
Real-Time Protocol Analysis for Detecting Link-State

Routing Protocol Attacks�

Ho-Yen Chang, S.F. Wu

fhchang2, wug@eos.ncsu.edu
North Carolina State University

Raleigh, NC 27695

Y. Frank Jou

fjoug@mcnc.org
Advanced Networking Research, MCNC

RTP, NC 27709

March 16, 1999

Abstract

A real-time knowledge-based network intrusion detection model for link-state routing protocol is
presented to detect di�erent attacks for OSPF protocol. This model includes three layers: a data
process layer to parse packets and dispatch data, an event abstractor to abstract prede�ned real-
time events for link-state routing protocol, and an extended timed �nite state machine to express
the real-time behavior of the protocol engine and to detect the intrusions by pattern matching. The
timed FSM called JiNao Finite State Machine (JFSM) was extended from the conventional FSM with
timed states, multiple timers, and time constraints on state transitions. The construct of JFSM was
implemented as a generator which can create any FSM by constructing only the con�guration �le.
The results showed that this approach is very e�ective with expressive power for real-time intrusion
detections. The model of our approach can be used for other network protocol intrusion detections,
especially for those known attacks.

Keyword: real-time misuse intrusion detection, knowledge-based IDS, real-time network protocol anal-
ysis, link-state routing protocol security, OSPF attacks, event correlation, timed automata, timed Finite
State Machine

1 Introduction

In today's Internet, since routing (e.g., RIPv2, EIGRP, BGP, and OSPFv2) and network management
(e.g., SNMPv3/ng) protocols form the very heart of the network infrastructure upon which secure Internet
deeply relies, security of routing protocol is of the utmost importance. Until recently, the security of
these protocols has not been fully emphasized. However, there is a growing awareness of the potential
consequences of attacks aimed at the infrastructure, particularly the routing protocols [11, 4, 42, 5].

Two classes of routing protocols are used on the current Internet: distance-vector and link-state. Link
state routing has been considered as more secure than distance-vector protocols in many ways [18, 15], so
in this paper, we are only concerned about link-state routing protocols. In link state routing, every node
keeps a \map" of the entire network which is used to compute shortest paths to all destinations. Each
node contributes to this global view by periodically distributing (via ooding) link state updates(LSUs);
and LSU reects the current status of all incident links of a given node. That is, a router will periodically
announce to the whole world its relationship with all its neighbors.

Many insider attacks on link state routing protocols have been mentioned or discovered [33]. Here,"insider"
means a trusted entity participating in the routing information exchange process or an outsider with the
capability to intercept and modify the information exchange channels. For example, in [4], a new OSPF
insider attack has been discovered and implemented, which allows the attacker to control the network
topology for one hour by injecting a small number of bad OSPF PDUs. This attack is due to an imple-
mentation bug on many commercial routers. One particular major router vender has recently responded
to our discovery by giving us a new version of their router software which makes the attack less e�ective.

Some of these insider attacks can be prevented by digitally signing the exchanged routing information.
For instance, in [33], the link state advertisements (LSA) are signed by the LSA originator to prevent a

�This research project is supported by DARPA/ITO.

vicious intermediate router from tampering with the link state information. The objective of the preven-
tive approach is to guarantee the integrity and authenticity of the link state information. However, the
preventive approach has been rejected by the IETF OSPF working group for both technical and polit-
ical reasons. These reasons include: complexity, high overheads, backward compatibility, and political
concerns among vendors.

The JiNao project [21] at MCNC/NCSU is focusing on defending attacks. It takes an intrusion
detection approach to defend routers against insider attacks, which may be relatively more acceptable to
the industry as it requires no changes to the routing protocols themselves.

1.1 Intrusion Detection System

Because building and maintaining a perfectly secure system could be both technically hard and economi-
cally costly, network intrusion detection devices are used to detect and call attention to odd and suspicious
behavior. An intrusion detection system (IDS) detects attacks or anomalies against computer systems
and networks, through the task of monitoring the usage or traÆcs of the systems.

In 1987, Denning [8] proposed an intrusion-detection model based on the hypothesis that security
violations can be detected by monitoring a system's audit records for abnormal patterns of system usage.
Since his work, many IDS prototypes have been created. Several surveys have already been published
[24, 25, 32, 12, 6] , and a partial bibliography of current IDS can also be found in [38].

Intrusion
Detection
System

Target

Input Packets

Audit Trail,
Packets,
Results from other IDS

Alarms
Detection

Responses

IDS Function

IDS Configuration

Function
Intrusion Response

Figure 1: A General Intrusion Detection System

A general intrusion detection system (IDS) is depicted in Figure 1. Depending on the technique used,
the IDS function investigates the monitored objects, either by o�-line after-fact (from audit trail) detection
or by online real-time (from network packets) detection. Once IDS detects intrusion, it can either show the
warning message or directly inform the intrusion response system (IRS) to react to this intrusion. Basically,
IDS can be adjusted by con�guration to the monitored environment. Through the con�guration, IDS can
be tuned into better performance or sensitivity against di�erent intrusion techniques. A good taxonomy
of IDS has been presented in [7].

There are �ve measures usually used to evaluate the eÆciency of an intrusion detection system : accu-
racy, completeness, performance, fault tolerance, timeliness [7]. Accuracy indicates the rate of correctness
in detection results. Inaccuracy occurs when an IDS ags a legitimate action in the environment as anoma-
lous or intrusive, which is also called a false positive. Completeness indicates the sensitivity of an IDS.
Not all the attacks may be detectable. Incompleteness occurs when IDS fails to detect an attack, which
is also called a false negative. Good IDSs will have as lower false positive and false negative as possible.
Performance indicates the rate at which audit events are processed. Poor performance lacks the ability of
real-time detection. Moreover, to remain e�ective anytime, an IDS should be fault tolerant itself to resist
attacks, particularly denial of service attacks. Timeliness implies that the IDS's response or the reaction
to an attack should be the sooner, the better. If an IDS cannot process and propagate the information of
the attacks as quickly as possible, and enable the security oÆcer to react before damage has been done,
the attackers could have a chance to subvert the audit source or even the IDS itself.

Current approaches of intrusion detections can be broadly classi�ed into two trends. Anomaly detection
systems, or so called Behavior-based IDS s, and Misuse detection systems, or so called Knowledge-based
IDS s. Behavior-based intrusion detection systems monitor and build a reference pro�le of the normal
behavior of the information system by using statistical methods and try to detect activity that deviates
from this normal behavior pro�le [8, 20, 3, 9]. Anything that does not correspond to previously learned
behaviors is considered intrusive. The main advantage of this approach is that it can detect attempts to
exploit new and unforeseen vulnerabilities without a priori knowledge of the security aw of the target
system. That is, it could automatically discover new potential attacks.

2

However, a Behavior-based IDS might be complete, but its accuracy is a question. The high false
positive alarm is generally cited as the main drawback of the behavior-based IDS, because the entire scope
of the behavior of an information system may not be covered during the learning phase. Also, behavior
may change over time. In order to maintain the accuracy of IDS, the behavior pro�le needs periodically
online \retraining", resulting either in unavailability of the IDS or additional false alarms. For example,
the information system can undergo attacks at the same time the IDS is learning the behavior, and as
a result, the behavior pro�le may contain intrusive behavior, which is not detected as anomalous but
considered as normal behavior, resulting to a false negative.

Knowledge-based IDS s, accumulate the knowledge about the attacks, examine traÆc, and try to iden-
tify a pattern that they can compare to the signatures or scenarios known to be dangerous or suspicious.
This approach can be applied only against known attack patterns and needs to update the knowledge
base frequently, for example, a virus checker, which needs to keep periodically updating the new sig-
nature as new attacks are detected and characterized. Any action that is not explicitly recognized as
an attack is considered acceptable. Thus, A Knowledge-based IDS might be accurate, but its complete
detectability is a diÆcult issue. However, a majority of break-ins or intrusions is the result of a small
number of known attacks, as evidenced by reports from CERT. knowledge-based IDSs with signatures
techniques are attractive to today's implementations, especially in commercial products because of their
very low false alarm rates and very high accuracy. Also, the clear expressiveness of this technique makes
maintaining the knowledge base easier for the security oÆcer. Several techniques have been proposed in
Knowledge-based IDS, including Expert systems, Model-Based reasoning intrusion detection [13], State
Transition Analysis [19], keystroke monitoring, Color Petri Nets [23].

Furthermore, in a distributed environment, users hop from one machine to another, possibly changing
identities during their moves and launching their attacks on several systems, making the task of IDS even
harder. Thus, to manage diverse attacks across networks and time, local intrusion detection systems may
need to cooperate with other network IDS by exchanging information with its peers. However, \coop-
eration" of homogeneous components requires some way to co-manage intrusion detection and response
systems, such as standardizing formats, protocols and architectures, so Common Intrusion Detection
Framework (CIDF) was formed recently to deal with these issue [39, 22, 41]. Arti�cial Intelligence tech-
niques could be used in IDS [12], such as learning, induction, and information reduction to improve the
performance of the intrusion detection.

None of the intrusion-detection approaches described above is suÆcient alone to catch all intrusions.
A successful intrusion-detection should incorporate several di�erent approaches. In particular, in order to
increase the diÆculty of penetration, the JiNao project [21] at MCNC/NCSU which employs a statistical
pro�le approach and a knowledge-based approach promises to be an e�ective combination.

1.2 JiNao Intrusion Detection System

The JiNao distributed intrusion detection system is comprised of security management agents (i.e., Ji-
Naos1) that collect and analyze traÆc measurements and additional agents that perform higher-order
analysis functions. The communication interface among these two types of JiNao's is SNMP (Simple Net-
work Management Protocol) for interoperability. Each agent o�ers a set of abstract MIB (Management
Information Base) variables for global and higher-level network management applications. By coupling
local and global observations, the collection of agents and management applications can detect and react
to correlated attacks on the network infrastructure.

The architecture of JiNao is shown in Figure 2, which de�nes an integrated framework. Three modules,
an administrative-rule based approach, a statistical-based approach, and a protocol-based approach play
complementary roles to achieve intrusion detection. The Prevention Module, with the administrative rules
(like �rewall) checking , will detect events that are in clear violation of certain network security guidelines
and are deemed too dangerous to let pass through to protocol engines. The Statistical Module will be
able to detect any intrusions that have signi�cant impact on certain statistical signatures of the network
infrastructure, even those that are not anticipated by the protocol-based mechanisms. The statistical-
based mechanisms may also provide information on the locations of the potential \hot spots" for intrusion
where installation or enhancement of the logical analysis mechanisms should be considered. The Protocol
Analysis Module will be able to detect the targeted intrusions with relatively low latency. It also provides
additional information for source identi�cation of the intrusions, and some security guidelines for the
Prevention Module to adjust its administrative rules. In addition, the protocol-based mechanisms will

1Jinao means a \chicken brain" in Chinese.

3

Statistic
Info

Dynamic/
Logical
Info

Management Information Base

Local
Decision
Module

Information
Abstraction
Module Prevention

Module

rulesSecurity
Control

Mapping

MIB Agent

MIB Agent

Remote
Intrusion
Detection
Module

Management Interface

Management Interface Management Interface

Detection
Module

Local

MIB Agent

ManagerToManager

ManagerToAgent

statistical
pattern

Protocol
Base

statistical
pattern

Protocol
Base

statistical
pattern

Protocol
Base

statistical
pattern

Protocol
Base

Routing
Flow Control

Signaling

Protocol Engine

message

IDS detection
information

message

messageDecision
Information

Security
Officer

Figure 2: The JiNao IDS Architecture

provide \hints" on the expected changes in network to help the Statistical Module to adjust to new
conditions. This paper focuses only on the presentation of the Protocol Analysis Module in detail. For the
details of other system components, please refer to [21].

The network faults or malicious attacks typically result in a number of timed events. In this protocol-
based analysis module, we are interested in correlating these ordered events to determine whether the
protocol's behavior is normal or abnormal. This problem, referred to as \event-correlation," is a fun-
damental issue in many network security and fault tolerant systems. JiNao Protocol Analysis Module
(JPAM) applied and extended the �nite state machine model [17] to capture both good and bad behavior
of a link-state routing protocol engine. The extended FSM model, as will be discussed later, is called JFS-
M (JiNao Finite State Machine), which has been de�ned and implemented to make the FSM model more
expressive in dealing with the timing issue. Independently, we implemented three OSPF insider attacks
(maxseq, maxage, and seq++), which were all tested on both NCSU's and MCNC's routing testbeds and
demoed in Air Force Base Rome Laboratory in Nov, 1998.

As will be presented later, the results showed that this proposed methodology is e�ective in detecting
these real-time routing protocol attacks. Additionally, the system described here may serve as the basis
for an extended study of real-time intrusion detection modeling for other network protocols.

2 Link-state Routing Protocols and Autonomous OSPF Routing

Routing protocols are used by routers to create a map of the network, so that the routers can tell how
to get from one point to another. Link-state routing protocols create the map in three distinct phases.
First, each router meets its neighbors and learns about its local neighborhood. Second, routers share that
information with all other routers on the network by exchanging information. During this phase, a router
learn about neighborhoods other than its local one. Finally, each router combines the information about
each individual neighbor to get a \map" of the entire network (as depicted in Figure 4), from which it
calculates routes.

OSPF [30] (Open Shortest Path First), based on link-state and SPF (Shortest Path First) technology, is
a routing protocol which is classi�ed as an Interior Gateway Protocol (IGP). This means that it distributes

4

Hello Hello

Hello

C

BA
Hello

Hello

Figure 3: Hello protocol Figure 4: Link State

routing information between routers belonging to a single Autonomous System (AS) in which a collection
of many computer systems, routers, and other network devices share a single administrative entity.

Here are three stages of OSPF,

1. Meeting the Neighbors
The �rst step is the creation of adjacencies. A Hello Protocol is de�ned to establish and maintain
the neighbor relationship. That is, every OSPF router periodically sending Hello packets to discover
its neighboring routers (as shown in Figure 3). Three components in the Hello packet header keep
information about the status of routers. The hello interval indicates how frequently the sender
should retransmit its hello packets; the router dead interval tells how long it takes to declare a
router unavailable, and a list describes the neighbors that the sender has already met. Once neigh-
boring routers have \met" via Hello Protocol, they go through a \Database Exchange Process" to
synchronize their databases.

2. Share the information by ooding LSA
In the second step, the information about a router's local neighborhood is assembled into a Link-
State Advertisement (LSA) and is broadcast (via a reliable intelligent ooding scheme) to all other
routers. The combined information makes up the link state (LS) database for the network. In a
broadcasting network, like Ethernet, a designated router may be elected to advertise for the whole
network.

3. Calculate Shortest Routes based on LS Database
Once all systems have an up-to-date link state (LS) database, each router can use the Dijkstra
algorithm to calculate a shortest path tree with the router itself as the root node and then form a
complete picture of routing in the network.

In a dynamic unstable network, routers may restart, network cost metric may change, and even links
may fail. So all three phases happen in parallel, and they all take place continuously to maintain a
well-functional routing environment.

To reduce routing traÆc and the size of the topology database the protocol requires, OSPF proposes a
two-level hierarchical routing scheme within anAutonomous System (AS). The hierarchies include backbone
and areas. All systems within an area must be connected. An area is a collection of networks, hosts, and
routers. Backbone serves as the hub of the AS, and all other areas in the AS must connect to the backbone.
Each area runs a separate copy of the basic link-state routing algorithm. This means that each area has
its own link-state database. The topology details of an area are hidden from the outside of the area.
Conversely, routers internal to a given area know nothing about the detailed topology external to the
area. This isolation helps to reduce routing traÆc as compared to treating the entire AS as a single
link-state domain. One thing to be mentioned here is that an attack which occurs inside an area may not
disturb the outside world. Conversely, an internal router in an area may not be inuenced by an attack
which occurs outside of the area.

There are �ve types of OSPF packets. Hello packet is used by two adjacent routers to maintain a
neighborhood relationship. Database Description and Link State Request packets are used to synchro-
nize two routers' databases when an adjacency is being initialized. Link State Update and Link State

5

Acknowledge packets are used to broadcast LSAs (Link State Advertisement). All OSPF routing protocol
exchanges may be authenticated.

2.1 Link-State Advertisement (LSA)

Once a router meets its neighbors by exchanging Hello packets, it distributes that information to the rest
of the network. To do this, it oods LSA throughout the network. All LSAs share a generic header, which
is shown in Figure 5.

2.1.1 LSA format

Option LS type

LS checksum

LS age

Link State ID

Advertising Router ID

LS sequence number

length

0 3116

Figure 5: LSA header format

The �rst 16 bits store an LSA's age. The age starts at zero and is incremented on every hop of the
ooding procedure. LSAs are also aged as they are held in each router's database. When an LSA's age
reaches 3,600 (one hour), it is considered out of date, and should be purged from a router's database. If
one router decides to ush an out-of-date LSA from its database, it also re-oods it as a signal for other
routers to remove it so that every router will have a consistent view about the network topology. Option
�eld indicates which optional capabilities are associated with an LSA.

LS type �eld dictates the format and function of an LSA. LSAs of di�erent types have di�erent names
(e.g., router-LSAs or network-LSAs). Link State ID �eld identi�es the piece of the routing domain that
is being described by the LSA. Advertising Router ID �eld speci�es the OSPF Router ID of an LSA's
originator. This 32-bit number uniquely identi�es each router within an AS. It can be assigned to one of
the router's IP address.

LS sequence number �eld is a signed 32-bit integer. It is used to detect old and duplicate LSAs. It
starts at 0x80000001 (0x80000000 is reserved by OSPF) and is incremented each time a router originates a
new instance of the LSA. When an attempt is made to increment the sequence number past the maximum
value, i.e., 0x7fffffff, the max sequence LSA must be ushed from the routing domain. This is done
by prematurely aging the max sequence LSA to 3600, which is max age, and re-ooding it. As soon
as this ood has been acknowledged by all adjacent neighbors, a new instance can be originated with
sequence number 0x80000001. As shown in Section 3, some routers fail to comply with the protocol due
to implementation bugs. An intruder can block routing updates for up to one hour by simply injecting
one bad LSA. LS checksum �eld contains the checksum of the complete contents of the LSA, except the
LS age �eld. The LS age �eld is excluded so that an LSA's age can be incremented without updating the
checksum. Fletcher checksum, which is also used by ISO connectionless datagrams, is used for this �eld.

Here a distinction must be made between an LSA and an LSA instance. An LSA is associated with a
particular link or network. For example, there is a link connecting router A and B. Router A is responsible
for originating an LSA to tell other routers that it has a link to router B, while router B will use another
LSA to tell others that it has a link to router A. An LSA instance gives the state of a particular LSA at
a particular time. For example, router A at time t1 may broadcast an LSA instance saying the cost for
its link to router B is 10. After a while, say at time t2, the status of the link changes. Router A should
broadcast a new LSA instance telling the new cost for this link. In a network, there may exist more than
one instance for a particular LSA. LS type, Link State ID and Advertising Router ID uniquely identify an
LSA, while LS sequence, LS age and LS checksum �elds must also be considered when talking about an
LSA instance. Unless it will cause confusion, the single word LSA is used for both LSA and LSA instance,
since most of the time, the meaning can be easily derived from context.

6

2.1.2 Exchanging LSA

A router should originate an LSA whenever the status of its direct links changes (like link up/down,
new neighbor, etc.). Also after a prede�ned timeout, a router should re-advertise the links to keep their
\freshness".

An interesting issue to mention here is the \�ght back" phenomenon in link state routing information
exchange. Assume an intruder injects a bad LSA into a routing domain to impersonate a good router
(assume the authentication option has been turned o�). The other routers will compare the bad LSA with
the good one in their database. If the bad LSA is older, it will be discarded in the �rst place, causing no
harm at all. Otherwise, the good LSA will be purged out, while the bad LSA is put into the database. To
make sure all other routers share the same view of the topology, the router, which has accepted the bad
LSA, will forward it to all its neighbors (except the one from which it received the bad LSA). So the bad
LSA will spread all over the routing domain. Finally this LSA's legal originator (victim) will receive the
bad LSA! Now the originator of this LSA �nds something wrong; it will increase the sequence number,
reset the age, and broadcast a new LSA back into the network. This is called \�ght back". \Fight back"
will continue until the attacker quits.

OSPF Hello

Constant Default Value Action of OSPF Router

HelloInterval 10 secs For how frequently sender re-transmit Hello pkts.

RouterDeadInterval 40 secs For how long it takes to declare a router unavailable.

LS Age

Constant Default Value Action of OSPF Router

MinLSArrival 1 second Maximum rate at which a router will accept updates of any given LSA via
ooding.

MinLSInterval 5 seconds Maximum rate at which a router can update an LSA. (not allow to update LSA
less than 5 secs)

CheckAge 5 minutes Rate at which a router veri�es the checksum of an LSA contained in its
database.

MaxAgeDi� 15 minutes When two LSA instances di�er by more than 15 minutes, they are considered
to be separate instances, and the one with the smaller LS Age �eld is accepted
as more recent.

LSRefreshTime 30 minutes A router must refresh any self-originated LSA whose age reaches the value of
30 minutes

MaxAge 1 hour When the age of an LSA reaches 1 hour, the LSA is removed from the database.

LS SequenceNumber

Constant De�ne Value

InitialSequenceNumber 0x80000001

MaxSequenceNumber 0x7���f

Table 1: Some rules and constants in OSPF for LSA

According to OSPF standard [30, 31], Table 1 are some rules and constants in OSPF protocol.

2.2 Good Fault-Tolerant Properties of OSPF Protocol

In general, protocols can be made fault-tolerant by three \standard" techniques [14]: the addition of
sequence numbers to messages, discarding received erroneous messages, and timeouts. Sequence numbers
can be used to detect and correct all occurrences of message reorder. Checksum can be used to transform
each occurrence of message corruption to an occurrence of message loss. Timeout can be used to detect and
correct all occurrences of message loss (provided that there is an upper bound on the time-to-live for every
sent message). The direct approach to the timeout scheme is to provide some kind of \global clock" for
synchronization. However, this approach complicates the protocols and is usually very expensive. OSPF
uses hello protocol to maintain \aliveness" information and \Age" to provide \freshness" information.

By combining \age" and \sequence number" protocol, OSPF can achieve a good property so called
\Self-stabilization", in which a system can automatically recover from arbitrary transient faults in a

7

bounded period of time without any external intervention [10]. This property forces attacks to be persistent
to be possibly successful. Recently self-stabilization has become an important issue for the fault-tolerant
distributed system, surveys and papers can be found in [37, 16].

Through ooding and LS database synchronization, OSPF can have topology-independence detectabil-
ity. That is, the router can observe all the LSAs' behavior in the same area, even from other originating
routers. This property helps IDS sit on only one location and detect a whole area's intrusion status at a
certain rate of accuracy.

Although OSPF is considered as a better secure routing protocol, several vulnerabilities have been
found because of software engineering aws [4] which will be discussed in the next Section.

3 OSPF Attacks: Mechanism and Implementation

3.1 Attack Implementation on FreeBSD

In order to validate the proposed approach, three OSPF insider attacks were implemented for the FreeBSD
platform [4]. FreeBSD provides a mechanism called divert socket which can be used to intercept OSPF
packets from the kernel and divert them to a user process. The attacks themselves are implemented in that
user process, and the tampered OSPF packets are then re-injected into the kernel, which will deliver these
packets to either the routing daemon running on the same machine (incoming direction) or its neighbors
(outgoing direction). The architecture of the attack implementation is depicted in Figure 6.

GateD
Daemon

OSPF Attack
Implementation

divert 5000 OSPF
from any to any IN

divert 5001 OSPF
from any to any OUT

FreeBSD
Kernel

Network

ipfw

orig
OSPF
PDUs

attack
OSPF
PDUs

attack
OSPF
PDUs

orig
OSPF
PDUs

Seq++
MaxSeq
MaxAge

divert
socket
setup

Figure 6: OSPF Attack Implementation

3.2 Attack 1: Seq++ Attack { Simple Modi�cation

When the attacker receives a LSA instance, it can modify the link state metric and increase the LSA
sequence number by 1 (i.e., Seq++). The attacker also needs to re-compute both the LSA and OSPF
checksums before the tampered LSA is re-injected into the system. This attacking LSA, because it
has a larger sequence number, will be considered \fresher" by other routers. And, eventually it will be
propagated to the originator of this particular LSA. The originator, according to the OSPFv2 speci�cation,
will \�ght back" with a new LSA carrying correct link status information and an even fresher sequence
number.

The e�ect of this attack is an unstable network topology if the attacker keeps generating \Seq++"
LSAs. For example, all routers at one point will think the link cost is in�nity (the link is down), but then
the �ght-back LSA from the originator will tell them the cost metric is much smaller (e.g., 2).

3.3 Attack 2: Max Age

When the attacker receives a LSA instance, it can modify the LSA age to MaxAge (i.e., 1 hour), and re-
inject it into the system. This attacking LSA, with the same sequence number but MaxAge, will cause all

8

routers to purge the corresponding LSA from their topology database. Eventually, the originator of this
purged LSA will also receive the MaxAge LSA. The originator, according to the OSPFv2 speci�cation,
will \�ght-back" with a new LSA carrying correct link status information and a fresher sequence number.

The e�ect of this attack is also an unstable network topology if the attacker keeps generating \MaxAge"
LSAs. For example, all routers at one point will think the link is not available, but then the �ght-back
LSA from the originator will tell them the link is actually there.

3.4 Attack 3: Max Sequence Number

When the attacker receives a LSA instance, it can modify the link state metric and set the LSA sequence
number to 0x7FFFFFFF (i.e., MaxSequenceNumber). The attacker also needs to re-compute both the
LSA and OSPF checksums before the tampered LSA is re-injected into the system. This attacking LSA,
because it has the maximum LSA sequence number, will be considered the \freshest" by other routers.
And, eventually it will be propagated to the originator of this particular LSA. The originator, according
to the OSPFv2 speci�cation, \should" �rst purge the LSA (setting MaxAge) and then ood a new LSA
carrying correct link status information and the smallest sequence number: 0x80000001.

It is discovered that the e�ect of this attack depends on the implementation of the OSPF protocol.
If the protocol is indeed implemented correctly, then it is similar to Seq++. On the other hand, many
routers did not implement the MaxSeq LSA handling correctly: the purging of the MaxSeq LSA is not
implemented. This implies that the MaxSeq LSA will stay in every router's topology database for one
hour before it reaches its MaxAge. In other words, the attacker can control the network topology database
for all the routers for one hour.

4 JiNao Real-time Protocol Analysis Module (JPAM)

Although the Behavior-based IDS, such as the statistical module in the JiNao project, has complete
detectability, it has costs in terms of many false alarms and longer learning period. JiNao Protocol
Analysis Module (JPAM), which is a Knowledge-based IDS, was made to overcome these de�ciencies and
to complement the JiNao statistical module.

The intuition behind the JPAM is that malicious attacks or faults often result in a set of possible alarm
event sequences or some special events which can be described as input strings in the �nite state machine.
Good behaviors are often \predictable" so are known bad behaviors (there are already several attacks we
knew). According to the order of packet events, which can be identi�ed as good or bad behaviors based
on protocol speci�cation, we in general observe the sequence of events to tell what kind of attacks happen
or the status of the router's behavior.

Figure 7 shows the concept of our approach. The upper part represents how the model of normal

OFF-LINE

ON-LINE

Record Patterns and Construct Configuration

Provide Configuration for known patterns

Coming Packets

(PAM)

Event Abstractor
(EvtAbs)

Coming Packets

(PAM)

Event Abstractor
(EvtAbs) (PatExt)

Pattern Matching
(PatMat)

Pattern Extraction

Protocol Analysis Machine

Protocol Analysis Machine

Catch attacks and output alarm

Figure 7: IDS by pattern matching of FSM

behavior and known intrusion patterns could be created o�-line. The on-line detection process of the
lower part relies on the assumption that when an attack exploits vulnerabilities in the system, either a
new subsequence of events which deviate the normal event sequence will appear or some known intrusive

9

pattern will be matched. The protocol analysis machine (PAM) obtains the network packet from the
interception module, doing the �ltering to eliminate irrelevant packets that are not related to the protocol
we monitor and then dispatch the packets to Event Abstractor(EvtAbs). EvtAbs basically will do the
translation job to abstract the prede�ned event from a given packet. Based on the sequence of events
it observed, Pattern Extraction(PatExt) will record the patterns into the IDS database, which can be
a reference for constructing FSM by the system security oÆcer for on-line intrusion detection. After
constructing FSMs, each of them can do the pattern matching for di�erent known attacks simultaneously
and output the alarm information when something bad happens.

���
���
���

���
���
���

"ab" "adc"

EvtAbs

JFSM3JFSM2JFSM1

"abcd"

"follows" semantics

"acecbcca"

Figure 8: \follows" semantics of
pattern matching

��
��
��
��

��
��
��

��
��
��

Attack with "Timing" properties:
"abcd" must finished with 10minutes but "bc"cannot be done more
more quickly than 2 minutes...

"ab" "adc"

EvtAbs

JFSM3JFSM2JFSM1

"abcd"

"bcabecdaa"

Figure 9: \timing" property in
pattern matching

��
��
��

��
��
��

���
���
���
���

"ab" "adc"

EvtAbs

JFSM3JFSM2JFSM1

"abcd"

"bcaecdebce"

Mixed Attack Patterns

Figure 10: \mixed" attack pat-
tern matching

Pattern matching in intrusion detection must be done with the \follows" semantics rather than the
\immediately follows" semantics [23]. That is, any two adjacent sub patterns within a pattern could be
implicitly separated by an arbitrary number (possibly zero) of events of any type (i.e., \:�" in Unix regular
expression syntax). For example, pattern \ab" speci�es that event \a" is followed by event \b" with some
(or none) intervening events (\a: � b"). In other words, JFSM was designed to detect pattern \ab" not
only from \bcabaa" but also from \acecbcca".

Many attacks come with timed properties; for instance, in order to attack successfully, a special
sequence \abcd" must be �nished within 10 minutes but the \bc" sub sequence cannot be done more quickly
than 2 minutes (i.e., \bc" cannot happen too soon) which may violate some protocol rule. Otherwise, this
attack will fail. JFSM extended from a timed automata is able to deal with the real-time information
related to these kinds of attacks. Furthermore, there could be multiple intrusion patterns mixed in a long
event sequence string. For example, if \ab" and \adc" are two known attack patterns of event sequences,
there could be a sequence \bcaecdebce" containing these mixed attack patterns. JPAM was designed to
be able to detect all of them at the same time.

In terms of detectability, although its completeness depends on the regular update of knowledge about
attacks, JPAM uses signature and the FSM approach which has clear expressiveness, making it easier
for security oÆcers dynamically tuning up the IDS to take preventive or corrective action. In terms of
accuracy, JPAM has a potentially very low false alarm rate, and thus is an attractive approach to many
applications.

4.1 Overview of JPAM Architecture

JPAM uses routing traÆc and knowledge about the protocol engine to detect when an intruder is attempt-
ing an attack. When the JPAM detects such an attack, it sends an alarm message to the Local Decision
Module describing the attack and containing the sequence of messages (events) used in determining that
the attack took place.

The generic architecture of JPAM can be viewed as the following three basic abstractions showed in
Figure 11:

The Data Process Layer incorporated with the interception module provides a low-level data interface
to monitored computer or network system. It contains packet parsers which can translate each
packet to correct protocol data structures. Based on the protocol-dependent input packet, this layer
dispatches each output in a protocol-dependent format, such like packet header, with timestamp to
the corresponding event machine for abstracting events.

The Event abstraction Layer provides the representation of events and generates the general domain
of the inputs for JFSM. It contains an universal event generator which can generate the event

10

Detection Results

Data Process Layer

Event Abstraction Layer

JFSM Pattern Matching Layer

Physical Data Source

Figure 11: Three abstraction layers of JPAM

abstractor machines for di�erent protocols based on di�erent con�guration �les. All event de�nitions
are put into these �les such that dynamic adjustment is possible. Each event machine may generate
a di�erent sequence of events based on the system data or network packets provided from the lower
data information layer.

The JFSM Pattern Matching Layer detects the matching patterns based on the sequence of events
or signatures from its corresponding event machine. It contains a JFSM generator to generate
di�erent �nite state machines based on di�erent con�guration �les.

This kind of abstraction enables the ability for adapting alternative solutions of each layer without
changing the interfaces between the layers of this model. The JPAM maintains a collection of Event
Abstractors for each protocol JiNao is capable of monitoring. Each event abstractor can have several
JFSMs to detect multiple intrusion patterns at the same time. Each JFSM is used to detect either one
kind of intrusion or the good, expected behavior. Each JFSM could be constructed o�-line and stored in
a human-readable �le. The main bene�ts of this model are its extensibility, portability, and exibility by
dynamic con�guration. The generic JFSM generator can create any FSM based on the transition table
in its con�guration �le. By dynamically changing the con�guration �les of event abstractors and JFSMs,
this model could potentially be applied to other systems or even di�erent mixed protocols.

JiNao Protocol Analysis Module

Interception Module

Data Packets from Media

Decision Module

... ...

...

...

(PAM)

(EvtAbs-0) (EvtAbs-1) (EvtAbs-N)

...

JFSM-N

Protocol Analysis Machine

Event AbstractorEvent Abstractor Event Abstractor

JFSM-1 JFSM-MJFSM-2 JFSM-0 JFSM-0 JFSM-2 JFSM-3 JFSM-P...

Figure 12: Architecture of JiNao Protocol Analysis Model

The architecture for the current implementation of the JiNao protocol analysis module for OSPF/LSA
is described in Figure 12. The upper part, \Protocol Analysis Machine (PAM)" can be con�gured by a
con�guration �le which contains all the information about the construction of \Event Abstractors(EvtAbs)"
and \JFSM s". The �le indicates which LSAs are interested by this module and which JFSMs are used
for analyzing each LSA's behavior.

11

Each EvtAbs is responsible for one particular type of LSAs and has several JFSMs to parallelly analyze
this LSA's events. Every JFSM is associated with a con�guration �le, which contains all the states and
transitions to construct this JFSM. Each JFSM could observe one speci�c behavior or trying to match
one known pattern. All FSMs of the same EvtAbs must work simultaneously to catch all the suspicious
patterns. To analyze an LSA, one EvtAbs does not necessarily have identical JFSMs with others. EvtAbs'
are constructed independently and could have di�erent number of JFSMs to analyze their target LSAs.
The prede�ned event types of LSA will be described in Section 4.2 in more detail.

Conceptually, when an OSPF packet comes from the interception module, PAM records the time-
stamp of the local machine time, and dispatches each LSA to appropriate EvtAbs. When an EvtAbs gets
the LSA, it �rst analyzes three �elds, LS-checksum, LS-age, and LS-seq to determine if prede�ned events
\InvalidLSA", \MaxAgeRefreshLSA" or \MaxSeqLSA" happens. Then it will check \BigJumpSeqLSA"
event. If no event mentioned above happens, EvtAbs will regard it as a normal LSA update and input
the \UpdateLSA" event to JFSMs. Otherwise, it sends the corresponding event to its JFSMs and then
continues to process the next low-level LSA from PAM.

As shown in Figure 12, there is a basic FSM for good or normal behavior, and other FSMs for each
known attack pattern (i.e., some event sequence) as well. JPAM is trying to catch attack by the historical
patterns which happened before. These FSMs will work together to determine the actual status of the
routers' behavior and to detect the intrusion occurrence accurately. Starting from an initial state, each
JFSM will record a \currentState" variable and decide to which state it will advance based on the event
string it received and the transition table in its con�guration �le. If a known attack happens, at least
one of the JFSMs should raise alarm, and report to the higher decision module or security management
module to decide the action for this attack. If JFSM cannot handle the input event from the current state,
it will send out a message indicating the execution status of this JFSM. If all the JFSMs fail, JPAM will
conclude an unknown attack pattern occurred and report the entire input event sequence of this attack.

4.2 JiNao Event Abstractor for OSPF LSA analysis

In order to catch events from OSPF packets, some abstract events were prede�ned for the value change
in several �elds of LSA header based on the protocol speci�cation, as shown in Table 2. Each event is
timestamped such that we can identify the order of the events and the duration between di�erent events.

Furthermore, two categories of events were in our implementation: Incoming events (i events) from
other neighbor routers and Outgoing events (o events) from the router itself. JFSM model is a variant
of the Timed I/O Automata [28]. Each current and the previous ones of incoming and outgoing LSAs
are saved as variables: i prevLSA, i currentLSA, o prevLSA, and o currentLSA, such that comparison
and analysis between them can be made. Incoming indicates that the LSA is received from neighborhood,
which is a external event to the system. Outgoing indicates that LSA is sent out by local router, which
could be an action response to external world. This kind of hierarchical event abstraction and category
could make the intrusion sensitivity adjustable when setting up the JFSM.

We assume that the event sequences of good behavior and bad behavior are distinguishable. In oth-
er words, if s0s1s2:::sn is de�ned as a bad sequence, there is no other correct operation with the same
sequence. JiNao �nite state machines were then built up based on good behavior according to OSPF
standard. Each known attack pattern was also modeled in a �nite state machine. Normally, routers
should behave correctly by OSPF protocol speci�cation and issue the updated LSA each \LSRefresh-
Time"(default 30 minutes). The correct behaviors should comply with the rules listed in the Table 1. The
event sequences resulting from the bad behaviors are abnormal and should not happen based on correct
protocol implementation. The most possible reasons for these bad behaviors are attacks happen, software
implementation bugs, or router system faults happen.

The event abstractor should produce all the events which form the input domain of JFSM, and JFSM
does the pattern matching by processing its state transitions. This paper provides only the related concepts
in JFSM components. More details on automata theory can be found in [17, 28, 27], and timed automata
for real-time systems can be found in [36, 35, 1, 2, 26, 29]. A general framework and algorithms to solve
the alarm correlation problem based on a probabilistic �nite state machine has also been proposed in [34].

5 JiNao Finite State Machine

One of the chief goals of the JiNao project is to provide extensibility: it should be easy to adjust to the
kinds of intrusions that are tracked. This requirement has the following implications for the JPAM.

12

(InvalidLSA)
i InvalidLSA
o InvalidLSA

indicates that LS checksum of received LSA (incoming or outgoing) is wrong
and contents in LSA may have been corrupted during ooding. The corrupted
LSA will be discarded by the router, in hope that the retransmitted LSA from
neighbor will be uncorrupted.

(MaxAgeWithMaxSeqLSA)
i MaxAgeMaxSeq
o MaxAgeMaxSeq

indicates that router has received LSA (incoming or outgoing) with MaxAge
and MaxSequenceNumber. It is a purging LSA for \�ghtback" purpose if from
originator

(MaxAgeRefreshLSA)
i MaxAgeSameOutSeq
o MaxAgeSamePrevOutSeq

indicates that router has received the LSA(incoming or outgoing) with MaxAge
and the same sequence number of the current outgoing LSA. It is going to
refresh the current LSA it originated if it is outgoing.

i MaxAgeRefresh
o MaxAgeRefresh

Incoming or outgoing LSA with MaxAge but without meeting any criteria of
the above \MaxAge related events."

(MaxSeqLSA)
i MaxSeq
o MaxSeq

indicates that router has received LSA with MaxSequenceNumber but with-
out MaxAge. It could be naturally reaching the maximum sequence number,
suspicious attack or error by software aws.

(InitSeq)
i InitSeq
o InitSeq

indicates that router has received LSA (incoming or outgoing) with minimal
sequence number (0x80000001).

(BigJumpSeqLSA) indicates that router has received the LSA with big di�erent LS Sequence Num-
ber from previous one. Say if the di�erence are greater than MaxJumpSeq,
an user-de�ned threshold value. MaxJumpSeq is de�ned as 0x00000010 in our
model.

i BigJumpSeqIncr
o BigJumpSeqIncr

Incoming or outgoing LSA with a very large increment on sequence number
comparing to previous outgoing (originated) LSA.

(SeqIncrLSA)
i SeqIncr
o SeqIncr

indicates that router has received the LSA (incoming or outgoing) with larger
sequence number than previous outgoing (originated) LSA.

o UnNormSeqDecr Outgoing LSA with a abnormal decreasing sequence number comparing to
previous outgoing (originated) LSA.

(UpdateLSA)
i Update
o Update

indicates that router has received regular Link-State Update packet with nor-
mal LSA. (i.e. LSAs without MaxAge & MaxSeq & incorrect checksum &
BigJumpSeq . . .)

HelloClockTick an internal event always happen when receive any hello packet which has a
newer timestamp than current time. It is a mechanism for FSM to update its
current Timer.

i HelloClockTick an event happen when receive any incoming Hello packet which is at least 1
sec later then previous Hello packet.

Reset an internal event always forces to initial state. This is a mechanism for FSM
reset itself to initial state.

Table 2: The Abstract Events for LSA

1. The JPAM should be recon�gurable at run-time: in particular, users should be able to add (and
remove) JFSMs as new types of intrusions become of concern (and old types cease to be).

2. Adding JFSMs should not require recompilations of the JPAM.

To accommodate these concerns, we use a table-driven implementation of FSMs together with a generic
driver routine. A new JFSM is added simply by de�ning a table for it in a �le and then loading it by
reading this �le into JPAM; the driver routine (which will be compiled into JPAM) would then handle
the \execution" of the JFSM.

Moreover, for modeling temperal relations among events, timing information is introduced in JFSM's
state transition diagram. A state transition will depend not only on the event identity itself but also on
the occurrence time of that event. In order to catch unexpected behavior within time limit, JFSM also
contains several timers to identify two special categories of JFSM internal events, \Alarm" and \Deadline."
Alarm means that something has happened within a time constraint, i.e., it probably happen too soon.
Deadline means that something has not happened within a time constraint or even not happened yet, i.e.,
it probably happened too late. This section describes each of these concepts in turn.

13

5.1 A Simple Conventional FSM

De�nition 5.1 (Conventional FSM Generator [17]) A Finite State Machine is a 5� tuple:

M = (Q;�; Æ; q0; F);

where Q is a �nite set of states, � is the alphabet of events or input symbols, Æ � Q � � � Q is the
transition function mapping Q � � to Q. That is, Æ(q; a) is a state for each state q and input symbol a.
q0 � Q is the set of initial states and F � Q is the set of �nal states.

Occasionally we will omit the set of �nal states; this means that any state can be a �nal state, i.e., F = Q.
The basic concept of a FSM [17] is simple: the machine contains a speci�c number of distinct internal

states, of which one represents the possible active state. A �nite set of input symbols is mapped to a
�nite set of output symbols by each state; an input symbol is given to the FSM, which returns an output
symbol before making a possible transition to a new state.

In a traditional tabular representation of an FSM, each row in the table represents a state, and each
column represents an input. If the (i; j)th element of such a table is k, that condition means that if the
FSM is in state i and input j arrives, the new current state should be k. States are usually encoded as
integers in the range 0; : : : ; N � 1, where N is the total number of states.

For example, the FSM in Figure 13 which has three states and six transitions can be represented as
the table in Figure 14. Each element contains an output symbol and a new state in the form O/S. In fact,
the FSM also can be constructed by the transition table such as in Figure 15.

0 / A

0 / C
1 / D

1 / B
1 / F

0

2 1

0 / E

Initial State 0

Figure 13: Simple FSM example

Statesninputs Input 0 Input 1

state 0 A / 0 B / 1

state 1 C / 1 D / 2

state 2 E / 2 F / 0

Figure 14: FSM as the Table

Current States Input Symbol Output Symbol Next State

0 0 A 0

0 1 B 1

1 0 C 1

1 1 D 2

2 0 E 2

2 1 F 0

Figure 15: FSM as the Transition Table

When processing a new input symbol, the FSM checks the transiton table and looks for a suitable
transiton in the currently active state, which can handle this input, and then advance itself to next state.
If the example FSM gets input `1', it will advance to next state; otherwise, it will stay in the current state.
In this report, we use the second approach to construct a FSM. For example, if the initial state is 0, the
input sequence string \110101" will be mapped to the output string \BDEFAB", and the �nal state is
1.

5.2 JiNao Real-Time FSM Speci�cation

In real-time modeling, a timed automaton accepts timed words ; each of them is associated with an occur-
rence time. The most common way to introduce timing information in a process model is by associating
lower and upper bounds with transitions. Examples of these include timed Petri nets [40], timed I/O
automata [26], timed transition systems, and timed assertional proof system [35] which also showed a sim-
ple proof system by just introducing state variables of the last event occurrence time and event deadline

14

time but did not use a \current time" variable as other models. Real-time properties are stated using
traditional assertions based on the temporal logic.

Most of these systems deal with the \discrete-time model" instead of \continuous dense-time model".
[2, 1] proposed a timed �nite automata to annotate state-transition graphs with time constraints using
a �nite number of real-valued clocks for the dense-time model. Unlike other approaches, a bound on
the time taken to traverse a path in the automaton, not just the time interval between the successive
transitions, can be directly expressed.

The JiNao Real-Time FSM (JFSM) model is a variant of the Timed Automota model [1] by associating
each real-time state with two time variables, Tin and Tlast, and associating each real-time transition with
a conditional guard with time constraints. Tin of each state indicates the time when JFSM enters this
state, and Tlast of each state indicates when the very last transition happens in this state. Tcurrent is
used in JFSM to record the current event time. By this design, JFSM can easily inspect di�erent time
constraints between states and between transitions to comply with the protocol speci�cation.

De�nition 5.2 (JFSM M) A JFSM (JiNao Finite State Machine), MJ , consists of 8 tuples:

MJ = (Q;�; Æ; q0; F; FSMid;ReportInfo; EffExtQue);

where Q is a �nite set of real-time states, � is the alphabet of events or input symbols, Æ � Q� ��Q is
the transition function mapping Q� � to Q. That is, Æ(q; a) is a real-time state for each real-time state
q and input symbol a. q0 � Q is the set of real-time initial states and F � Q is the set of real-time �nal
states. Furthermore, the construct of MJ also contains three more components related to the intrusion
detection: string FSMid to identify MJ , ReportInfo to represent the message which will be sent out when
an intrusion is detected (i.e., reaches a critical transition), and a queue EffExtQue for recording the
e�ective execution.

De�nition 5.3 (Input Events of JFSM) The input event ei is a 2-tuple:

ei = (ename; etime);

where etime is the timestamp for the occurrence of ei, ename is the event identity as de�ned in Table 2.

We did not di�erentiate the \Input" and \Output" actions as in I/O automata [28], but in our imple-
mentation, the pre�x i and o of ename were used to identify whether it was an \outgoing" or \incoming"
LSA event. Furthermore, events can be sorted in partial order by their values of etime �elds.

De�nition 5.4 (Real-Time Timer Function) A real-Time timer ti is a 2-tuple:

ti = (val; !);

where val 2 N+ represents the value of ti, ! is the timer function, ! : N+ ! N+, which indicates how
to calculate the timer value val.

Because JFSM is dealing with the discrete event model, the time space here is in the integer-valued space.
Of course, in physical processes, events do not always happen at integer-valued times, and continuous
time must be approximated by choosing some �xed quantum, which could limit the accuracy with which
physical systems can be modeled [2]. However, this model could be extended to the continuous time space
(i.e., R+-valued) without too many modi�cations. Furthermore, timed JFSM is event-driven, so a global
variable Tcurrent is kept updated to the newest event time whenever an event happens.

De�nition 5.5 (Real-Time State of JFSM) Each real-time state RtSs in JFSM is a 5-tuple:

RtSs = (sID; Tin; Tlast; �; RtT);

where

� sID is RtSs's identity in string,

� Tin is the time when JFSM was entering RtSs from another state RtSp such that RtSs 6= RtSp,

� Tlast keeps the very last time the event happens in the current state RtSs,

15

SP N
Evt_jEvt_i

Evt_k

T_last T_last T_last

T_in T_in T_in

Figure 16: state of JFSM

� � is the set of timers for this state RtSs (i.e., any ti 2 �),

� RtT is the set of available real-time transitions for this state RtSs.

According to the above de�nition, when JFSM is entering to a state RtSs from another state RtSp
(RtSs 6= RtSp) because of the input event ei, RtSs:Tin and Tcurrent will be updated to the timestamp of
ei, ei:etime. If a new transition occurs from a RtSs to RtSs itself, then RtSs:Tin will remain the same.
That is, as long as JFSM stays in the current state (e.g., looping around the current state), RtSs:Tin will
not be changed; only RtSs:Tlast and Tcurrent will be updated. The elapsed time during which JFSM has
stayed in the \current state" can be computed by (Tcurrent � RtSs:Tin). In this way, local timeout for
this speci�c state can be de�ned. Furthermore, the inter-LSA arrival time is (Tcurrent �RtSs:Tlast), and
the elapsed time since the speci�c pattern began from the initial state is (Tcurrent � RtSinit:Tlast), given
that RtSinit is the initial state.

On the other hand, if a new transition is from a RtSs directly to a di�erent state RtSn (i.e., RtSs 6=
RtSn) because of ej , RtSn:Tin will be updated to ej :etime, while RtSs:Tin will still remain the same.
Therefore, (RtSn:Tin �RtSs:Tin) represents how much time JFSM spent in RtSs. In other words, there
is no time elapsed for transitions, and the time JFSM exits the current state RtSs is equal to the time
JFSM enters the next state RtSn (i.e., RtSs:Tlast = RtSn:Tin.)

In our current implementation, three timers T1, T2, and T3 were calculated by the functions,

T1 = Tcurrent �RtSs:Tlast ;

T2 = Tcurrent �RtSs:Tin ;

T3 = Tcurrent �RtSinit:Tlast ;

where Tcurrent is the current JFSM time; RtSinit is the initial state, and RtSs is the current state. T1
is the elapsed time from the very last event (i.e., event inter-arrival time) in the current state; T2 is the
elapsed time since entering this state, and T3 is the elapsed time since this pattern began from the initial
state.

Whenever an input event occurs, JFSM takes that input and checks if there is a transition available
for handling this input and determines whether it can advance to the next state or not. Transitions in
JFSM can be conditional. One input event may have more than one transition that can handle it, and
JFSM will process the �rst one which satis�es the given conditions (e.g., time constraints).

De�nition 5.6 (Conditional transition) A conditional transition is as a 5-tuple,

�i = (RtSfrom; ein; ; RtSto; Condi);

where

� RtSfrom is the \from" state in this transition,

� ein is the input event which triggers this transition,

� is the output result accompanied with this transition,

� RtSto is the \to" state after this transition,

� Condi is a Condition or Guard for this transition. When an input event occurs, only if the condition
Condi is true, can JFSM execute this transition to advance itself from RtSfrom to the next state
RtSto.

16

Condition Condi can be represented in a complex way by a temporal logic language. However, the set
of JFSM transitions is one kind of the conditional transition, which only considers the conditions related
to time constraints (e.g., several timeouts in a protocol) with simple semantics to describe it. When
a transition �i is \available" in the current state, the current input event ecurrent happens such that
ecurrent = �i:ein, and all the conditions are valid. That is, all the time constraints on this transition are
satis�ed in this state at this speci�c time.

De�nition 5.7 (Time Constraints of JFSM) Each time constraint for a timer ti is speci�ed by a 2-
tuple, (Tmin; Tmax), where Tmin and Tmax represent lower and upper bounds for the value of the speci�c
timer ti

De�nition 5.8 (Real-Time Transition of JFSM, RtT) Each real-time transition RtTi in JFSM is a
5-tuple:

RtTi = (RtSfrom; ein; ; RtSto;�);

where

� RtSfrom is the \from" state,

� ein can be either a real input event triggering RtTi , or a special NULL event e�,

� is the output result,

� RtSto is the \to" state,

� � is the set of timer constraints for this transition RtTi.

Three timers used in current JFSM are T1, T2 and T3. T1 is to count the inter-arrival time between
current and previous events, which can make sure that, in the same state, transitions must happen neither
too soon nor too late. �1 = (T1min, T1max) represents lower and upper bounds (integers in seconds)
for the value of T1 = (Tcurrent � RtSfrom:Tlast), and �2 = (T2min, T2max) represents lower and upper
bounds (integers in seconds), respectively, for T2 = (Tcurrent�RtSfrom:Tin). In other words, for allowing
RtTi to occur, the time that JFSM spent in RtSfrom must be higher than T2min and lower than T2max.
Furthermore, T3 = (Tcurrent � RtSinit:Tlast) could specify that the whole pattern must happen within
the constraint �3 = (T3min, T3max).

For simplicity and to limit confusions, we will represent each transition as an 10-tuple

RtTi = (RtSfrom; ein; ; RtSto; T1min; T1max; T2min; T2max; T3min; T3max);

in the later description. Note that in our approach, JFSM time constraints are associated with transitions,
and timers are associated with each state. There is a uni�ed clock in whole JFSM, but there could be
several timers in each state. It is not necessary to reset timers because they will be recalculated while still
in the current state.

Furthermore, a transition RtTi is e�ective if RtTi:RtSfrom 6= RtTi:RtSto. That is, it can change
JFSM to a di�erent state. If the pair value of (T imin, T imax) is (0;1), then timer Ti does not matter,
and JFSM will just ignore it.

timeout_RESET

alice

chris

bob

*-, if T2 < 30

e_hello, if T2 < 10

e_hello, if 11 < T2

e_0, if T2 > 31

Automatically Reset

Figure 17: An example of JFSM Transitions

In JFSM, we can have two di�erent transitions from the same state on the same input event. For
example(as shown in Figure 17), we have:

RtT1 = (RtSalice; eHello; 1; RtSchris; 0;1; 0; 10; 0;1);

17

and,
RtT2 = (RtSalice; eHello; 2; RtSbob; 0;1; 11;1; 0;1):

Here, we do not care about the frequency of two successive event transitions and the total elapsed time
since the pattern began from the initial state. We only consider time for staying in the current state
RtSalice. If the eHello event occurs less than 11 seconds after JFSM entered RtSalice, then RtT1 will
happen and JFSM will advance to RtSchris. Otherwise, RtT2, a e�ective transition, will be triggered and
JFSM will enter RtSbob.

Please note that a special case, such as the following e�ective transition:

RtT3 = (RtSalice; e�; 3; RtStimeout; 0;1; 31;1; 0;1)

represents that, even if NO real events occur, JFSM will only stay in RtSalice for at most 30 seconds and
advance to state RtStimeout. JFSM uses a time called \Event Driven Time". That is, it only updates
its local time to the newest event time whenever an event happens. In case no event happened within a
period of time, we also assume that there is a never-stop clock engine generating etick regularly every short
(�nite) period. This period is not necessary to be a �xed interval because of the discrete event driven
property. For instance, etick could be the HelloClockTick event in OSPF.

If no transition is available for current events, an internal transition will trigger to a special \fail
state" RtSfail and output this new sequence of events from the initial state as well. This situation
happens when JFSM �nds a new pattern that it cannot handle. This sequence of events, serving as a new
learned pattern, can be deposited to the knowledge-base. JPAM can either create or enhance a JFSM to
handle it. In RtSfail, JFSM will automatically reset itself to the initial state to keep monitoring later
intrusions.

To eliminate unwanted event transitions, JFSM can use a wildcard \��" to represent all other events
except those in the available transitions. For example,

RtT4 = (RtSalice; �
�; 4; RtSalice; 0;1; 0; 30; 0;1)

represents that, if any event occurs without matching the other available transitions (RtTi, i = 1; 2; 3),
and T2 is still within 30 seconds, JFSM will stay in RtSalice.

For reducing false alarms and monitoring continuous intrusions, a special \reset state" can also be
used. If a state name has a \ RESET " suÆx, this state is considered as a \reset state" which will
immediately reset to the initial state after JFSM reaches it automatically. For example, \N RESET "
could represent the \Normal RESET" in which JFSM just does a valid reset, while \A RESET " represents
the \Alarm RESET" in which JFSM has detected an attack and restarts itself to the initial state to keep
monitoring later intrusions.

De�nition 5.9 (Critical Transition of JFSM) A critical transition Cti is the transition by which JF-
SM should print a warning message and report the related information to some responsible module. This
critical transition is used, for instance, when JFSM detects an intrusion pattern; it should trigger MJ to
report a detection message to the decision module, which contains FSMid, ReportInfo, and EffExtQue.

For example, if (�1; �2; �3; :::; �n) is the sequence of transitions in JFSM for a speci�c intrusion pattern,
the last transition �n should be de�ned as a Critical Transition.

JFSM with all the transitions is con�gured by a special con�guration �le. A critical transition can be
also de�ned in this con�guration �le by a format in which its output string has a pre�x `~'. An example
of JFSM speci�cation for OSPF/LSA intrusion detection is shown in Appendix A.2. The algorithm for
the transition function of JFSM can be found in Appendix A.1.

De�nition 5.10 (Execution of JFSM) An execution fragment for a JFSM M is a �nite or in�nite se-
quence RtS0; RtT1; RtS1; RtT2; RtS3; ::: of alternating states and transitions. An execution is an execution
fragment beginning with a start state.

Given an input string, the behavior of M can be represented as a sequence of transitions such as
(RtT1; RtT2; :::). The e�ective execution of M is the sequence of transitions RtTi, such that in each
of them two successive states are di�erent.(8i, RtTi:RsTfrom 6= RtTi:RsTto). That is, it does not include
execution fragments looping around the same state and only contains those transitions which can make
JFSM change its state.

18

5.3 JFSMs for Known OSPF attacks

To detect all the attacks mentioned in Section 3, three JFSMs for di�erent attacks were designed: seq++
attack in Figure 18, maxage attack in Figure 20, and maxseq attack in Figure 21. The de�nitions of the
events are in Table 2. Contents of the con�guration �le for these JFSMs can be found in Appendix A.2.

(Critical)

N_RESET_

A_RESET_

1 2

*-

2 3

*-

(Normal Automatically Reset)

i_SeqIncr

*-

Init_0

(Alarm Automatically Reset)

o_Update, if T2 < 30mins

(TimeOut Automatically Reset)

Tout_RESET_

*-
*-, if T2 > 30mins

*-, if T2 > 30mins

*-, if T2 > 30mins

o_SeqIncr, if T2 < 30mins i_SeqIncr, if T2 < 30mins

o_SeqIncr, if T2 < 30mins

Figure 18: FSM for LSA Seq++ Attack

As an example, a JFSM to detect the Seq++ attack is depicted in Figures 18 and 19. In this example,
JiNao is running on the originator of the monitored LSAs. If JFSM twice receives alternate incoming
and outgoing LSA with increasing sequence numbers, it will raise an alarm. The \o SeqIncr" event by
outgoing LSA from the originator is intended to \�ght back" the previous malicious one.

FSMId: seq++FSM

ReportInfo: For_seq++

logToFileName: seq++AttTest

maxLogQueSize: 300

Transitions:

from event d output to MinI MaxI MinS MaxS MinP MaxP

critical transition is prefixed by `~'

01 init0 i_SeqIncr i_SeqIncr 1 0 inf 0 inf 0 inf

02 init0 *- StayAt_0 init0 0 inf 0 inf 0 inf

03 1 o_SeqIncr oFightBack 2 0 inf 0 1800 0 inf

04 1 o_Update NotFtBackOnTime Tout_RESET_ 0 inf 1800 inf 0 inf

05 1 *- StayAt_1 1 0 inf 0 inf 0 inf

06 2 i_SeqIncr iSeqIncrAgain 3 0 inf 0 1800 0 inf

07 2 o_Update GoBk_init N_RESET_ 0 inf 0 1800 0 inf

08 2 *- NotFtBackOnTime Tout_RESET_ 0 inf 1800 inf 0 inf

09 2 *- StayAt_2 2 0 inf 0 inf 0 inf

10 3 o_SeqIncr ~oFightBackAtt A_RESET_ 0 inf 0 1800 0 inf

11 3 *- NotFtBackOnTime Tout_RESET_ 0 inf 1800 inf 0 inf

12 3 *- StayAt_3 3 0 inf 0 inf 0 inf

Figure 19: a JFSM Con�gure File for LSA Seq++ Attack

Lines 1-2 in Figure 19 describe two transitions available for the initial state. Line 1, specially, describes
that, if the new incoming LSA's sequence number is bigger than the previous outgoing LSA (with the
same LSAid), an i SeqIncr event will trigger the transition and the JFSM will then be in State 1. In
the attack scenario, this transition represents that the LSA's originator has received its own LSA instance

19

with an abnormal sequence number | normally the sequence number should be the same as or less than
the one it just sent out.

However, this unusual event by itself is not enough to raise a red ag for the Seq++ attack. In OSPF,
if a router crashes, its LSA instances will still be kept by other routers for about 30 minute (or 1800
seconds). Therefore, when this router restarts within the 30 minutes limit, it can still receive \old" LSA
instances with a bigger sequence number. Under such a case, the LSA's originator will issue another LSA
with a even bigger LSA to \clean-up" the old copies out there. Line 3 exactly represents this \clean-up"
or \�ght-back" scenario, and it is an o SeqIncr as the originator will increment the LSA by at least one.
Please note that at this state, the originator could receive more than one i SeqIncr before the o SeqIncr

is out. The rationale is that, if the originator has more than one neighbor, it could receive more than
one copy of i SeqIncr. However, after the o SeqIncr is out, the current outgoing LSA is updated. It is
impossible for an old copy of the LSA instance to raise another i SeqIncr as the most recent outgoing
sequence number has been updated. Finally, if the originator itself has crashed, then it will not perform
the \�ght-back" within the 30 minute limit. Therefore, it will trigger the Line 4 transition and go back
to the initial state.

Lines 6-9 in Figure 19 describes whether this originator receives another unusual i SeqIncr from one
of its neighbors after it delivered an o SeqIncr. If this is indeed a Seq++ attack, the attacker will keep
increasing the sequence number and therefore, in Line 6, within thirty minutes, we will receive another
i SeqIncr. The transition in Line 10 is critical, as after another �ght-back from the originator is observed,
the JFSM will raise a red alarm about Seq++ attack to the decision module.

N_RESET_

A_RESET_

Init_0

o_MaxAgeSameOutSeq, or o_MaxAgeRefresh

(Alarm Automatically Reset)

(Normal Automatically Reset)

1 2
(MaxAge)

i_MaxAgeSameOutSeq, or i_MaxAgeRefresh

--*-

Tout_RESET_

i_MaxAgeSameOutSeq, or i_MaxAgeRefresh

(TimeOut Automatically Reset)

o_SeqIncr, if T2 < 30mins

(i_MaxAge, if T2 < 10 mins)

, if T2 < 10 mins

*-, if T2 > 30mins

*-, if T2 > 10 mins

Figure 20: FSM for LSA Maxage Attack

In Figure 20 for Maxage attack, JFSM starts from initial state Init 0. If JPAM receives incoming or
outgoing (originated) LSA with the same sequence number of previous outgoing LSA, it will be considered
as the start of a suspicious premature process for current LSA. JFSM will �rst advance itself to state 1.
From state 1, within 30 minutes, JFSM should receive an outgoing LSA Update which has a bigger
sequence number than the previous one (usually increased by one) to \�ght back" the last LSA, and
advance itself to state 2. From state 2, if it receives another incoming maxage event within 10 minutes,
it will advance to an \alarm state," send an alarm message to Local Decision Module, and immediately
reset to the initial state in order to monitor the next maxage attack pattern. In order to di�erentiate the
real premature aging and attack, we de�ne a threshold of two maxage events. JFSM can be adjusted to
a certain level of sensitivity to eliminate all false alarms by similar concepts.

In Figure 21 for Maxseq attack, JFSM di�erentiates good or bad implementation by two patterns:
fMaxSeq, MaxAgeMaxSeq, initSeq, Updateg and fMaxSeq, initSeqg. If OSPF router is good, when
receiving incoming LSA with a maximum sequence number, it should issue an outgoing LSA with a
maximum age and a maximum sequence to purge the previous LSA �rst, and then issue a LSA with
an initial (minimal) sequence number. After that, the normal update LSAs will happen within every 30
minutes. If the OSPF router has a wrong implementation when receiving incoming LSA with a maximum
sequence number, it will directly issue LSA with an initial sequence number without purging the previous

20

Init_0

1

1’

N_RESET_

2 3

*-

*-

*-

o_InitSeq, if T1 < 30mins

o_Update, if T2 < 30mins

*-

o_InitSeq, if T2 < 30mins
A_RESET_

o_MaxAgeMaxSeq, if T2 < 30mins

o_MaxAgeMaxSeq, if T2 < 30mins

i_MaxSeq

*-, if T2 > 30mins

(Automatically Reset)

(Normal Automatically Reset)

*-o_InitSeq, if T2 < 30mins *-, if T2 > 30mins

*-, if T2 > 30mins

o_InitSeq, if T2 < 30minso_MaxSeq

(Automatically Reset)

*-, if T2 > 30mins
Tout_RESET_

i_MaxSeq, if T2 < 30mins

Figure 21: FSM for LSA Maxseq attack

one �rst, and cause a not-stop �ght back cycle. Once this situation is detected, JFSM will report to Local
Decision Module to re-act this attack by wrapping it with JiNao wrapper, which will help this router by
issuing an extra maxage LSA for purging purpose.

6 Implementation and Experimental Results

We have developed an JFSM generator and a general JFSM object class which is dynamically con�gurable
and can produce any JFSM by setting the transition table in the JFSM con�guration �le. According to
Appendix A.1, transition functions are represented as a transition table in that �le. The running state of
an JFSM is advanced by the table lookup mechanism. Each state is associated with several transitions.
Because JPAM is con�gurable, the con�guration �les need to be constructed �rst, and then JPAM will
run itself online. This section explains the formats of two kinds of con�guration �les, one for JPAM and
one for JFSM, in more detail.

6.1 Con�gurable JPAM

Con�guration File of JPAM

The format of the con�guration �le of JPAM is as follows. Each line speci�es several �elds; the �elds
are separated by white space.

<RouterId> <LSID> <LSType> <CkOutF> <logFile> <NumOfFSM> <FSMconfigfile> ...

For instance, here is an example of the con�guration �le.

192.0.1.1 192.0.1.1 1 1 event192.0.1.1 0

192.0.1.2 192.0.1.2 1 1 NULL 1 JFSM0

192.0.1.4 192.0.1.4 1 0 event192.0.1.4 3 JFSM0 JFSM1 JFSM2

192.0.2.1 192.0.2.1 1 0 NULL 0

192.0.2.3 192.0.2.3 1 0 event192.0.2.3 1 JFSM3

192.0.2.5 192.0.2.5 1 0 event192.0.2.5 0

The �rst three �elds specify the LSA object needing to be monitored. As mentioned in Section 2, LSA
can be uniquely identi�ed by these three �elds. The fourth �eld decides whether to consider \outgoing"
LSA or not. Although JiNao can observe all LSA generated by all the routers in the same AS (because
of the ooding), it only can detect the outgoing LSA of its own originator router. The di�erentiation of

21

\incoming" and \outgoing" may change the construct of JFSMs later. The �fth �eld is to specify the
name for log �le. Note that if the �le name is "NULL" then JPAM will not do the log �le. That is, it
only processes the events of this LSA online, and when the program �nishes, there will be no event �le
logged for after-fact analysis. The sixth �eld represents the number of JFSM for analyzing this LSA, and
the �elds after that specify the con�guration �le names for each JFSM.

For above example, the timestamped events for the �rst LSA (192.0.1.1 192.0.1.1 1) are logged into
�le event192.0.1.1, and no JFSM applies to them. So the event sequence can be seen in the event log �le.
The events of the second LSA(192.0.1.2 192.0.1.2 1) are not logged into the �le but are processed directly
to JFSM0. The events for the third LSA are logged to �le event192.0.1.4 and also are processed by three
JFSMs: JFSM0, JFSM1, and JFSM2. Note that the event sequence of each LSA can be processed by
di�erent JFSMs at the same time. The fourth LSA has no log and no JFSM, so JPAM just acts as an
online packet parser.

Con�guration File of JFSM

Each JFSM is a timed nondeterministic automata, which can be constructed by the following format
in a �le.

FSMId: <FSMname>

ReportInfo: <InfoString>

logToFileName: <ResultOutputFileName>

maxLogQueSize <theSizeKeepInLogQueue>

Transitions:

<FromState> <Input> <Output> <ToState> <T1min> <T1max> <T2min> <T2max> <T3min> <T3max>

...

< FSMname > will automatically pre�x with the EvtAbs ID string which uniquely identi�es which JFSM
is reporting the detection results to the Local decision module when it detects attack. < InfoString > is
the string representing the report information when it detects a positive alarm. If < ResultOutputF ile >

is not equal to \NULL", it will output the result to this �le to provide after-fact information, as well as
to the standard output device. < theSizeKeepInLogQueue > is a number which indicates the maximal
size for each log event sequence. Generally, it is impossible to record everything in memory. A queue will
always keep the last several events up to the size of queue. In order to detect a known attack pattern, the
queue size must be at least larger than the size of this attack pattern.

After "Transition:", each line speci�es 10 �elds, and the �elds are separated by white space. These 10
�elds represent one transition of this �nite state machine. JFSM can have as many transitions as it needs,
and each transition is provided one line in this format.

The �rst 4 �elds represent the transition of a conventional FSM model. The �fth to tenth �elds
represent the lower ad upper bounds for three timers as mentioned before. In JFSM model, all input
events and states are associated with time-stamps. All the implementation complies with the de�nitions
mentioned in Sections 5.2

(evtTime1, evtStr1)(evtTime0, evtStr0)

(evtTime3, evtStr3)

State_1 State_2
(evtTime4, evtStr4)

(evtTime2, evtStr2)

InTime OutTime InTime OutTime

lastTime lastTime

currentTime: record the current event time for JFSM

Figure 22: simple view of JFSM

0

a, if 5 < T2

1 2

3

*

*

b, if T1 < 3

*-, if 10 < T2

a, if 1 < T2 < 5
a, if T2 < 1

Figure 23: An example for the JFSM con�gura-
tion �le

Three timer values have been added in JFSM State class, InTime, lastTime and OutTime. InTime is
the time for the transition to �rst advance JFSM into this current state; lastTime is the time the very last
transition (including in, out or stay-Around) happening in this current state. OutTime is the time JFSM
stepping out of this state. So the total time JFSM stays in this state is (OutT ime� InT ime). That is,

22

InTime will be equal to the event time at which JFSM gets into this state, and OutTime is equal to the
event time at which JFSM exits this state. There is a global variable currentTime of JFSM to record
the current event time. When JFSM transitions stay in the current state, (currentT ime � InT ime) is
the time for JFSM spending at the current state so far. (currentT ime � InitialState:lastT ime) is the
time elapsed from the initial state. It can be used to specify the time requirement for a successful attack
pattern. Figure 22 is a simple view of JFSM.

For example (as shown in Figure 23), state 2 is a dead State(in which JFSM will stay there forever
unless you stop it) for JFSM transitions and the transitions are as

0 * always1 1 0 inf 0 inf 0 inf

1 b receive_b 1 0 3 0 inf 0 inf

1 a tooSoon_a 3 0 inf 0 1 0 inf

1 a output_a 1 0 inf 1 5 0 inf

1 a tooLate_a 2 0 inf 5 inf 0 inf

1 *- timeout_a 2 0 inf 10 inf 0 inf

2 * deadState 2 0 inf 0 inf 0 inf

Note that "*" is the wild-cast string stands for any input string.
From initial state 0, no matter what input, JFSM always goes to state 1. We are modeling that in

state 1, if "b" comes in and happens within 3 seconds (too soon) from previous events, JFSM will stay in
state 1 again, and update the lastTime as b's evtT ime, but InT ime will still be unchanged. In state 1, if
"a" happens within 1 second (too soon), then JFSM will become state 3. In state 1, if "a" happens after 5
seconds (too late), then it will become state 2. After enters state 2, it will ignore any input thereafter and
stay in state 2 until JFSM stops. The sixth transition is to prevent JFSM from waiting for "a" forever.

6.2 Testbed and Experimental Results

The testbed for our demo in the Air Force Base laboratory is as in Figure 24. Machines are referred to as
R1, R2, R3, Middle, Cisco, and R6. R1 is our victim router, and R2 is the attacker.

172.16.123172.16.121

172.16.127

172.16.125

Middle /3R1 /1

R2 /2 R6 /5

R3 /4 Cisco /6

172.16.118.3

10

5

10

Nov, 21, 1998
JiNao TestBed AFRL

172.16.114.3

172.16.121.3

172.16.121.1

172.16.112.1

172.16.123.7

172.16.126.7

172.16.121.2

172.16.115.2 172.16.113.2
172.16.119.6

172.16.125.6172.16.123.2

172.16.123.6

172.16.127.7

172.16.127.13

172.16.125.13

10

10

10

10

5
10

10
10

172.16.123.1

R2 - 172.16.113.2 : Attacker

R1 - 172.16.112.1 : Victim

Router ID:

R3 - 172.16.114.3 Middle - 172.16.123.7

R6 - 172.16.119.6

Cisco - 172.16.125.13

Traffic Path before Attacks

Traffic Path after Attacks

Figure 24: Demo TestBed in Air Force Rome Lab

Before launching any attack, we run traceroute from R3 to Cisco, and observed that the traÆc path
was fR3, R1, Middle, Ciscog. Attacks not only changed the �elds of sequence number, age, checksum in
LSA, but also changed the cost metrics. After we launched attack from R2 to R1 with LSA(172.16.121.1
172.16.121.1 1) , the path was changed to fR3, R2, Middle, Ciscog. That is, after the attack R2 could

23

get the traÆc it could not get before the attack. Because the attacks were persistent, JPAM can catch
them right after the second attack LSA happened and report to the decision module for reaction. For
a malicious MaxSeq attack, after detecting it, JPAM sent a message to the Prevention module which
performed a correct purge action to remove the MaxSeq attack e�ect.

Results showed out that all the known attacks are correctly detected. JPAM had 100% accuracy in the
demo. JiNao can even run after the attacks have taken place, and detect them right after the next attack
pattern happens. So as long as the attack is persistent, JPAM can detect it at least after the second run.
OSPF's self-stabilization property makes attacks must-be-persistent and this approach becomes much
more e�ective.

7 Conclusions, Summary and Future Work

This paper presented the approach taken in the JiNao project for the design and implementation of the
protocol analysis module for detecting attacks to OSPF routing protocol. We proposed a frame work for
protocol-based intrusion detection, which could be extended to other protocol analysis. Our design of
JPAM/JFSM is object-oriented such that the implementation of the JPAM is modulized.

Furthermore, routing protocols usually need to deal with several time-related events, and the \follow"
semantics with intervening events is diÆcult to conduct by a conventional Finite State Machine model.
Therefore, an event abstractor (EvtAbs) was developed to catch the important abstract events according
to OSPF protocol speci�cation, and a extended timed automata, JiNao Finite State Machine (JFSM), was
developed to handle timed events and time constraints such as alarms (happen too soon) and deadlines
(happen too late). With such an extension, it is thus possible to analyze the time-related behavior of the
routing protocols and do the pattern matching.

The model formalized above is e�ective in terms of the false alarm rate and the response latency.
We have experimented our implementation against event streams collected at both MCNC's and NCSU's
routing testbeds. We have also presented the DEMO for the DARPA in the Air Force Base laboratory.
Both normal event sequences and three attacks were tested. The JPAM module can successfully detect
all three signi�cant attacks and can be extended to other attack scenarios.

The advantages of the protocol analysis approach for intrusion detection are

1. best for known attacks.

2. can catch unknown attacks if the good/expected behavior JFSM is speci�ed.

3. can catch real-time hit-and-run attacks.

4. can reect the real-time network events quickly.

5. can monitor routers' behavior closely.

6. can verify the implementations of the protocol.

7. can identify the weakness of the protocol.

We realized that an e�ective event engine is one of the key points for the success of JPAM. Future
research should extend our approach to a \Universal Event Abstractor" which can be con�gurable to any
protocol just by several con�guration �les. For example, protocol headers can be described in the �le,
and prede�ned events can be put on the �le as well in a special language, such that this Universal Event
Abstractor with a suitable protocol packet parser can generate any event needed for any di�erent protocol.

24

A JFSM Con�guration Examples

A.1 Transition Function of JFSM

JFSM can be constructed by the transition table in a �le, in which each row speci�es a transition �i 2 Æ

as 10-tuple,
�i = (q1; ein; ; q2; T1min; T1max; T2min; T2max; T3min; T3max);

where q1 is the from-state in this transition, ein 2 � is the input event which triggers this transition and
 is the output resulted from this transition. q2 is the next state after this transition. T imin and T imax

are lower and upper bounds for timers T i, i = 1; 2; 3. T1, T2, and T3 are de�ned as,

T1 = Tcurrent �RtScurrent:Tlast ;

T2 = Tcurrent �RtScurrent:Tin ;

T3 = Tcurrent �RtSinit:Tlast ;

where RtSinit stands for the initial state of this JFSM; RtScurrent represents JFSM's current state; Tcurrent
is the current time of JFSM; T1 computes the inter-arrival time between the current and previous events;
T2 calculates the time JFSM has spent in the current state since it entered this state, and T3 computes
the elapsed time since the intrusion pattern has begun from the initial state.

Assume that q1 is the current state of JFSM. When an input event ecurrent occurs, the transition path
from q1 to q2 is possible, if and only if,

�i = (q1; ecurrent; ; q2; T1min; T1max; T2min; T2max; T3min; T3max) 2 Æ

and exists in the table for this current state, and the conditions are valid in the current state q1 at this
moment.

The transition function can be computed by the following algorithm.

Algorithm 1 JFSM Transition Function

1: Tcurrent (ecuurent:etime

2: T1 (Tcurrent �RtScurrent:Tlast
3: T2 (Tcurrent �RtScurrent:Tin
4: T3 (Tcurrent �RtSinit:Tlast
5: bStateAvailable (false

6: for all available transitions Æi in the current state && bStateAvailableFound 6= true do
7: if Æi:T3min � T3 � Æi:T3max && Æi:T2min � T2 � Æi:T2max && Æi:T1min � T1 � Æi:T1max then
8: RtSnext (Æi:RtSto
9: RtTcurrent (Æi fRecord the current transitiong
10: bStateAvailable (true

11: if RtSnext 6= RtScurrent then fAdvance to the next di�erent stateg
12: RtScurrent (RtSnext fUpdate the current Stateg
13: RtScurrent:Tin (Tcurrent
14: RtScurrent:Tlast (Tcurrent
15: else fStay at the same current stateg
16: RtScurrent:Tlast (Tcurrent
17: end if
18: end if
19: end for
20: if bStateAvailable == false then fNo available transitiong
21: RtScurrent:Tlast (Tcurrent
22: RtSnext (RtSfail fAdvance to the \fail" stateg
23: RtTcurrent (Æinternal
24: Output the unknown sequence from the initial state as a new pattern.
25: end if

25

A.2 A JFSM Con�guration File Example for OSPF/LSA Intrusion Detection

JPAM con�guration �le

172.16.114.3 172.16.114.3 1 0 event172.16.114.3 0

172.16.118.3 172.16.118.3 1 0 event172.16.118.3 0

172.16.121.3 172.16.121.3 1 0 event172.16.121.3 0

172.16.112.1 172.16.112.1 1 1 event172.16.112.1 2 FSMmaxseq.conf FSMmaxage.conf

172.16.121.1 172.16.121.1 1 1 event172.16.121.1 0

172.16.123.1 172.16.123.1 1 1 event172.16.123.1 0

172.16.113.2 172.16.113.2 1 0 event172.16.113.2 0

172.16.115.2 172.16.115.2 1 0 event172.16.115.2 0

172.16.121.2 172.16.121.2 1 0 event172.16.121.2 0

172.16.123.2 172.16.123.2 1 0 event172.16.123.2 0

172.16.123.7 172.16.123.7 1 0 event172.16.123.7 0

172.16.126.7 172.16.126.7 1 0 event172.16.126.7 0

172.16.127.7 172.16.127.7 1 0 event172.16.127.7 0

172.16.119.6 172.16.119.6 1 0 event172.16.119.6 0

172.16.123.6 172.16.123.6 1 0 event172.16.123.6 0

172.16.125.6 172.16.125.6 1 0 event172.16.125.6 0

172.16.125.13 172.16.125.13 1 0 event172.16.125.13 0

172.16.127.13 172.16.127.13 1 0 event172.16.127.13 0

Seq++ JFSM con�guration �le

FSMId: seq++FSM

ReportInfo: For_seq++

logToFileName: seq++AttTest

maxLogQueSize: 100

Transitions:

init0 i_BigJumpSeqIncr iBigJumpSeqIncr 1 0 inf 0 inf 0 inf

init0 *- StayAt_0 init0 0 inf 0 inf 0 inf

1 o_BigJumpSeqIncr oFightBack 2 0 inf 0 1800 0 inf

1 o_Update ~NotFtBackOnTime Tout_RESET_ 0 inf 1800 inf 0 inf

1 *- StayAt_1 1 0 inf 0 inf 0 inf

2 i_BigJumpSeqIncr iBigJumpAgain 3 0 inf 0 1800 0 inf

2 o_Update ~GoBk_init N_RESET_ 0 inf 0 1800 0 inf

2 *- ~NotFtBackOnTime Tout_RESET_ 0 inf 1800 inf 0 inf

2 *- StayAt_2 2 0 inf 0 inf 0 inf

3 o_BigJumpSeqIncr ~oFightBackAtt A_RESET_ 0 inf 0 1800 0 inf

3 *- ~NotFtBackOnTime Tout_RESET_ 0 inf 1800 inf 0 inf

3 *- StayAt_3 3 0 inf 0 inf 0 inf

MaxAge JFSM con�guration �le

FSMId: maxageFSM

ReportInfo: For_maxage

logToFileName: maxageAttTest

maxLogQueSize: 100

Transitions:

init0 i_MaxAgeSameOutSeq MaxAgeOnce 1 0 inf 0 inf 0 inf

init0 i_MaxAgeRefresh MaxAgeOnce 1 0 inf 0 inf 0 inf

init0 o_MaxAgeSameOutSeq MaxAgeOnce 1 0 inf 0 inf 0 inf

init0 o_MaxAgeRefresh MaxAgeOnce 1 0 inf 0 inf 0 inf

init0 *- StayAt_0 init0 0 inf 0 inf 0 inf

1 o_SeqIncr fightBack 2 0 inf 0 1800 0 inf

1 *- NotFtBackOnTime Tout_RESET_ 0 inf 1800 inf 0 inf

1 *- StayAt_1 1 0 inf 0 inf 0 inf

2 i_MaxAgeSameOutSeq ~MaxAgeAttack A_RESET_ 0 inf 0 600 0 inf

2 i_MaxAgeRefresh MaxAgeOnce A_RESET_ 0 inf 0 600 0 inf

26

2 *- goBackInit0 N_RESET_ 0 inf 600 inf 0 inf

2 *- StayAt_2 2 0 inf 0 inf 0 inf

MaxSeq JFSM con�guration �le

FSMId: maxseqFSM

ReportInfo: For_maxseq

logToFileName: maxseqAttTest

maxLogQueSize: 100

Transitions:

init0 i_MaxSeq iMaxSeqOnce 1 0 inf 0 inf 0 inf

init0 i_MaxAgeMaxSeq iMaxAgeMaxSeq 1 0 inf 0 inf 0 inf

init0 o_MaxSeq oMaxSeqOnce 1' 0 inf 0 inf 0 inf

init0 o_MaxAgeMaxSeq oMaxAgeMaxSeq 1' 0 inf 0 inf 0 inf

init0 *- StayAt_0 init0 0 inf 0 inf 0 inf

1 o_InitSeq ~Incorrect A_RESET_ 0 inf 0 1800 0 inf

1 o_MaxAgeMaxSeq oPurgeMaxseq 2 0 inf 0 1800 0 inf

1 *- NoPurgeTout Tout_RESET_ 0 inf 1800 inf 0 inf

1 *- StayAt_1 1 0 inf 0 inf 0 inf

1' o_InitSeq ~Incorrect A_RESET_ 0 inf 0 1800 0 inf

1' o_MaxAgeMaxSeq oPurgeMaxseq 2 0 inf 0 1800 0 inf

1' *- NoPurgeTout Tout_RESET_ 0 inf 1800 inf 0 inf

1' *- StayAt_1' 1' 0 inf 0 inf 0 inf

2 o_InitSeq normalRESET 3 0 inf 0 1800 0 inf

2 *- NoInitTout Tout_RESET_ 0 inf 1800 inf 0 inf

2 *- StayAt_2 2 0 inf 0 inf 0 inf

3 o_Update NormUpdate N_RESET_ 0 inf 0 1800 0 inf

3 i_MaxSeq iMaxSeqAgain 1 0 inf 0 1800 0 inf

3 *- NormT_Out Tout_RESET_ 0 inf 1800 inf 0 inf

27

References

[1] R. Alur. Timed automata. In In NATO-ASI Summer School on Veri�cation of Digital and Hybrid
Systems, 1998. http://www.cis.upenn.edu/ alur/onlinepub.html.

[2] R. Alur and D.L. Dill. A theory of timed automata. Theoretical Computer Science, 126:183{235,
1994. http://www.cis.upenn.edu/ alur/pub.html.

[3] Debra Anderson, Thane Frivold, and Alfonso Valde. Next generation intrusion detection expert
system (nides): A summary. Technical report, SRI International's Computer Science Laboratory
(CSL), May 1995. http://www2.csl.sri.com/nides/index5.html.

[4] S.F. Wu B. Vetter, F. Wang. An experimental study of insider attacks for the ospf routing protocol.
In 5th IEEE International Conference on Network Protocols, Atlanta, GA. IEEE press, October 1997.
http://shang.csc.ncsu.edu/pubs.html.

[5] Kirk A. Bradley, Steven Cheung, Nick Puketza, Biswanath Mukherjee, and Ronald A. Olsson.
Detecting disruptive routers: A distributed network monitoring approach. In Proceedings of the
1998 IEEE Symposium on Computer Security and Privacy, Oakland, CA. IEEE press, May 1998.
http://seclab.cs.ucdavis.edu/ cheung/.

[6] James Cannady and Jay Harrell. A comparative analysis of current intrusion detection technologies.
In Proc. of the Fourth Technology for Information Security Conference'96 (TISC'96), May 1996.

[7] H. Debar, M. Dacier, and A. Wespi. Towards a taxonomy of intrusion-
detection systems. Technical report, IBM Zurich Research Laboratory, May 1998.
http://domino.watson.ibm.com/library/cyberdig.nsf/.

[8] Dorothy E. Denning. An intrusion-detection model. IEEE Transactions on Software Engineering,
SE-13(2), February 1987.

[9] P. D'haeseleer, S. Forrest, and P. Helman. An Immunological Approach to Change DEtection: Al-
gorithms, Analysis, and Implications. In 1996 IEEE Symposium on Computer Security and Privacy.
Department of Computer Science, University of New Mexico, IEEE press, 1996.

[10] E. W. Dijkstra. Self-stabilizing systems in spite of distributed control. Communications of the ACM,
1, March 1974.

[11] S.F. Wu F. Wang, B. Vetter. Secure routing protocols: Theory and practice. Technical report,
Department of Computer Science, NC State Univ., April 1998. http://shang.csc.ncsu.edu/pubs.html.

[12] J. Frank. Arti�cial intelligence and intrusion detection: Current and future direc-
tions. In Proc. of the 17th National Computer Security Conference, October 1994.
http://seclab.cs.ucdavis.edu/papers.html.

[13] T.D. Garver and Teresa F. Lunt. Model-based intrusion detection. In Proc. of the 14th National
Computer Security Conference, October 1991.

[14] Mohamed G. Gouda. Protocol veri�cation made simple: a tutorial. Computer Networks and ISDN
Systems, pages 969{980, 1993.

[15] Ralf Hauser, Tony Przygienda, and Gene Tsudik. Reducing the cost of security in link state routing.
In ISOC Symposium on Network and Distributed System Security, February 1997.

[16] Ted Herman. Stabilization research at iowa. http://www.cs.uiowa.edu/ftp/selfstab/main.html.

[17] John Hopcroft and Je�rey Ullman. Introduction to Automata Theory, Languages and Computations.
Addison-Wesley, 1979.

[18] Christian Huitema. Routing in the Internet. Prentice Hall, 1995.

[19] K. Ilgun, R. A. Kemmerer, and P. A. Porras. State transition analysis: A rule-based in-
trusion detection approach. IEEE Transaction on Software Engineering, 21(3), March 1995.
http://www.cs.ucsb.edu/ kemm/netstat.html/documents.html.

28

[20] Harold S. Javitz and Alfonso Valdest. The sri ides statistical anomaly detector. In Proc.
of the IEEE Symposium on Research in security and Privacy, pages 316{326, May 1991.
http://www2.csl.sri.com/nides/index5.html.

[21] Y.Frank Jou, F. Gong, C. Sargor, S.F. Wu, and W. Cleaveland. Architecture design for a scalable in-
trusion detection for the emerging network infrastructure. Technical report, MCNC and Dept. of Com-
puter Science of N.C. State Univ., April 1997. http://www.mcnc.org/HTML/ITD/ANR/JiNao.html.

[22] C. Kahn, P. Porras, S. Staniford-Chen, and B. Tung. A common intrusion detection framework, July
1998. Submitted to the Journal of Computer Security; http://seclab.cs.ucdavis.edu/cidf/.

[23] Sandeep Kumar and E. H. Spa�ord. A pattern-matching model for instrusion detection. In PRO-
CEEDINGS OF THE NATIONAL COMPUTER SECURITY CONFERENCE, pp. 11-21, Baltimore,
MD, 1994. http://www.cs.purdue.edu/coast/coast-library.html.

[24] Teresa F. Lunt. Automated audit trail analysis and intrusion detection: A survey. In Proc.
of the 11th National Computer Security Conference, October 1988. Outstanding Paper Award;
http://www2.csl.sri.com/nides/index5.html.

[25] Teresa F. Lunt. A survey of intrusion detection techniques. Computers & Security, 12(4):405{418,
1993.

[26] Nancy Lynch. Distributed Algorithms. Morgan Kaufmann Publishers, San Mateo, CA, 1996. Chapter
23, http://theory.lcs.mit.edu/tds/timed-aut.html.

[27] Nancy Lynch and Mark Tuttle. Hierarchical correctness proofs for distributed algorithms.
In Proc. of the 6th Annual ACM Symposium on Principles of Distributed Computing, POD-
C'87, Vancouver, British Columbia, Canada, August 1987. Technical Memo MIT/LCS/TR-387;
http://theory.lcs.mit.edu/tds/papers/Lynch/tuttle.html.

[28] Nancy Lynch and Mark Tuttle. An introduction to input/output automata. Technical report, Lab-
oratory for Computer Science, Massachusetts Institute of Technology, September 1989. Technical
Memo MIT/LCS/TM-373; http://theory.lcs.mit.edu/tds/papers/Lynch/CWI89.html.

[29] Nancy Lynch and Frits Vaandrager. Forward and backward simulations, part ii: Timing-based sys-
tems. Information and Computation, 128(1):1{25, July 1996. Technical Memo MIT/LCS/TM-487.c.,
http://theory.lcs.mit.edu/tds/timed-aut.html.

[30] J. Moy. RFC 2328: OSPF Version 2, April 1998. ftp://ftp.isi.edu/in-notes/rfc2328.txt.

[31] John T. Moy. OSPF: Anatomy of an Internet Routing Protocol. Addison-Wesley, 1998.

[32] B. Mukherjee, L.T. Heberlein, and K.N. Levitt. Network intrusion detection. IEEE Network, 8(3),
May-June 1994. http://seclab.cs.ucdavis.edu/papers.html.

[33] S.L. Murphy and M.R. Badger. Digital signature protection of ospf routing protocol. In Internet
Society Symposium on Network and Distributed Systems Security, 1996.

[34] Isabelle Rouvellou and George W. Hart. Automatic alarm correlation for fault indenti�cation. IEEE,
1995.

[35] A.U. Shankar. A simple assertional proof system for real-time systems. In 13th IEEE Real-Time
Systems Symposium. IEEE press, December 1992. http://www.cs.umd.edu/ shankar/.

[36] A.U. Shankar. Reasoning assertionally about real-time systems. In Proceedings of the IEEE, special
issue on Real-Time Systems. IEEE press, January 1994. http://www.cs.umd.edu/ shankar/.

[37] Sandeep Kumar Shukla. Home page on self-stabilization. http://www.cs.albany.edu/ sandeep/README.html.

[38] Dipl.-Inf. Michael Sobirey. Intrusion detection systems bibliography, March 1997. http://www-
rnks.informatik.tu-cottbus.de/ sobirey/idsbibl.html.

[39] S. Staniford-Chen, B. Tung, and D. Schnackenberg. The common intrusion detection framework;
cidf, October 1998. Position paper accepted to the Information Survivability Workshop, Orlando;
http://seclab.cs.ucdavis.edu/cidf/.

29

[40] Jiacun Wang. Timed Petri Net. Kluwer Academic Publishers, 1998.

[41] CIDF working group document. A common intrusion speci�cation language, 1998.
http://gost.isi.edu/projects/crisis/cidf/.

[42] S.F. Wu, F. Wang, B.M. Vetter, R. Cleaveland, Y.F. Jou, F. Gong, and C. Sargor. Intrusion detection
for link-state routing protocols. In IEEE Symposium on Security and Privacy. IEEE press, May 1997.
http://shang.csc.ncsu.edu/pubs.html.

30

