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Abstract A core aspect of advanced driver assistance

systems (ADAS) is to support the driver with information

about the current environmental situation of the vehicle.

Bad weather conditions such as rain might occlude regions

of the windshield or a camera lens and therefore affect the

visual perception. Hence, the automated detection of

raindrops has a significant importance for video-based

ADAS. The detection of raindrops is highly time critical

since video pre-processing stages are required to improve

the image quality and to provide their results in real-time.

This paper presents an approach for real-time raindrops

detection which is based on cellular neural networks

(CNN) and support vector machines (SVM). The major

idea is to prove the possibility of transforming the support

vectors into CNN templates. The advantage of CNN is its

ultra fast precessing on embedded platforms such as

FPGAs and GPUs. The proposed approach is capable to

detect raindrops that might negatively affect the vision of

the driver. Different classification features were extracted

to evaluate and compare the performance between the

proposed approach and other approaches.

1 Introduction

Video-basedADAS are expected to assist drivers in different

weather conditions such as sunny weather conditions, rainy

weather or even during heavy snow. In general, such systems

work appropriately in good weather conditions whereas bad

weather usually represents a big challenge for their appli-

cability since influences such as rain and snow do lead to a

significant degradation of accuracy and precision or even

yield the full loss of practicability of the systems. One of the

most common interfering effects leading to a falsified or

even inoperative system are raindrops on a vehicle’s wind-

shield which occur during rainy or snowy conditions. These

adherent raindrops occlude and deform some image areas.

For example, raindrops will decrease the performance of

clear path detection [38] by adding blurred areas to the

image. Therefore, robust raindrop detection and corre-

sponding noise removal algorithms can improve the per-

formance of vision-based ADAS in rainy conditions. We

believe that such algorithms should be integrated in all the

modules that are responsible for removing noise in visual

data or the handling of similar anomalies. In general, such

modules are responsible for pre-processing the visual data

before it is further analyzed and are therefore commonly

referred to as ‘‘video pre-processors’’.

Several approaches have been proposed throughout lit-

erature to deal with raindrop detection problems. However,

most of these do not consider the following system

requirements: high detection rate, real-time constraint and

robustness under dynamic environments.
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The raindrop detection process requires the classifica-

tion at pixel level. Therefore, it is computationally very

expensive using high-resolution images. This paper sug-

gests a real-time system architecture for object detection

and classification since there is no clear definition of real-

time raindrop detection in the literature [9, 32]. Cellular

neural networks are powerful platforms for parallel com-

puting and support vector machines are robust classifiers

for object recognition. Our proposed CNN modification

permits the combination between both approaches for a

robust real-time object recognition. Our methodology is to

illustrate a comprehensive modification of the support

vectors that are given after SVM training using radial basis

function kernel (RBF) to transform them into CNN control

templates. Thus, we accelerate the SVM performance by

significantly decreasing the classification time at pixel

level.

This paper is organized as follows: In Sect. 2, we give an

overview of the state of the art regarding raindrop detection

and removal in images. Sections 3 and 4 provide an

overview about CNN and SVM, respectively. Section 5

introduces an overall architecture of our proposed system.

Section 6 describes the feature extraction for raindrops

detection. The performance of our approach and a bench-

marking evaluation are then presented in Sect. 7. Finally,

the concluding remarks and an outlook are given in Sect. 8.

2 Related works

Several approaches have been proposed for detecting

raindrops on a windshield and for generating the CNN

templates. Regarding rain drop detection on a windshield

[21], used raindrop templates known as eigendrop to detect

raindrops on windshields. Related results show that the

detection within the sky area is quite promising, but the

named method produces a large number of false positive

within non-sky regions of the image where raindrop

appearance and background texture become less uniform.

Yamashita et al. [41] Proposed two methods of detecting

and removing raindrops from videos taken by different

cameras. One of these methods is based on image

sequences captured with a moving camera. The second is

based on a stereo measurement and utilizes disparities

between stereo image pairs [40]. All these methods

required an additional camera. Therefore, their solution is

not the best for the practice.

Halimeh and Roser [15] Developed a geometric-photo-

metric model to detect and remove raindrops from images

taken behind a car’s windshield. This approach performs

well but requires a high computational time and does not

consider that raindrops appear blurred when they are not in

the scene focus of the camera. Another geometric-

photometric model proposed for a raindrop detection [32]

was based on an approximation of a raindrop shape as a

spheroid section. This model performs well but still needs

too much computational time.

Roser and Geiger [26] Attempted to model the shape of

adherent raindrops by a sphere crown and later, by Bezier

curves [27]. However, these models are insufficient, since a

sphere crown and Bezier curves can cover only a small

portion of possible raindrop shapes.

Garg and Nayar [13] Studied the image appearance

changes due to rain and proposed a photometric raindrop

model that characterizes refraction and reflection of light

through a stationary, spherical raindrop. However, this

approach requires a stationary observer or a long exposure

period, which are not appropriate for automotive driving

applications with a moving camera to capture dynamic

scenes.

You et al. [43] Proposed a method for raindrop detection

based on the motion and the intensity temporal derivatives

of the input video. The authors assume that the motion of

no-raindrop pixels is faster than that of raindrop ones and

the temporal change of intensity of non-raindrop pixels is

larger than that of raindrop pixels. This method has a high

detection rate. Unfortunately, it does not work with highly

dynamic raindrops.

A slightly different approach was proposed by [39] who

analyzed the texture, the shape and the color characteristics

of raindrops in images to detect raindrops on a windshield.

Despite of providing meaningful results when applied in

low to medium rain scenarios the approach is not per-

forming well in heavy rain scenarios. Another approach by

[42] covers large obvious raindrops as well as those rain-

drops at the corners of the view and the trails. The

approach facilitates the Hough transformation algorithm to

detect raindrops in the context of a lane scene as well as the

Sobel operator to detect raindrops in the context of a

building scene. However, the approach is not applicable in

a real-time scenarios since it requires the interaction of a

human operator who processes the images.

Furthermore, another approach comes from [24] who

presented an unprecedented approach to detect unfocused

raindrops in spherical deformations which are the cause for

a blurred vision through the windshield. This approach

does not require any additional devices. Since the approach

is in its experimental stage it lacks a completely proven and

tested body of methods and concepts. Also the concept to

measure the performance is not fully developed and needs

further attention.

Regarding the generation of CNN templates, the goal is

to find the optimal values of template elements that

increases the overall performance of the CNN. During the

last three decades, different methodologies have been

proposed to generate CNN templates. For example, [20]
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used a genetic algorithm for template learning. Others,

[23], developed a learning algorithm based on back-prop-

agation. Their convergence might be accepted but their

system is not reconfigurable. Moreover [3], proposed an

approach based on Simulated Annealing where it is diffi-

cult to find heuristically the desired template. Additionally

[31], developed a method based on particle swarm opti-

mization (PSO) which has the tradeoff problem between

the balance of convergence speed and convergence accu-

racy. Also [37], combined a genetic algorithm and particle

swarm optimization to generate CNN templates. However,

that approach does not support classification templates. In

this paper, we were inspired by the idea of [24] and we did

improve it by providing a novel approach which is based

on Cellular Neural Networks (CNN) to accelerate the

Support Vector Machine (SVM) classification.

3 Cellular neural networks

A cellular neural network (CNN) is a system of fixed-

numbered, fixed-location, locally interconnected, fixed-

topology, multiple-input, multiple-output, nonlinear pro-

cessing units [7]. The concept of CNN combines the

architecture of artificial neural networks and that of cellular

automata. In contrast to ordinary neural networks, CNN has

the property of local connectivity [6]. In the context of

neural networks, neural computing nonlinear processing

units are often referred to as neurons or cells due to their

analogy with their organic counterparts within the brain of

an organism. Equation (1) [which is an ordinary differen-

tial equation (ODE)] represents the Chua-Yang model for

the state equation of a cell [10].

dxi;jðtÞ

dt
¼� xi;jðtÞ þ

X

1

k¼�1

X

1

l¼�1

Ak;lyiþk;jþl

þ
X

1

k¼�1

X

1

l¼�1

Bk;luiþk;jþl þ I ð1Þ

The variable xi;jðtÞ describes the actual internal state of the

cell Ci;j. In addition to that, yiþk;jþlðtÞ represents the output

of a cell and uiþk;jþl indicates the input. The input is con-

stant over time, because in image processing the original

image should be processed. The output of a cell is a vari-

able over time, because it depends on its actual state. The

coupling between cells is the feedback of another cell in

the template matrices (A, B). Matrix A is denoted as

feedback-template and matrix B as control template. Fur-

thermore, every cell of the network is using the same

templates. The variable I represents the bias value, which

is the inaccuracy of a cell. The neighborhood of a cell Ci;j

is defined by Eq. (2).

Ni;jðrÞ ¼ fCk;l : maxðjk � ij; jl� jjÞ � r;where

1� k�V ; 1� l�Wg
ð2Þ

In the most common case r ¼ 1, which means that the

neighborhood of cell Ci;j only consists of its direct neigh-

bors (in this case each cell, except the border cells, has 8

neighbors). V �W is the size of the CNN array (com-

monly a two-dimensional array) we presume that V is

equal to W. The border cells must be treated differently

(border conditions) according to [5] because they do not

have the same number of neighbors as the inner cells. The

output of a cell is generated by a nonlinear function (in this

case the Chua’s equation) as shown in Eq. (3):

yi;jðtÞ ¼nlf ðxi;jðtÞÞ ¼
1

2
jxi;jðtÞ þ 1j � jxi;jðtÞ � 1j
� �

ð3Þ

This nonlinear function (nlf) maps the actual state of a cell

xi;jðtÞ to a value within the interval ½�1;þ1�. In grayscale

image processing þ1 represents the color white and �1

represents the color black. The values in-between the

maximum and minimum represent the grayscale spectrum.

4 Support vector machine (SVM)

A support vector machine (SVM) requires data for training

to establish a model for classifying raindrops. The SVM is

a classifier which separates a set of objects in classes such

that the distance between the class borders is as large as

possible [36]. The set of training data is defined by Eq. (4).

fðx1; y1Þ; . . .; ðxn; ynÞjxi 2 X; yi 2 f�1; 1gg ð4Þ

where xi represents a feature, yi presents the class of the

feature (here: �1 represents a non-raindrop, þ1 represents

a raindrop), X is the set of training data (with n elements),

and 1� i� n. The idea of SVM now is to separate both

classes with a hyperplane that the minimal distance

between elements of both classes and the hyperplane is

maximal. The hyperplane is given through a normal vector

w and a bias value b which can be found in Eq. (5).

yi hw; xii þ bð Þ� 1 ð5Þ

where h:i is the scalar product. In general, training data are not

always linearly separable due to noise or the classes distri-

bution. Therefore, it is not possible to separate both classes

with a single linear hyperplane. Due to this fact, the algorithm

for SVM training is formulated as dual problem. This for-

mulation is equivalent to the primal problem in terms that all

solutions of the dual problem are solutions of the primal

problem. The conversion is realized through the representa-

tion of the normal vector w which is defined as linear com-

bination of examples of the training set [see Eq. (6)]:
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w ¼
X

m

i¼1

aiyixi ð6Þ

where ai is the lagrange multiplier coefficient and xi is a

support vector.

The derivation of the dual form can be found in [36] and

the resulting classification function can be found in Eq. (7):

f ðxÞ ¼ sgn
X

m

i¼1

aiyiKðxi; xÞ þ b

 !

ð7Þ

where m is the number of support vectors, ai is the lagrange

multiplier coefficient, xi is a support vector, x is a part of

the original image (which is compared), K(.) is the kernel

function, yi is the label (to distinguish between raindrops

and non-raindrops) and b is the bias.

The kernel function is needed because of the nonlin-

earity of the training data which transforms the data into a

higher dimension. To reduce the computational cost, pos-

itive definite kernel functions are used, e.g., polynomial

kernels and radial basis function (RBF). In the next section,

more details regarding our kernel function will be

presented.

5 The modification of CNN using RBF-SVM

In this section, our aim is first to prove why using support

vectors as template is correct, when it is correct and what

conditions or assumptions are made to use the support

vectors as templates.

5.1 Using support vectors as CNN control templates

In CNN-based image processing, there are two approaches

to design the CNN templates. The first approach uses

optimization-based supervised learning techniques with

input and output samples [3]. In the second approach, the

control templates represent a predefined image-processing

template (e.g., Sobel template or an averaging smoothing

template), while the feedback templates are all zeros except

the center element which represents the cell self-feedback.

The goal of the second approach is to accelerate the related

image-processing task (using its defined kernel as a CNN

control template) via a CNN processor, which, due to its

parallel paradigm, can operate much faster [5]. The latest

mentioned predefined Kernels have been suggested in Refs.

[3, 5] for various pixel level image processing operations.

Furthermore, in the field of signal/image processing, the

term Kernel is a function that gives the similarity or the

correlation between its two inputs. For example, in the

Sobel edge-detection technique, the convolution between

the image space and the Sobel vertical or horizontal

template highlights the image regions that have a similar

structure to the Sobel template. Like in edge detection, the

kernel used in the SVM-based visual object detection also

looks for the similarity between the features and the trained

support vectors, using the convolution methods as well.

This fact inspired us to use the SVM kernel as a CNN

control template.

Thus, the aim of this combination is to take the advan-

tage of the high detection rate of SVM and the high speed

of CNN, which is realized using the pertained SVM kernel

as a CNN control template.

The construction of the CNN templates starts from the

SVM decision function which can be found in Eq. (7) and

ends with the modified CNN using Eq. (1). As we have

mentioned, our kernel function is the RBF kernel (see

Eq. 15), we take the euclidian norm for the norm function,

to be able to rewrite the equation.

The constant c in the RBF-kernel function must fulfill

the condition c[ 0.

The default value of c is 1
Number of features

. The number of

features is determined during SVM training in the off-line

phase, see Sect. 6.2.

f ðxÞ ¼ sgn
X

m

i¼1

yiaiKðxi; xÞ þ b

 !

¼ sgn
X

m

i¼1

yiaie
�chxi�x;xi�xi þ b

 !

¼ sgn
X

m

i¼1

yiaie
�cðhxi;xii�2hxi;xiþhx;xiÞ þ b

 !

¼ sgn e�chx;xi
X

m

i¼1

yiaie
�chxi;xiie2chxi;xi þ b

 !

: ð8Þ

Equation (8) illustrates how to rewrite the decision func-

tion given in Eq. (7). Since most of the values are known

after training the SVM, we are able to substitute

yiaie
�chxi;xii with fi which leads to Eq. (9):

f ðxÞ ¼ sgn e�chx;xi
X

m

i¼1

fie
2chxi;xi þ b

 !

: ð9Þ

Additionally, the templates of the CNN equation are then

created according to Eq. (9) and the resulting support

vectors.

After the substitution in the general CNN, Eq. (1), the

sgn-function can be omitted, since by definition, the CNN

output is within the interval of ½�1; 1�. The final modified

CNN state equation is presented in Eq. (10) which has

m control templates. The size of the templates results from

the length of the support vectors of the model. The best

template size is determined empirically over various real

raindrops images and found to be 15� 15. This selection
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depends on the best correlation between the average rain-

drop size and the template size.

dxi;jðtÞ

dt
¼ � xi;jðtÞ þ A � nlf ðxi;jðtÞÞ

þ
X

m

i¼1

gðBi � u; fiÞ þ hðS � u2Þ þ I

where I ¼ 0:

ð10Þ

The notation in Eq. (10) is identical to Eq. (1), except that

the symbol ‘‘�’’ is the convolution operator. Figure 1

shows the final CNN block diagram where the index at the

control templates B represents the number of support

vectors, S is a matrix with the same size as the input image

u, and I is the bias value of the CNN state equation. The

functions g(.) and h(.) are defined in Eq. (11), and the

initial value of S is the Input image pixels.

S ¼ ðsijÞi¼0...14;j¼0...14 ¼ 1

gðpi; fiÞ ¼ expð2 � c � piÞ � fi where pi ¼ Bi � u

hðqiÞ ¼ expðð�cÞ � qiÞ � b where qi ¼ S � u2

A ¼ ðaijÞi¼0...14;j¼0...14 ¼
1; i ¼ j ¼ 7

0; else:

�

ð11Þ

According to the previous discussion, considering the CNN

state Eq. in (1) compared to Eq. (10), the third term in the right

side of Eq. (1) does represent the control unit of CNN. This

unit does a matrix dot product (replaced by a convolution of a

whole image) between the control templates and the corre-

sponding pixels. This operation is considered as a linear

mapping of the CNN input. In many cases (i.e., edge detec-

tion), the linear mapping is sufficient to do the task (highlight

the edges). However, in many other cases, the task is sophis-

ticated, which requests a nonlinear mapping of the inputs.

On the other side, as ismentioned before, theRBF-SVM is

also linear mapping. However, before the linear mapping,

RBF kernel transforms the input and the support vector into a

higher dimension to be linearly separable. Hence, in this

paper, we introduce the RBF kernel as CNN control unit

which is more capable of dealing with high nonlinear prob-

lems, which is explained mathematically in the following.

The evidence of this transformation is supported by the

following assumption, as long as the output function in Eq. (3)

is oi;j 2 f�1;þ1g, the previous assumption leads to Eq. (12):

oi;jðtÞ ¼ nlf ð�xi;jðtÞ þ ðA � nlf ðxi;jðtÞÞÞ

þ
X

m

i¼1

gðBi � u; fiÞ þ hðS � u2Þ þ IÞ

where I ¼ 0:

ð12Þ

Thus, Eq. (13) holds the following inequality true:

oi;jðtÞð�xi;jðtÞ þ ðA � nlf ðxi;jðtÞÞÞ

þ
X

m

i¼1

gðBi � u; fiÞ þ hðS � u2Þ þ IÞ[ 1

where I ¼ 0:

ð13Þ

Recalling Eqs. (5) and (13), it is evident that both are

considered to be the same form.

5.2 The requirements of using support vectors

as CNN templates

In our case, the use of our CNN in the field of image

processing has to consider the single image pixel neigh-

borhoods. Hence, the size and geometry of the CNN should

be equal to the size of the ‘‘input image’’.

Additionally, since the output of the CNN cells is either

þ1 or �1, the resulting pixels of the output image would be

the same. Therefore, in real scenarios, the lowest value

refers to the black color and the highest value refers to the

Fig. 1 The representation of the

proposed CNN architecture

using Eq. (10) and the support

vectors for real-time raindrops

detection
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white color. To achieve that the pixel values have to be in

grayscale and normalized to the interval [0,1]. Conse-

quently, the result of the classification helps to allocate the

raindrop pixels that can be marked easily in the original

color image.

5.3 The use cases for using support vectors as CNN

templates

In image processing, the pixels of an image can usually be

divided into several distinct classes of similar pixels. For

example, in outdoors scenarios, pixels could be divided

into pixels belonging to a car or to the background, e.g.,

asphalt.

Consequently, if we have a set of training images in

which the pixels have been assigned to a specific class

label, we can extract image features that can distinguish

between pixels of different classes.

Therefore, we believe that in any machine vision sce-

nario where possible features, e.g., pixel intensity, edge

strength or color based features, our proposed approach can

be used to classify these classes in real-time. Thus, pixels

features in a new image can be compared with the distri-

bution of features in the training set and classified if they

belong to a certain class. In other words, our system fits

well to pixel-based image classification problems.

6 General description of the proposed approach

The overall architecture of the proposed approach con-

sists of two phases: (a) an off-line phase which is the

training of the support vector machine to construct a

model for classifying raindrops; this phase is relevant

only for the initialization of the system; (b) an online

phase in which the real-time raindrop detection is

performed.

A pre-processing step is required for both the online and

off-line phases. It consists of image enhancement and

image filtering. Finally, the classification of raindrops in

real-time is applied (online) using a modified cellular

neural network after the transformation of the resulting

support vectors from the off-line phase into CNN tem-

plates, see Fig 2.

6.1 Pre-processing Phase

In computer vision systems, robust object detection

requires a pre-processing step. The two major processing

steps for raindrop detection are image enhancement and

image filtering. The image enhancement is required to

improve the contrast. The image filtering is used to remove

weather noise. In our system, we use a partial differential

equation (PDE)-based enhancement technique which

improves the contrast and reduces the noise [12] at the

same time. The CNN template for this PDE-based

approach can be found in Eq. (14). The coefficient k 2 R

describes the ratio between smoothness and contrast

enhancement. Values of k[ 1 are dominated by contrast

enhancement while everything else is governed by

smoothness. We already proved and compared the effec-

tiveness of this algorithm in [30]. For this algorithm, the

standard CNN state equation [6] is used. Additionally, the

median filter based on CNN is applied to remove the rain

dots from the image [17].

Fig. 2 The overall architecture

of the real-time raindrops

detection system
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A ¼

0 0:25 0

0:25 0 0:25

0 0:25 0

0

B

@

1

C

A
;B ¼

0 � k 0

�k 4k � k

0 � k 0

0

B

@

1

C

A
;

I ¼ 0: ð14Þ

6.2 Off-line phase: SVM training

As an initial step, a set of images is captured while being in

a rainy weather situation. These images are supposed to be

of high quality with a resolution of 510� 585 pixels. One

raindrop is extracted as described in the following. We

extract a complete quadratic bounding box, which sur-

rounds the raindrop and stores it in a separate file. Addi-

tionally, non-raindrop images need to be created to

establish a set of negative classes for training the SVM

classifier. Diverse features are extracted from the raindrops

with different natural highway backgrounds (see Sect. 4).

The extracted features in the previous step are used to train

the support vector machine [4, 35].

After testing different kernels for transforming the

feature space [e.g. polynomial kernel, radial basis func-

tion (RBF) kernel and linear kernel], the RBF kernel

[see Eq. (15)] provided by [29] was chosen because of

its high performance—this kernel did provide the best

results in our tests (compared to polynomial and the

linear ones). Equation (15) shows the RBF kernel, x and

xi are represented as feature vectors. The RBF kernel

plays the role of the dot product in the feature space.

This technique avoids the computational impact of

explicitly representing the feature vectors in the new

feature space. The constant c in the RBF-kernel function

must fulfill the condition c[ 0. LIBSVM [4] library is

used for the training of SVM.

Kðxi; xÞ ¼ exp �c � jjxi � xjj2
� �

ð15Þ

6.3 Online phase: real-time raindrop classification

In the online phase, after the learning process completed,

the CNN templates can be modified using the resulted

support vectors as we have discussed in Sect. 5.1.

Additionally, the proposed features in Sect. 7 are

extracted from the given frame (image). Later on, the given

frame will be used as input to the proposed CNN in Fig. 1.

The result of this phase is a binary image which segments

the raindrops as foreground and other discarded pixels as

background. Moreover, the indices of the resulted rain-

drops can be used for the reconstruction of the original

colored image (Fig. 3).

7 Raindrop detection: feature extraction

This section provides a brief overview about the detection

of raindrops. Furthermore, we illustrate the extraction of

those features that are used to train and test the system. The

features are: edges of raindrops, color of raindrops, the

histograms of oriented gradients and wavelets.

7.1 Using edge features for SVM

To extract edge features from images, the contrast

enhancement and edge filtering techniques are applied. The

resulting binary images consist of circular edges of rain-

drops and other edges. Those edges that do not belong to a

raindrop must not be interpreted as raindrop features.

Therefore, the oval shape of a raindrop is important. The

center points of the raindrops are computed using the

equations of contour moments [19] and the distances

between the center and the borders of the raindrops are

used as features for training the SVM (see Fig. 4).

After enhancing the image contrast (as discussed in pre-

processing, see Sect. 6.1), a grayscale edge detector tem-

plate [see Eq. (16)] [6] based on CNN is applied to find

edges within all raindrops [18].

A ¼

0 0 0

0 0 0

0 0 0

0

B

@

1

C

A
; B ¼

�0:11 0 0:11

�0:28 0 0:28

�0:11 0 0:11

0

B

@

1

C

A
; I ¼ 0:

ð16Þ

Fig. 3 The original input image Fig. 4 Extraction of edge features for SVM
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After extracting the edges, the center points of closed

contours are calculated using the concept of contour

moments. In this context moments are the weighted aver-

ages of the values of each pixel of an image. The definition

of moments regarding the gray value function g(x, y) of an

object can be seen in Eq. (17) where p and q are the cor-

responding orders of the moment. In our case a discrete

formula is used [see Eq. (18)], where the image is con-

sidered as a discrete function f(x, y) with x ¼ 0; 1; :::;M

and y ¼ 0; 1; :::;N, [19].
Z Z

xpyqgðx; yÞ dx; dy ð17Þ

mpq ¼
X

M

x¼0

X

N

y¼0

xpyqf ðx; yÞ: ð18Þ

This formula is calculated over the area of the pattern

(raindrops). When we segment an object, we get a binary

image whose pixels contain the value of either one or zero,

where IB is the image and (x, y) is the position of the pixel

in the image IB. The zero order moment is the sum of the

pixel values of an image, it is defined as follows [see

Eqs. (19), (20)]:

l00 ¼
X

x

X

y

IBðx; yÞ ð19aÞ

l10 ¼
X

x

X

y

xIBðx; yÞ ð19bÞ

l01 ¼
X

x

X

y

yIBðx; yÞ: ð19cÞ

Because first order moments of this form do not have any

physical interpretation, they need to be normalized:

l10 ¼

P

x

P

y xIBðx; yÞ

l00
ð19dÞ

l01 ¼

P

x

P

y yIBðx; yÞ

l00
: ð19eÞ

The normalized first order moments contain information

about the center of gravity of the pattern. The normalized

second order moments are associated with the orientation

of the pattern:

l20 ¼
X

x

X

y

x2IBðx; yÞ ð20aÞ

l02 ¼
X

x

X

y

y2IBðx; yÞ ð20bÞ

l11 ¼
X

x

X

y

xyIBðx; yÞ: ð20cÞ

After computing the center points using moments, the

distance vectors between the center points and contours are

computed (see Fig.4). The number of vectors is reduced

using principal component analysis. After reducing the

number of vectors for every closed contour, the norms of

these vectors are stored as features. Afterwards, the SVM is

trained with this information. It is indeed a shortcoming of

this approach that edge features appear not only with

raindrops since the tests in complex environments were not

as good as simple environments. Figure 5 shows the result

of the raindrop detection using edge features. The image in

Fig. 3 is the input test image.

7.2 Using color features for SVM

HSV (Hue, Saturation and Value) color space is used for

color features. Hue represents the color, saturation indi-

cates the range of gray in the color space, and value is the

brightness of the color and varies with color saturation. The

use of this color space comes with the advantage that

operations on one layer give the same results as in the RGB

color space (Red, Green and Blue) for all three layers.

Furthermore, HSV is similar to the color model, which is

used by humans [1, 28, 34]. Because the brightness is

clearly a major characteristic of raindrops, the V channel is

used to train the SVM. Figure 6 illustrates the result of the

SVM using the V features and shows that the result is much

better compared to raindrop detecting using edge features.

7.3 Using histograms of oriented gradient features

for SVM

Dalal and Triggs [8] did describe Histograms of Ori-

ented Gradient (HOG) descriptors which can be used in

computer vision and image processing problems for

detecting objects. HOG have proven to be very effective

for the verification of a variety of objects. This feature is

similar to that of SIFT descriptors [22], edge orientation

histograms [11], and shape contexts [2], but HOG are

Fig. 5 Red circles indicate the identified raindrops (using edge

features)
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computed on a dense grid of uniformly spaced cells and

uses overlapping local contrast normalization for improved

accuracy. HOG features are applied to build a training set

to increase the performance of the classification. As a

matter of fact, it led to the best results as compared with

other features (see Fig. 7).

7.4 Using wavelets

Wavelet transformations are used widely nowadays, which

makes it easier to compress, transmit, and analyze many

images as compared for example to using the Fourier

transform [14]). The transformation is based on small

waves, so-called wavelets, of varying frequency and lim-

ited duration. In contrast, the Fourier transform is based on

sinusoids. Wavelets are used to compress images or to

suppress noise in images.

Tong et al. [33] showed that using ‘Haar’ wavelet

transforms, the blurring coefficient of an image can be

computed. ‘Haar’ wavelet transforms are the oldest and

simplest orthonormal approach. According to linear alge-

bra, it is essential that the ‘Haar’ functions are orthogonal

to each other, otherwise a unambiguous reconstruction is

not possible. The idea now is to decompose an image with

the ’Haar’ wavelet, compare the levels and decide whether

an image is blurred or not by counting the edges. The

algorithm consists of the following steps:

1. Perform ’Haar’ wavelet transform on the image with a

decomposition level of 3.

2. Construct the edge map in each scale.

Emapiðk; lÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

LH2
i þ HH2

i þ HL2i

p

i ¼ 1; 2; 3.

H means ‘‘high pass filter’’ and L means ‘‘low pass

filter’’.

3. Partition the edge maps and find local maxima in each

window. The window size in the highest scale is 2� 2,

the next more coarse scale is 4� 4, and the most

coarse one is 8� 8. The result is denoted as

Emapi i ¼ 1; 2; 3.

4. Use the rules and the blur detection scheme of [33] to

compute the blurred regions within the image.

Each recognized raindrop will be recorded and the sur-

rounding coordinates (in radius d around the center point of

the center point of the feature) will be marked (with a

predefined color) and maintained in a copy of the original

image. Figure 8 illustrates that the performance of this

approach is not as good as the HSV feature approach.

8 Obtained results and experimental setup

This section outlines the experimental setup of the pro-

posed approach. A camera was mounted under the rearview

mirror, facing the windshield. In total, 315 traffic images

(7054 raindrops) were taken with different traffic back-

grounds in rainy weather conditions. 189 out of these

images were used for training data set and 126 images for

testing data set. These images have a dimension of 510�

585 pixels. Raindrops that are well perceptible were

extracted manually using GIMP 2:6:8. All of the extracted

Fig. 6 The green circles indicate the identified raindrops (by using

HSV gradient)

Fig. 7 The green circles indicate the identified raindrops (using HOG

features)

Fig. 8 The blue circles indicate the identified raindrops (using

wavelets)
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raindrops offered the common characteristic that they were

clearly recognizable as raindrops for human beings. In our

experiments, different rescaling sizes were used for the

final raindrops. The experiments yielded the result that a

dimension of 15� 15 pixels for a raindrop feature exhibits

the best performance in the classification phase. Therefore,

the SVM is trained with 15� 15 images representing

features of raindrops. Additionally, 15� 15 images had to

be created (are randomly chosen non-raindrop image

regions) to establish a set of negatives (in terms of a

training set for SVMs).

8.1 Performance and evaluation

After finishing the implementation of the final algorithm

the system was tested under several conditions. The best

parameters to measure the performance of the system are

the measures of sensitivity, specificity and accuracy. Sen-

sitivity accounts for the proportion of the actual positives

(i.e. those objects that are correctly identified) whereas

specificity reflects the proportion of negatively classified

objects (i.e. which are identified incorrectly). The accuracy

is the degree of closeness of measurements of a quantity to

that quantity’s actual (true) value [16] (Fig. 9).

Table 1 represents the performance measures of HSV

gradient, HOG, HSV and HOG and edge features and the

computation time average of processing each image using

these features (on GPU platforms). The related ROC curves

are represented in Fig. 10. The best performance is given

by HOG features approach which exhibits an accuracy

value of 98:25%. Furthermore, the table shows that the

computation time average for raindrop detection on GPU

Fig. 9 The detection results of

various experiments where our

method has been using different

sets of features

Table 1 Performance measures

and the average computation

time (510� 585 pixels on GPU)

of HSV gradient, HOG, HSV

and HOG and edge features

Feature Specificity (%) Sensitivity Accuracy (%) Process time

in s

HOG 98.68 94.32 % 98.25 0.565

HSV gradient 98.79 67.60 % 95.66 0.488

HSV and HOG 98.75 65.44 % 96.1 0.684

Wavelet 97.90 40.45 93.23 0.676

Edge features 96.83 56.43 % 93.54 0.563
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(see Sect. 8.2) is between 0.488 and 0.676 s for 510� 585

pixels.

Figure 9 shows some experiment results of our method

using different sets of features. The input images are shown

in the first column. Each line is representing an experiment

(different input image). Columns 2 to 6 show the results of

applying our method using Edge, Wavelets, HSV,

HSV?HOG and HOG features respectively.

For more realistic scenarios, we captured different

images of a windshield of a car traveling at 65 mph. In this

case, the raindrops start to elongate and appear like streaks,

especially, when the windshield wipers. Figure 11a

demonstrates such a case. After applying our method,

Fig. 11b proves the high performance of our approach

where the water streaks are well detected.

8.2 Benchmarking regarding the computing/

processing time

The proposed approach has been tested using two different

platforms, namely a CPU as well as a GPU. In this section,

we present the results obtained and the benchmarks used to

evaluate the performance of the CNN processors system

executed on both the GPU and the CPU. The resources

available to evaluate the results have been Intel (R) Xeon

(TM) CPU 3.60 GHz with 2GB RAM and 32-bit Windows

operating system. The GPU used for this process is

GeForce 9500 GT with 256 MB of memory. The hardware

units used have four multiprocessors with 8 cores on each

multiprocessor. In total these units provide 32 CUDA cores

which are capable of running in parallel. The development

environment was Visual Studio 2011. Figure 12 shows a

comparison between the performance of the CPU with that

of the GPU with respect to the number of pixels and the

corresponding execution times. It can be seen that when the

number of pixels is low the level of performance offered by

the GPU is nearly equal to the performance level of the

CPU. When the number of pixels to be processed is

increased, the amount of parallelism obtained is high and

hence the overall performance of the GPU becomes much

better [25].

Fig. 10 The red line represents the ROC curve using HOG features,

the blue line represents the ROC curve using HSV and HOG features,

the black line represents the ROC curve using Edge features, the

turquoise color represents the ROC curve using wavelet features and

the green line represents the ROC curve using HSV features

Fig. 11 Streaks Raindrops scenario. a Examples of raindrops on a

windshield of a car traveling at 65 mph. b Raindrops detection using

CNN and SVM
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9 Conclusion and outlook

Improving the quality of images that have been degener-

ated through bad weather influences for the purpose of

being further processed by ADAS is an important concern.

This is due to the challenging fact that ADAS systems that

are based on image processing are sensitive to noise and

aberrations/anomalies. Therefore, it is important to provide

an image pre-processing unit which is capable of working

under real-time conditions and furthermore to improve the

quality of images to increase the reliability of ADAS.

Image processing in ADAS is important, since images

deliver a broad spectrum of data which can be interpreted

for different algorithms.

Related works which generally do not involve CNN

have been found to perform less or do not consider

clearly the real-time constraints. In addition, most of the

existing systems are not easy to implement on hardware.

We did overcome these shortcomings in our system which

is based on pattern recognition and cellular neural net-

works. For pattern recognition, support vector machines

were involved which provide a model for the classifica-

tion phase. Different features are used for the training

phase, where the HOG of the raindrop shape exhibit the

best results. This model is then used for the configuration

of CNN’s which are capable to classify image regions in

real-time.
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