
AD-A122 557 REAL TME RESOURCE ALLOCATION IN A DISTRIRUTED SYSTEM /

U) HARVARD UNI CAMBRIDGE MA CENTER FOR RESEARCH IN
COMPUTER TECHNOLOGY 0 REIF ET AL. JUN 82 TR-18-82

UNCLASSIFIED N00014-80-CO647 F/G 5/ NLEUniiiiimEimEI
mmmnmEEEEEEEEE
IEmhhhhhEmmEEL

1.01 W* ILI W.5

111.25 11.A .1.6

MICROCOIPY RESOILUTION TEST CHART

NATION4AL BUR1EAU OF STANDARDS-1963-A

Srvr Unvrst

REAL TIME RESOURCE ALLOCATION

IN A DISTRIBUTED SYSTEM

John Reif

Paul Spirakis

TR-18-82

U Presented at ACM SIGACT-SIGOPS Symposium on Principles of

Distributed Computing, Ottawa, August 1982

1982 OTICSI ELECTE
DEC 17 1W8

Original version appeared as TR-06-82 in February 1982.

A@@.usion For

MTIS GRA&IQDTIC TAB
O T I U a n no u n ce d :

JUstitloatio

7Dimtribution/

Availability Codes

SDISTRIBUTION STATEMENT A D Avai and/or

Approved for public relecaq
s l

Distribution Unlimited

ag~mn''' ' '/

SECUAITY CL ASIICATI001 OF THIS PAGE f111beit Data AP.eEo

REPOT DCUMNTATON AGEREAD INISTRUCTIONS
REPOT DOUMETATIN PAE BEFORE COMPL1FTING FORIS

1. RPOR NUM1111 12 GOVT ACCESSION Mo .3. PESN' CATALOG humdila

4. TITLIE (a" ub.e9Ue L TYPE OF EP@aRT 6 PEASO COVEAZO

Real Time Resource Allocation in a Distributed TehialRpr
SystemehialRpr

*. PERPOmise ORO. Ra,0T flumeat

7. AUTHOR(*) L. CONTRACT ON "RANT NMU BE(*)

John Reif U00014-80-C-0674
Paul Spirakis

SPERFORMING ORGAIZAT ION NAME ANO ADDRESS S.PORMSESMJC.VS

Harvard University JRAa UitJNR

111. CONTROLLING OFFICE NME AND ADDRESS W* REPORT DATE

Of fice of Navel ResearchJue18

800 North Quincy Street ~NMEO AE

4. O~e MGAGE Y AME a AooREss(to cfinera mn on ettinus office) is. SECURITY CLASS. (of *go reporij

sam as above

ISO. CIECL ASSIFICATION/ DOWNGRAING

SCHEDOULE

16. DISTRIBUTION STATEMENT (of this Report)

unlimited
DISTRIBUTION STATEMENT A

Approved for public release2
Distribution Unlimited

17. DISTRIBUTION STATEMENT (of the abetact mitted in Attack it oforn dAliem he apet)

umlimited

114. SUPPLEMEN11TARY NIOTES

Is. KEY WORDS (Cetftu on rees #Id. Of notteosar md OMonti9t, 4W 619 sumbt)

resource allocation, hypergraph matchings, real-time, synchronization,

dining philosophers, scheduling, two-phase locking, reandomized algorithm.

20. AMSTRPACT (Coninue. on reveres, side 81 socea.vy mod Iftattl by 8p usaume)

see reverse side.

00 O IP) 1473 EDItioN or Imov ssis owsoLgeTE

SECURITY CLASSIFICATION OF T1418 PAGE fbe Det a~W6*04

C I.AI vSCATION OF VI.,S PA00, O PI. -.. F.terd)

x'; - "

a'In this pejler we congider resource ailocation problem which is local

in the sense that the maximum number of users competing for a particular

resource at any time instant is bounded and also at any time instant the

maximum number of resources that a user is willing to get is bounded. The

problem may be viewed as that of achieving matchingo in jnmiaallyoct ohanjin

hyperr)he, via a distributed algorithm. We show that this problem is

related to the fundamental problem of handshake omslunication (which can be

viewed as achieving matohings in a dynanioal4r changi graph, via distributed

algorithms) in that an efficient solution to each of them implies an efficient

solution to the other. We provide real-time solutions to the resource

allocation problem (that is, we give distributed algorithms with real time

response). We make essential use of probabilistic techniques as first used

by [Rabin, 80b], where processes are allowed to make independent probeilistic

choices. On the other hand, no probability assumptions about the system

behavior are made One of our solutions assumes the existence of an under-

lying real-time handshake communication system, as described in [Reif,

Spirakis, 81). Our other solution is based on efficient synchronization by

flag variables, which are written only by one process and read by at most

one other process. The special case of equi-speed processes is first

examined. Then we generalize to asynchronous processes. Applications are

made to dining philosophers, scheduling and two-phase locking in databases.

CU'Ti, CLASSIICTIONr OFP. 00,,9(f,, s. t OW6

REAL TIME RESOURCE ALLOCATION

IN A DISTRIBUTED SYSTEM*

by

John Reif and Paul Spirakis

Harvard University

June 1982

*This work was supported in part by the National Science Foundation

Grant NSF-MCS79-21024, and the Office of Naval Research Contract

N00014-8O-C-0647.

ABSTRACT

In this paper we consider a resource allocation problem which is local

in the sense that the maximum number of users competing for a particular

resource at any time instant is bounded and also at any time instant the

maximum number of resources that a user is willing to get is bounded. The

problem may be viewed as that of achieving matchings in dynnically changing

hypergrphs, via a distributed algorithm. We show that this problem is

related to the fundamental problem of handshake conmunication (which can be

viewed as achieving matchings in a dynaicaZly changing graph, via distributed

algorithms) in that an efficient solution to each of them implies an efficient

solution to the other. We provide real-time solutions to the resource

allocation problem (that is, we give distributed algorithms with real time

response). We make essential use of probabilistic techniques as first used

by (Rabin, 80b], where processes are allowed to make independent probabilistic

choices. On the other hand, no probability assumptions about the system

behavior are made. One of our solutions assumes the existence of an under-

lying real-time handshake communication system, as described in [Reif,

Spirakis, 811. Our other solution is based on efficient synchronization by

flag variables, which are written only by one process and read by at most

one other process. The special case of equi-speed processes is first

examined. Then we generalize to asynchronous processes. Applications are

made to dining philosophers, scheduling and two-phase locking in databases.

//

I. INTRODUCTION

1.1 The Resource Granting System

In this paper we consider a resource allocation problem which is

Zocal in the sense described in [Lynch, 1980). The set of resourcesp

and the set of user processes U may be infinite sets. However, there is

a limit to the number of user processes requesting a particular resource.

We assume that names of processes are integers. Resources are controlled

by a set of granting processes R. Each granting process j E R controls

a resource p(j) E p. We assume user processes communicate only with those

granting processes for which they request resources. (It is easy to super-

impose each granting process into a requesting user process so that U= R.)

A system described as above, is called a Resource Granting System

(RGS). The goal of a RGS is to satisfy dynamically changing user requests

for resource allocation. This is done in a distributed way, by only a local

communication between granting and requesting processes. An impZeme ttion of the

RGS determines the synchronization algorithms that the processes run. It is spwetric

if these algorithms do not depend on the location of the processes in the net-

work. At each time t;00 the requests by user processes U are specified

by an adverse oracle A', (which may be an "enemy" of the resource allocation

algorithm, by setting actions in the worst way to increase the respone

time.) (Note that in practice no such oracle i may exist but instead each

user process is executing some program which requires from time to time some

resources to be allocated to that user process. The oracle d is used as an

artificial device for specifying worst case situations for the resource

allocation algorithm.) d also has the capability to select at time t- 0

the schedule of the speeds of all processes at all times t;00. The oracle -

mi/

-2-

is restricted, to allow users to keep asking for their resources until they

are granted. We assume that there is a global time t totally ordering

events, but processes do not have access to it.

An RGS with priorities is defined to be a resource granting system in

which the requesting processes communicate to each resource granting process

a rational number on the interval [0,1], indicating the priority of the

request. A priority greater than 0 indicates a request for that resource.

These priorities can change dynamically. The processes of R use the priori-

ties, that the processes of U communicate to them, to grant their controlled

resource with preference to users of higher priority. This must be done in a

way avoiding user starvation.

1.2 Complexity of an RGS

A process step consists of either an assignment of a variable, a test, a

logical or arithmetic operator or a no-op. A step is considered to be a finite

time interval A in which a single instruction is executed instantaneously at

the last moment of A. Note that, by these semantics, there can never be read-

write conflicts in the use of flag variables.

Let a process be tune during a time interval A, if for any interval

A' E [0,-), which intersects A and is a single step of the process, then

IA'I E rmin ,r max I where r min rmax are fixed real constants and

0< r rm ax . without loss of generality we assume that r max/rmin is an

integer. We do not assume processes always tame, however, they are supposed

to be tame in the complexity analysis of response time. We require that, at

no time, any granting process iE R simultaneously grant the resource R(i)

to more than one requesting process. We also require that, as soon as a

-3-

process jE U has got all its required resources, then it can keep them only

for a time interval upper bounded by a fixed parameter (resulting in a bounded

number of its steps V, if the process is tame). Let resources(i) be the set

of all possible resources that a process iE U is going to ever request, and

let resources t(i) be the set of resources i is requesting at time instant t.

Let ki t be Iresourcest(i)I. For each time t, the wiZZingnes8 digraph Gti~Gt

is defined such that if iE U and jE R and if i requests or has been

granted resource p(j) at t, then the edge i - j belongs to Gt. Let also

j - i if the granting process j is willing to allocate (or has granted) its

resource to user i. Let vt be the maximum valence of the nodes jE R of

Gt

In the following we will assume at all times t ;0 that vt and ki' t

are above bounded by constants v,k respectively and that v<k. This does

not imply anything about the cardinality of the sets resources(i) ViE U, which

could be unbounded. We also assume, as in [Lynch, 1980], that each resource

allocator jE R has a set S. available to it of size <v, containing the)

names of those processes willing to get the resource. We assume this to be a

primitive of our system (which could be implemented by a queued message system

or by other means). Finally, we restrict any oracle ,d so that as soon as it

produces a request for a resource (i.e., it orders the appearance of the edge

i - j in G for iEU, jER) it has to insist on that request until i
t t

gets all its requested resources at that time. (Note that the relation
t

can be viewed as a time varying hypergraph with node set n - U L R and hyperedge

set E - {{i} U resource t(i) iE U}. An RGS implementation dynamically achieves

matchings in this hypergraph. We allow probabiZistic RGS implementations

where processes can use independent random number generators.

-4-

Fix an RGS implementation which may be probabilistic. For each k

(0 • k • v) and oracle a let the k-grant response be the random variable

Yk,d giving the length of the minimum interval A required for any process

i£ U to have k resource requests simultaneously granted, given that i

requested these resources during the entire interval A, with priority 1,

and assuming that i and all the allocators of the resources requested by

'\i within A are tame on A. Let the mean k-grant response be

Yk-maxmean{Yk,.} over all oracles qf}. For each C in [0,1] let the

c-error k-grant response be the minimum y k() such that for every oracle

Prob{y k, • k()1Yk) - .

The RGS implementation is reaZ time if for every kE{l,...,v and for

every EE (0,1], yk(e) >0 and independent of any global measure of the

network (except v). The network here has as nodes the elements of R and

each edge {u,r} denotes that 0(r) E resources (u). Note that if the RGS

implementation is real time, then Yk is constant, independent of any global

measure of the graph H of the network (except perhaps v).

1.3 Previous Work

[Lynch, 1980] considered the problem of allocation of resources in a

distributed system. Her RGS implementation was a deterministic, non-

symmetric one (processes were allowed to know the color of each resource in

a coloration of the resouroe graph, i.e. the graph whose nodes are the

resources and two resources i, j have an edge between them iff

resource "1 M nresource " I (J) i 0), and the comunication system adopted was

a message system requiring buffered communication. (Lynch, 19801 achieved

-5-

k-grant response of the order X(H)-vX{H)-T where X0) is the chromatic

number of the resource graph and T is the time required for process communi-

cation. Note that since resources(i) for iE U may be unbounded, in the

worst case X(H) can be as large as the number of processes Ill.

1.4 Results of this Paper

We shall present in Section 3 a Frobabilistic implementation of an RGS

which has mean k-grant response Yk = O(kv 'r'log v) and C-error k-grant

response

Y()= a (kv klog (1) T(,))

where T and T(E) are the mean time and E-error response required for

handshake cormnunication between processes (see Appen'x for definitions).

In [Reif,spirakis 1981], [Reif, Spirakis 1982] handshake communication

implementations were given with T= O(v 2) and T(E) =O(v 21og(l/E)). Note

that these implementations achieve real time, thus the resulting RGS

implementation is also real time with mean

Yk= O(kvk+2log v) and Yk(C) = Okv k+2log)log () .

However, any other handshake communication implementation would also do.

In Section 4 we present a basic way to implement a real time RGS in

both cases of equispeed and asynchronous tame processes. The implementation

is probabilistic. No underlying handshake communication system is assumed.

Instead, the reans of synchronization between processes in U and R are

fZag variables (which are written by just one process and allowed to be

read by at most one other process). The response time has mean ik O(kv)k+l

and yk(c)- O(kV k + o1 (/C)).

hL

-6-

1.5 Organization of Paper

This paper is organized as follows: Section 2 contains applications of

RGS to dining philosophers, scheduling, two-phase locking in databases, and

real-time handshake communications. Section 3 discusses a real time RGS

assuming an underlying real time handshake communication system. Section 4

discusses a real time RGS implementation by use of flags. First an imple-

mentatidn is discussed in which processes have the same speeds but their

actions may be relatively shifted in time. At the end of Section 4 we

generalize our algorithms to the case where processes are asynchronous but

tame. Section 5 presents a probabilistic analysis of our algorithms. The

Appendix defines handshake communication systems and their performance

measures.

2. APPLICATIONS

2.1 Hasty Dining Philosophers

As a simple example, we consider an interesting RGS system which we

call "hasty dining philosophers". Let the requesting processes U be

distinct integers, r0 ,. .. ,rn, and the granting processes R be 0,...,n-i

so that Un R=0-. The resources are forks {p(O),...,p(n-l)}. Each philo-

sopher rj E U has resources(r.) consisting of the forks {p(r),p(r(J+1)mod n)J.

Thus, the resource graph H is a cycle of length n. The "hasty dining

philosophers" has a high level real time RGS implementation with mean 2-grant

response y2 n O(l) and C-e :ror 2-grant response y2 (e)- O(log(l/) 2). The

low level RGS implementation gives 12 - 0(1) and y2 (C) - O(log(l/))

Intuitively, the RGS implementation requires each philosopher rj to be at

-7-

any time granted both forks of resource(r) in expected constant time, but
1

r. must be "hasty" and relinquish these resources within constant time inter-

val. Note that for each iE {0,...,n-l) the granting process i can be

placed within process ri , thus resulting in essentially only n processes.

2.2 Scheduling

Suppose an acyclic digraph D is given with node out-degree k, and

in-degree <v. This graph can be separated into levels. We assume processes

residing in the nodes of D can operate only after getting all their resources

(which reside at the nodes which have no successors). Each process operates

just once and in a constant time interval becomes a resource granting process,

to serve the next higher level. All its successors are deleted. So, each

node is initially a requesting process and after it gets all its resources

once, it becomes a resource granting process. By assuming a real time RGS

implementation the above system can be processed in time of the order of the

depth of the digraph.

2.3 Two-Phase Locking in Databases

Two-phase locking is a concurrency control method in databases (see

the survey paper of (Bernstein, Goodman 1980]) with the feature that as soon

as a transaction releases a lock, it never obtains additional locks. The

technique of two-phase locking produces serializable transaction executions.

We propose in [Reif, Spirakis 1982B] a technique to implement two-phase

locking in a distributed database, which is different from any known algo-

rithms. In fact, it can be viewed as intermediate between the techniques of

static and dynamic locking. Our underlying assumption is that transactions

A.. _ _ _ _ _ _ _........_ _ _ _I_ _ -... __ _ , _

-8-

are allowed to act on the data only if they got all the locks requested.

Let the processes of the user set U be called transaction moduZee and the

processes of the set R be called data moduZes. If each transaction requests

to lock at most k data modules at a time and if at most v transactions

can compete for a lock at a time instant t, then a real time RGS will result

in real time lock allocation per transaction. The transaction modules go

through a "round" (of constant number of steps in duration) during which

they communicate with all data modules they want to lock. They keep the

locks they get only for constant number of steps hoping in the meanwhile to

get all of them. If the round finishes and they did not succeed in getting

all the locks, then they release whatever they got and try again in the

next round. Given the previously stated response time yk() for a real-

time RGS, one can now decompose the distributed system into a system of

parallel servers with almost independent geometrically distributed service

time, (one per transaction module). In [Reif, Spirakis, 1982B] we then

analyze the transaction waiting time, throughput etc., by assuming a proba-

bility distribution in the transaction arrival rate.

2.4 Handshake Communication in Real Time Via a Real Time RGS

We can implement here handshake communication in the sense of the

Appendix, assuming the existence of a real-time RGS. Assume that each of the

processes j E R control just one resource called the channeZ and when they

allocate this resource, we say they open the channel. The processes iE U

are assumed to open their channel when they are granted their resource and to

close their channel when the resource is removed.

Each of the processes iE U have Iresource (i)l4l, so as soon as any
t

process iE U is granted one resource, process i does not compete for any

/

-9-

other, until i releases that resource.

Given bounds v on the processes iE U competing for the same p(j),

jC R and a bound k<v on the number of resources a user is willing to be

granted at any time t, a real-time RGS will imply a reaZ-time handshake

communication scheduler, with the same time performance (see the Appendix).

It is interesting to note (as we show in Section 3) that one can implement

also a real time RGS by a real time distributed communication subsystem.

0

3. HIGH LEVEL RGS IMPLEMENTATION ASSUMING A REAL-TIME HANDSHAKE

COMMUNICATION SYSTEM

3.1 The Algorithm

Our implementation of a probabilistic real time RGS is as follows:

The granting processes i are always willing to communicate only

to the requesting processes in the set S. which have rights to resources

Q(i) (as defined in the Introduction). The requesting processes are willing

to communicate only to those granting processes whose resources they want (or

have been allocated). By communication here we mean a handshake communication.

We shall assume here the existence of a DCS with E-error response T(E), as

in the Appendix.

We may view the actions of the requesting processes time-sliced in

rounds, where each round is a minimal time interval in which i communicates

at least once with all k of the resource controlling processes of the

resources which i wishes to obtain.

The granting processes do forever the following grant aZgorithw which

is a loop, a single execution of which is called a grant phae

I.,

-10-

Grant Algorithm

for process iE R

Do forever

[1]. Do a handshake communication with anyone of the requesting
processes in Si and get their priorities (in 6 steps).

12]. Probabilistically select jE Si, in 6 steps. (The values of

the priorities determine the probability of each requesting

process to be selected as determined in Section 3.2.)

[3]. On first handshake with the selected process j, say "yes" to
j allocating your resource to j. (6 steps)

[4]. For 2 6 steps, the granting process says "no" to any requesting
process but j in any handshake and says "yes" to j on any

communication.

[5]. On handshake with any other process than j, the granting process
i says "no". On first handshake communication with j, the
granting process i says "no" to j, indicating that resource
p(i) has been withdrawn from j and ending the grant phase.
(6 steps).

[6]. Wait for LwJ steps where w is randomly chosen from [0,66'].

end

In the above algorithm we fix parameters 6= [T(E/2v)/r m n and

6' = 16(r max/r min). Hence 6 steps of any tame process contain at least

time T(E/2v) and the maximum time duration of 6 steps is equal to the

minimum time duration of 6' steps. Thus the maximum possible length of the

random wait is, at least the time length of the rest of the stages of the

grant phase. Note that stages [1], 13] and [5] may take more than 6 steps

(with very low likelihood). This is taken into account in the analysis of

performance of the algorithm.

T

-11-

3.2 Probabilistic Selection

We give here a very simple implementation of probabilistic selection

of one out of <v processes (using their priorities) in O(v) steps as

required in phase 2 of the algorithm in Section 3.1. This implementation

can easily be improved to O(log v) steps (see [Reif, Spirakis 1982]).

Suppose that each resource allocator i has just a random number

generator drawing uniform numbers between 0 and 1. Let n 1,T2 ,..., v, (for

v' v) be the processes requesting the resource of i at the current time

and let P., P 2. ... ,P , be their priorities. Let h(x) = l Pi
1i 2t jv

for any x in {0,l,2,...,v'}. To implement the selection process of stage

[2] we do the following:

[2.1] draw a random number n in [0,11.

[2.2] find the process name r for which
x

h(x-1) h n h(x__)

h(v') h(v')

Note that stage [2.1] takes one step and stage [2.2] takes 0(v) stepL since

we have to evaluate and compare 2 partial sums each step. Since

h(x) =h(x-l) +P i for any x in {l.... v'}, the current partial sum can

x

be evaluated from the previous partial sum by a single addition.

4. REAL TIME IMPLEMENTATION BY USE OF FLAG VARIABLES

4.1 The Algorithm for the Case of Equi-Speed Processes

For simplicity, we shall temporarily assume here a fixed time instant

t) 0 such that for time tOt all processes are executing at the same

-- " ".'" i i d i I] i Ii l I I~ Iii

-12-

speed. (Section 4.2 drops the assumption of equi-speed processes.) How-

ever, for times t< t0 in the past, the processes may be asynchronous and

so, at t;Ot the execution of their programs in time, though proceeding
0

with equal speed for all processes, may be shifted (in an adverse way)

relative to each other.

The communication between granting and requesting processes is done

here by flag variables. To read one flag requires one of the process steps.

In case of priorities, the flags are allowed to have rational values between

0 and 1, initially 0. The flags P.,. indicate the priority of user j with

respect to resource i. In the simple case of equal priorities all flags

need only be boolean. Each granting process i has for each requesting

process j a special flag F.. whose value indicates if the resource p(i)
1)

is allocated to j. If j reads F.. and finds it 0, then it understands

that it lost the resource. The granting processes execute forever the following

loop, called a grant phase:

Grant Algorithm

of Granting Process i E R

Do forever

begin

[1). Read the priority flags of the requesting processes in the set S.

[2]. Probabilistically select each of the requesting processes jES.
according to their priorities (see Section 3.2).

[3]. Set the flag Fij to 1 indicating that resource P(i) has been

allocated to process j.

[4] Wait for cv (non-operative) steps.

[5) Set the warning flag Lij to 1 to indicate to j that he will

loose the resource after at most 2cv steps. Wait 2cv steps.

[6] Set FiA to 0 (indicating that i removes the resource).
Erase the warning by setting Lij to 0.

-13-

[7] Wait for w steps where w is a random integer selected
uniformly from [0,5cv].

end

Stages 1], [2] are required to take exactly cv steps each, where c is

a small constant whose exact value can be determined by counting the maximum

number of steps of the granting process per requesting process in the

stages [1], [2], (3].

The grant phase takes a random number of steps, uniform in the set

{5cv,Scv+l,.... ,lOcv}.

Each user process jE U executes continuously the following loop, a

single execution of which is called a round.

Do forever

[1]. Set Pij to I foreach resource p(i) requested by user j.

(cv steps)

r2). Poll for cv steps to see which resources have been awarded to
user j. User j considers the resource p(i) avarded only
if p(i) has been both allocated (Fij = 1) and not yet warned

(Lij =0).

[3]. If all resources requested by j are awarded use them for

p steps.

end

(See also Figures 1 and 2.)

T.-

-14-

cv ' c- cv - cv -- o -'- 2cv w -----1
read select random

priorities waitI
award strt remove

resource warning resource

rigure 1: A pharc of a grant process.

19 - cv - go~ cv 1j~ ii-

ask for Poll for If all awarded,

resources by flags resources use them

awarded

Ficure 2: A round of a requesting process.

-- Of 7-/

-15-

4.2 The Flags Implementation of the RGS for the Case of Asynchronous,

Tame Processes

Grant Algorithm

for i E R, for asynchronous case

It is the same as in the case of equi-speed processes. However, the stage

lengths are modified as follows:

Stage (1]: takes c'v steps

Stage [2]: takes c'v steps

Stage [3]: 1 step as in equi-speed case

Stage [4]: takes c'v steps

Stage [5j: takes 2c'v steps

Stage [7]: choose a random integer wE [0,5c"v]

where 2

l=r~ max an*ra cc' rmin i

The round of jE U in asynchronous case:

Same actions as in equispeed case. The stage lengths in steps are cv,

cv and r .

< (cv-l)
mi

max

for stages il] [2), [3], respectively.

-- 7

-16-

5. ANALYSIS OF THE REAL TIME RGS IMPLEMENTATION BY USE OF FLAG VARIABLES

5.1 The Case of Equispeed Processes

Note that in the equispeed case assumed here, the time is a constant

multiple of the process steps. The power of the adversary is thus restricted

to only a possibly malicious initial relative shift of the program counters of

the various processes.

LEMMA 1.1. For jj <cv- 1, it is impossible for the user j to conclude

that it has got all resources and actually some of the resources to have been

removed.

Proof. Since the polling time of j lasts only cv steps, by the

time user j concludes that the last resource is allocated to j, the first

allocated resource can at most be in the middle of the warning period (and

hence not removed yet). Since p <cv- 1, j has then enough steps at its

disposal to use the resources, before the first allocated resource is removed. 0

LEMMA 1.2. The probability that user j will get a particular resource

in its current round is < 1/v for the worst case oracles.

Proof. Consider the subclass of oracles W which put maximum contention

on the system. These oracles give a worst case of the response time, since

contention cannot decrease the response time. However, in this case, the

probability that user j will get a particular resource in its current round is

at best equal to the probability that j is going to be selected by the resource

allocator, so it is not more than 1/v. 0

Recall t is the time instant at which the processes became synchronous.

Let t1 be any time instant after t . Let resourcest (j) - {l ... 'FPk ' }0 1

-17-

where k' <k, for a particular requesting process j E R and let

iI,...,i be the resource allocators associated with those resources.

In the following we consider a time interval I starting at t1 during

which the set resourcest(j) for tE I is equal to resourcest (j). Let

r t be a complete description of the system's history up to time t1
I1

(including the probabilistic choices of the processes up to that time). Let

t (where l<m~k') be the first time after t at which the allocator
m

i starts a random wait stage. Let t be the maximum of all t 's form M m

m= l,...,k' and let tS be the maximum of the time instances at the ends

of the first grant phase of processes iI 1 ik, after time tM, The

time interval (t ,t S is called a session E of processes

{j,i ,i2 ..) ,}.

Let g.(Z) be the probability that the process j will get all its

resources in the session Z, given any history rt

Note that a session is at most two grant phases of any resource

allocator, because processes are equispeed. Note also that after tM the

effect of the history r t is completely counteracted by the random waits

done by the processes.

DEFINITION. Let gj(tMIt s) be the probability that process j will

get all its resources during the interval (tMtS) , given any history rtl

Obviously g (t ,ts) gA(). Note that there is at least one complete

round i of process j during a session E , such that R starts after

t . Let E be the event "the flag Pi of user j is seen by thetM Le m x,j,
m

resource allocator im in the round R and during (t Mts) and j is

selected by i Then g (tMIt S) >Prob(n k 1 E).
I II S i

time

I E- t tp

a sessio

Fiur 3:AIe~

-19-

LEMMA 1.3. The events E. E are independent.

Proof. Fix a time tE (t ,tS). By time t, all allocators have

M

executed at least a random independent wait stage. The length

of the wait stage is uniformly randomly chosen to take any

integer value from 0 up to the length 5cv of all the other stages of a grant

phase. Thus, at time t any allocator m is at each step of the non-wait

part of ts grant phase with equal probability,

COROLLARY 1.3.

gi(t1MtS ProbE) - . . . ' P r o b (E k ,

Proof. By the independence of events E m m=l,...,k' as proven in

Lemma 1.3. 0

LEMM4A 1.4. For any mE {l ... k

prob (E) > -
m lOv

Proof. Let E' be the event "the flag P. of user j is seen
m Im ,

by im in the round R and during (tM,t S)." Then Prob(Em given %) >/v

since i selects one out of at most v processes with equiprobability and

j is one of them. Also, prob(E') =prob(the start of R fells into the

first stage of a grant phase of im during (tM ts)) = ratio of length of

first stage divided by total length of the grant phase of i (by Lemma 1.3).m

But the total length of any grant phase is at least 5cv and at most 10cv

and the length of first stage is exactly c hence

prob(E') -v - .
m lOcv 10

/1

-20-

Also,

prob(Em) > prob(Em)prob(Em given E)

mm m m

10 v

By Corollary 1.3 then

COROLLARY 1.4.

a (tMpts) >' >1 k since k' <k.

(lov) (lOv)

Hence

(lOv)

AZso, note that

g.()4(1)k

due to Lerma 1.2.

Let u be the number of sessions required for user i to be granted

all its k resources in some round, given that i starts requesting them

at time t and assuming any history r t and oracle -A. By the Corollary

1.4 and Baye's formula,

Prob(u-m) < - 1 Im- 1(10v) k(v)

If U(E) is the least number such that prob{u>u(C) <C then

u (£) i ° (E / (i 0) k)

loge
(lOv)

p.. . .

-21-

It is easy to show:

PROPOSITION 1. For every nE N,

1
> -n

log I - -n

By Proposition 1, then

u(E) k-(l0v) k log 1_0 Okvk log _)

Since each session takes <20cv steps, we have

Prob{Yk < 20cv u()} > 1 -

implying E-error response

k+l
Ik(C) = O(kv log())

and mean

- k+ 1
k= O(kv

COROLLARY 1.5. In the case of equispeed processes, our flag

implementation of RGS has real time response, with c-error response

() = O(kv k
+ log(-)) and mean yk

= Olkvk+l

5.2 The Case of Asynchronous Tame Processes

Our analysis for the case of asynchronous tame processes parallels that

of the equispeed case.

LEMMA 2.1. For p < (cv-l)(r min/r max), it is impossible for the user

j £ U to conclude that it has got all resources and actually some of the resources

to have been removed.

-22-

Proof. The polling time of i can at most be cv r , since it
max

includes just cv steps of i. Each resource allocator waits 2c'v steps

after setting its warning flag to 1 and then it removes the resource. Since

c' =(r /r)'c we have that c''v steps of a resource allocator are at
max min

least c'v rmi time which is at least cv r time. Hence, by the time
min max

j concludes that the last resource has been allocated to him, the allocator

for the first resource granted can at most be in the middle of its warning

period (in terms of steps). The maximum time corresponding to p steps is

p r = (cv-l)r . and the minimum time which corresponds to the remainingmax mln

half steps of the warning period is at least c'v rin =cv rmax> (cv-l)rmin'

So, j has enough time at his disposal to use the resources, before the first

allocated resource is removed. 0

As in Lemma 1.2, we have:

LEMMA 2.2. The probability that user j will get a particular

resource in its current round is < 1/v for the worst case oracles.

Let tI, ,r tM , t S,, {f1 ... p1 j. I, gi(Z) and gi(tM,tS)

just as defined in Section 5.1.

A crucial difference from 5.1 is that now a session is at most two

grant phases for at least one allocator and not necessarily for all of them.

Again, giS(tMtS) gil().

Note also that the minimum time duration of a grant phase is

(5c'v+5c"v)r = 5cv(r + (r /r)) and the maximum time duration of
minvmax max mi

a round of a requesting process is now (2cv +)rmax 4(2cv+ cv(rmn /rmax))rmax

- cv(2rmax +r min). This implies that a grant phase of any allocator contains

at least 2 rounds of any requesting process and hence there is at least one

complete round R of process J during Z and after t . Again,

LN

-23-

g(tt S) Probl Em) with Em defined as in 5.1.

LEMMA 2.3. The event8 E1 ... ,E k, are independent.

Proof. Fix a tE (tMItS). Since t >tMI by time t all allocators

have each executed one (or more) random independent wait stages. The

number of steps of a wait stage is a random integer chosen uniformly from 0

2
to 5c'v, where cr=(r /r) c. Hence the minimum time duration of a

max min

wait stage is at least 5vc"ri =5vc(r /r)-r xvc'r the
mn max min max max

maximum time duration of the rest of the stages of the grant phase. So, in

any case, the random wait can completely cover the length of the rest of the

stages. So at time t >tM any allocator m is at any step xm with equal a

likelihood, independently of other allocators. 0

As in Corollary 1.3, we have

COROLLARY 2.3.

k'

gi(tM,t)) T1 Prob(E.)

i=l

LEMMA 2.4. For any mE {l,.... k'

prob{E
n 1 . 1m 5 +rmax mx

r 5 inv

Proof. Let E' be the event as defined in Lemma 1.4. Again,
- nm

prob(E /E') 0 1/v aAd prob(E') - ratio of length of first stage divided
mm m

by total length of the grant phase

-24-

covr . r .

(5c'v5c"v)r max 5(1 + rmax) rmax

rmi
n

and since Prob(Em) Prob(E') Prob(E /E') the lemma follows. 0

m m Mm

Hence, by Corollary 2.3.

COROLLARY 2.4.

for

r , rX 51 +max)max
mn min

Let u be defined as in case of equispeed processes.

By following same steps as in that case, we get

u(e) (kOv)k log = 0 log

A session is at most two grant phases of at least one allocator.

Therefore the time length of a session is bounded by (5c'v+5c"v)r max , so

we have

Prob{yk, (5v(c, +c")r m u()1) 1 - E

COROLLARY 2.5. Our flag impZementation of RGS in the general case of

tcone asynchronous processes, has real time response with

y(c) - O(kv k+l log (1))

and

S Okvk+I
Yk~ k

-25-

5.3 Analysis of our RGS which Uses a Handshake Communication System.

By the stated properties of DCS,

PROPOSITION 3.1.

Prob a round length is at most T - T

LEMMA 3.2. The probability that a particular requesting process i

wiLL get a "yes" answer in a handshake in stage 3 is 4 1/v for the worst

case oracLes.

Proof. Consider again the class of oracles V putting maximum

contention in the system. 0

Let t I tM, t, r , E, g (Z) and g.(t ,t) be just as defined in
1 S t 1 M S

Section 5.1. Again, gi(tMotS) gi(E).

Let E be now the event "a requesting process j gets a "yes"m

answer in a handshake with allocator im in the interval (tMIts) and in
m I

the first round R of j after tM. Note that gi(tM tS) >Prob(nA=1 E)"

We show again that the events E are statistically independent, asm

in the Proof of 1.3. Again we observe that the length of a random wait has

a nonzero probability of completely covering the length of the rest of the

stages in a grant phase. The length of a random wait is randomly chosen

from [0,66'] So its maximum duration is at least 66' r min -

6 6(rmax/rmin)rmin - 66 rmax - the maximum time duration of the rest of the

grant phase stages. So, Lemma 1.3 holds again, hence

COROLLARY 3.3.

k1

gi(tMtS) > T7 Prob(Em
M-1

sil

-26-

LEMMA 3.3. For any mE {l,...,k'}

1 r 1

Prob (Em) ;0 r r
6 + ra max

rmi n /

Proof. Let E' be the event "the handshake of processes j and i
mm

will take place at the first stage of the grant phase of im p in the first

round R of j, in the interval ItMItSl". Then Prob(EmIEm)> 1/v due to

probabilistic selection of requesting processes. Also prob(E') = prob

m
(the start of R falls into the first stage of a grant phase of i m

during time interval (tM,t) = ratio of length of the first stage divided

by total length of the grant phase, because by tM process im has

executed at least one random wait (after t I) and hence the start of R

will be any time instant of a grant phase of i with equal probability,m

independent of the history r. Hence,
tl

prob(E) > min length of stage 1

max length of grant phase

6r . r .mmn 1 - mmn

(66+66')rmax 6 i r max r
mx 6 +l _ max

So, prob(E m ;Prob(E,).prob(Era/E m') rmin/

1 .mn 1

+r rma V

1 r min ma

Due to Corollary 3.3, Lemma 3.3 and Lemma 3.2 we get

COROLLARY 3.4.

X1V V

-27-

with

r~a r
6 + max max

rmin rmin

Let u be the number of sessions after t needed for process i to get

all k' resources in one round, given any history rt.

The previous corollary implies<-1 k°
prob (U-in) I ~ Xk

For EE (0,11, let u(E) be the minimum value such that prob(u >u(E))< E..

Then

U()=
lg (E/(X'v) k)

log (1 (y)

and again (as in Section 5.2)

u(s) <kfA'v)k log--

Note that a session E contains at most two grant phases of at least one

resource allocator. So, the time length of a session Z is at most

mmi (v Vrmitn ma

- 12(1 + ma)x "Trmin rmax

Note that at least T(- 1) - 6 steps are in (tM,tS]. Hence the probability

2v
that at least one complete round R is contained in (tM tS] is at least

(1 -

U1 - E1 V Nowi2

-28-

*1

Prob, lyk < (time duration of a session)

Prob 12 + rmaxx r T I uE

rmin

Prob {each session contains at least one complete round R in

(tM tSI and u u(E/2)}

because the "length of a round" distribution is determined by the underlying

DCS implementation independently of the number of rounds needed for a process

to get all its k resources. So

Sk,. r2 rmin) rmax.rTEV u~

(I - 2) > 1 E

implying

Y (C) 0(U)) -(kvk)

k (r ~v)k2-/

-29-

which has mean

k = O(kvk log V)

Using T(C) =O(v2 log(l/)) and i=O(v) as given in [Reif, Spirakis,

1981] we get

= o(k+2 log(~ log()

and

= O(kvk + 2 log v)

Note that our response for the flag implementation is slightly better

than those based on a handshake communication system, since there is no

uncertainty about flag communication in each round. However, when processes

are not tame, the correctness of the implementation by flags may be

violated, while the correctness of the implementation by an underlying DCS

will be preserved (because of the handshake communication which accompanies

allocation or deallocation of a resource) given that the correctness of

the underlying DCS is not violated when processes are not tame.

i -

-30-

REFERENCES

Andrews, G., "Synchronizing Resources," ACM Transactions on Programming
Languages and Systems, Vol. 3, No. 4, Oct. 81, pp. 405-430.

Angluin, D., "Local and Global Properties in Networks of Processors,"
12th Annual Symposium on Theory of Computing, Los Angeles,

California, April 1980, pp. 82-93.

Arjomandi, E., M. Fischer, and N. Lynch, "A Difference in Efficiency

Between Synchronous and Asynchronous Systems," 13th Annual Symposium

pn Theory of Computing, April 1981.

Bernstein, A.J., "Output Guards and Nondeterminism in Communicating

Sequential Processes," ACM Trans. on Prog. Lang. and Systems, Vol. 2,
No. 2, April 1980, pp. 234-238.

Bernstein, P., and N. Goodman, "Fundamental Algorithms for Concurrency

Control in Distributed Database Systems," CCA TR. Contract No.
F30603-79-0191, Cambridge, MA, 1980.

Dennis, J.B. and D.P. Misunas, "Preliminary Architecture for a Basic Data-

flow Processor," Proc. of the 2nd Annual Symposium on Computer

Architecture, ACM, IEEE, 1974, pp. 126-132.

Fischer, M.J., N.A. Lynch, J.E. Burns, and A. Borodin, "Resource Allocation

with Immunity to Limited Process Failure," 19th FOCS, 1979, pp. 234-254.

Francez, N. and Rodeh, "A Distributed Data Type Implemented by a Probabilistic

Communication Scheme," 218t Annual Symposium on Foundations of Computer

Science, Syracuse, New York, Oct. 1980, pp. 373-379,

Hoare, C.A.R., "Communicating Sequential Processes," Com. of ACM, Vol. 21,

No. 8, Aug. 1978, pp. 666-677.

Lehmann, D. and M. Rabin, "On the Advantages of Free Choice: A Symmetric

and Fully Distributed Solution to the Dining Philosophers' Problem,"

to appear in 8th ACM Symposium on Principles of Program Languages,

Jan. 1981.

Lipton, R. and F.G. Sayward, "Response Time of Parallel Programs." Research

Report #108, Dept. of Computer Science, Yale Univ., June 1977.

Lynch, N.A., "Fast Allocation of Nearby Resources in a Distributed System."

12th Annual Symposium in Theory of Computing, Los Angeles, California,

April 1980, pp. 70-81.

Rabin, M., "N-Process Synchronization by a 4 log2N-valued Shared Variable,"

21st Annual Symposium on Foundations of Computer Science, Syracuse,

New York, Oct. 1980, pp. 407-410.

• -- .T . -- - , o

-31-

Rabin, M., "The Choice Coordination Problem," Mem. No. UCB/ERL M80/38,
Electronics Research Lab., Univ. of California, Berkeley, Aug. 1980.

Reif, J.H., and P. Spirakis, "Distributed Algorithms for Synchronizing
Interprocess Communication Within Real Time," 13th Annual ACM
Symposium on Theory of Computation, Wisconsin, 1981, pp. 133-145,
also rewritten as "Real-time Synchronization of Interprocess
Communications," TR-23-80, Aiken Comp. Lab., Harvard University,
Cambridge, MA.

Reif, J.H., and P. Spirakis, "Unbounded Speed Variability in Distributed
Communications Systems," Ninth ACM Symposium on Principles of
Progrwming Languages, January 25-27, 1982A, Albuquerque, New Mexico.

Reif, J.H., and P. Spirakis, "Real Time Implementation of 2-Phase Locking
by Probabilistic Techniques," to appear in 1982.

Schwarz, J., "Distributed Synchronization of Communicating Sequential
Processes," DAI Research Report No. 56, Univ. of Edinburg, 1980.

A7

-32-

APPENDIX

Distributed (Handshake) Communication Systems (DCS)

Suppose that each process has a special resource called channel which

can be in one of two states open, closed. A handshake of t.wo processes i,

j in time t is a combination of processes states at time t so that

both channels of i and j are open at the same time.

Successful direct conmunication is a handshake of at least 1 step

overlap of both processes so that the handshake relation is a matching. At

any instant t no process is allowed to be handshaking with more than one

other process. During the one step overlap, a message can be transmitted

from one process to the other. The problem is usually to synchronize

processes (via a distributed scheduler) so that they can handshake at

their will, given that the means of synchronization is some low level

construct (a message system, buffered communication, shared variables or

flags) which does not guarantee the handshake property if used in an

unsophisticated way. A distributed scheduler is called real time if it

has the property that if two processes i, j are willing to handshake

mutually for at least a constant time interval, then they will actually

achieve successful direct communication during that time interval with

arbitrarily small probability of error.

Formally, let T(E) be the smallest real number such that if two

processes i,j are mutually willing to handshake for at least T(e)

time, then they will actually succeed in 1 step overlap of open channels

during that time, with probability ' 1-c. l(c) is called the C-error

-33-

response of the handshake algorithm. The mean response i of a handshake

algorithm is the maximum (over all adverse speed schedules of tame processes

and overall adverse communication requests subject to restrictions stated

in the Introduction) of the mean time needed for two processes to handshake,

from the time instant they start to be mutually willing. A real time

probabilistic scheduler has T(c) depending only on v and not on any

other global measure of the communications graph. (v is a fixed upper

bound on the out-valence of the dynamic communication willingness digraph

at any time instant t). We also require T(O) to increase at most

linearly with i/E. Note that such a scheduler has i also depending only

on v.

The handshake problem has been given some attention in literature

[Schwarz, 79], [Francez, Rodeh 80], (Francez, 81], [Reif, Spirakis 81],

and (Reif, Spirakis 82A].

For Section 3 we require a Distributed Communication System (DCS) as

defined above with a distributed real time probabilistic scheduler. We

also require the DCS to have the following property:

If a process i is willing to communicate with k (v processes for

at least time OT(c) and if they are also willing to (handshake) communi-

cate with i during that interval, then the probability that i will be

able to communicate with all of them (in some order) within T(E), is

)(1-c) v . Such a real time DCS was implemented in [Reif, Spirakis 81] with

c-error response

T(C) - O(v2 log(l/))

and mean

-
2(v)

-DAT

FILME I

