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This paper presents a reduced-order modeling framework based on proper orthogonal 

decomposition, multi-dimensional interpolation and machine learning algorithms, along with 

an error driven iterative sampling method, to adaptively select an optimal set of snapshots in 

the context of in-flight icing certification. The methodology is applied, to the best of our 

knowledge for the first time, to a “complete” aircraft and to the “entire” icing certification 

envelope, providing invaluable additional data to the ones from icing tunnels or natural flight-

testing. This systematic methodology is applied to the shape/mass of ice, and to the 

aerodynamics penalties in terms of lift, drag and pitching moments. The level of accuracy 

achieved strongly supports the drive to incorporate more computational fluid dynamics 

information into in-flight icing certification and pilot training programs, leading to increased 

aviation safety.  

I. Introduction 

n-flight icing encounters pose substantial risks to aviation safety [1]. As a consequence of the accretion of ice on 

wings and/or other critical surfaces, lift decreases, drag increases, and the center of gravity shifts. These adverse effects 

will degrade the aerodynamic performance and controllability of the airplane, resulting in incidents and accidents. 

From 1996 to 2008, the National Transportation Safety Board (NTSB) had issued 82 icing-related recommendations 

to the Federal Aviation Administration (FAA), based on its aviation accident investigations [2]. For instance, 

following the 1997 fatal crash of Comair Airlines Flight 3272 near Monroe, Michigan, the NTSB called for FAA to 

“(A-98-92) Conduct research to identify realistic ice accumulations and determine the effects and dangers of such ice 
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accumulations. The information developed through such research should be incorporated into aircraft certification 

requirements and pilot training programs.” More recently, following the 2009 crash of Empire Airlines Flight 8284 

in Lubbock, Texas, the NTSB made recommendations that put more emphasis on pilot training: “(A-11-46) Define 

and codify minimum simulator model fidelity requirements for aerodynamic degradations resulting from airframe ice 

accumulation. These requirements should be consistent with performance degradations that the National 

Transportation Safety Board and other agencies have extracted during the investigations of icing accidents and 

incidents.” [3] Among NTSB’s icing-related recommendations to the FAA, rigorous aircraft in-flight icing 

certification, as well as realistic, thorough, training for pilots to recognize and deal with degraded flight characteristics 

due to airframe icing, are recognized as being key factors, and challenges, in reducing risks posed to aviation safety 

by icing.  

Icing effects on aircraft are assessed through an extensive procedure intended to ensure safe operation for 

conditions specified in the icing envelopes described in the appendix C of the Title 14, Code of Federal Regulations 

Part 25 [4], as well as in the new appendices D & O [5]. These icing envelopes specify atmospheric icing conditions 

in terms of pressure altitude, temperature, liquid water content (LWC) and water droplet median volumetric diameter 

(MVD). The traditional icing certification process includes numerical and wind/icing tunnel simulations, flight behind 

an icing tanker, and, ultimately, flight into natural icing conditions. With the exponential increase in computer power 

and the accompanying sophistication of numerical technologies, computational fluid dynamics (CFD) is playing a 

rapidly growing, if not primary, role in the aero-icing certification process. Given the large number of icing conditions 

to be tested the use of wind/icing tunnels is slowly waning, as the full geometry (airplane, with engines running) 

cannot be tested, nor the altitude conditions easily replicated. Natural flight tests are the ultimate step to be completed 

before obtaining certification, and can sometimes be as short as one week [6]. Similarly, 3-D viscous turbulent CFD-

icing simulations of complete or even partial aircraft geometries are considered expensive and even prohibitive for 

parametric studies where the cost of repeated calculations could become overwhelming.  

In addition, the current implementation of icing effects in flight training simulators is, in the view of experts and 

pilots, rather primitive and based on limited flight test data supplied by manufacturers, vide [6]. Since only limited 

aircraft flight data in icing conditions is available, and data from accidents can only be input a posteriori, icing effects 

in flight simulators are simply represented by a combination of increased weight, a displacement of the center of 

gravity and engine vibration. This rather primitive simulation may give pilots false impressions that are far from the 



realities of an actual icing encounter [3]. It goes without saying that if icing effects were to be represented with more 

fidelity in flight simulators, pilots could be better trained to recognize and recover, within the few seconds available 

to them, from the degraded handling qualities of an iced aircraft caused by ice accretion [7]. This ought to have a 

considerable beneficial impact on aviation safety, as the simulators of tomorrow have to be proactive and not reactive, 

preventing an accident from occurring rather than from repeating.  

In the field of icing certification, replete with gross approximations, CFD-Icing tools are capable of providing 

more detailed, reliable and repeatable information about the “deltas” in aerodynamic degradation, for lift, drag and 

moments. However, generating large amount of CFD data corresponding to a wide range of pilot inputs e.g. pitch 

angle, indicated air speed (IAS), flight altitude, etc. requires a tremendous amount of computational resources, making 

it extremely difficult. For simulators, data is needed in real time, making the use of anything but lookup tables, 

impossible. Overcoming these two hurdles, namely a complete coverage of the icing envelopes, and obtaining 3-D 

complete aircraft simulation in real time, is the subject of the present paper, with a particular emphasis on the words 

complete and real time. 

As a first step, and to reduce the computational complexity of covering the entire icing envelopes, a numerical 

simulator is proposed via reduced-order modeling (ROM), providing solutions of as great accuracy and as much detail 

as 3-D Navier-Stokes [8, 9]. The ROM approach uses a limited, but strategically selected, number of snapshots 

(defined at different flight and icing conditions) of the complex system to extract a basis of vectors (or modes) that 

represent its most relevant physical features. A linear combination of these modes can then be used to extremely 

rapidly obtain reduced-order solutions of great richness in features and details, for any other flight and icing conditions 

bounded by the ones from which the snapshots are defined. Different techniques can be adopted to compute the 

reduced-order basis vectors [10], the most used being proper orthogonal decomposition (POD) [11, 12]. Global or 

local POD methods can be used to identify the basis vectors for computing the reduced-order solutions. The global 

POD approach uses all the available snapshots to generate the basis. This method is straightforward, but for problems 

with locally distinct physical characteristics, e.g. glaze and rime ice formations in the case of aero-icing, or subsonic, 

supersonic and hypersonic regimes in the case of aerodynamic studies, solutions obtained by global POD may be 

affected by very different snapshots features. Local POD, on the other hand, deals with distinct physical characteristics 

separately. The local approach calls for the subdivision of the solution (and parameter) spaces into subregions, each 



ideally comprising snapshots characterized by similar or sufficiently close physical features. In the recent literature, 

k-means clustering has often been used for grouping similar snapshots into clusters [13, 14]. 

Once the basis vectors are determined, the scalar coefficients in the linear combination of modes can be obtained 

by using projection-based approaches [15, 16] or response surface methods [8, 9, 17-21]. The projection-based 

approaches require manipulation of governing equations of the problem that is not always well defined or compatible 

with the snapshots available, such as when the numerical snapshots are mixed with ones obtained from flight and/or 

experimental tests. Response surface methods, on the other hand, do not require dealing with the governing equations, 

and can therefore work with any combination of snapshots coming from CFD, experiments and/or flight tests data. 

Moreover, defining a response surface for each coefficient of the linear expansion is much more cost-effective than 

solving a system of ordinary differential equations required by a projection-based approach. Obtaining real-time data 

is thus more straightforward with response surface methods. The response surface for the mode coefficients can be 

obtained by polynomial [19], Akima or Kriging interpolations [8, 17, 18], or by radial basis functions [20, 21].  

A crucial aspect in the success of a ROM approach is to optimally define the snapshots that best extract the physical 

features of the solution. In [22-25], a greedy sampling algorithm was introduced to adaptively place a new sample 

point at the location in the parameter space where the maximum error occurs. These techniques are developed in the 

community of projection-based model order reduction, rely on residual-based error bounds or error indicators to assess 

the accuracy of ROM solutions, and the location of new samples is determined either by a direct search [22, 23] or by 

an optimization algorithm [24, 25]. In case formal error indicators are not available or difficult to define, the degree 

of accuracy of reduced-order solutions can be estimated via leave-one-out cross-validation (LOOCV): an approach 

compatible with mixed-type snapshots. Sampling techniques based on centroidal Voronoi tessellations (CVT) [26] 

could be employed in conjunction with LOOCV to identify the location of the snapshots in the parameter space 

according to a prescribed density function. As the density function for CVT can be based on either errors in the 

parameter space or a priori knowledge of the physics of the problem, it has the capacity to provide additional sample 

points judiciously placed in regions of high nonlinearity. Other approaches such as Latin Hypercube, Lp-τ are 

straightforward, but are not amenable to error-driven iterative sampling [27, 28]. 

This article extends validation of the ROM 2-D framework presented in the previous paper [9] to the complete 

exploration of the FAA continuous maximum (CM) icing envelope for a regional jet (RJ). Machine learning algorithms 

[29, 30] are used to address the clustering of snapshots and delimit ice-type regions within the envelope. For 



aerodynamic degradations resulting from airframe ice accumulation, detailed parametric analysis is performed on 

varied flight conditions. The greedy algorithm and CVT are combined in an iterative framework to position snapshots 

in the regions of high nonlinearity, determining a judicious balance between accuracy and number of snapshots.  

The paper is organized as follows: section 2 briefly reviews the method of reduced-order modeling and its 

localization, as well as iterative sampling approach. Section 3 demonstrates the proposed methodologies for the 

exploration of appendix C CM icing envelope on a regional jet. Section 4 presents the aerodynamic performance 

degradation analysis of an ice-contaminated airplane. Finally, in section 5, some conclusions are given. 

II. Methodologies  

The local ROM and iterative sampling framework presented in [9] is adopted and extended in the present work, 

with only a brief summary given here. The CFD-icing tools used in this paper are also briefly described at the end of 

this section.  

A. The Method of Reduced-Order Modeling 

For an ensemble of 𝑁𝑆  observations {𝑼1 , … , 𝑼𝑁𝑆} , where 𝑼𝑖 = 𝑼(𝐱𝑖) ∈ ℝ𝑁𝑃 , and 𝐱𝑖 ∈ ℝ𝑁𝐷  specifies input 

parameters defining observation conditions. For icing analysis, 𝑼 may be ice thickness at the 𝑁𝑃 surface nodes, while 𝐱 defines icing condition in terms of MVD, LWC, etc.; for aerodynamic analysis, 𝑼 can be the solution field of 

interest, e.g. pressure and shear stress, while 𝐱 defines flight conditions like angle of attack (AoA), speed, flight 

altitude, etc. POD yields a set of basis vectors 𝝋𝑗 ∈ ℝ𝑁𝑃 , 𝑗 = 1, … , 𝑁𝑆 that best represents the dominant physical 

behavior featured within the snapshots. An “untried” solution of the system can be approximated via a linear 

combination of the modes 

 𝑽 = ∑ 𝛼𝑗𝛿𝝋𝑗𝑀<𝑁𝑆𝑗=1  (1)  

where 𝑀 indicates the truncation of the expansion at the desired level of energy content associated with each mode. 

For each mode 𝝋𝑗, the projection coefficient at each snapshot location 𝐱𝑖 can be expressed as 

 𝛼𝑗𝑖 = 𝑼𝑖 ∙ 𝝋𝑗 (2)  

The 𝛼𝑗𝑖, 𝑖 = 1, … 𝑁𝑆 form a multidimensional response surface for each mode 𝝋𝑗, having as input the parameters 𝐱𝑖 of 

the analysis and as outputs the 𝛼𝑗𝑖 coefficients. Then for any untried input parameter 𝐱𝛿, the mode coefficient 𝛼𝑗𝛿 can 

be obtained from Kriging interpolation. 



Kriging interpolation requires the maximization of the likelihood function [31], for which the analytical formula 

is known, but the shape of the function might become highly nonlinear and present multiple optima, as the problem 

and/or the snapshots change. A Genetic Algorithm (GA) driver (http://www.cuaerospace.com/Technology) was 

selected due to its robustness in identifying the global optimum (as opposed to local optimum), even with complex 

and highly nonlinear objective functions. A drawback of this approach is that it takes a relatively long time to locate 

the exact local optimum. Therefore, in this work, a gradient-based quasi-Newton line search method [32] was 

developed and combined with the GA driver to speed up the search for a global optimum.  

B. Localization via Machine Learning  

To build local reduced models, three issues have to be addressed. First, similar snapshots are grouped into clusters 

and POD is then locally applied to each cluster to generate a local set of basis vectors. Secondly, identify the most 

suitable cluster for the new solution of an untried condition to be represented as a linear combination of the POD basis 

of only that cluster. Last but not least, define the boundaries of the subregions in the parameter space such that each 

cluster is ideally enclosed, leaving no void regions in the parameter space. 

The desired clustering can be achieved by using an unsupervised learning algorithm known as k-means clustering, 

also adopted in [13, 14]. In this context the snapshots {𝑼1 , … , 𝑼𝑁𝑆} are taken as input, and the desired output is the 

class label 𝒞𝑘 ∈ ℤ, 𝑘 = 1, … , 𝐾, which identifies a snapshot with a cluster 𝑘. The identification of the proper cluster 

for an untried condition 𝐱𝛿 ∈ ℝ𝑁𝐷 , and the definition of the boundaries of each cluster in the parameter space are 

classification problems that fall into the category of supervised learning, for which the method of logistic regression 

was selected. To assign an input vector 𝐱𝑖 ∈ ℝ𝑁𝐷  to one among 𝐾 available classes 𝒞𝑘, 𝑘 = 1, … , 𝐾, a classifier is 

trained using a training set 𝑆 = {(𝐱1, 𝑡1), … , (𝐱𝑁𝑆 , 𝑡𝑁𝑆)}, where 𝑡 ∈ ℤ is the label of the class. Since the classes are 

disjoint sets, the input space can always be divided into decision regions, with boundaries identified as decision 

boundaries. Brief summary of these two methods can be found in [9]. 

C. Iterative Sampling and Leave-One-Out Error Evaluation 

Identifying the best number and location of snapshots in the parameter space is a non-trivial task. Since it is not 

known a priori how many snapshots to compute and/or which operating conditions are the most important to consider, 

an iterative sampling strategy based on a “greedy” application of centroidal Voronoi tessellation (CVT) is proposed, 

where an initial ensemble of snapshots is iteratively optimized according to a prescribed error estimation procedure. 



The CVT-based iterative sampling is somewhat analogous to greedy approaches [25, 33-35], in terms of placing points 

where the error is high but differs in the way the error is computed. While greedy approaches rely on residual-based 

error bounds and error indicators, in this paper, a more heuristic, but conclusive, leave-one-out cross-validation 

(LOOCV) error has been selected to guide the proposed iterative sampling process. The error estimator of the ROM 

prediction is obtained by comparing the ROM solution with the corresponding high fidelity CFD solution (snapshot) 

via a LOOCV approach [29, 30]. Given a set of 𝑁𝑠 snapshots, one of the snapshots is excluded from the set and 

adopted as a reference solution (i.e. CFD solution), then the reduced-order model is defined on the basis of the other 𝑁𝑠 − 1 snapshots by which a reduced-order solution (i.e. ROM solution) can be obtained for the conditions of the 

selected reference solution and eventually compared with the reference one. In order to have an indication over the 

entire parameter space of the analysis, this approach is used 𝑁𝑠 times, excluding at each time a different snapshot. A 

flowchart illustrating the error driven sampling and LOOCV is given in Fig. 1. In the context of local ROM the iterative 

sampling and cross-validation are performed separately on each cluster of snapshots.  

D. CFD-Icing Tools 

All CFD-aero and CFD-icing snapshots adopted in this paper are obtained using FENSAP-ICE simulation system 

[36], which includes modules for Navier-Stokes flow prediction, water droplet impingement computation by an 

Eulerian method, prediction of the 3-D ice accretion/water runback, and conjugate heat transfer for anti-icing and de-

icing, all based on partial differential equations for viscous turbulent flows, and in three dimensions [37-39]. For 

complex geometries, the mesh can be optimized by OptiGrid [40]. Validation of FENSAP-ICE and OptiGrid is beyond 

the scope of this paper and has been extensively covered in other articles [37-40]. 

For the simulation of ice accretion for a certain period of time, the FENSAP-ICE system can be configured as one-

shot, multi-shot or unsteady icing calculations, as illustrated in Fig. 2 [41]. In this interactive loop, each module 

(airflow, impingement, accretion) are solved independently, with selected variables passed between them. At the end 

of each iteration, a displaced grid accommodating accreted shape of ice is generated. This grid will be used by the 

flow solver for the next iteration.  

III. Exploration of the Continuous Maximum Icing Envelope 

The proposed local reduced-order modeling, coupled with the iterative sampling methodology, are applied to the 

problem of in-flight icing certification, to estimate ice buildup on unprotected aircraft surfaces during a holding pattern 



in a 17.4 nautical miles region of the CM icing conditions (Fig. 3 left). A RJ (Fig. 3 right) with a 2.93 m mean 

aerodynamic chord and 27.28 m span has been considered in this work. Airspeeds and altitudes have been selected to 

represent a typical holding condition, e.g. pressure altitude of 5,000 meters with a true air speed of 268 knots at an 

AoA of 3.7°. The exposure time considered is 25 minutes, a preliminary exploration for the maximum 45-min hold 

certification requirement. The purpose is to demonstrate that ice shapes and mass within the CM icing envelope can 

be “completely” explored via ROM, not only for sections of the wing but for the entire aircraft. Namely, based on the 

set of pre-computed ice shapes snapshots, one can obtain the shapes and mass of ice “everywhere” inside the icing 

envelope.  

A hybrid mesh of 9,788,214 nodes, 14,926,688 prism elements and 12,587,875 tetrahedral elements is used by 

FENSAP-ICE to provide the necessary CFD-aero and CFD-icing snapshots. Ice accretion was done as a one-shot 25-

minute accretion, with the availability of multi-shot or truly unsteady ice accretion when and if more precision is 

needed. For the analysis of ice shapes, the snapshots, 𝑼𝑖, are the Cartesian coordinates of the 202,260 nodes defining 

the surface mesh. As a result of ice accretion, the surface mesh is displaced from the original clean surface. The 

accuracy of the ROM predictions versus CFD results is evaluated via the LOOCV. For each snapshot 𝑼𝑖, the vector 

of the errors 𝜀𝑗𝑖 at each node 𝑗 of the surface mesh is defined as the difference of ice thickness 𝛿𝑗𝑖 at that mesh point, 

namely 

 𝜀𝑗𝑖 = |𝛿𝑗,𝑅𝑂𝑀𝑖 − 𝛿𝑗,𝐶𝐹𝐷𝑖 |, 𝑖 = 1, … , 𝑁𝑆, 𝑗 = 1, … , 𝑁𝑃  (3)  

Then for any location 𝑖 in the parameter space, the LOOCV error is expressed as the mean square root of the error 

vector 

 𝜀𝑖𝑐𝑒𝑖 = √∑ (𝜀𝑗𝑖)2𝑁𝑃𝑗=1𝑁𝑃,𝑖𝑐𝑒𝑑 , 𝑖 = 1, … , 𝑁𝑆, 𝑗 = 1, … , 𝑁𝑃  (4)  

where 𝑁𝑃,𝑖𝑐𝑒𝑑 is the number of surface nodes displaced due to ice accretion. These errors were used to define the 

density function in CVT for the subsequent sampling iteration, which identifies new samples/snapshots to be added 

in the high error region.  

In our previous work - exploration of icing envelopes on a 2-D airfoil [9] - we showed that there exist three typical 

types of ice snapshots within the CM: no ice (clean geometry) or trace ice (ice becomes perceptible), glaze/mixed ice 

and rime ice. These different types of solutions could numerically pollute each other in the context of ROM, an 

expected result of using global POD for highly nonlinear problems. Local ROM is therefore introduced to handle these 



distinct solutions separately by subdividing the icing envelope into three sub-regions. In this work, local ROM is 

validated on a 3-D geometry; detailed analysis will be given in the remainder of this section. 

A. Initial Sampling and LOOCV 

The initial sampling consists of 36 points (Fig. 3 left), each representing a different icing condition in terms of 

MVD, LWC and, implicitly, external temperature. Figure 4 illustrate examples of typical snapshots, representing glaze 

ice, rime ice and trace ice, respectively. These figures demonstrate ice thickness contours obtained for the specific 

icing condition, as well as ice shape comparisons of ROM solution versus CFD solution at different sections of the 

airplane, during LOOCV at this specific snapshot location, i.e. the ROM solution is obtained based on the remaining 

35 snapshots. In this analysis, an energy content of 99.9999% is selected heuristically, corresponding to 26 modes for 𝑥 coordinate, 28 modes for 𝑦 coordinate, and 25 modes for the 𝑧 coordinate used in ice shape prediction. 

Figure 5 (left) shows the LOOCV error distribution associated with the initial set of snapshots (the LOOCV errors 

at each snapshot location are interpolated to obtain error estimation everywhere in the parameter space). The highest 

error in terms of ice thickness is 4.4 mm (which accounts for 15% of 𝛿𝑖𝑐𝑒,𝐶𝐹𝐷,𝑚𝑎𝑥). These errors were used to define 

the density function of CVT for the subsequent iteration of sampling, which identifies new samples/snapshots to be 

added in the high error region.  

B. Error Driven Sampling and Local ROM 

The experience obtained from the 2-D analysis [9] suggests that an adequate number of snapshots should be 

collected before subdividing of the parameter space. Since no a priori knowledge regarding where the most critical 

region (glaze/mixed ice) would be located within the envelope, it is preferable to start from a smaller number of 

uniformly distributed snapshots, and iteratively enrich them according to a suitable error indicator. Figure 5 (right) 

shows the snapshots and clustering after 6 sampling iterations, with 80 snapshots.  

The clustering analysis was done based on ice thickness over the airplane. The 80 snapshots are grouped into three 

subsets: no-ice or trace ice (cluster 1), glaze/mixed ice (cluster 2) and rime ice (cluster 3). The decision boundaries 

between clusters are determined via logistic regression, using a degree-4 polynomial feature mapping with a 

regularization factor of 0.0001, as shown in Fig. 5 (right). Before doing the leave-one-out error evaluation for each 

cluster, the snapshots on the decision boundaries need to be computed such that each cluster is totally enclosed. 

Therefore ten points were defined on the decision boundary between clusters 1 and 2, and six points were defined on 



the decision boundary between clusters 2 and 3. These corresponding snapshots were shared between the neighboring 

subregions, leaving no untagged areas in the parameter space.  

Once the boundaries are established, error driven sampling is continued on each cluster. At the end of the iterative 

sampling, 103 snapshots are obtained, partitioned into 3 clusters, for a final state of three local reduced-order bases. 

Figure 6 (left) shows the ice thickness error distribution for the last iteration. The maximum error has been reduced to 

2.7 mm (which accounts for 9% of 𝛿𝑖𝑐𝑒,𝐶𝐹𝐷,𝑚𝑎𝑥), a 40% deduction of the maximum error obtained from the initial 

sampling, whereas for the majority of the icing envelope, the error is less than 1.2 mm.  

C. Complete Exploration of the CM 

With the displaced surface mesh, the volume of accreted ice can be determined by calculating the volume of the 

space enclosed by the iced surface and the clean geometry. TetGen [42] is adopted to fill this space with a tetrahedral 

mesh, from which the total volume can be directly calculated. Mass of ice can then be determined by multiplying the 

volume with ice density (917 kg/m3). Figure 6 (right) illustrates the overall mass of ice accumulation throughout the 

CM icing envelope. This result is obtained from 1,000 ROM solutions, which are uniformly distributed in the 

parameter space. Each target condition is sorted into a corresponding cluster by the classifier trained via logistic 

regression. Then, the specific reduced-order basis from that cluster is used to build the reduced solution.  

The computational cost of the proposed local ROM can be split into off-line and on-line costs, as shown in Table 

1. The collection/computation of snapshots, the adaptive sampling and training of local reduced-order models can be 

considered as the off-line, or major, cost. For a new target, the on-line cost consists only in the identification of the 

corresponding local reduced-order basis and interpolation of mode coefficients. In the current test case for a complete 

aircraft, the computational time of each CFD-ICE is 16 to 32 hours using 128 CPUs, and is the off-line cost. The on-

line cost of computing each ROM solution takes 1.4 seconds using 6 CPUs. As shown in Fig. 6 (right), the accumulated 

mass of ice can reach a maximum of 142 kilograms, mainly in the region where total temperature is close to the 

freezing point and large amounts of liquid water are conducive to the formation of larger amount of ice. This mass of 

ice distribution could be helpful for rapidly and accurately determine the critical mass in the design of ice protection 

systems and thus manage optimum energy requirements for all icing conditions.  



IV. Aerodynamic Degradations for Ice Contaminated Aircraft 

After holding in CM icing conditions for a certain time, ice buildup will adversely affect aerodynamic 

performance. It is important to reassess performance during the subsequent descent, and even more critically for an 

aborted landing, for which pilots need to rapidly pull up and climb to a newly assigned altitude, afterwards, either 

prepare for re-landing, or divert to an alternate airport.  

The purpose of this section is to demonstrate that, based on a set of pre-computed flow solutions under various 

flight conditions taken as snapshots, flow details in terms of pressure distribution and shear stress distribution (which 

are the major sources of lift and drag) for any untried flight condition can be obtained via ROM. In this work, the 

focus is on the analysis of steady longitudinal flight performance of a regional jet. The resultant data can be 

incorporated into flight simulators, enabling icing scenario training for the pilots to better understand the hazards of 

in-flight icing, particularly in holding, descent or aborted landing. 

The ice shape considered is obtained by FENSAP-ICE from a 45-minute exposure under a CM icing condition 

(MVD = 21.26 μm, LWC = 0.30 g/m3), at typical holding flight conditions (5,000 meters pressure altitude, 268 knots 

true air speed and 3.675° AoA), with clean aircraft configuration (flaps/slats retracted, no deflection of control 

surfaces). A hybrid mesh with 9,788,214 nodes, 14,926,688 prism elements and 12,587,875 tetrahedral elements is 

considered. For the aerodynamic analysis in question, the snapshots 𝑼𝑖 are the flow variables of interest: pressure at 

the 9,788,214 nodes of the volume mesh and shear stress at the 202,260 surface nodes.  

A. Parameters of the Analysis and Iterative Sampling 

For the steady flight analysis and flight performance of a RJ in descent, climb and level flights, three parameters 

are selected: indicated airspeed (IAS), AoA and pressure altitude (PA). These three parameters are typical inputs made 

by pilots for longitudinal operation of the aircraft (AoA is equivalent to pitch angle minus flight path angle). Besides 

these three parameters, atmospheric parameters such as static pressure, static temperature and density are also required 

for setting up the numerical simulations. The International Standard Atmosphere model [43] is adopted to determine 

how atmospheric parameters change over the range of flight altitudes. The parameters range covered in the present 

analysis is shown in Table 2.  

The initial sampling consists of 84 points (Fig. 7), with 64 inside the design space and 20 on the boundaries. Error 

is estimated on the basis of a leave-one-out approach: for any location 𝑖 in the parameter space where a snapshot 𝑼𝑖  is 



available, the error can be computed as the normalized L2-norm of the vector of the errors 𝜀𝑗𝑖 at each node 𝑗 of the 

mesh 

 𝜀𝑗𝑖 =  ‖𝑈𝑗,𝑅𝑂𝑀𝑖 − 𝑈𝑗,𝐶𝐹𝐷𝑖 ‖2 ‖𝑈𝑗,𝐶𝐹𝐷𝑖 ‖2⁄ , 𝑖 = 1, ⋯ , 𝑁𝑆, 𝑗 = 1, ⋯ , 𝑁𝑃 (5)  

For pressure field, 𝑈𝑗𝑖 = 𝑝𝑗𝑖  is the pressure value at node 𝑗  of snapshot 𝑖 ; for shear stress field, 𝑈𝑗𝑖 = 𝜏𝑗𝑖 =
√(𝜏𝑗,𝑥𝑖 )2 + (𝜏𝑗,𝑦𝑖 )2 + (𝜏𝑗,𝑧𝑖 )2

 is the magnitude of shear stress at node 𝑗 of snapshot 𝑖. Then the volume weighted overall 

error at each location 𝑖 in the parameter space can be expressed as  

 𝜀𝑖 = √∑ (𝜀𝑗𝑖𝜐𝑗) 𝑁𝑃𝑗=1 / ∑ 𝜐𝑗𝑁𝑃𝑗=1 , 𝑖 = 1, ⋯ , 𝑁𝑆, 𝑗 = 1, ⋯ , 𝑁𝑃 (6)  

where 𝜐𝑗 is the cell volume of each node of the mesh. 

Figure 8 shows the LOOCV volume weighted L2-norm error of pressure field and shear stress field, over the ice 

contaminated aircraft. The LOOCV errors at each snapshot location are interpolated to obtain error estimation 

everywhere in the parameter space. As can be seen, the highest error of pressure and shear stress are 1.5% and 8.6%, 

respectively. Given that the pressure field accuracy is fairly good, the error driven sampling is focused on shear stress 

only. After seven sampling iterations, 129 snapshots were defined (Fig. 9), with LOOCV error reduced to 1.3% and 

6.0%, for pressure and shear stress, respectively. For the present demonstration, a maximum error of 6.0% is 

considered satisfactory and no further snapshots are added to the set of CFD solutions.  

In order to assess the aerodynamic performance degradation, flow solutions over the clean geometry are needed 

and 129 such snapshots under the same flight conditions as the ice-contaminated aircraft have been computed. The 

LOOCV of clean solutions are shown in Fig. 10. The highest error of pressure and shear stress are 1.0% and 11.9%, 

respectively. Although higher than the ice-contaminated case, this level of accuracy can be considered acceptable. 

B. Aerodynamic Analysis for an Aborted Landing 

Based on these two sets of snapshots (129 CFD solutions each, clean and iced) and the estimated error, one is 

reasonably confident to make predictions for other flight conditions within the parameter space. A hypothetical flight 

path representing an aborted descent is simulated using 21 target points, as shown in Fig. 11. The parameter values of 

points on the flight path are selected to be as close to a realistic flight operation as possible. Among these 21 flight 

conditions, targets 1 to 9 represent the process that the airplane is allowed to exit holding pattern and descend to 3,000 



feet; targets 9 to 13 demonstrate the abortion of the descend, where the AoA increases from 0.9° to 7.0°, and the 

airplane starts to regain altitude; targets 13 to 21 illustrate the climb stage, for which the aircraft gets back to the 

holding altitude and resume level flight AoA, after which it may need to prepare for a second landing, or fly to an 

alternate airport. The input parameter values of targets 1, 9, 13 and 21 are listed in Table 3. 

Based on the two sets of 129 snapshots each, 21 ROM solutions for the ice-contaminated airplane and another 21 

ROM solutions for the clean airplane are obtained. As a validation, CFD solutions for flight conditions 1, 9, 13 and 

21, on both iced and clean geometries, are computed to check the accuracy of ROM solutions. The volume weighted 

L2-norm error of field variable in terms of pressure and shear stress are summarized in Table 4. As one can see, all 

errors are well bounded by the LOOCV error estimators; therefore the leave-one-out approach provides reliable error 

estimation. 

Figure 12 gives detailed comparison of ROM vs. CFD results in terms of field quantities (pressure and shear stress) 

over the ice contaminated airplane, under target flight condition 13, which is located at the bottom of descent, where 

the airplane just re-establishes a climbing altitude (IAS = 200 kt, AoA = 7.0°, PA = 4,300 ft). To ensure an energy 

content of 99.999%, 18 modes for pressure field, 98, 96 and 77 modes for shear stress in the x, y, z directions were 

used in field variable prediction. Three cross-sections over the wing (21.6%, 50.1% and 95.2% of wing span) and one 

cross-section of tail (56.3% tail span) are selected. As illustrated, ROM solution agrees very well with CFD solutions. 

Figure 13 shows comparison of ROM vs. CFD on pressure and shear stress, at the same target flight condition 13, but 

over the clean airplane. Again, the ROM solution agrees well with the CFD solutions for most parts of the wing and 

tail. Figure 14 and Fig. 15 demonstrate flow field comparison under flight condition 21, which is at the top of the 

climb path (IAS = 265 kt, AoA = 3.675°, PA = 15,000 ft), for ice contaminated and clean geometries, respectively. 

The off-line and on-line costs as summarized in Table 5. In this test case, the computational time of each CFD flow 

solution is 24 hours on 128 CPUs (off-line cost). With these CFD solutions taken as snapshots, building a reduced 

model database (extracting POD modes, solving Kriging model parameters) takes 36.8 min on 16 CPUs (off-line cost). 

Once this database is stored, solving a ROM solution containing pressure and shear stress fields only takes 28 seconds 

using 16 CPUs (on-line cost).  

C. Performance Degradation: Icing Encounters Flight Simulator  



Figure 12-15 demonstrate the accuracy of ROM in terms of field variables. Since ROM solution contains 

information on all grid points, it is possible to integrate the pressure field to obtain the lift coefficient, and integrate 

shear stress to get the drag coefficient. Although at some sections of the wing ROM and CFD do not perfectly match, 

after integration, the lift coefficient (𝐶𝐿), drag coefficient (𝐶𝐷) and pitching moment (𝐶𝑀) have a very small error, as 

shown in Table 6. 

It is of interest to see how performance is penalized during this aborted descent due to ice accretion. Moreover, 

what is important in a flight simulator are not the exact values but the differences in lift, drag and moments, which 

can be very accurate with the present method. Figure 16 illustrates aerodynamic degradation in terms of lift, drag and 

pitching moment for the ice contaminated airplane, while Fig. 17 gives aerodynamic penalty in percentage. As can be 

seen, the increase of drag due to ice accretion is significant, reaching as much as 61%, compared to the clean aircraft. 

Meanwhile, lift may decrease up to 17%, and the change of pitching moment is as high as 20%. The reason for 

relatively low penalty on lift is that the ice shape is rime (MVD = 21.26 μm, LWC = 0.30 g/m3, Temperature = -13.4 

°C). Such aerodynamic degradation values, easily speeded up to real time (about 1/15th of a second) by using GPUs, 

can be incorporated into flight simulators, with additional CFD-based visual aids, making pilots training correspond 

to real time and real life by greatly improving simulator fidelity. Moreover, although the present analysis covers pre-

stall AoAs, it can be easily extended to stall and post stall range of AoAs, therefore to enable stall recognizing and 

recovery training. 

V. Conclusions  

The paper presents a rigorous and self-contained ROM framework based on proper orthogonal decomposition, 

multi-dimensional interpolation and machine learning algorithms, along with an error driven iterative sampling to 

adaptively reach an optimal set of snapshots. The methodology is applied, it is believed for the first time, to a detailed 

study of the aero-icing of a regional jet, in terms of: 1) the “complete” exploration of the FAA CM icing conditions 

for the shape/mass of ice, and 2) its aerodynamic degradation due to ice contamination during holding, and the 

consequent effect during descent and aborted landing.  

These examples, even though quite meaty, are only meant as illustrations of a technology that signals a paradigm 

shift in certification by greatly enriching the data presented to airworthiness authorities for certifying an aircraft to fly 

into known icing. The methodology is comprehensive in permitting the combination of CFD, experimental fluid 



dynamics (EFD), and flight fluid dynamics (FFD). A numerical simulator can be built at the time of preliminary 

design, allowing the estimation of the effect of design changes on the ice resistance of the aircraft. It can also be used 

to make the simulator a proactive tool in preventing accidents rather than just their reoccurrence. In addition, while 

the icing certification envelope is the same for all aircraft, its effect on each class of aircraft is far from being the same. 

Yet, most natural icing tests are guided by meteorologists who have a profound knowledge of the atmosphere but are 

not necessarily equipped to evaluate the relevance of a particular icing cloud data point to a specific aircraft. Thus, the 

current methodology can be used to assess the significance of an icing encounter before launching the aircraft into it, 

and also to give confidence to the pilots as to the anticipated behavior of the aircraft. Its applications to ice shape 

testing during a certification or a supplemental type certification is also powerful in terms of predicting 3-D ice shapes 

and assessing how to incrementally add these shapes to the aircraft in order to guarantee the safety of pilots. 

Thus, in summary, the technology enables designers to avoid any “blind spots” and provides data for conditions 

that could not be located in nature, or that are too dangerous or impossible to test in real life. Although in this work, 

only CFD data is used as the snapshots for ROM, it should be pointed out that the proposed methodology is 

comprehensive in permitting a combined CFD-EFD-FFD database. In such case, certification will not only be more 

complete, and dangerous areas fully identified, but in addition certification campaigns could be shortened to one 

season instead of several. As for flight simulators, it can be used to make the simulator a proactive tool in preventing 

accidents rather than just their reoccurrence. All these will lead to beneficial and sustained impact on aviation safety 

through CFD simulations. 
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List of Tables 

Table 1 Computational cost for CM exploration for the RJ 

 Process Computational cost 

Off-line 

CFD-icing 

simulations 
Each snapshot 

 16 ~ 32 h @ 128 CPUs* 

(depending on convergence 

rate) 

Iterative 

sampling 

Each LOOCV; 

each CVT sampling 

1 ~ 2 h @ 6 CPUs**; 

10 ~ 30 s @ single CPUs** 

Machine 

learning 

k-means clustering; logistic regression (defining 

decision boundaries) 

10 ~ 15 seconds @ single 

CPU** 

Build 

database 

Extract POD modes from the final set of 

snapshots; compute Kriging model parameter 
22 min @ 6 CPUs** 

On-line Solve target 
Logistic regression (classification); Linear 

combination of POD modes 
1.4 s @ 6 CPUs**  

*   Intel Xeon E5-2670 eight-core (supercomputer Guillimin) 
** AMD Phenom II X6 1075T Processor, 800 MHz (desktop computer) 

 

Table 2 Flight conditions parameters, with their corresponding ranges 

 IAS [kt] AoA [°] PA [ft] Pstatic [Pa] Tstatic [°K] Density [kg/m3] Mach 

Min 190 0 3000 54900 256.47 0.75 0.30 

Max 270 9 16000 90808 282.21 1.12 0.55 

 

Table 3 Flight conditions parameters on Regional Jet flight path 

 IAS [kt] AoA [°] PA [ft] 

Target 1 255 3.675 15,000 



Target 9 195 0.9 4,000 

Target 13 200 7.0 4,300 

Target 21 265 3.675 15,000 

 

Table 4 Field variables’ error of targets 

 Iced Clean 

 
|𝑃𝑅𝑂𝑀 − 𝑃𝐶𝐹𝐷|𝑃𝐶𝐹𝐷  

|𝜏𝑅𝑂𝑀 − 𝜏𝐶𝐹𝐷|𝜏𝐶𝐹𝐷  
|𝑃𝑅𝑂𝑀 − 𝑃𝐶𝐹𝐷|𝑃𝐶𝐹𝐷  

|𝜏𝑅𝑂𝑀 − 𝜏𝐶𝐹𝐷|𝜏𝐶𝐹𝐷  

Target 1 6.4527E-04 6.1656E-03 6.1826E-04 9.3841E-03 

Target 9 7.1029E-05 6.8925E-03 5.6252E-04 2.6860E-02 

Target 13 2.2571E-04 4.4945E-03 2.3879E-04 7.7051E-03 

Target 21 1.5195E-04 2.0054E-02 3.8306E-04 1.4939E-02 

 

Table 5 Computational cost of aerodynamic analysis for the RJ 

 Process Computational cost 

Off-line 

CFD 

simulations 
Each snapshot 24 h @ 128 CPUs*

 

Iterative 

sampling 

Each LOOCV; 

each CVT sampling 

6 ~ 27 h @ 16 CPUs* 

10 ~ 30 s @ single CPUs** 

Build 

database 

Extract POD modes from the final set of 

snapshots; compute Kriging model parameter 
36.8 min @ 16 CPUs* 

On-line Solve target 
Logistic regression (classification); Linear 

combination of POD modes 
28 s @ 16 CPUs*  

*   Intel Xeon E5-2670 eight-core (supercomputer Guillimin) 
** AMD Phenom II X6 1075T Processor, 800 MHz (desktop computer) 

 

Table 6 Integrated variables’ error of targets 

 Iced Clean 

 
Δ𝐶𝐿𝐶𝐿,𝐶𝐹𝐷  

Δ𝐶𝐷𝐶𝐷,𝐶𝐹𝐷  
Δ𝐶𝑀𝐶𝑀,𝐶𝐹𝐷 

𝛥𝐶𝐿𝐶𝐿,𝐶𝐹𝐷  
Δ𝐶𝐷𝐶𝐷,𝐶𝐹𝐷  

Δ𝐶𝑀𝐶𝑀,𝐶𝐹𝐷 

Target 1 2.78E-03 2.19E-03 3.02E-03 4.76E-03 9.85E-03 4.55E-03 

Target 9 1.67E-02 1.66E-02 2.11E-02 9.03E-03 4.42E-02 1.48E-02 

Target 13 1.27E-03 6.74E-04 1.06E-03 1.06E-03 3.51E-03 1.22E-03 

Target 21 9.58E-03 9.16E-03 1.08E-02 4.33E-05 7.64E-03 2.61E-04 
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Fig. 1 Flowchart of error driven iterative sampling (left) and LOOCV (right). 

 

 

Fig. 2 One-shot, multi-shot and unsteady ice accretion configuration of FENSAP-ICE. 

 



 

Fig. 3 Continuous maximum icing envelope, with initial sampling (left); geometry and mesh of the RJ (right). 

 

 
 



 
 

 
 

Fig. 4 Contours of ice thickness, glaze ice (top), rime ice (middle) and trace ice (bottom). 

 



 

Fig. 5 Global ROM LOOCV errors for the initial sampling (left); snapshots and clustering after 6 iterations 

(right). 

 

 

Fig. 6 Local ROM LOOCV errors for the last sampling iteration (left); mass of ice contours obtained from 

1,000 ROM solutions (right). 

 



 

Fig. 7 Initial sampling of 84 snapshots. 

 

 

Fig. 8 LOOCV error of the initial sampling: pressure (left) and shear stress (right) over iced RJ. 

 



 

Fig. 9 LOOCV error of the final sampling, pressure (left) and shear stress (right) over iced RJ. 

 

 

Fig. 10 LOOCV error of the final sampling, pressure (left) and shear stress (right) of clean RJ. 

 

 



Fig. 11 Flight path simulating an aborted descent. 

 

 

 

 



 

Fig. 12 ROM vs. CFD comparison of pressure coefficient and shear stress, over iced geometry, target 13. 

 

 

 



 

 

Fig. 13 ROM vs. CFD comparison of pressure coefficient and shear stress, over clean geometry, target 13. 

 

 



 

 

 

Fig. 14 ROM vs. CFD comparison of pressure coefficient and shear stress, over iced geometry, target 21. 

 



 

 



 

 

Fig. 15 ROM vs. CFD comparison of pressure coefficient and shear stress, over clean geometry, target 21. 

 

 

Fig. 16 Aerodynamic degradations in 𝑪𝑳, 𝑪𝑫 and 𝑪𝑴. 

 



 

Fig. 17 Aerodynamic penalty for ice contaminated airplane. 


