

Input parameters are denoted here by ‘ x .’ Normaliza-

tion can be done by slope form using Eq. 10:
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(10)

Inputnorm =
(Inputmax − Inputmin)(x − xmin)

xmax − xmin

+ Inputmin

x is the input parameter, x
min

 is the minimum values 

of input parameters, and x
max

 is the maximum values 

of input parameters. x
min

 and x
max

 for each of the input 

parameters are given in Table 2a. To perform the nor-

malization, the following equations (Eqs. 11–19) can also 

be used:

Step 2 Inserting weights and biases in Eq. 8 gives normal-

ized FBHP values. These weights and biases are given 

in Table 6.

Step 3 To convert FBHP value in a real space, de-normal-

ization is required which can be done by applying Eq. 9.

Note The results obtained using Eq. 9 will be in psi.
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