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Abstract 
In this paper, we present a real-time algorithm for 
automatic recognition of not only physical activities, 
but also, in some cases, their intensities, using five 
triaxial wireless accelerometers and a wireless heart 
rate monitor. The algorithm has been evaluated using 
datasets consisting of 30 physical gymnasium activities 
collected from a total of 21 people at two different 
labs. On these activities, we have obtained a 
recognition accuracy performance of 94.6% using 
subject-dependent training and 56.3% using subject-
independent training. The addition of heart rate data 
improves subject-dependent recognition accuracy only 
by 1.2% and subject-independent recognition only by 
2.1%. When recognizing activity type without 
differentiating intensity levels, we obtain a subject-
independent performance of 80.6%. We discuss why 
heart rate data has such little discriminatory power.  

1. Introduction 
Automatic detection of physical activity (PA) might 
enable new types of health assessment and intervention 
tools that help people maintain their energy balance 
and stay physically fit and healthy. Recent research has 
shown that wearable accelerometers can be used to 
reliably detect some physical activity types when 
tested on small datasets (e.g.[1-4]). We are unaware; 
however, of work showing the same algorithm can 
detect not only activity type but also, in some cases, 
the same activity at different intensities. Furthermore, 
most work with accelerometers has either used 
cumbersome wired sensors [3] or sensors that store 
data locally for off-line processing [1, 4, 5]. Here we 
show how wireless sensors transmitting raw data in 
real-time (and thus susceptible to signal loss) could be 
used for automatic PA and PA-intensity recognition.  

Past work in recognizing activities from 
accelerometer data has used computationally intensive 
supervised classification algorithms that typically 
require offline analysis [2, 3, 6]. In this work, we 
utilize fast Decision Tree (DT) classifiers (as in [1, 4, 

5]) with a set of efficiently computable features to 
achieve real-time performance on current PCs. DTs 
can overfit to the data if sufficiently diverse training 
sets are not used. Therefore, we test on a relatively 
large dataset (compared with prior work) consisting of 
30 gymnasium activities (see Table 1) collected from 
21 participants by two different teams.  

We also study the usefulness of heart rate (HR) data 
in discriminating the intensity of activities. HR may be 
useful since it correlates with energy expenditure for 
aerobic exercise; however, alone it provides little 
information about activity type, and it is influenced by 
other factors such as emotional states, ambient 
temperature, and fitness level. HR also responds and 
stabilizes slowly. In this work we explore the “best-
case” scenario of how well activity type and, for some 
activities, intensity can be recognized when we place 
one accelerometer at each limb and the hip, and a HR 
monitor on the chest.  

2. System overview and data collection 
The PA recognition system consists of five triaxial 
wireless wearable accelerometers sensors sampling at 
30Hz, a wireless HR monitor based on the Polar chest 
strap (Wearlink), and a laptop computer with a 
wireless receiver. These sensors allow data to be 
collected from multiple body points simultaneously 
without constraining movement [7] .  

To acquire training data for the PA recognition 
system, a total of 21 participants between 18 and 65 
years old and with varying levels of physical fitness 
were recruited at two separate medical labs: (1) The 
Boston Medical Center and (2) Stanford Medical 
School. Using cotton elastic sweat bands or non-
restrictive adhesive bandages, researchers placed the 
accelerometers on each subject, with one at each of the 
following locations: top of the dominant wrist just 
behind the wrist joint, side of the dominant ankle just 
above the ankle joint, outside part of the dominant 
upper arm just below the shoulder joint, on the upper 
part of the dominant thigh, and on the dominant hip, as 



indicated in Figure 1b. All the accelerometers were 
±10G except the accelerometer on the hip, which was 
±2G. The HR monitor was worn on the chest.  

After the sensors were placed, each participant was 
asked to sit still and, after a stabilization period, resting 
HR was measured by measuring pulse for one minute. 
The participant’s age-predicted maximum HR 
(MHR=220-age) was calculated. A combined 21 
participants each performed 30 gymnasium activities 
for 2min each, with 12 and 9 datasets being collected 
from each site, respectively. The list of gymnasium 
activities, broken down by type and intensity 
differences, is shown in Table 1.  

The activities with different intensity levels are 
walking, cycling, and rowing. For walking, we varied 
intensity by changing the treadmill speed (e.g. 2, 3, 
and 4 mph) and inclination (e.g. 4, 8, and 12 degrees). 
For cycling, we varied the cycle speed (e.g. 60, 80, and 
100 rpm) and the cycle resistance level to settings that 
participants subjectively considered equivalent to light, 
moderate, and hard. Finally, for rowing, we kept the 
rowing speed constant at 30 spm and varied the 
resistance until reaching levels that participants 
considered light, moderate, and hard.  

In total, 16.6 hours of usable annotated data were 
collected. In the remainder of this work, G1 refers to 
the gym dataset collected from site one and G2 refers 
to the dataset collected from site two. Dataset G2 
differs slightly from dataset G1; due to lab constraints, 
data for the move weight, and calisthenics (cali.) 
activities were not collected, and the rowing activity 
was substituted by arm ergometry. Nevertheless, 
dataset G2 contains the same number of activities with  

different intensity levels as G1 (walking, cycling, and 
arm ergometry).  Researchers interested in using these 
datasets should contact the authors.  

3. Activity recognition algorithm 
In the training step, data segments not labeled as one 
of the target activities listed in Table 1 are discarded. 
The 15 acceleration data streams (x, y, and z axes) 
were then broken into 50% overlapping sliding 
windows of length 4.2s and independently interpolated 
using cubic spline interpolation to fill out missing 
sensor values lost during wireless transmission. In 
Section 4, we describe how 4.2s was selected as the 
window size. If the percentage of samples lost inside a 
given window of length 4.2s was greater than 20% for 
any of the accelerometer axis streams, the window was 
discarded. To smooth out the noisy HR data, we 
applied a running average filter over the past 30s of 
data. The HR data is then segmented by accumulating 
the data over 30s windows from the end time of each 
acceleration  

(a)  (b)  
Figure 1.  (a) Five 3-axis wireless accelerometers, a 
heart rate monitor, and USB wireless receiver, and (b) 
Placement of the sensors on the body.  

 

Type  Intensity Type  Intensity  
Lying down N/A Cycling Moderate at 80 rpm 
Standing N/A Cycling Light at 80 rpm 
Sitting N/A Cycling Light at 60 rpm 
Sitting Fidget feet legs Cycling Light at 100 rpm 
Sitting Fidget hands arms Rowing Light at 30 spm 
Walking 2mph 0% grade Rowing Hard at 30 spm 
Walking 3mph 0% grade Rowing Moderate 30 spm 
Walking 3mph at 4% grade Carry weight  2mph N/A 
Walking 3mph at 8% grade Move weight high N/A 
Walking 3mph at 12% grade Move weight low N/A 
Walking 4mph at 0% grade Move weight side N/A 
Running 5mph at 0% grade Cali. Bicep curls N/A 
Ascend stairs N/A Cali. Jumping jacks N/A 
Descend stairs N/A Cali. Push ups N/A 
Cycling Hard at 80 rpm Cali. Sit ups N/A 

Table 1. Activities studied in this work. 
window going backwards in time. HR windows are 
discarded when no samples are available for a given 
window. Overall, only 3.2% of the data (32.2m of 
16.6h) collected were discarded due to accelerometer 
signal loss and 1.9% due to HR signal loss.  

Time domain and frequency domain features are 
then computed for each 4.2s window. Here we use the 
area under curve (AUC) and variance to capture signal 
variability, mean distances between axes and mean to  
capture sensor orientation with respect to ground for 
postures, entropy to differentiate activity type, 
correlation coefficients to capture simultaneous motion 
of limbs, and FFT peaks and energy to discriminate 
between intensities. All the features are computed over 
each acceleration axis. The only feature computed over 
the HR data was the number of heart beats above the 
resting HR value (BPM-RHR). Finally, we used the 
WEKA toolkit [8] to evaluate the performance of the 
C4.5 DT [9] (pruned) and the NB classifier using one 
Gaussian distribution per feature per class.   

4. Evaluation 
To evaluate the performance of the recognition 
algorithm, we computed the true positive rate, false 
positive rate, precision, recall, and F-Measure over the 
segmented classes using subject-dependent and 
subject-independent training. In subject-dependent 
training, we performed 10-fold cross-validation over 
each subject’s data and averaged the results over all 
the subjects. In subject-independent training, we 
trained the algorithms with the data of all the subjects 
but one and tested the performance on the left-out 
subject. We repeated this procedure for as many 
subjects as we had and averaged the results. To better 



understand the performance of the algorithms, the 
results are clustered into three categories based on 
activity type: (1) postures (e.g. lying down, standing, 
and sitting), (2) activities with multiple intensities 
(walking, rowing/arm ergometry, and cycling), (3) and 
other activities (running, calisthenics, move weight, 
and using stairs).  
4.1. Subject dependent analysis 
We first determined the most appropriate window 
length to use (4.2s) by varying the window length from 
0.5 to 17 seconds and measuring the performance of 
the C4.5 classifier over the datasets. A window of 4.2s 
is long enough to obtain a good accuracy (74-86%) 
while minimizing real-time classification delay. Using 
a similar strategy, we determined that using only two 
FFT peaks provided good performance.  We then 
performed feature selection over subsets of all the 
features using the wrapper method and the C4.5 
classifier. The most powerful features found, in 
decreasing order of importance, were the area under 
curve (93.1% accuracy using only this feature), mean 
distances between axes (92.1%), mean (91.3%), 
variance (88.7%), FFT peaks  (86.1%), and correlation 
coefficients (74.8%). Consequently, we measured the 
performance of the C4.5 DT and the Naïve Bayes (NB) 
classifier over the best performing subset of these 
features that we call variant features: area under curve 
(15 values), mean distances between axes (15), mean 
(15), variance (15), FFT peaks (60), correlation 
coefficients (105), energy (15), and entropy (15) for a 
total feature vector with 255 values. Table 2 shows the 
performance measures using these features over both 
datasets (4.2s  windows).   

Table 2 shows that the performance is comparable 
using both classifiers. As a result, from this point on, 
we present results only for the C4.5 decision tree 
classifier. From Table 2, we can also observe that the 
performance is higher for dataset G2. We believe that 
this is because G2 contains 8 fewer activities than 
dataset G1 as explained in Section 2. Another 
important result is that we have achieved an average 
false positive rate of only 0.15% over both datasets.  

A problem we encountered was that features with 
the highest discriminant power, such as AUC and the 
mean, are strongly sensitive to the acceleration signal 
magnitude and thus dependent on sensor orientation, 
and calibration. Consequently, we considered utilizing 
only features invariant to the signal magnitude. After 
evaluating the performance of subsets of these features 
using the C4.5 DT classifier over the datasets, we 
found that the best subset of features was: mean 
distances between axes, variance, energy, FFT peaks, 
and correlation coefficients, (225 values in total). 

 

Activity Dataset Classifier 
Postures 

(%) 
Other    
(%) 

Intensity 
(%) 

Total 
Accuracy      

(%) 

G1 
 

C4.5 FP: 0.04 
P:  98.7 
R: 98.6 
F: 98.7 

FP: 0.20   
P:  93.9 
R: 93.8 
F: 93.8 

FP: 0.28   
P:  92.2 
R: 92.2 
F: 92.2 

93.7 ± 1.5 

G2 
 

C4.5 FP:0.04 
P: 98.9 
R: 99.1 
F: 99.0 

FP: 0.19 
P:  96.3 
R: 96.1 
F: 96.2 

FP: 0.19   
P:  96.0 
R: 96.0 
F:96.0 

96.0 ± 0.9 

G1 
 

NB FP: 0.06 
P:  98.1 
R: 99.2 
F: 98.7 

FP: 0.22 
P:  93.7 
R: 93.6 
F: 93.5 

FP: 0.30  
P:  92.1 
R: 92.3 
F: 92.1 

93.3 ± 2.2 

G2 
 

NB FP: 0.09 
P:  97.7 
R: 98.5 
F: 98.1 

FP: 0.05 
P:  99.0 
R: 95.3 
F: 97.1 

FP: 0.13  
P:  97.2 
R: 98.0 
F:97.6 

97.6 ± 0.8 

Table 2. False positives (FP), precision (P), recall (R) and 
F-measure (F) for subject-dependent analysis using the 
variant features  
 

Activity Dataset Features 
Postures 

(%) 
Other    
(%) 

Intensity 
(%) 

Total 
Accuracy      

(%) 

G1 
 

Invariant FP:  0.06 
P: 98.1 
R: 98.8 
F: 98.4 

FP: 0.23  
P: 93.5 
R: 93.1 
F: 93.1 

FP: 0.32 
P: 91.5 
R: 92.0 
F: 91.6 

92.8 ± 2.5 
 

G2 
 

Invariant FP: 0.09 
P: 97.5 
R: 98.4 
F: 98.0 

FP: 0.05  
P:  99.1 
R: 94.6 
F: 96.8 

FP: 0.16  
P: 96.6 
R: 97.57 
F: 97.0 

97.1 ± 1.2 

G1 
 

Invariant 
+  

HR 

FP: 0.07  
P:  98.0 
R: 98.4 
F: 98.2 

FP: 0.19 
P:  93.8 
R: 93.7 
F:93.8 

FP: 0.20  
P:  94.3 
R:  94.2 
F: 94.3 

94.8 ± 1.7 

G2 
 

Invariant 
+  

HR 

FP: 0.06 
P:  98.3 
R: 98.5 
F:98.4 

FP: 0.29  
P:  94.8 
R: 95.0 
F: 94.9 

FP: 0.14  
P:  97.1 
R: 96.9 
F:97.0 

96.9 ± 0.7 

Table 3. False positives (FP), precision (P), recall (R) and 
F-measure (F) for subject-dependent analysis using the 
C4.5 DT and invariant features.  

Table 3 presents the performance using these 
features we call invariant. Overall, the C4.5 classifier 
achieved an average accuracy of 94.9% on both 
datasets, an accuracy as good as the one obtained using 
the non-invariant features (94.9%). 

After analyzing Table 3 and the confusion matrices, 
we observed that most of the errors were occurring 
when the classifier was trying to discriminate between 
the different intensity levels of the same activity. To 
further explore this, we created a new dataset that we 
call the no-intensities dataset where activities with 
different intensities, such as all the walking activities, 
were merged into one class. When we trained the C4.5 
classifier using the invariant features over this new 
dataset, we found an improved performance of 97.3 ± 
0.7 on G1 and 98.7 ± 0.4 on G2, or an average 
improvement of 3.3%. 

The next step was to investigate if HR data could 
improve the discrimination among the intensity levels 
of an activity. To test this, we added the number of 
heart beats above resting HR (BPM-RHR) to the 
invariant features. Table 2 shows the result. The 
average performance over both datasets is 95.8%, an 
improvement of 1.2%. 



In order to investigate why the HR feature has such 
a low impact on improving the discrimination between 
intensity levels, we trained the C4.5 classifier using 
only the HR. The recognition performance obtained 
was 34.0 ± 6.0 for G1 and 49.2 ± 6.7 for G2 using 
subject-dependent training. Overall, the results are 
higher for G2 because it contains fewer activities (8) 
than G1. After plotting misclassification histograms, 
we observed that the errors were concentrated at the 
beginning and end of activities. This is because HR 
lags physical activity and remains altered once the 
activity has finished (errors at the end of activity or 
beginning of the next one). Furthermore, for vigorous 
activities of short duration such as walking up stairs, 
HR increases constantly, resulting in classifications 
errors all across the activity.  
4.2. Subject independent analysis 
For the subject-independent analysis, we repeated the 
same procedure as the one followed in the previous 
section. Table 4 shows the results over the invariant 
features with and without incorporating  HR. 

The overall performance is relatively low, with an 
average accuracy of 56.3% (FP: 1.5%) using the C4.5 
classifier on both datasets. When the HR feature is 
added, the average performance improves only 2.1%. 
To better understand why the HR feature has such a 
low impact on improving the discrimination between 
intensity levels, we trained the C4.5 classifier using 
only the HR feature. The recognition performance is as 
follows: 12.3 ± 1.7 for G1 and 14.4 ± 2.7 for G2 using 
subject-independent training. Consequently, we 
believe that HR does not improve discrimination in 
subject-independent training because subjects have 
different fitness levels and the number of beats above 
resting HR (BPM-RHR) is different for two subjects 
performing the same activity but with different levels 
of physical fitness. To minimize the effects of the 
physical fitness level of each individual, we repeated 
the experiment when HR (BMP) is normalized to lie 
between resting HR (RHR) and maximum HR (MHR) 
for each individual (MHR estimated as 220-age).  
Using this normalization, two individuals with 
different fitness level performing the same activity 
could have different BMP values, but relative to their 
MHR, they could be performing in the same intensity 
zone. Unfortunately, the results were similar to those 
obtained when not scaling the HR data. This may be 
because the MHR was estimated rather than measured.  

   After analyzing the confusion matrices we also 
observed that most of the errors were occurring when 
the classifier was trying to discriminate between the 
different intensity levels of an activity. Furthermore, 
when we train the C4.5 classifier (subject- 

 

Activity Dataset Features 
Postures 

(%) 
Other 
(%) 

Intensity 
(%) 

Total     
Accuracy       

(%) 

G1 Invariant FP: 1.21  
P:  66.2 
R: 65.0 
F: 63.9 

FP: 1.02 
P:  67.8 
R: 68.9 
F: 67.8 

FP: 2.05  
P:  46.4 
R: 47.0 
F: 46.1 

55.6 ± 8.8 

G2 Invariant FP: 0.66 
P:  83.7 
R: 78.7 
F: 80.8 

FP: 1.97    
P:  61.3 
R:  55.5 
F: 55.1 

FP: 2.55 
P:  48.8 
R: 53.3 
F: 50.3 

57.0 ± 13.3 

G1 Invariant 
+  

HR 

FP: 1.15 
P:  68.1 
R: 67.5 
F: 66.5 

FP:  1.0     
P:  68.8 
R: 69.4 
F: 68.7 

FP: 1.91  
P:  49.0 
R: 49.0 
F: 48.5 

58.2 ± 11.0 

G2 Invariant 
+ 

 HR 

FP:  0.55 
P:  86.1 
R: 82.3 
F: 83.8 

FP:  1.99 
P:  63.08 
R: 46.5 
F:51.9 

FP: 2.47 
P:  50.0 
R: 57.6 
F: 52.4 

58.6 ± 14.9 

Table 4. False positives (FP), precision (P), recall (R) and 
F-measure (F) for subject-independent analysis using the 
C4.5 DT and invariant features.  

independent) using the no-intensities dataset and the 
invariant features, we found an improved performance 
of 81.1 ± 11.9 for G1 and 80.1 ± 19.4 for G2. This 
means that (1) the classifier is indeed confusing 
between intensity levels and (2) that the subject-
independent performance when no intensity levels are 
present is reasonable. 
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