
Real-Time Randomized Path Planning
for Robot Navigation�

James Bruce and Manuela M. Veloso

Computer Science Department
Carnegie Mellon University

5000 Forbes Avenue
Pittsburgh PA 15213, USA
{jbruce,mmv}@cs.cmu.edu

Abstract. Mobile robots often find themselves in a situation where they
must find a trajectory to another position in their environment, sub-
ject to constraints posed by obstacles and the robot’s capabilities. This
poses the problem of planning a path through a continuous domain.
Several approaches have been used to address this problem each with
some limitations, including state discretizations, planning efficiency, and
lack of interleaved execution. Rapidly-exploring random trees (RRTs)
are a recently developed algorithm on which fast continuous domain path
planners can be based. In this work, we build a path planning system
based on RRTs that interleaves planning and execution, first evaluating
it in simulation and then applying it to physical robots. Our algorithm,
ERRT (execution extended RRT), introduces two novel extensions of
previous RRT work, the waypoint cache and adaptive cost search, which
improve replanning efficiency and the quality of generated paths. ERRT
is successfully applied to a multi-robot system. Results demonstrate that
ERRT is improves efficiency and performs competitively with existing
heuristic and reactive real-time path planning approaches. ERRT has
shown to offer a major step with great potential for path planning in
challenging continuous, highly dynamic domains.

Introduction

The path-planning problem is as old as mobile robots, but is not one that has
found a universal solution. Specifically, in complicated, fast evolving environ-
ments such as RoboCup [3], currently popular approaches have their strengths,
but still leave much to be desired. A recently developed tool that may help
tackle the problem of real-time path planning are Rapidly-exploring random
trees (RRTs) [7]. RRTs employ randomization to explore large state spaces
� This research was sponsored by Grants Nos. DABT63-99-1-0013, F30602-98-2-0135

and F30602-97-2-0250. The information in this publication does not necessarily re-
flect the position of the funding agencies and no official endorsement should be
inferred.

G.A. Kaminka, P.U. Lima, and R. Rojas (Eds.): RoboCup 2002, LNAI 2752, pp. 288–295, 2003.
c© Springer-Verlag Berlin Heidelberg 2003



Real-Time Randomized Path Planning for Robot Navigation 289

efficiently without tiling, and can form the basis for a probabilistically com-
plete though non-optimal kinodynamic path planner [8]. They can efficiently
find plans in high dimensional spaces because they avoid the state explosion
that discretization faces. Furthermore, due to their incremental nature, they can
maintain complicated kinematic constraints if necessary.

Most current robot systems that have been developed to date are controlled
by heuristic or potential field methods at the lowest level, and many extend this
upward to the level of path navigation [5]. Since the time to respond must be
bounded, reactive methods are used to build constant or bounded time heuristics
for making progress toward the goal. One reactive method that has proved quite
popular is motor schemas [1]. Although they meet the need for action under time
constraints, most of these methods suffer from the lack of lookahead, which can
lead to highly non-optimal paths and problems with oscillation. RRTs, as used
in our work and presented in this paper, should provide a good compliment for
very simple control heuristics, and take much of the complexity out of composing
them to form a navigation system. Specifically, local minima can be reduced
substantially through lookahead.

While not as popular as heuristic methods, non-reactive planning methods for
interleaved planning and execution have been developed, with promising results.
Among these are agent-centered A* search methods [4] and the D* variant of
A* search [9]. However, using these planners requires discretization or tiling of
the world in order to operate in continuous domains. This leads to a tradeoff
between a higher resolution, with is higher memory and time requirements, and
a low resolution with non-optimality due to discretization. Most of the features
of agent-centered search methods do not rely on A* as a basis, however, so we
can achieve many of their benefits using an RRT based planner which fits more
naturally into domains with continuous state spaces. In addition, the base RRT
system is relatively easy to extend to environments with moving obstacles, higher
dimensional state spaces, and kinematic constraints. No other planners we are
currently aware of offer these possible enhancements at the simplicity and speed
of an RRT-based solution. As a step in that direction, this work appears to be
the first successful application of an RRT planner to a real mobile robot [6].

In order to make online planning efficient enough to be practical, we in-
troduce two novel additions to the planner, specifically the waypoint cache for
replanning and adaptive cost penalty search. The second section of this paper
defines the basic RRT algorithm. The next section introduces our ERRT contri-
bution, followed by implementation results. The final sections offers concluding
remarks.

RRT Planning

Basic RRT Algorithm

In essence, an RRT planner searches for a path from an initial state to a goal state
by iteratively expanding a search tree. For its search, it requires the following
three domain-specific function primitives:



290 James Bruce and Manuela M. Veloso

Function Extend (env:environment,current:state,
target:state):state

Function Distance (current:state,target:state):real
Function RandomState ():state

The Extend function calculates a new state that can be reached from the
target state by some incremental distance (usually a constant distance or time),
which in general makes progress toward the goal. If a collision with an obstacle
in the environment would occur by moving to that new state, EmptyState is
returned. In general, any heuristic methods suitable for control of the robot
can be used here, provided there is a reasonably accurate model of the results
of performing its actions. The heuristic does not need to be very complicated,
and does not even need to avoid obstacles (just detect when a state would hit
them). However, the better the heuristic, the fewer nodes the planner will need to
expand on average, since it will not need to rely as much on random exploration.

Table 1 shows the complete basic RRT planner with its stochastic decision
between the search options:

– with probability p, it expands towards the goal minimizing the objective
function Distance,

– with probability 1− p, it does random exploration by generating a Random-
State.

The function Distance needs to provide an estimate of the time or distance
(or any other objective that the algorithm is trying to minimize) that estimates
how long repeated application of Extend would take to reach the goal. For a
simple example, a holonomic point robot with no acceleration constraints can
implement Extend simply as a step along the line from the current state to the
target, and Distance as the Euclidean distance between the two states. Next,
the function Nearest uses the distance function implemented for the domain to
find the nearest point in the tree to some target point outside of it. The function
RandomState simply returns a state drawn uniformly from the state space of the
environment.

Finally, ChooseTarget chooses the goal part of the time as a directed search,
and otherwise chooses a target taken uniformly from the domain as an explo-
ration step. The main planning procedure uses these functions to iteratively
pick a stochastic target and grow the nearest part of the tree towards that tar-
get. The algorithm terminates when a threshold distance to the goal has been
reached, though it is also common to limit the total number of nodes that can
be expanded to bound execution time.

Extended RRT Algorithm – ERRT

Some optimizations over the basic described in existing work are bidirectional
search to speed planning, and encoding the tree’s points in an efficient spatial
data structure [2]. In this work, a KD-tree was used to speed nearest neighbor



Real-Time Randomized Path Planning for Robot Navigation 291

Table 1. The basic RRT planner stochastically expands its search tree to the goal or
to a random state.

function RRTPlan (env:environment,initial:state,
goal:state):rrt-tree

var nearest,extended,target:state;
var tree:rrt-tree;
nearest := initial;
rrt-tree := initial;
while(Distance (nearest,goal) < threshold)

target = ChooseTarget (goal);
nearest = Nearest (tree,target);
extended = Extend (env,nearest,target);
if extended �= EmptyState then

AddNode (tree,extended);
return tree;

function ChooseTarget (goal:state):state
var p:real;
p = UniformRandom in [0.0 .. 1.0];
if 0 < p < GoalProb then

return goal;
else if GoalProb < p < 1 then

return RandomState();

function Nearest (tree:rrt-tree,target:state):state
var nearest:state;
nearest := EmptyState;
foreach state s in current-tree

if Distance (s,target) <
Distance (nearest,target) then

nearest := s;
return nearest;

lookup, but bidirectional search was not used because it decreases the general-
ity of the goal state specification (it must then be a specific state, and not a
region of states). Additional possible optimizations include a more general bi-
ased distribution, which was explored in this work in the form of a waypoint
cache. If a plan was found in a previous iteration, it is likely to yield insights
into how a plan might be found at a later time when planning again; The world
has changed but usually not by much, so the history from previous plans can be
a guide. The waypoint cache was implemented by keeping a constant size array
of states, and whenever a plan was found, all the states in the plan were placed
into the cache with random replacement. This stores the knowledge of where
a plan might again be found in the near future. To take advantage of this for
planning, Table 2 shows the modifications to the function ChooseTarget.

Now, there are three probabilities in the distribution of target states. With
probability P [goal], the goal is chosen as the target; With probability



292 James Bruce and Manuela M. Veloso

Table 2. The extended RRT planner stochastically expands its search tree to the goal;
to a random state; or to a waypoint cache.

function ChooseTarget’(goal:state):state
var p:real;
var i:integer;
p = UniformRandom in [0.0 .. 1.0];
i = UniformRandom in [0 .. NumWayPoints-1];
if 0 < p < GoalProb then

return goal;
else if GoalProb < p < GoalProb+WayPointProb
then

return WayPointCache[i];
else if GoalProb+WayPointProb < p < 1 then

return RandomState();

Goal Goal

��

�
�
�
�

��
��
��
��

����

��
��
��
��

��
��
��
��

Goal

����

��
��
��
��

��
��
��
��

Goal

����

��
��
��
��

��
��
��
��

Extend towards a random point
with probability 1−p−rwith probability r

Extend towards a waypoint
with probability p

Extend towards the goal
cached waypoints
Current tree with

Fig. 1. Extended RRT with a waypoint cache for efficient replanning.

P [waypoint], a random waypoint is chosen, and with the remaining probability
a uniform state is chosen as before. The way the extended algorithm progresses
is illustrated in Figure 1. Typical values used in this work were P [goal] = 0.1
and P [waypoint] = 0.6. Finally, A simple RRT planner is building a greedy
approximate spanning tree, and thus ignores the path lengths from the initial
state (the root node in the tree). The distance metric can be modified to include
not only the distance from the tree to a target state, but also the cost to reach
that state. A higher value of the multiplier on that history cost (beta) results
in shorter paths from the root to the leaves, but also decreases the amount of
exploration of the state space, biasing it to near the initial state in a “bushy”
tree. A value of 1 for beta will always extend from the root node for any Eu-
clidean metric in a continuous domain, while a value of 0 is equivalent to the
original algorithm. The best value seems to vary with domain and even problem
instance, and appears to be a steep tradeoff between finding an shorter plan and
not finding one at all. To address this we implemented an adaptive mechanism
that appears to work quite well. When the planner starts, beta is set to 0. Then
on successive replans, if the previous run found a plan, beta is incremented, and
decremented otherwise. In addition the value is clipped to between 0 and 0.65.
This adaptive bias schedule reflects the idea that a bad plan is better than no
plan initially, and once a plan is in the cache and search is biased toward the



Real-Time Randomized Path Planning for Robot Navigation 293

Fig. 2. An example from the simulation-based RRT planner, shown at three times
during a run. The initial state (agent) is in blue, while the fixed target state is shown
in red. The best plan (the one that gets closest to the goal) is shown in white.

waypoints, nudges the system to try to shorten the plan helping to improve it
over successive runs.

Domain Implementations and Results

RoboCup F180 Robot Control

We tested our RRT system in simulation and then applied it so the control of
real robots. In both, planning and execution are interleaved equally; A plan is
created for each step taken. Three snapshots from our simulator can be seen in
Figure 2. In this simple domain, the waypoints seemed to help qualitatively in
that the robot didn’t tend to get stuck as long in local minima. This effect of
waypoints on performance was evaluated numerically, and the results are shown
in in Figure 3. Since the curves diverge at moderate difficulty, it appears that
waypoints help speed planning by offering “hints” from previous solutions. When
the problem becomes impossible or nearly impossible, neither performs well.

For physical robot control, the system must take input from a global vision
system at 30Hz, reporting the position of all field objects detected from a fixed
overhead camera, and send the output to a radio server which sends velocity
commands to the robots that are being controlled. The path planning problem
is to navigate quickly among other robots, while they also more around exe-
cuting their own behaviors. As a simplification, we examined the more simple
problem of running from one end of the field to the other, with static robots
acting as obstacles in the field. The extension metric we used was hen became
a model of a simple heuristic “goto-point” that had already been implemented
for the robot. The motivation for this heuristic approach was that executing a
bad plan immediately is often better than sitting still looking for a better one
that models the robot more correctly. To increase system performance, after a
path had been determined, it is post processed, replacing the head of the plan
with the longest obstacle-free straight path. Not only does this smooth out the
resulting plan, but the robot tends to go straight at the first “restricted” point,
always trying to aim at the free space. This allowed the robot to navigate at



294 James Bruce and Manuela M. Veloso

0 500 1000 1500 2000 2500 3000
0

5

10

15

20

25

plan

tim
e 

(m
s)

No waypoints
Waypoints

200 250 300 350 400 450
1

2

3

4

5

6

7

Nodes Expanded

T
im

e 
(m

s)

with KD−tree
no tree

Fig. 3. The left side shows the effect of waypoints. The lines shows the sorted plan-
ning times for 2670 plans with and without waypoints, sorted by time to show the
cumulative performance distribution. The curve with waypoints is significantly lower
for intermediate planning times. The right side shows the plot of planning times vs.
the nodes expanded. KD-trees hold a reasonable advantage even at small numbers of
nodes.

up to 1.7m/s, performing better than any previous system we have used on
our robots. Videos of the current system are available at the following address:
ftp://sponge.coral.cs.cmu.edu/pub/movies/F180-RRT

The best combination of parameters that we were able to find, trading off
physical performance and success with execution time was the following: 500
nodes, 200 waypoints, P [goal] = 0.1, P [waypoint] = 0.7, and a step size of
1/15sec. To examine the efficiency gain from using a KD-tree, we ran the system
with and without a KD-tree. The results are shown in Figure 3. Not only does
the tree have better scalability to higher numbers of nodes due to its algorithmic
advantage, but it provides an absolute performance advantage even with as few
as 100 nodes. The planner was able to perform on average in 2.1ms, with the
time rarely going above 3ms. This makes the system fast enough to use in our
production RoboCup team, as it will allow 5 robots to be controlled from a
reasonably powerful machine while leaving some time left over for higher level
action selection and strategy.

Conclusion

In this work a robot control system was developed that used an RRT path
planner to turn a simple reactive scheme into a high performance path plan-
ning system. The novel mechanisms of the waypoint cache and adaptive cost
search were introduced, with the waypoint cache providing much improved per-
formance on difficult but possible path planning problems. The real robot was
able to perform better than previous fully reactive schemes, traveling 40% faster
while avoiding obstacles, and drastically reducing oscillation and local minima



Real-Time Randomized Path Planning for Robot Navigation 295

problems that the reactive scheme had. This is also the first application of which
we are aware using an RRT-based path planner on a real mobile robot.

Several important lessons can be drawn from this work in the context of
real-time path planning in highly dynamic domains:

– A heuristic may perform better than a correct model when planning time is
critical. In other words, a better model may not improve the entire system
even if it makes the generated plans better.

– A plan generated from an incorrect model requires post-processing for op-
timal performance. The system worked without post processing, but not
nearly as well as when the local metric could apply its accurate model over a
longer range of the plan and thus remove most of its inaccuracies over that
period of the plan.

– Pre-existing reactive control methods can easily be adapted to be RRT exten-
sion and distance metrics. It can build on these to help eliminate oscillation
and local minima through its lookahead mechanism. Since many existing
robots already have reactive navigation systems, and the RRT core code is
highly generic, We expect this to be a common adaptation in the future.

This work could not have been conducted without the many people in our
group who support our RoboCup F180 small robot team. We would specifically
like to thank Brett Browning and Mike Bowling, without whom we wouldn’t
have a team or robots with which interesting research projects could be done.

References

1. R. C. Arkin. Motor schema-based mobile robot navigation. International Journal
of Robotics Research, August 1989, 8(4):92–112, 1989.

2. A. Atramentov and S. M. LaValle. Efficient nearest neighbor searching for motion
planning. In submitted to 2002 IEEE International Conference on Robotics and
Automation, 2002.

3. H. Kitano, M. Asada, Y. Kuniyoshi, I. Noda, and E. Osawa. Robocup: The robot
world cup initiative. In Proceedings of the IJCAI-95 Workshop on Entertainment
and AI/ALife, 1995.

4. S. Koenig. Agent-centered search. Artificial Intelligence, 2002, in print.
5. J.-C. Latombe. Robot Motion Planning. Kluwer, 1991.
6. S. M. LaValle. Rapidly-exploring random trees (http://msl.cs.uiuc.edu/rrt/).
7. S. M. LaValle. Rapidly-exploring random trees: A new tool for path planning. In

Technical Report No. 98-11, October 1998.
8. S. M. LaValle and J. James J. Kuffner. Randomized kinodynamic planning. In

International Journal of Robotics Research, Vol. 20, No. 5, pages 378–400, May
2001.

9. A. Stentz. Optimal and efficient path planning for unknown and dynamic envi-
ronments. In International Journal of Robotics and Automation, Vol. 10, No. 3,
1995.


	Introduction
	RRT Planning
	Basic RRT Algorithm

	Extended RRT Algorithm – ERRT
	Domain Implementations and Results
	RoboCup F180 Robot Control
	Conclusion
	References

