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Real-Time Radar-Based Gesture Detection and

Recognition Built in an Edge-Computing Platform
Yuliang Sun, Student Member, IEEE, Tai Fei, Member, IEEE, Xibo Li, Alexander Warnecke, Ernst Warsitz,

and Nils Pohl, Senior Member, IEEE

Abstract—In this paper, a real-time signal processing frame-
work based on a 60 GHz frequency-modulated continuous wave
(FMCW) radar system to recognize gestures is proposed. In order
to improve the robustness of the radar-based gesture recognition
system, the proposed framework extracts a comprehensive hand
profile, including range, Doppler, azimuth and elevation, over
multiple measurement-cycles and encodes them into a feature
cube. Rather than feeding the range-Doppler spectrum sequence
into a deep convolutional neural network (CNN) connected with
recurrent neural networks, the proposed framework takes the
aforementioned feature cube as input of a shallow CNN for
gesture recognition to reduce the computational complexity. In
addition, we develop a hand activity detection (HAD) algorithm
to automatize the detection of gestures in real-time case. The
proposed HAD can capture the time-stamp at which a gesture fin-
ishes and feeds the hand profile of all the relevant measurement-
cycles before this time-stamp into the CNN with low latency.
Since the proposed framework is able to detect and classify
gestures at limited computational cost, it could be deployed in
an edge-computing platform for real-time applications, whose
performance is notedly inferior to a state-of-the-art personal
computer. The experimental results show that the proposed
framework has the capability of classifying 12 gestures in real-
time with a high F1-score.

Index Terms—AoA information, FMCW radar, Gesture clas-
sification, Hand activity detection, Real-time.

I. INTRODUCTION

RADAR sensors are being widely used in many long-

range applications for the purpose of target surveillance,

such as in aircrafts, ships and vehicles [1], [2]. Thanks to

the continuous development of silicon techniques, various

electric components can be integrated in a compact form at

a low price [2], [3]. Since radar sensors become more and

more affordable to the general public, numerous emerging

short-range radar applications, e.g., non-contact hand gesture

recognition, are gaining tremendous importance in efforts to

improve the quality of human life [4], [5]. Hand gesture recog-

nition enables users to interact with machines in a more natu-

ral and intuitive manner than conventional touchscreen-based

and button-based human-machine-interfaces [6]. For example,

Google has integrated a 60 GHz radar into the smartphone

Pixel 4, which allows users to change songs without touching

the screen [7]. What’s more, virus and bacteria surviving on

surfaces for a long time could contaminate the interface and

cause people’s health problems. For instance, in 2020, tens of

A video is available on https://youtu.be/IR5NnZvZBLk
This article will be published in a future issue of IEEE Sensors Journal.
DoI: 10.1109/JSEN.2020.2994292

thousands of people have been infected with COVID-19 by

contacting such contaminate surfaces [8]. Radar-based hand

gesture recognition allows people to interact with the machine

in a touch-less way, which may reduce the risk of being

infected with virus in a public environment. Unlike optical

gesture recognition techniques, radar sensors are insensitive

to the ambient light conditions; the electromagnetic waves

can penetrate dielectric materials, which makes it possible to

embed them inside devices. In addition, because of privacy-

preserving reasons, radar sensors are preferable to cameras

in many circumstances [9]. Furthermore, computer vision

techniques applied to extract hand motion information in every

frame are usually not power efficient, which is therefore not

suitable for wearable and mobile devices [10].

Motivated by the benefits of radar-based touch-less hand

gesture recognition, numerous approaches were developed in

recent years. The authors in [9], [11], [12] extracted physical

features from micro-Doppler signature [1] in the time-Doppler-

frequency (TDF) domain to classify different gestures. Li et

al. [13] extracted sparsity-based features from TDF spectrums

for gesture recognition using a Doppler radar. In addition

to Doppler information of hand gestures, the Google Soli

project [10], [14] utilized the range-Doppler (RD) spectrums

for gesture recognition via a 60 GHz frequency-modulated

continuous wave (FMCW) radar sensor. Thanks to the wide

available bandwidth (7 GHz), their systems could recognize

fine hand motions. Similarly, the authors in [15]–[17] also

extracted hand motions based on RD spectrums via an FMCW

radar. In [18], [19], apart from the range and Doppler informa-

tion of hand gestures, they also considered the incident angle

information by using multiple receive antennas to enhance

the classification accuracy of their gesture recognition system.

However, none of the aforementioned techniques exploited

all the characteristics of a gesture simultaneously, i.e., range,

Doppler, azimuth, elevation and temporal information. For

example, in [9]–[16], they could not differentiate two gestures,

which share similar range and Doppler information. This

restricts the design of gestures to be recognized.

In order to classify different hand gestures, many research

works employed artificial neural networks for this multi-

class classification task. For example, the authors in [12],

[18]–[20] considered the TDF spectrums or range profiles as

images and directly fed them into a deep convolutional neural

network (CNN). Whereas, other research works [14], [15], [21]

considered the radar data over multiple measurement-cycles

1558-1748 ©2020 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future
media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to
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as a time-sequential signal, and utilized both the CNNs and

recurrent neural networks (RNNs) for gesture classification.

The Soli project [14] employed a 2-dimensional (2-D) CNN

with a long short-term memory (LSTM) to extract both the

spatial and temporal features, while the Latern [21], [22]

replaced the 2-D CNN with 3-D CNN [23] followed by

several LSTM layers. Because the 3-D CNN could extract

not only the spatial but also the short-term temporal informa-

tion from the RD spectrum sequence, it results in a better

classification accuracy than the 2-D CNN [24]. However,

the proposed 2-D CNN, 3-D CNN and LSTM for gesture

classification require huge amounts of memory in the system,

and are computationally inefficient. Although Choi et al. [16]

projected the range-Doppler-measurement-cycles into range-

time and Doppler-time to reduce the input dimension of the

LSTM layer and achieved a good classification accuracy in

real-time, the proposed algorithms were implemented on a

personal computer with powerful computational capability. As

a result, the aforementioned radar-based gesture recognition

system in [12], [14]–[16], [18]–[21] are not applicable for

most commercial embedded systems such as wearable devices,

smartphones, in which both memory and computational power

are limited.

In this paper, we present a real-time gesture recognition

system using a 60 GHz FMCW radar in an edge-computing

platform. The proposed system is expected to be applied in

short-range applications (e.g., tablet, display, and smartphone)

where the radar is assumed to be stationary to the user. The

entire signal processing framework is depicted in Fig. 1. After

applying the 2-dimensional finite Fourier transform (2-D FFT)

to the raw data, we select a certain number of points from

the resulting RD spectrum as an intermediate step rather than

directly putting the entire spectrum into deep neural networks.

Additionally, thanks to the L-shaped receive antenna array, the

angle of arrival (AoA) information of the hand, i.e., azimuth

and elevation, can be calculated. For every measurement-cycle,

we store this information in a feature matrix with reduced

dimensions. By selecting a few points from the RD spectrum,

we reduce the input dimension of the classifier and limit

the computational cost. Further, we present a hand activity

detection (HAD) algorithm called the short-term average/long-

term average (STA/LTA)-based gesture detector. It employs

the concept of STA/LTA [25] to detect when a gesture comes

to an end, i.e., the tail of a gesture. After detecting the tail

of a gesture, we arrange the feature matrices belonging to

the measurement-cycles, which are previous to this tail, into

a feature cube. This feature cube constructs a compact and

comprehensive gesture profile which includes the features of

all the dominant point scatters of the hand. It is subsequently

fed into a shallow CNN for classification. The main contribu-

tions are summarized as follows:

• The proposed signal processing framework is able to

recognize more gestures (12 gestures) than those reported

in other works in the literature. The framework can run

in real-time built in an edge-computing platform with

limited memory and computational capability.

• We develop a multi-feature encoder to construct the ges-

ture profile, including range, Doppler, azimuth, elevation

and temporal information into a feature cube with reduced

dimensions for the sake of data processing efficiency.

• We develop an HAD algorithm based on the concept of

STA/LTA to reliably detect the tail of a gesture.

• Since the proposed multi-feature encoder has encoded all

necessary information in a compact manner, it is possible

to deploy a shallow CNN with a feature cube as its input

to achieve a promising classification performance.

• The proposed framework is evaluated twofold: its per-

formance is compared with the benchmark in off-line

scenario, and its recognition ability in real-time case is

assessed as well.

The remainder of this paper is organized as follows. Section

II introduces the FMCW radar system. Section III describes

the multi-feature encoder including the extraction of range,

Doppler and AoA information. In Section IV, we introduce

the HAD algorithm based on the concept of the STA/LTA.

In Section V, we present the structure of the applied shallow

CNN for gesture classification. In Section VI, we describe

the experimental scenario and the collected gesture dataset. In

Section VII, the performance is evaluated in both off-line and

real-time cases. Finally, conclusions are given in Section VIII.

II. SHORT-RANGE FMCW RADAR SYSTEM

Our 60 GHz radar system adopts the linear chirp sequence

frequency modulation [26] to design the waveform. After mix-

ing, filtering and sampling, the discrete beat signal consisting

of IT point scatters of the hand in a single measurement-cycle

from the z-th receive antenna can be approximated as [27]:

b(z)(u, v) ≈

IT
∑

i=1

a
(z)
i exp {j2π (friuTs − fDivTc)} ,

u = 0, · · · , Is − 1, v = 0, · · · , Ic − 1,

(1)

where the range and Doppler frequencies fri and fDi are given

as:

fri = 2
fB
Tc

ri
c
, fDi = 2

vri
λ
, (2)

respectively, ri and vri are the range and relative velocity of

the i-th point scatter of the hand, fB is the available bandwidth,

Tc is the chirp duration, λ is the wavelength at 60 GHz, c is the

speed of light, the complex amplitude a
(z)
i contains the phase

information, Is is the number of sampling points in each chirp,

Ic is the number of chirps in every measurement-cycle, and

the sampling period Ts = Tc/Is. The 60 GHz radar system

applied for gesture recognition can be seen in Fig. 2. It can

also be seen that, the radar system has an L-shaped receive

antenna array. To calculate the AoA in azimuth and elevation

directions, the spatial distance between two receive antennas

in both directions is d, where d = λ/2.

III. MULTI-FEATURE ENCODER

A. 2-D Finite Fourier Transform

A 2-D FFT is applied to the discrete beat signal in (1) to ex-

tract the range and Doppler information in every measurement-
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Fig. 1. Proposed real-time radar-based gesture recognition framework built in an edge-computing platform.

Fig. 2. Infineon’s BGT60TR13C 60 GHz radar system for gesture recognition.
The {Rxz : z = 0, 1, 2} denotes the z-th receive antenna. The pair consisting
of Rx1 and Rx0 is responsible for elevation angle, and the pair consisting
of Rx1 and Rx2 is used for azimuth angle calculation.

cycle [28]. The resulting complex-valued RD spectrum for the

z-th receive antenna can be calculated as:

B(z)(p, q) =
1

IcIs

Ic−1
∑

v=0

Is−1
∑

u=0

{

b(z)(u, v)w(u, v)
}

· exp

(

−j2π
pu

Is

)

· exp

(

−j2π
qv

Ic

)

,

p = 0, · · · , Is − 1, q = 0, · · · , Ic − 1,

(3)

where w(u, v) is a 2-D window function, p and q are the

range and Doppler frequency indexes. The range and relative

velocity resolution can be deduced as:

∆r = c
Tc
2fB

·∆fr =
c

2fB
, ∆vr =

λ

2
·∆fD, (4)

where the range and Doppler frequency resolution ∆fr and

∆fD are 1/Tc and 1/(IcTc), respectively. To improve the

signal-to-noise ratio (SNR), we sum the RD spectrums of the

three receive antennas incoherently, i.e.,

RD(p, q) =

2
∑

z=0

|B(z)(p, q)|. (5)

B. Range-Doppler Estimation

To obtain the range, Doppler and AoA information of the

hand in every measurement-cycle, we select K points from

RD(p, q), which have the largest magnitudes. The parameter

K is predefined, and its choice will be discussed in Section

VII-A. Then, we extract the range, Doppler frequencies and

the magnitudes of those K points, which are denoted as f̂rk,

f̂Dk and Ak, respectively, where k = 1, · · · ,K.

C. Azimuth and Elevation Angle Estimation

The AoA can be calculated from the phase difference of

extracted points in the same positions of complex-valued RD

spectrums belonging to two receive antennas. The AoA in

azimuth and elevation of the k-th point can be calculated as:

φ̂k = arcsin





(

ψ
(

a
(1)
k

)

− ψ
(

a
(2)
k

))

λ

2πd



 , (6)

θ̂k = arcsin





(

ψ
(

a
(1)
k

)

− ψ
(

a
(0)
k

))

λ

2πd



 , (7)

respectively, where ψ(·) stands for the phase of a complex

value, a
(z)
k is the complex amplitude B(z)

(

f̂rk, f̂Dk

)

from

the z-th receive antenna.

D. Feature Cube

As a consequence, in every measurement-cycle, the k-th

point in RD(p, q) has five attributes, i.e., range, Doppler,

azimuth, elevation and magnitude. As depicted in Fig. 3, we

encode the range, Doppler, azimuth, elevation and magnitude

of those K points with the largest magnitudes in RD(p, q)
along IL measurement-cycles into the feature cube V with di-

mension IL×K×5. The V has five channels corresponding to

five attributes and each element in V at the l-th measurement-

cycle can be described as:

V(l, k, 1) = f̂rk, V(l, k, 2) = f̂Dk, V(l, k, 3) = φ̂k,

V(l, k, 4) = θ̂k, V(l, k, 5) = Ak,
(8)

where l = 1, · · · , IL.

Fig. 3. Structure of feature cube V .

IV. HAND ACTIVITY DETECTION

A. Problem Statement

Similar to voice activity detection in the automatic speech

recognition system, our gesture recognition system also needs

to detect some hand activities in advance, before forwarding

the data to the classifier. It helps to design a power-efficient

gesture recognition system, since the classifier is only activated
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(a) (b)

Fig. 4. (a) A delay occurs before forwarding the gesture data to the classifier
when we detect the start time-stamp of the gesture. (b) The gesture data is
directly forwarded to the classifier without delay when we detect the tail of
the gesture.

when a gesture is detected rather than keeping it active for

every measurement-cycle. The state-of-the-art event detection

algorithms usually detect the start time-stamp of an event.

For example, the authors in [25] used the STA/LTA and

power spectral density methods to detect when a micro-seismic

event occurs. In the case of radar-based gesture recognition,

we could also theoretically detect the start time-stamp of

a gesture and consider that a gesture event occurs within

the following IL measurement-cycles. However, detecting the

start-stamp and forwarding the hand data in the following IL
measurement-cycles to the classifier could cause a certain time

delay, since the time duration of designed gestures is usually

different. As illustrated in Fig. 4(a), due to the facts that

the proposed multi-feature encoder requires IL measurement-

cycles and the duration of the gesture is usually shorter than

IL, a delay occurs, if we detect the start time-stamp of the

gesture. Therefore, as depicted in Fig. 4(b), to reduce the

time delay, our proposed HAD algorithm is designed to detect

when a gesture finishes, i.e., the tail of a gesture, rather than

detecting the start time-stamp.

B. STA/LTA-based Gesture Detector

We propose a STA/LTA-based gesture detector to detect the

tail of a gesture. The exponential moving average (EMA) is

used to detect the change of the magnitude signal at the l-th
measurement-cycle, which is given as:

M(l) = (1− α)M(l − 1) + αx(l), (9)

where α ∈ [0, 1] is the predefined smoothing factor, x(l) is

the range-weighted magnitude (RWM), and it is defined as:

x(l) = Amaxf
β
rmax

, Amax = max
k

{Ak} , (10)

where Amax represents the maximal magnitude among K
points in RD(p, q) at l-th measurement-cycle, frmax

denotes

the range corresponding to Amax, and the predefined coef-

ficient β denotes the compensation factor. The radar cross

section (RCS) of a target is independent of the propagation

path loss between the radar and the target. According to the

radar equation [29], the measured magnitude of a target is

a function of many arguments, such as the path loss, RCS,

etc. As deduced in (10), we have built a coarse estimate of

the RCS by multiplying the maximal range information with

its measured magnitude to partially compensate the path loss.

Furthermore, we define the STA(l) and LTA(l) as the mean

EMA in short and long windows at the l-th measurement-

cycle:

STA(l) =
1

L1

l+L1
∑

ll=l+1

M(ll), LTA(l) =
1

L2

l
∑

ll=l−L2+1

M(ll),

(11)

respectively, where L1 and L2 are the length of the short

and long window. The tail of a gesture is detected, when the

following conditions are fulfilled:

l
∑

ll=l−L2+1

x(ll) ≥ γ1 and
STA(l)

LTA(l)
≤ γ2, (12)

where γ1 and γ2 are the predefined detection thresholds. Fig. 5

illustrates that the tails of two gestures are detected via the

proposed STA/LTA gesture detector. According to (12), one

condition of detecting the tail of a gesture is that, the average

of RWM in the long window exceeds the threshold γ1. It

means that a hand motion appears in the long window. The

other condition is that, the ratio of the mean EMA in the

short window and that in the long window is lower than

the threshold γ2. In other words, it detects when the hand

movement finishes. In practice, the parameters β, γ1 and γ2
in our HAD algorithm should be thoroughly chosen according

to different application scenarios.

Fig. 5. The tails of two gestures are detected via the proposed gesture detector.

V. SUPERVISED LEARNING

As discussed in Section III-D, the feature cube obtained by

the multi-feature encoder has a dimension of IL×K×5. Thus,

we could simply use the CNN for classification without any

reshaping operation. The structure of the CNN can be seen in

Fig. 6. We employ four convolutional (Conv) layers, each of

that has a kernel size 3× 3 and the number of kernels in each

Conv layer is 64. In addition, the depth of the first kernel

is five, since the input feature cube has five channels (i.e.,

range, Doppler, azimuth, elevation and magnitude), while that

of the other kernels in the following three Conv layers is 64.

We choose the rectified linear unit (ReLU) [30] as activation

function, since it solves the problem of gradient vanishing

and is able to accelerate the convergence speed of training

[31]. Then, the last Conv layer is connected by two fully-

connected (FC) layers, either of which has 256 hidden units

and is followed by a dropout layer for preventing the network

from overfitting. The third FC layer with a softmax function is

utilized as the output layer. The number of hidden units in the
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third FC layer is designed to be in accordance with the number

of classes in the dataset. The softmax function normalizes the

output of the last FC layer to a probability distribution over

the classes.

Through thoroughly network tuning (e.g., number of hidden

layers, number of hidden units, depth number), we construct

the CNN structure as shown in Fig. 6. The designed network

should (a) take the feature cube as input, (b) achieve a

high classification accuracy, (c) consume few computational

resources, and (d) be deployable in the edge-computing plat-

form. In Section VII, we will show that the designed network

in Fig. 6 fulfills these criteria.

VI. SCENARIO AND GESTURE DATASET DESCRIPTION

As illustrated in Fig. 7, we used the 60 GHz FMCW radar in

Fig. 2 to recognize gestures. Our radar system has a detection

range up to 0.9 m and an approx. 120◦ antenna beam width in

both azimuth and elevation directions. The parameter setting

used in the waveform design is presented in Table I, where

the pulse repetition interval (PRI) is 34 ms. The radar is

TABLE I
TRANSMIT SIGNAL DESIGN AND RADAR PARAMETERS

Transmit fc fB Tc Is Ic PRI
signal design 60 GHz 5 GHz 432 µs 32 32 34 ms

Resolution
∆r ∆vr

3 cm 18 cm/s

connected with an edge-computing platform, i.e., NVIDIA

Jetson Nano, which is equipped with Quad-core ARM A57 at

1.43 GHz as central processing unit (CPU), 128-core Maxwell

as graphics processing unit (GPU) and 4 GB memory. We

have built our entire radar-based gesture recognition frame-

work described in Fig. 1 in the edge-computing platform in

C/C++. The proposed multi-feature encoder and HAD have

been implemented in a straightforward manner without any

runtime optimization, while the implementation of the CNN

is supported by TensorRT developed by NVIDIA. In addition,

as depicted in Fig. 8, we designed 12 gestures, which are

(a) Check, (b) Cross, (c) Rotate clockwise (CW), (d) Rotate

counterclockwise (CCW), (e) Moving fingers (FG), (f) Pinch

index, (g) Pull, (h) Push, (i) Swipe backward (BW), (j) Swipe

forward (FW), (k) Swipe left (LT) and (l) Swipe right (RT).

We invited 20 human subjects including both genders with

various heights and ages to perform these gestures. Among

20 subjects, the ages range from 20 to 35 years old, and

the heights are from 160 cm to 200 cm. We divided the 20

subjects into two groups. In the first group, ten subjects were

taught how to perform gestures in a normative way. Whereas,

in the second group, in order to increase the diversity of the

dataset, only an example for each gesture was demonstrated

to the other ten subjects and they performed gestures using

their own interpretations. Self-evidently, their gestures were no

longer as normative as the ones performed by the ten taught

subjects. Furthermore, every subject repeated each gesture 30

times. Therefore, the total number of realizations in our gesture

dataset is (12 gestures)×(20 people)×(30 times), namely 7200.

We also found out that the gestures performed in our dataset

take less than 1.2 s. Thus, to ensure that the entire hand

movement of a gesture is included in the observation time,

we set IL to 40, which amounts to a duration of 1.36 s (40

measurement-cycles × 34 ms).

VII. EXPERIMENTAL RESULTS

In this section, the proposed approach is evaluated regarding

a twofold objective: first, its performance is thoroughly com-

pared with benchmarks in literature through an off-line cross-

validation, and secondly, its real-time capability is investigated

with an on-line performance test. In Section VII-A, we discuss

how the parameter K affects the classification accuracy. In

Section VII-B, we compare our proposed algorithm with the

state-of-the-art radar-based gesture recognition algorithms in

terms of classification accuracy and computational complexity

based on leave-one-out cross-validation (LOOCV). It means

that, in each fold, we use the gestures from one subject as

test set, and the rest as training set. In addition, Section

VII-C describes the real-time evaluation results of our sys-

tem. The performances of taught and untaught subjects are

evaluated separately. We randomly selected eight taught and

eight untaught subjects as training sets, while the remaining

two taught and two untaught subjects are test sets. In real-

time performance evaluation, we performed the hardware-in-

the-loop (HIL) test, and fed the raw data recorded by the radar

from the four test subjects into our edge-computing platform.

A. Determination of Parameter K

As described in Section III, we extract K points with

the largest magnitudes from RD(p, q), to represent the hand

information in a single measurement-cycle. We define the

average (avg.) accuracy as the avg. classification accuracy

across the 12 gestures based on LOOCV. In Fig. 9, we let K
vary from 1 to 40, and compute the avg. accuracy in five trials.

It can be seen that the mean avg. accuracy over five trials keeps

increasing and reaches approx. 95%, when K is 25. After that,

increasing K can barely improve the classification accuracy.

As a result, in order to keep low computational complexity of

the system and achieve a high classification accuracy, we set

K to 25. It results that the feature cube V in our proposed

multi-feature encoder has a dimension of 40× 25× 5.

B. Off-line Performance Evaluation

In the off-line case, we assumed that each gesture is

perfectly detected by the HAD algorithm and compared our

proposed multi-feature encoder + CNN with the 2-D CNN

+ LSTM [14], the 3-D CNN + LSTM [21], 3-D CNN +

LSTM (with AoA) and shallow 3-D CNN + LSTM (with

AoA) in terms of the avg. classification accuracy and com-

putational complexity based on LOOCV. In our proposed

multi-feature encoder + CNN, the feature cube V , which

has the dimension of 40 × 25 × 5, was fed into the CNN

described in Fig. 6. The input of the 2-D CNN + LSTM

[14] and the 3-D CNN + LSTM [21] is the RD spectrum

sequence over 40 measurement-cycles, which has the dimen-

sion of 40 × 32 × 32 × 1. Since [21] did not include any
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Fig. 6. Structure of the shallow CNN taking the feature cube as input.

Fig. 7. Experiment scenario of the radar-based gesture recognition system.

(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

Fig. 8. (a) Check. (b) Cross. (c) Rotate CW. (d) Rotate CCW. (e) Moving
fingers. (f) Pinch index. (g) Pull. (h) Push. (i) Swipe BW. (j) Swipe FW. (k)
Swipe LT. (l) Swipe RT.

AoA information in their system for gesture classification,

the comparison might not be fair. Thus, we added the AoA

information according to (6) and (7) to the RD spectrum

sequence. It results in the input of the 3-D CNN + LSTM (with

AoA) and shallow 3-D CNN + LSTM (with AoA) having the

dimension of 40×32×32×3, where the second and the third

channel contain the AoA information in azimuth and elevation

dimension, respectively. The shallow 3-D CNN + LSTM

(with AoA) is designed to having comparable computational

complexity as that of the proposed multi-feature encoder +

Fig. 9. Determination of the number of extracted points K from RD(p, q).

CNN but with reduced classification accuracy. To achieve a

fair comparison, we optimized the structures and the hyper-

parameters as well as the training parameters of those models.

The CNN demonstrated in Fig. 6 in the proposed approach

was trained for 15000 steps based on the back propagation

[32] using the Adam optimizer [33] with an initial learning

rate of 1 × 10−4, which degraded to 10−5, 10−6 and 10−7

after 5000, 8000 and 11000 steps, respectively. The batch size

is 128.

1) Classification Accuracy and Training Loss Curve: In

Table II, we present the classification accuracy of each type

of gesture based on the algorithms mentioned above. The avg.

accuracies of the 2-D CNN + LSTM [14] and 3-D CNN

+ LSTM [21] are only 78.50% and 79.76%, respectively.

Since no AoA information is utilized, the Rotate CW and

Rotate CCW can hardly be distinguished, and similarly the

four Swipe gestures can hardly be separated, either. On the

contrary, considering the AoA information, the multi-feature

encoder + CNN, the 3-D CNN + LSTM (with AoA) and the

shallow 3-D CNN + LSTM (with AoA) are able to separate

the two Rotate gestures, and the four Swipe gestures. It needs

to be mentioned that the avg. accuracy of our proposed multi-

feature encoder is almost the same as that of the 3-D CNN +

LSTM with (AoA). However, it will be shown in the following

section that our approach requires much less computational

resources and memory than those of the other approaches.

What’s more, in Fig. 10, we plot the training loss curves

of the three structures of neural networks. It can be seen that

the loss of the proposed CNN in Fig. 6 has the fastest rate of

convergence among the three structures of neural networks and

approaches to zero at around the 2000-th training step. Unlike

the input of the 3-D CNN + LSTM (with AoA) and shallow

3-D CNN + LSTM (with AoA), the feature cube contains

sufficient gesture characteristics in spite of its compact form

(40× 25× 5). It results that the CNN in Fig. 6 is easier to be

trained than the other neural networks, and it achieves a high

classification accuracy.
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TABLE II
CLASSIFICATION ACCURACY IN % OF EACH GESTURE OBTAINED BY DIFFERENT GESTURE RECOGNITION FRAMEWORKS

avg. acc. (a) (b) (c) (d) (e) (f) (g) (h) (i) (j) (k) (l)

2-D CNN + LSTM [14] 78.50 85.17 82.67 60.67 55.50 93.33 95.00 90.67 91.17 66.83 75.33 67.50 78.17
3-D CNN + LSTM [21] 79.76 83.17 87.17 62.83 57.17 93.50 97.17 93.17 92.17 63.67 77.33 69.33 80.50
3-D CNN + LSTM (with AoA) 95.57 96.67 95.17 97.17 96.33 92.00 95.17 94.67 95.17 94.50 93.50 98.50 98.0
Shallow 3-D CNN + LSTM (with AoA) 94.36 95.33 92.0 96.67 96.83 93.33 94.83 95.83 93.0 90.0 89.17 98.83 96.50
Multi-feature encoder + CNN 95.79 96.50 97.83 95.83 96.83 96.17 95.50 93.17 96.50 92.67 92.67 98.17 97.67

TABLE III
DIFFERENT NEURAL NETWORK STRUCTURES FOR RADAR-BASED GESTURE RECOGNITION

Layers 3-D CNN + LSTM (with AoA) Shallow 3-D CNN + LSTM (with AoA) Multi-feature encoder + CNN

input 40× 32× 32× 3 40× 32× 32× 3 40× 25× 5
1 3-D Conv1 3 × 3 × 3 × 16 3-D Conv1 3 × 3 × 3 × 16 Conv1 3 × 3 × 64
2 3-D Conv2 3 × 3 × 3 × 32 3-D Conv2 3 × 3 × 3 × 32 Conv2 3 × 3 × 64
3 3-D Conv3 3 × 3 × 3 × 64 3-D Conv3 3 × 3 × 3 × 64 Conv3 3 × 3 × 64
4 FC1 512 FC1 64 Conv4 3 × 3 × 64
5 FC2 512 LSTM 32 FC1 256
6 LSTM 512 FC2 12 - softmax FC2 256
7 FC3 12 - softmax - FC3 12 - softmax

GFLOPs 2.89 0.34 0.26
Size 109 MB 101 MB 4.18 MB

Fig. 10. Comparison of training loss curves.

2) Confusion Matrix: In Fig. 11, we plotted two confusion

matrices for ten taught and ten untaught subjects based on

our proposed multi-feature encoder + CNN. It could be

observed that, for the normative gestures performed by the ten

taught subjects, we could reach approx. 98.47% avg. accuracy.

Although we could observe an approx. 5% degradation in avg.

accuracy in Fig. 11(b), where the gestures to be classified are

performed by ten untaught subjects, it still has 93.11% avg.

accuracy.

3) Computational Complexity and Memory: The structures

of the 3-D CNN + LSTM (with AoA), shallow 3-D CNN +

LSTM (with AoA) and the proposed multi-feature encoder +

CNN are presented in Table III. We evaluated their computa-

tional complexity and required memory in line with the giga

floating point operations per second (GFLOPs) and the model

size. The GFLOPs of different models were calculated by the

built-in function in TensorFlow, the model size is observed

through TensorBoard [34]. Although the 3-D CNN + LSTM

(with AoA) offers almost the same classification accuracy as

that of the proposed multi-feature encoder + CNN, it needs

much more GFLOPs than that of the multi-feature encoder

+ CNN (2.89 GFLOPs vs. 0.26 GFLOPs). Its model size is

also much larger than that of the proposed approach (109 MB

vs. 4.18 MB). Although we could reduce its GFLOPs using

a shallow network structure, such as the shallow 3-D CNN +

LSTM (with AoA) in Table III, it results in the degradation

of classification accuracy (94.36%), as can be seen in Table

II. We also found out that the CNN used in our approach has

the least model size, since its input dimension is much smaller

than that of other approaches. On the contrary, the input of the

3-D CNN + LSTM (with AoA) contains lots of zeros due to

the sparsity of RD spectrums. Such large volumes usually need

large amounts of coefficients in neural networks. Whereas,

we exploit the hand information in every measurement-cycle

using only 25 points, and the input dimension of the CNN

is only 40× 25× 5, which requires much less computational

complexity than the other approaches.

C. Real-time Performance Evaluation

As mentioned above, subjects are divided into taught and

untaught groups, and each has ten subjects. In each group,

eight subjects are randomly selected as training set, and the

remaining two subjects constitute the test set, resulting in

either group having 720 true gestures in the test set. In the HIL

context, we directly fed the recorded raw data from the four

test subjects into the edge-computing platform. In the real-

time case, the system should be robust enough to distinguish

true gestures from random motions (RMs). Thus, we also

included a certain amount of RMs as negative samples during

the training phase. The scale of RMs and true gestures is

around 1:3.

1) Precision, Recall and F1-score: To quantitatively ana-

lyze the real-time performance of our system, we introduce

the precision, recall and F1-score, which are calculated as:

precision =
TP

TP + FP
, recall =

TP

TP + FN
,

F1-score = 2 ·
precision · recall

precision + recall
,

(13)

where TP, FP and FN denote the number of true positive,

false positive, and false negative estimates. For two subjects

in the test set, we have 60 realizations for each gesture. It
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(a) (b)

Fig. 11. Confusion matrices obtained by the proposed multi-feature encoder + CNN based on LOOCV. (a) 10 taught subjects. (b) 10 untaught subjects.

means that TP + FN = 60. As presented in Table IV, the

avg. precision and recall over 12 types of gestures using two

taught subjects as test set are 93.90% and 94.44%, respectively,

while those using two untaught subjects as test set are 91.20%

and 86.11%. It needs to be mentioned that, the off-line avg.

accuracies in Fig. 11, namely 98.47 % and 93.11%, can also

be regarded as the recall in taught and untaught cases. After

comparing with the recall in the off-line case, we could ob-

serve an approx. 4% and 7% degradation in recall in the real-

time case considering both the taught and untaught subjects.

The reason is that, in the off-line performance evaluation,

we assumed that each gesture is detected perfectly. However,

in the real-time case, the recall reduction is caused by the

facts that our HAD performance miss-detected some gestures

or incorrectly triggered the classifier even when the gesture

was not completely finished. For example, due to the small

movement of the hand, the HAD sometimes failed to detect

the gesture ”Pinch index”. Similarly, the recall of the gesture

”Cross” is also impaired, since the gesture ”Cross” has a

turning point, which leads to a short pause. In some cases

where the subject performs the gesture ”Cross” with low-

velocity, the HAD would incorrectly consider the turning point

as the end of ”Cross”, resulting in a wrong classification.

Overall, in both taught and untaught cases, the F1-score of

our radar-based gesture recognition system reaches 94.17%

and 88.58%, respectively.

2) Detection Matrix: We summarized the gesture detection

results of our real-time system. Since we did not aim to

evaluate the classification performance here, we depicted the

detection results in Table V considering all four test subjects.

Our system correctly detected 1388 true positive gestures, and

provoked 25 false alarms among the total of 1864 test samples

in which there are 1440 true gestures and 424 true negative

RMs, respectively. Furthermore, we define two different types

of miss-detections (MDs), in which the MDs from HAD means

that our HAD miss-detects a gesture, while the MDs from the

classifier means that, the HAD detects the gesture, but this

gesture is incorrectly rejected by our classifier as a RM. The

false alarm rate (FAR) and miss-detection rate (MDR) of our

system are 5.90% and 3.61%, respectively.

3) Runtime: As depicted in Table VI, in the HIL context,

we also noted the avg. runtime of the multi-feature encoder,

HAD and CNN based on all the 1838 classifications, which

include 1388 true positives, 399 true negatives, 25 false

alarms and 26 MDs from the classifier. The multi-feature

encoder includes the 2-D FFT, 25 points selection, RD and

AoA estimation. It needs to be mentioned that the multi-

feature encoder and the HAD were executed in the CPU

using unoptimized C/C++ code, while the CNN ran in the

GPU based on TensorRT. The multi-feature encoder and HAD

took only approx. 7.12 ms and 0.38 ms without using any

FFT acceleration engine, while the CNN took only 25.84 ms

on average. The overall runtime of our proposed radar-based

gesture recognition system is only approx. 33 ms.

VIII. CONCLUSION

We developed a real-time radar-based gesture recognition

system built in an edge-computing platform. The proposed

multi-feature encoder could effectively encode the gesture

profile, i.e., range, Doppler, azimuth, elevation, temporal in-

formation as a feature cube, which is then fed into a shallow

CNN for gesture classification. Furthermore, to reduce the

latency caused by the fixed number of required measurement-

cycles in our system, we proposed the STA/LTA-based gesture
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TABLE IV
PRECISION, RECALL AND F1-SCORE IN % OF THE REAL-TIME RADAR-BASED GESTURE RECOGNITION SYSTEM IN BOTH TAUGHT AND UNTAUGHT CASES

avg. (a) (b) (c) (d) (e) (f) (g) (h) (i) (j) (k) (l) F1-score

Taught
precision 93.90 85.94 100.0 85.51 96.77 98.33 84.51 93.44 100.0 90.32 100.0 98.28 93.75

94.17
recall 94.44 91.67 73.33 98.33 100.0 98.33 100.0 95.0 98.33 93.33 90.0 95.0 100.0

Untaught
precision 91.20 88.24 88.33 95.83 85.07 98.18 87.23 73.53 98.08 96.55 83.33 100.0 100.0

88.58
recall 86.11 100.0 88.33 76.67 95.0 90.0 68.33 83.33 85.0 93.33 83.33 96.67 73.33

TABLE V
GESTURE DETECTION MATRIX BASED ON FOUR TEST SUBJECTS

Detected Positive Detected Negative Overall

1388 26 26 1440
True Positives MDs from HAD MDs from classifier True Gestures

25 399 424
False Alarms True Negatives Negative Samples

TABLE VI
AVERAGE RUNTIME OF THE GESTURE RECOGNITION SYSTEM

Multi-feature encoder HAD CNN Overall
(CPU) (CPU) (GPU)

avg. runtime 7.12 ms 0.38 ms 25.84 ms 33.15 ms

detector, which detects the tail of a gesture. In the off-line

case, based on LOOCV, our proposed gesture recognition

approach achieves 98.47% and 93.11% avg. accuracy using

gestures from taught and untaught subjects, respectively. In

addition, the trained shallow CNN has a small model size

and requires few GFLOPs. In the HIL context, our approach

achieves 94.17% and 88.58% F1-scores based on two taught

and two untaught subjects as test sets, respectively. Finally,

our system could be built in the edge-computing platform,

and requires only approx. 33 ms to recognize a gesture.

Thanks to the promising recognition performance and low

computational complexity, our proposed radar-based gesture

recognition system has the potential to be utilized for nu-

merous applications, such as mobile and wearable devices.

In future works, different gesture datasets with large diversity

need to be constructed according to specific use cases. What’s

more, in some use cases where the radar is not stationary to the

user, the classification accuracy of the proposed system might

decrease and accordingly algorithms, such as ego motion

compensation, could be considered.
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