
Vision, Modeling, and Visualization (2011)
Peter Eisert, Konrad Polthier, and Joachim Hornegger (Eds.)

Real-time Rendering of Stack-based Terrains

F. Löffler1 and Andreas Müller2 and H. Schumann1

1University of Rostock, Germany
2Fraunhofer IGD Rostock, Germany

Abstract

Usually, terrain rendering relies on a 2D regular grid of height values, the so called height field. Height fields

describe 2.5D surfaces and are not able to present complex 3D terrain features. In contrast, a 3D data representa-

tion quickly exceeds the available memory resources. To overcome this problem we apply material stacks. Material

stacks combine the simplicity of 2D height fields and the extended modeling capabilities of 3D volumetric data.

However, this approach requires expensive rendering and is difficult to realize in real-time.

In this paper we present an innovative real-time rendering approach of terrains relying on material stacks. Our

approach is based on two major steps: First, a LoD hierarchy for material-stacks is generated. Second, during

rendering a multi-staged quadrangulation pipeline extracts terrain surface from the material stacks. As a result,

we achieve real-time frame rates at high resolutions.

Categories and Subject Descriptors (according to ACM CCS): Computer Graphics [I.3.3]: Picture/Image
Generation—Display Algorithms

1. Introduction

In the field of computer graphics, real-time rendering of ter-
rain has been addressed widely. In general, both modeling
as well as rendering rely on height fields: a 2D regular grid
of height samples. Height fields are very compact and con-
sume a relatively low amount of memory to represent large
terrains. However, height fields can model 2.5D surfaces
merely and thus, are innately not able to present complex
terrain features like arches, overhangs, and caves (cf. Fig-
ure 1). By contrast, 3D data representations (i.e. volumes)
allow for modeling features of this kind. Nonetheless, mem-
ory consumption - even for small terrains - is vastly and the
rendering is comparatively expensive.
One way to deal with the memory problem is to apply ma-

terial stacks [BF01, PGMG09]. A material stack consists of
multiple layers of different materials, whereas air is handled
as special material. Stacks are organized on a 2D regular
grid; similar to height fields. Due to the discretization and
the “run-length compression” of material (layers) this repre-
sentation is very compact (see Figure 2).
In contrast to height fields, there exist no accurately mea-

sured data sets and merely very few procedural modeling
tools. Hence, for obtaining customized 3D terrain data, inter-
active 3D modeling is necessary. Moreover, both interactive

Figure 1: Complex terrain feature (arch) rendered in real-

time from a material stack representation with our approach.

walkthroughs and exploration of large terrains are key ob-
jectives of entertainment applications. Consequently, a real-
time rendering approach for stack-based terrain is necessary.
Nonetheless, rendering of material stacks is very complex,
since the implicit surface needs to be extracted. There ex-
ist very efficient surface extraction algorithms for volumes.
But, in contrast to volumes, in order to obtain a smooth sur-
face, the application of a convolution is required. The con-

c© The Eurographics Association 2011.

F. Löffler & A. Müller & H. Schumann / Real-time Rendering of Stack-based Terrains

volution process is very expensive since it is necessary to
determine the materials inside the (cubic) kernel support
(cf. [PGMG09]). Due to layered representation, this is the
major bottleneck for real-time rendering. In addition, usu-
ally rendering algorithms extract and render the surface at
varying levels of detail piecewise. Apart from gaps between
varying levels, the convolution produces discontinuities be-
tween the parts, even at the same level of detail.
To solve these problems we extend the work of [PGMG09]
and [SDC09] and propose a novel concept for real-time ren-
dering of stack-based terrains. Our aim is to extract a smooth
surface to improve the visual fidelity. Our contribution can
be summarized as follows:

• We introduce a novel method for constructing a level of
detail hierarchy for material stacks. Since the aggregation
of material stacks is not formally defined, the method is
based on a heuristic (see Section 3.1).

• We develop an multistage quadrangulation pipeline,
which transforms the stacks into a density function prop-
erly and extracts the surface in real-time using the dual
contouring approach of [SDC09]. Furthermore, in con-
trast to the original approach the surface extraction is
based on general purpose parallel hardware and allows for
generating quadrilateral indexed meshes (see Section 3.2).

• We describe a stitching approach addressing the connec-
tivity of both same and varying levels of detail. This way,
the rendering guarantees a continuous terrain surface (see
Section 3.4).

Our results (see Section 4) confirm the real-time capabili-
ties of the proposed approach.

2. Related Work

Real-time rendering of terrain data needs to address three
major aspects: data representation, surface rendering, and
level of detail techniques.

Traditionally, terrain rendering relies on height-fields,
a two dimensional regular grid of height values. Apart
from the efficient procedural generation of terrains (cf.
[SdKT∗09]), this compact representation allows for render-
ing very large terrains (cf. [PG07]). In [PO06] multiply
layers of height-fields are used to present non-height-field
mesostructure details, whereas [CPO10] presents an efficient
lossless compression technique for such multi layered dis-
placement maps.
Material stacks are based on the layered data representa-
tion for height-fields proposed in [BF01]: At a grid point,
different materials with certain properties are stacked. In
[PGMG09] material stacks are used for modeling complex
terrains. The special material air enables the modeling of
complex terrain features as illustrated in Figure 2. In contrast
to a voxel representation, material stacks are very resource-
friendly.
A voxel representation implicitly describes arbitrary 3D sur-
faces by a 3D grid of density values: the density function.

Figure 2: Overview and example of the material stack data-

structure from [PGMG09].

In [Gei07] voxels are used to procedurally model complex
large terrains. Whereas [BFO∗07] use voxels to simulate the
geological formation of Goblins.

For the rendering of the previously described data repre-
sentation, the surface needs to be extracted. Usually, surface
extraction is distinguished into ray-casting and polygonal
surface extraction. Ray-casting casts rays to determine the
visibility of surface points. For instance, [QQZ∗03,DKW09,
CNLE09,LK10] apply ray-casting for real-time rendering of
large models, whereas [AGD10] combines ray-casting with
polygonal rendering.
Polygonal surface extraction algorithms generate a mesh
that approximates the implicit surface. For classic height-
field rendering we refer to [PG07]. For 3D terrain data,
methods of volume rendering can be applied. In [Gei07,
GT07], for instance, a parallel implementation of the well-
documented Marching Cube algorithm (cf. [NY06]) is pro-
posed to extract the surface in real-time. For material stacks,
in [PGMG09] the terrain surface is generated by Marching
Cube as well. However, in order to generate a voxel repre-
sentation, the discrete material stacks need to be convolved
with a convolution kernel beforehand.
Along with the Marching Cube, the Dual Contour-
ing [JLSW02] is another efficient algorithm. Dual Contour-
ing generates a single vertex for all cells that intersect the
surface. The vertex position is determined by minimizing
the quadratic error function (QEF). [SDC09] propose several
modifications that improve the performance including the
adaption to regular grids, an efficient technique for face gen-
eration, and a particle-based error minimization. The face
generation process relies on a look-up table, which we use
in our approach as well.

There exists a wide range of level of detail tech-
niques. Usually, techniques for 2D terrain rendering rely on
quadtrees (e.g. [And07]) and bintrees (e.g. [BGP09]), re-
spectively. For 3D terrain data similar data-structures can be
applied. For instance, in [Gei07, GT07] an octree is used to
manage 3D terrain volume. [LK10] rely on a sparse voxel
octree and [CNLE09] use a combination of a N3 tree and
mipmapped 3D texture tiles to visualize arbitrary models
at a high degree of geometric detail. For a comprehensive
overview, we refer to [Dac06] and the excellent surveys of
[Paj02, PG07, FKP05, DGY07].

c© The Eurographics Association 2011.

F. Löffler & A. Müller & H. Schumann / Real-time Rendering of Stack-based Terrains

Implications: Material stacks compactly store feature-rich
3D terrains. However, due to the required convolution and
subsequent surface extraction, the rendering is very com-
plex. Especially the surface extraction is a major cost fac-
tor. Ray-casting requires a voxel representation of the terrain
and, hence, contradicts the compact representation. In con-
trast to that, for high quality meshes, polygonal surfaces are
more memory efficient but require expensive computations.
However, meshes are extracted once and can be reused for
subsequent frames.
In conclusion, we expect that the real-time rendering of ter-
rains relying on material stacks is feasible as long as the sur-
face extraction can be realized in real-time.

3. Design of a Stack-based Terrain Renderer

In this Section we introduce our novel real-time rendering
approach for stack-based terrain rendering. The work-flow
for the presentation of 3D terrains can be outlined as follows:

Generation of the terrain data: There barely exist 3D ter-
rain data-sets. To generate test data-sets we (a) adapt the pro-
cedural method of [Gei07] to material stacks and (b) develop
an interactive editor for stack-based terrains.

Generation of a level of detail hierarchy: To reduce the
rendering effort a level of detail structure is required. This
is necessary as not all parts of the terrain need to be pre-
sented at the highest level of detail. Usually, level of detail
hierarchies are computed using geometric properties. How-
ever, material stacks consist of materials. The aggregation
of different materials is formally not defined. We propose a
heuristic method for aggregate stacks. Due to the properties
of material stacks, we can rely on a 2D based simplifica-
tion instead of a 3D one. As a result, we obtain a compact
MipMap representation of the stack-based terrain (see Sec-
tion 3.1).

Rendering of terrain data: The process of rendering re-
quires the extraction of the implicit surface. However, the
implicit surface is described via convolution of stacks - this
might cause problems: The convolution requires a deter-
mination of the material in the kernel volume, which is a
very expensive calculation. To solve this problem, we trans-
form the stacks into a density function. The density func-
tion is smoothed in a way that it represents the surface in
the required quality. Thereafter, we extract the surface from
the density function. Given comparatively good caching and
rendering capabilities, we use a polygonal representation.
Both the transformations and the extraction are organized
in a pipeline. Major benefits are: First, a real-time surface
extraction from stack-based terrain data and second, an in-
dexed quadrilateral mesh. The pipeline is henceforth referred
to as quadrangulation pipeline (see Section 3.2).

Considering the performance: Real-time rendering puts
high demands on the performance. Thus, an efficient level of
detail selection, an efficient culling, and a batched rendering
approach are required. In order to fulfill these demands ad-
ditional acceleration data-structures are necessary. Usually,
terrain rendering relies on a 2D space partitioning. However,
due to 3D data a stack-based terrain requires 3D space parti-
tioning. We, therefore, apply an octree decomposition of the
terrain: The nodes merely refer to n× n stacks at a corre-
sponding level of detail in the terrain data (MipMap). This
way, the octree accelerates the rendering, while the MipMap
provides an efficient way to manage data. The octree is tra-
verse and nodes are selected based on a distance metric. For
nodes selected the surface mesh is generated by extracting
the surface from the associated stacks. To take advantage of
frame to frame coherence we cache surface meshes for sub-
sequent frames in the octree node (see Section 3.3).

Considering the quality: The proposed rendering ap-
proach uses an octree to render the terrain piece by piece at
varying levels of detail. To select appropriate nodes a level
of detail metric is required. Our aim is to select nodes in
such a way that the visual representations are of equal qual-
ity. We, thus, select nodes that nearly cover equal-sized re-
gions in screen space. This approach, though, leads to an-
other problem: Varying levels of detail introduce gaps and
cracks. A continuous terrain surface without visual discon-
tinuities is, however, desired. To overcome this obstacle, we
apply a stitching approach. In contrast to height-field ren-
dering, stitching needs to consider both the convolution and
the topological variances between varying levels. We, there-
fore, introduce a method that (a) considers the convolution
by extending the density function, (b) fits the topology by
adjusting the density function, and (c) removes t-junctions
by redirecting indexing of vertices (see Section 3.4).

3.1. LoD Hierarchy Construction

Using the initial-data we aim at generating multiple levels of
detail for the rendering process (see Figure 4). The quadtree

decomposition is one of the preferred methods for two di-
mensional regular grids. By taking the average of four adja-
cent samples from the previous level, we build a new level
in the quadtree. Given the fact that stacks are organized on
a regular grid, this method generates multiple levels of de-
tail efficiently while simultaneously making full use of the
stack-based representation. More precisely, each level k is a
stack-based terrain approximating the original terrain with
2k

×2k stacks, similar to a MipMap representation.
A problem, though, is the fact that usually aggregation is
based on geometry properties. Stacks consist of different
materials. It is formally neither defined how materials are
aggregated nor how the average of different materials can be
computed. The question is: How can stacks are combined in
a ways that the new stack approximates its ancestors in the
hierarchy to the most accurate extent?

c© The Eurographics Association 2011.

F. Löffler & A. Müller & H. Schumann / Real-time Rendering of Stack-based Terrains

Figure 3: Illustrate the aggregation of stacks. The four

stacks (left) are subdivided into segments based on the num-

ber of covering material layers. The new stack (right) is con-

structed by analyzing the material composition.

Our heuristic approach that relies on a piece wisely consider-
ation of stacks yields to accurate results. For the aggregation
the stacks are subdivided into segments. For each segment
the material composition is analyzed and the material layer
for the new stack is determined as follows:

1. A material is dominant in a segment. This dominant ma-
terial is chosen for the segment.

2. No material is dominant. Instead two or more materials
appear evenly. In this case, the material composition of
the surrounding segments needs to be considered.

a. If one of the materials in the surrounding segments is
dominant this material is chosen for the segment.

b. If one material is dominant in one direction and the
other material in the opposite direction the segment is
split and the material is distributed to the partial seg-
ments.

c. If the material cannot be determined by (a) or (b) the
number of considered segments is enlarged until a so-
lution is found.

Figure 4: Illustrates different levels of detail: (left) low,

(middle) medium and (right) high level of detail.

3.2. Quadrangulation Pipeline

The generation of the mesh is a critical process of stack-
based terrain rendering. First, the quadrangulation needs to
be performed on the fly which implies the need to meet real-
time constraints. Second, a high quality and compact mesh

Figure 5: Overview of the quadrangulation pipeline. The

pipeline generates a surface mesh from stack-based terrain

data entirely on GPU.

is desired. Both require the extensive use of parallel hard-
ware. However, to meet the second criteria it is necessary to
break the parallel processing and to synchronize results. Due
to expensive time costs, we target at synchronizing as few
times as possible. To solve this difficulty we develop a multi-
staged pipeline, whereby synchronization is only performed
between stages. Consequently, stages can take full advan-
tage of parallel processing. At the same time it is guaranteed
that the data between stages is consistent. The pipeline is
structured as follows (see Figure 5): First, the stack data is
transferred to the GPU and transformed to a density func-
tion. Then, the density function is smoothed and subdivided
into cells. Each cell is classified with regard to vertex and
face generation. Subsequently, based on these classifications
memory is allocated and vertices and normals as well as face
indices for the mesh are computed. In the last step, the num-
ber of generated faces is read back to the CPU for the subse-
quent render calls.

3.2.1. Stacks to Density Transformation

The transformation stage converts the stacks into a com-
bined density function by accumulating the individual ma-
terial densities. The stacks should be converted in a way that
the resulting density function characterizes the same surface.
First of all, stacks are transferred to the hardware device
memory (i.e. GPU). Afterwards, the density values are esti-
mated by the coverage of the stacks and a 3D grid represent-
ing the combined density function. The procedure is similar
to line rasterization. For each cell in the grid the density is
defined by the percentaged coverage of the material layers.
Material air is not considered.
To simplify the method, we predefine that one stack only
effects a single column in the 3D grid. In other words, the
ground planes of both the stacks and the grid have equal ex-
tents. Thus, stacks can be independently processed in a par-
allel manner.
For each stack, all layers are successively passed through.

c© The Eurographics Association 2011.

F. Löffler & A. Müller & H. Schumann / Real-time Rendering of Stack-based Terrains

Each layer Li is characterized by a start height Li
s, an end

height Li
e, and the material Li

m. The algorithm can be sum-
marized as follows:

• The index of the first covered cell is determine by floor-
ing the start height of the layer: f loor(Li

s). The density
is derived from the fractional part of the start height:
1− f rac(Li

s).
• The last covered cell is determined by flooring the end

height of the layer: f loor(Li
e). The density is equal to the

fractional part of the end height: f rac(Li
s).

• All cells between the first and the last cell are fully cov-
ered. Hence, density is maximal.

During the process of transformation two exceptions need
to be considered: First, a cell is covered by more than one
layer. In this case, the densities are added up. Second, the
first and last cells are equal. In that case, the density is de-
fined by Li

e −Li
s.

Optimizations: Under some circumstances, multiple mate-
rials are not required. This is the case when using procedu-
ral texturing techniques (cf. [Dac06]). In this situation, it is
merely necessary to distinguish between air and non air ma-
terial. The procedure remains the same as described above
expect for the storage of material information.

3.2.2. Smoothing & Enhancing

After the stacks have been transformed to a density function,
the density function needs to be smoothed. Stacks allow for
a continuous description of the terrain in vertical direction.
However, stacks are organized on a discrete grid. Thus, a cell
in the density function covers a stack or not, resulting in a
binary representation for two of three dimensions. This leads
to aliasing artifacts appearing as block-shaped structures in
the output image. To solve this problem, the density function
is smoothed. We apply a separable low-pass filter (e.g. box

or gauss filter) to the density function. The choice of filter
size is a trade-off between losing to much detail, insufficient
smoothing and performance.

3.2.3. Classification and Allocation

Figure 6: Classification for face and vertex generation.

For the surface extraction we use the dual contouring ap-
proach of [SDC09]. Therefore, with regard to face genera-
tion each cell needs to be classified. However, to avoid du-
plicate vertices as they usually appear in parallel approaches,

we redirect face and vertex generation to subsequent stages.
This requires, first, a classification for both face and vertex
generation; second, a successive indexing of vertices; third,
a unique mapping between cell and vertex indices; and last,
a mapping between cells and offsets in the gapless face (in-
dex) buffer.
We solve the problem by means of a lookup table that is gen-
erated during the classification. This table provides informa-
tion for subsequent stages and stores the classification c, the
vertex index iv and the index buffer offset o of each cell. The
major algorithm can be divided into two phases: classifica-
tion and allocation, whereby allocation refers to the vertex
index and the offset determination.

Classification: For determining the number of faces four
density values are sufficient [SDC09]. If a cell generates one
or more faces it needs to generate a vertex as well. How-
ever, a cell always generates a vertex if one or more density
values exceed the iso-value. Hence, we consider the eight
density values of a cell, similar to Marching Cube. The re-
sulting classification is used as lookup index for both vertex
and face generation (see Figure 6).

Allocation: The major problem is that we neither know how
many vertices are created nor how many faces. In order to
determine the vertex index iv as well as the buffer offset
o, indices need to be accumulated by visiting cells succes-
sively. To minimize the massive synchronization overhead,
we (a) locally determine the face as well as vertex count for
each row simultaneous and (b) synchronously accumulate
the counters (i.e. atomic add).

3.2.4. Attribute Generation

For all cells that contribute to the surface (that is for the clas-
sification 0 < c < 255), vertex attributes are computed. The
attributes are stored in a corresponding buffer, whereby the
location is determined by the vertex index iv that is asso-
ciated with the observed cell. Hence, each cell can be pro-
cessed independently in parallel.

Position: The dual contouring approach generates vertex
positions by minimizing the quadric error to the implicit sur-
face (cf. [JLSW02]). However, the resulting sharp features
contradict the smoothing requirements. Instead, we use the
average of the vertices that are generated by the Marching
Cube algorithm (cf. [SDC09]). This, additionally, smoothes
the surface while simultaneously avoiding expensive com-
putations.

Normal: For each vertex a normal can be derived directly
from the density function f . The normal at a surface point is
equal to the gradient direction which is defined by the partial
derivation as follows: ∇ f = (∂ f

∂x
, ∂ f

∂y
, ∂ f

∂z
). We compute the

partial derivation by applying a 3D sobel operator.

c© The Eurographics Association 2011.

F. Löffler & A. Müller & H. Schumann / Real-time Rendering of Stack-based Terrains

Material: The material composition for each vertex is de-
termined by sampling the combined density functions (see
Section 3.1). Due to the fact that the material ratio must al-
ways be 1, the resulting material vector is normalized for the
rendering.

3.2.5. Face Generation & Read back

In the last step, each cell which contributes to the surface
generates its faces and stores the indices in the index buffer.
The location of the first index is given by the index buffer
offset o associated with the cell. The number of faces is
determined by the classification c, whereby the faces can
be derived from the lookup table proposed in [SDC09].
The lookup table merely defines the adjacent cells between
which the faces are constructed. The real vertex index iv
for those cells is fetched from our lookup table (see Section
3.2.3).
In order to render the mesh the total number of faces needs
to be read back to CPU. During the allocation we accumu-
late the total face count into a separate buffer which is read
out after all stages have been finished.

3.3. Rendering Algorithm

For the rendering we need an acceleration data-structure that
allows for efficient culling and level of detail selection. For
the terrain data we use a quadtree decomposition. However,
due to the following reasons, this data-structure is unfavor-
able for rendering: The visibility culling relies on the bound-
ing volumes of the quadtree nodes. But in contrast to height
fields, where only a single surface exists per grid point, ma-
terial stacks may have multiple surfaces per grid point due
to holes or caves. Because these surfaces might be at quite
different heights, simple bounding-box-based visibility esti-
mation is likely to be too conservative in many cases. Be-
yond this, as a measure for level of detail selection the dis-
tance calculation between viewer and nodes is insufficient.
To solve this problem we use an octree decomposition. The
octree nodes refer to stacks in the terrain data MipMap: A
level in the octree corresponds to a level in the MipMap,
whereas each node refers only to the stacks that are covered
by the octree bounds (see Figure 7). If a node is rendered,
a surface mesh is extracted which is based on the referred
stacks. To exploit frame to frame coherence, the surface
mesh is cached for subsequent frames. Consequently, with
the use of two data-structures, we preserve the advantages
of material stacks for the data management while simultane-
ously improving the culling and level of detail selection for
the rendering.
To compute the approximation quality we rely on a distance
base metric. We estimate the screen space extend ε of a node
by using the following equation for the usual perspective
projection (cf. [LP02]):

ε = δi
w

2di tan φ
2

(1)

Figure 7: Illustration of the interrelation between the

quadtree (left) and the octree decomposition (right). Each

octree node visualizes the terrain based on the stacks that

correspond to the color-highlighted quadtree nodes.

δi is the size of the node i in object space, di is the closest dis-
tance between the node i and the view-point; w is the number
of pixels on φ, which is the field of view. The resulting screen
space extent ε is compared to a user defined quality thresh-
old τ. Nodes are split as long as ε > τ and hence, as long as
they do not meet the desired approximation quality.

3.4. Quality Improvement: Stitching

Due to the application of a level of detail metric the terrain
surface is piecewise approximated (see Section 3.3). This
leads to visual artifacts between adjacent nodes, which ap-
pear as cracks and gaps. In order to guarantee a continuous
surface the attributes of adjacent border vertices need to be
equal. We derive the vertex attributes from a density func-
tion (see Section 3.2.4). Hence, stitching can be reduced to
compute vertex attributes from equal density values. We dis-
tinguish (a) stitching between adjacent nodes with the same
level of detail and (b) stitching between adjacent nodes with
varying levels of detail.

3.4.1. Same Level of Detail

To obtain a continuous surface, the volumes of adjacent
nodes need to overlap by a single cell. In this case, adjacent
border vertices are coincident. However, due to a lack of ad-
jacent information the smoothing (cf. Section 3.2.2) yields
to different density values. To solve this problem, we extend
the density function by half of the convolution filter size.

3.4.2. Varying Level of Detail

Due to the fact that nodes with a lower level of detail might
be adjacent to two or more nodes with a higher level of de-
tail, the stitching between varying levels requires more ef-
fort. Furthermore, topology can be changed between the dif-
ferent levels of detail.
To deal with this problem we appoint the following precon-
ditions: Levels of detail between adjacent nodes can only
vary by one level (as it is usual for terrain rendering). Hence,

c© The Eurographics Association 2011.

F. Löffler & A. Müller & H. Schumann / Real-time Rendering of Stack-based Terrains

sampling rate of the density functions differs by factor 2.
Moreover, the border of the node with the higher level of de-
tail Kn is fitted to the node with a lower level of detail Kn−1.
Our basic idea is to modify the density values of the higher
detailed border of Kn in order to fit the lower detailed border
of Kn−1. During the attribute generation, T-junctions occur-
ring due to the twice sampling rate are removed. The algo-
rithm is illustrated in Figure 8 and can be outlined as follows:

Topology fitting: To fit the topology of the border of Kn, we
replace the density values dn

i, j,k with the corresponding den-

sity values of the previous level dn−1
i/2, j/2,k/2 via point sam-

pling. This replacement is proceeded for all density values
that influence the attribute generation of the border vertices.
Consequently, the density functions in the overlapping re-
gion of Kn and Kn−1 are equal.

T-junction removal: Due to the different sampling rates of
the generated meshes, T-junctions occur at the boundary. To
remove unnecessary vertices, we modify the vertex lookup
of the border vertices. Therefore, odd components of a cell
lookup vector are round up to the next higher even value. As
a result, vertices are snapped together as illustrated in Figure
8. This introduces degenerated faces. However, neither does
this affect the performance nor does this affect the visual
quality [HSH09].

Figure 8: Illustration of the stitching process. Varying lev-

els of detail (left) are stitched by fitting the topology of the

higher detailed node (middle) followed by the removal of T-

junctions (right).

4. Implementation and Results

The rendering concept has been prototypically implemented
in C++ and DirectX11 (see Figure 9). The quadrangulation
pipeline has been implemented entirely on the GPU. Each
stage is realized as Compute Shader [Boy08]. The quadri-
lateral mesh is rendered as triangle mesh. Near the camera
we rely on hardware tessellation for per vertex displacement
mapping.
The tested data-set has been generated with our terrain edi-
tor (see Section 3). The data-set has an extent of 4km×8km

with a maximum height of 768m and is comparable to a
volume representation of 2048 × 4096 × 512 voxels. The
MipMap representation of the terrain requires approximately
106MB. In contrast to that, a corresponding voxel represen-
tation would require more that 20GB (uncompressed).

The performance statistics has been captured over several
thousands of frames at full HD (1920×1080) resolution and
has been performed on an Acer Espire M7811 (Intel I7 860)
equipped with Radeon 5870. We use a node size of 173 and
a cell screen space size of 10px. We render approximately
435600 quadrilateral patches at 56.2 frames per second. To
estimate the different costs, we disable the tessellation and
achieve an average frame rate of 192.8 frames per second.
We found out that the average frame rate is limited by recur-
rent node quadrangulation. The time cost for quadrangula-
tion of a single node takes approximately 1.4ms (GPUPerf-
Studio). In case a node is split or merged, several quadran-
gulations need to be carried out. Hence, the duration of this
frame might exceed 40ms and real-time is not achieved. We
solved this problem in the following way:
In each frame we can update ≈ 40 nodes to achieve 25Hz.
In worst case, in an octree the split of nodes requires the up-
date of 8 nodes, while the merging requires the update of
the merged node and of 24 adjacent nodes. However, due to
the distance based LoD metric less than the half of adjacent
nodes might be updated. By amortizing the split and merge
of nodes over several frames, a frame rate above 25Hz can be
achieved. This has drawbacks though: Whenever the viewer
moves too fast, the amortization strategy leads to popping
artifacts and a delayed LoD switch. By incrementing the
screen space error tolerance less nodes need to be updated
and the viewer can move faster. However, due to the LoD
selection popping artifacts still occur.

Figure 9: Screen dumps from the prototypical implementa-

tion and the tested data-set.

c© The Eurographics Association 2011.

F. Löffler & A. Müller & H. Schumann / Real-time Rendering of Stack-based Terrains

5. Conclusion

We present a novel approach for real-time rendering of 3D
terrains. The terrain representation relies on material stacks.
The material stacks compactly represent complex 3D terrain
data (e.g. arches or caves). With our approach such data can
be visualized directly and provides new options for enter-
tainment and modeling applications.
Prior to rendering, a MipMap representation of the terrain
data is generated. For the required aggregation of materials,
we introduce a heuristic approach. The MipMap represen-
tation is compact and allows for managing relatively large
terrains without out of core strategies. Due to the 3D charac-
teristics of the data, this representation is inappropriate for
rendering. Hence, the rendering relies on an octree decom-
position of the terrain area, whereby the octree nodes refer
merely to the terrain data in the MipMap. During the render-
ing, we extract the terrain surface from the material stacks
in real-time. The surface extraction is designed as pipeline
that takes the terrain data as input and generates an indexed
quadrilateral mesh as output. In order to guarantee a contin-
uous surface the stitching between various levels of detail is
considered. Our results support the real-time capabilities of
our approach.
Our future work will focus on the improvement of the
pipeline’s different stages and the implementation of a more
sufficient amortization strategy. The scope of future work in-
cludes (1) a seamless combination of our work and classical
height-field rendering to decrease the surface extraction ef-
fort; (2) a geomorphing approach to avoid popping artifacts
during LoD switches; and (3) the inclusion of adjacent in-
formation during surface extraction in order to generate real
smooth surfaces (tessellation hardware).

References

[AGD10] AMMANN L., GÉNEVAUX O., DISCHLER J.: Hybrid
rendering of dynamic heightfields using ray-casting and mesh
rasterization. In Proceedings of Graphics Interface (2010), Cana-
dian Information Processing Society, pp. 161–168. 2

[And07] ANDERSSON J.: Terrain rendering in frostbite using pro-
cedural shader splatting. In ACM SIGGRAPH courses (2007),
ACM, pp. 38–58. 2

[BF01] BENES B., FORSBACH R.: Layered data representation
for visual simulation of terrain erosion. In Computer Graphics,

Spring Conference (2001), IEEE, pp. 80–86. 1, 2

[BFO∗07] BEARDALL M., FARLEY M., OUDERKIRK D.,
SMITH J., JONES M., EGBERT P.: Goblins by spheroidal weath-
ering. In Eurographics workshop on natural phenomena (2007),
pp. 7–14. 2

[BGP09] BÖSCH J., GOSWAMI P., PAJAROLA R.: RASTeR:
Simple and efficient terrain rendering on the GPU. Proceedings

of Eurographics Areas Papers (2009), 35–42. 2

[Boy08] BOYD C.: The DirectX 11 Compute Shader. ACM SIG-

GRAPH classes (2008). 7

[CNLE09] CRASSIN C., NEYRET F., LEFEBVRE S., EISEMANN

E.: GigaVoxels : Ray-Guided Streaming for Efficient and De-
tailed Voxel Rendering. In Proceedings of the Symposium on

Interactive 3D Graphics and Games (2009), ACM Press. 2

[CPO10] CHUN Y., PARK S., OH K.: Multiple layer displace-
ment mapping with lossless image compression. Entertainment

for Education. Digital Techniques and Systems (2010), 518–528.
2

[Dac06] DACHSBACHER C.: Interactive Terrain Rendering: To-

wards Realism with Procedural Models and Graphics Hardware.
PhD thesis, Universität Erlangen-Nürnberg, Universitätsstras̈e. 4,
91054 Erlangen, 2006. 2, 5

[DGY07] DIETRICH A., GOBBETTI E., YOON S.: Massive-
Model Rendering Techniques. IEEE Computer Graphics and

Applications (2007), 20–34. 2

[DKW09] DICK C., KRÜGER J., WESTERMANN R.: Gpu ray-
casting for scalable terrain rendering. Proceedings of Eurograph-

ics Areas Papers (2009), 43–50. 2

[FKP05] FLORIANI L., KOBBELT L., PUPPO E.: A survey on
data structures for level-of-detail models. Advances in multires-

olution for geometric modelling (2005), 49–74. 2

[Gei07] GEISS R.: GPU Gems 3: Generating Complex Procedu-

ral Terrains Using the GPU. Addison-Wesley, 2007, pp. 7–37.
2, 3

[GT07] GEISS R., THOMPSON M.: NVIDIA Demo Team Secrets
Cascades. Presentation at Game Developers Conference, 2007. 2

[HSH09] HU L., SANDER P., HOPPE H.: Parallel view-
dependent refinement of progressive meshes. In Proceedings of

the Symposium on Interactive 3D Graphics and Games (2009),
ACM New York, NY, USA, pp. 169–176. 7

[JLSW02] JU T., LOSASSO F., SCHAEFER S., WARREN J.: Dual
contouring of hermite data. ACM Transactions on Graphics 21,
3 (2002), 339–346. 2, 5

[LK10] LAINE S., KARRAS T.: Efficient Sparse Voxel Octrees–
Analysis, Extensions, and Implementation. NVIDIA Corporation

(2010). 2

[LP02] LINDSTROM P., PASCUCCI V.: Terrain Simplification
Simplified: A General Framework for View-Dependent Out-of-
Core Visualization. IEEE Transactions on Visualization and

Computer Graphics 8, 3 (2002), 239–254. 6

[NY06] NEWMAN T., YI H.: A survey of the marching cubes
algorithm. Computers & Graphics 30, 5 (2006), 854–879. 2

[Paj02] PAJAROLA R.: Overview of quadtree-based terrain trian-
gulation and visualization. Technical Report (2002). 2

[PG07] PAJAROLA R., GOBBETTI E.: Survey of semi-regular
multiresolution models for interactive terrain rendering. The Vi-

sual Computer 23, 8 (2007), 583–605. 2

[PGMG09] PEYTAVIE A., GALIN E., MERILLOU S., GROS-
JEAN J.: Arches: a Framework for Modeling Complex Terrains.
Proceedings of Eurographics 28, 2 (2009), 457–467. 1, 2

[PO06] POLICARPO F., OLIVEIRA M.: Relief mapping of non-
height-field surface details. In Proceedings of the Symposium on

Interactive 3D Graphics and Games (2006), ACM, pp. 55–62. 2

[QQZ∗03] QU H., QIU F., ZHANG N., KAUFMAN A., WAN M.:
Ray tracing height fields. In Computer Graphics International

(2003), IEEE, pp. 202–207. 2

[SDC09] SCHMITZ L., DIETRICH C., COMBA J.: Efficient and
High Quality Contouring of Isosurfaces on Uniform Grids. In
Computer Graphics and Image Processing (2009), IEEE, pp. 64–
71. 2, 5, 6

[SdKT∗09] SMELIK R., DE KRAKER K., TUTENEL T.,
BIDARRA R., GROENEWEGEN S.: A survey of procedural meth-
ods for terrain modelling. In Proceedings of the CASA Workshop

on 3D Advanced Media In Gaming And Simulation (2009). 2

c© The Eurographics Association 2011.

