AD-A122 557

UNCLASSIFIED

REAL TIME RESOURCE ALLOCATION IN A DISTRIBUTED SYSTEM
(U) HARVARD UNIV CAMBRIDGE MA CENTER FOR RESEARCH IN
COMPUTER TECHNOLOGY J REIF ET AL. JUN 82 TR-18-82
NOOO 14-80-C-0647

.-

P

™

10 B K
 e—— 3.2
g b |
e

{ MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS-1963-A ’

e

arvard University

or Research

REAL TIME RESOURCE ALLOCATION
IN A DISTRIBUTED SYSTEM

John Reif
Paul Spirakis

TR~18-82

Presented at ACM SIGACT-SIGOPS Symposium on Principles of

" Distributed Computing, Ottawa, August 1982
June 1982 DTIC
ELECTE
DEC 17 1982

e

D

Acoession For

NTIS GRARL x
DTIC TAB
Unannounced 0O
Justification___ |

By.

Distribution/

Ava_l_labl_l_ity Codes
Avail and/or

Original version appeared as TR~06-82 in February 1982.

DISTRIBUTION STATEMENT A Dist Special
Approved for public release]
. Distribution Unlimited H J

’ i SECURITY CLASHIFIEATION OF THIS FAGE (When Dote Enrered)

REPORT DOCUAENTATION PAGE BEFORE COMPLE Tiag. FORM

DAt AS A4 S
; . AEPORT NUMBER 2. GOVY ACCESSION NOJ 3. RELIPIENT 'S CATALOG NUMBER
-

4. TITLE (and Subtitle) S. TYPE OF REPORT & PERIOD COVERZO
Real Time Resource Allocation in a Distributed * Technical Report
System
6. PERFORMING ORG. REFPORY NUMBER
7. AUTHOR(s) . A ANT UM)
John Reif
Paul Spirakis N0Q014-80-C-0674
PERFORMING ORGANIZATION NAME AND ADDRESS 10 ::ggl.m itta't‘“f“m“ .J‘E.C‘f TAK

Harvard University
Cambridge, MA 02138

31. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE
Office of Navel Research |__June 1982
800 North Quincy Street '3. NUMBER OF PAGES ;

1_3% 22217 13 i
4. MONIY NG AGENCY NAME & ADORESS(t! ciflerent from Controlling Olllce) 18. SECURITY CLASS. (of shie repert) i

same as above

T8a. GECLASSIFICATION/ GOWNGRADING
SCHEDULE

16. DISTRIBUTION SYATEMENT (of thie Report)

unlimited
DISTRIRUTION STATEMENT A

Approved for public release)
Distribution Unlimited -

b M i A o A= iy e

17. DISTYRIGUTION STATEMENT (ol the adatract entered in Block 30, Il ditierent lram Repert)
umlimited

16. SUPPLEMENTARY NOTES

19. XEY WORDS (Centinue en roverse olde il necossery and identily by bleck number)

resource allocation, hypergraph matchings, real-time, synchronization,
dining philosophers, scheduling, two-phase locking, reandomized algorithm.

20. ABSTRACT (Centinue on reveree elde i necessary and idenilly by dleck number)

see reverse side. T W

0D .’ %", 1473 «oimion oF 1 nov 68 18 OBsOLETE
$/% 510201884004

SECURITY CLASIIFICATION OF TRIS PAGE (When Date Antornd)

, ’ ” e o " o - T LU

e e e A starearen

o

ALUMTY CLASHFICATION OF THIS PASE/Whon Dot Entered)

\\ L " L -

‘ﬂlin this peper we consider 3 resource ailocation problem which is local
in the sense that the maximum number of users competing for a particular
resource at any time instant is bounded and also at any time ingtant the

maximum number of resources that a user is willing to get is bounded. The

problem may bc vicwed as that of achieving matchings in dynamically changing
hypergraphe, via a distributed algorithm. We show that this probles is
related to the fundamental problem of handshake commmnication (which can be
viewed as achieving matchings in a dynamiocally changing graph, via distributed
algorithms) in that an efficient solution to each of them implies an efficient
solution to the other. We provide real-time solutions to the resource
allocation problem (that is, we give distributed algorithms with real time
response). We make essential use of probabilistic techniques as first used

by (Rabin, 80b}, where processes arc allowed to make indcpendent p:ohnbilistié

choices. On the other hand, no probability assumptions about the system Y

behavior are madeh\\pne of our solutions assumes the existence of an under-
‘\

lying real-time handshake communication systom, as described in [Reif,

Spirakis, 81). Our other solution is based on efficient synchronization by)

flag variables, which are written only by one process and read by at most

one other process. The special case of equi-speed processes is first
examined. Then we generalize to asynchronous processes. Applications are

made to dining philosophers, scheduling and two-phase locking in databases.

" "CURITY CLASSIFICATION OF THIS PAGE(When Date Enterel)

R Sl B 7 d

*This work was supported in part by the National Science Foundation
Grant NSF-MCS79-21024, and the Office of Naval Research Contract

NO0014-80-C-0647.

REAL TIME RESOURCE ALLOCATION
IN A DISTRIBUTED SYSTEM*

by

John Reif and Paul Spirakis

Harvard University

June 1982

o -

ABSTRACT

In this paper we consider a resource allocation problem which is local
in the sense that the maximum number of users competing for a particular
resource at any time instant is bounded and also at any time instant the
maximum number of resources that a user is willing to get is bounded. The
problem may be viewed as that of achieving matchings in dynamically changing
hypergraphs, via a distributed algorithm. We show that this problem is
related to the fundamental problem of handshake communication (which can be
viewed a's achieving matechings in a dynamically changing graph, via distributed
algorithms) in that an efficient solution to each of them implies an efficient
solution to the other. We rrovide real-time solutions to the resource
allocation problem (that is, we give distributed algorithms with real time
response). We make essential use of probabilistic techniques as first used
by [Rabin, 80b], where processes are allowed to make independent probabilistic
choices. On the other hand, no probability assumptions about the system
behavior are made. One of our solutions assumes the existence of an under-
lying real~time handshake communication system, as described in [Reif,
Spirakis, 8l1]. Our other solution is based on efficient synchronization by
flag variables, which are written only by one process and read by at most
one other process. The special case of equi-speed processes is first
examined. Then we generalize to asynchronous processes. Applications are

made to dining philosophers, scheduling and two-phase locking in databases.

| ——— . - - . oo ~ = . . .

I. INTRODUCTION

1.1 The Resource Granting System

In this paper we consider a resource allocation problem which is
local in the sense described in [Lynch, 1980). The set of resourcesp
and the set of user processes U may be infinite sets. However, there is
a limit to the number of user processes requesting a particular resource.

We assume that names of processes are integers. Resources are controlled
by a set of granting procegsses R. Each granting process j€R controls
a resource p(j)€ p. We assume user processes communicate only with those
granting processes for which they request resources. (It is easy to super-
impose each granting process into a requesting user process so that U=R.)

A system described as above, is called a Resource Granting System
(RGS). The goal of a RGS is to satisfy dynamically changing user reguests
for resource allocation. This is done in a distributed way, by only a local
communication between granting and requesting processes. An implementation of the
RGS determines the synchronization algorithms that the processes run. It is symmetric
if these algorithms do not depend on the location of the processes in the net-
work. At each time t#0 the reguests by user processes U are specified
by an adverse oracle , (which may be an "enemy" of the resource allocation
algorithm, by setting actions in the worst way to increase the respone
time.) (Note that in practice no such oracle . may exist but instead each
user process is executing some program which requires from time to time some
resources to be allocated to that user process. The oracle o is used as an
artificial device for specifying worst case situations for the resource
allocation algorithm.) « also has the capability to select at time t=0

the schedule of the speeds of all processes at all times t20. The oracle .Af

- ~ F » -

™

L T R L T ey o e

is restricted, to allow users to keep asking for their resources until they s
. {
. are granted. We assume that there is a global time t totally ordering :

events, but processes do not have access to it.

An RGS with priorities is defined to be a resource granting system in

which the requesting processes communicate to each resource granting process

mmmonail A s s

a rational number on the interval [0,1], indicating the priority of the
request. A priority greater than 0 indicates a request for that resource.
These priorities can change dynamically. The processes of R use the priori-
ties, that the processes of U communicate to them, to grant their controlled
resource with preference to users of higher priority. This must be done in a

way avoiding user starvation.

1.2 Complexity of an RGS

A process step consists of either an assignment of a variable, a test, a

logical or arithmetic operator or a no-op. A step is considered to be a finite

time interval A in which a single instruction is executed instantaneously at
the last moment of A. Note that, by these semantics, there can never be read-
write conflicts in the use of flag variables.

Let a process be tame during a time interval A, if for any interval
A' € [0,), which intersects A and is a single step of the process, then
|ar] € [rmin'rmax] where T in' “max OF® fixed real constants and

O0<r Without loss of generality we assume that r /x . is an

€r .
min max max’ “min

integer. We do not assume processes always tame, however, they are supposed
to be tame in the complexity analysis of response time. We require that, at
no time, any granting process i€ R simultaneously grant the resource R(i)

to more than one requesting process. We also reguire that, as soon as a

- ——— . . R T e o e

process JjEU has got all its required resources, then it can keep them only
for a time interval upper bounded by a fixed parameter (resulting in a bounded
number of its steps L, if the process is tame). Let resources(i) be the set
of all possible resources that a process i€U is going to ever request, and
let resourcest(i) be the set of resources i is requesting at time instant t.
Let ki,t be Iresourcest(i)|. For each time t, the willingness digraph G,
is defined such that if i€U and j€R and if i requests or has been
granted resource p(j) at t, then the edge i -E j belongs to Gt' Let also
3 -t> i if the granting process j is willing to allocate (or has granted) its
resource to user 1i. Let ve be the maximum valence of the nodes j€R of
Gt.

In the following we will assume at all times t20 that v, and Kk,

t i,t
are above bounded by constants v,k respectively and that v<k. This does
not imply anything about the cardinality of the sets resources(i) Vi€ U, which
could be unbounded. We also assume, as in [Lynch, 1980), that each resource
allocator jER has a set sj available to it of size €v, containing the
names of those processes willing to get the resource. We assume this to be u
primitive of our system (which could be implemented by a gqueued message system
or by other means). Finally, we restrict any oracle ./ so that as soon as it
produces a reguest for a resource (i.e., it orders the appearance of the edge
i -{ j in Gt for i€U, jER) it has to insist on that reguest until i
gets all its requested resources at that time. (Note that the relation ;
can be viewed as a time varying hypergraph with node set Il = ULR and hyperedge
set E = {{i}y resourcet(i)l i€U}. An RGS implementation dynamically achieves

matchings in this hypergraph. We allow probabilistic RGS implementations

where processes can use independent random number generators.

Fix an RGS implementation which may be probabilistic. For each k

(0€k€v) and oracle « let the k-grant responece be the random variable

Yk, o giving the length of the minimum interval A required for any prc;cess

i€U to have Xk resource requests simultaneously granted, given that i

requested these resources during the entire interval A, with priority 1,

and assuming that i and all the allocators of the resources requested by
ni within A are tame on A. Let the mean k-grant response be

¢k=max{mean{Yk d} over all oracles .«f}. For each € in [0,1] let the
» r

€~érror k-grant responge be the minimum Y, (€) such that for every oracle

Prob{Yk .,4< Yk(e)} 21l-¢ .

The RGS implementation is real time if for every k€ {1,...,v} and for
every €€ (0,11, Yk(e) >0 and independent of any global measure of the
network (except v). The network here has as nodes the elements of Il and
each edge {u,r} denotes that p(r) € resources(u). Note that if the RGS
implementation is real time, then ‘?k is constant, independent of any global

measure of the graph H of the network (except perhaps v).

1.3 Previous Work

{Lynch, 1980] considered the problem of allocation of resources in a
distributed system. Her RGS implementation was a deterministic, non-
symmetric one (processes were allowed to know the color of each resource in
a coloration of the resource graph, i.e. the graph whose nodes are the
resources and two resources i, j have an edge between them iff
resoutce-l(i) N resource-l(j) ¥ @), and the communication system adopted was

a message system requiring buffered communication. [Lynch, 1980) achieved

R rt T iy - ARt Tt at peran e’ e e < @ g

X (H)

k-grant response of the order X(H)-v T where ¥(H) is the chromatic

number of the resource graph and T is the time required for process communi-
~

cation. Note that since resources(i) for i€U may be unbounded, in the

worst case X(H) can be as large as the number of processes IHI.

1.4 Results of this Paper

We shall present in Section 3 a rrobabilistic implementation of an RGS
which has mean k-grant response §k==0(kvk-?-log v) and €-error k-grant

response
_ k. (1\ (€
Yk(s) = O(FV log(e) T(E;))

where T and T(€) are the mean time and £-error response required for
handshake communication between processes (see Appendix for definitions).
In [Reif, Spirakis 198l1]), [Reif, Spirakis 1982] handshake communication
implementations were given with "l:=0(v2) and T(g) =O(vzlog(l/e)) . Note
that these implementations achieve real time, thus the resulting RGS

implementation is also real time with mean
= 00 oy v ama (o) = o(kvk+zl°g(_\é) 109(%)) .

However, any other handshake communication implementation would also do.

In Section 4 we present a basic way to implement a real time RGS in
both cases of equispeed and asynchronous tame processes. The implementation
is probabilistic. No underlying handshake communication system is assumed.
Instead, the means of synchronization between processes in U and R are
flag variables (which are written by just one process and allowed tc be

read by at most one other process). The response time has mean ?k'-O(kvk+1)

1

ana vy, (e) = okv**! 10g(1/¢)).

1.5 Organization of Paper

This paper is organized as follows: Section 2 contains applications of
RGS to dining philosophers. scheduling, two-phase locking in databases, and
real-time handshake communications. Section 3 discusses a real time RGS
assuming an underlying real time handshake communication system. Section 4
discusses a real time RGS implementation by use of flags. First an imple-
mentaticn is discussed in which processes have the same speeds but their
actions may be relatively shifted in time. At the end of Section 4 we
generalize our algorithms to the case where processes are asynchronous but
tame. Section 5 presents a probabilistic analysis of our algorithms. The
Appendix defines handshake communication systems and their performance

measures.

2. APPLICATIONS

2.1 Hasty Dining Philosophers

As a simple example, we consider an interesting RGS system which we
call "hasty dining philosophers”. Let the requesting processes U be

distinct integers, «r TRV I and the granting processes R be O0,...,n-1

0 ~1
so that UNR=g. The resources are forkse {p(0),....p(n-1)}. Each philo-

sopher r, €U has resources(rj) consisting of the forks {p(r.),p(r) }.

3 3 (j+l)mod n

Thus, the resource graph H is a cycle of length n. The "hasty dining
philosophers"” has a high level real time RGS implementation with mean 2-grant
response ?2-0(1) and e-eiror 2-grant response Yz(e) -O(log(l/s)z). The

low level RGS implementation gives ;2 = 0(l) and Yz(e) = 0(log(l/e)) .

Intuitively, the RGS implementation requires each philosopher rj to be at

any time granted both forks of resoutcg(ri) in expected constant time, but
rj must be "hasty” and relinquish these resources within constant time inter-
val. Note that for each 1€ {0,...,n-1} the gcanting process i can be

placed within process i thus resulting in essentially only n processes.

2.2 Scheduling

Suppose an acyclic digraph D is given with node out-degree %€k, and
in-degree <v. This graph can be separated into levels. We assume processes
residing in the nodes of D can operate only after getting all their resources
(which reside at the nodes which have no successors). Each process operates
just once and in a constant time interval becomes a resource granting process,
to serve the next higher level. All its successors are deleted. So, each
node is initially a requesting process and after it gets all its resources
once, it becomes a resource granting process. By assuming a real time RGS
implementation the above system can be processed in time of the order of the

depth of the digraph.

2,3 Two-Phase Locking in Databases

Two-phase locking is a concurrency control method in databases (see
the survey paper of ([Bernstein, Goodman 1980)) with the feature that as soon
as a transaction releases a lock, it never obtains additional locks. The
technique of two-phase locking produces serializable transaction executions.
We propose in [Reif, Spirakis 1982B] a technique to implement two-phase
locking in a distributed database, which is different from any known algo-~
rithms. 1In fact, it can be viewed as intermediate between the technigues of

static and dynamic locking. Our underlying assumption is that transactions

are allowed to act on the data only if they got all the locks requested.

Let the processes of the user set U be called transaction modules and the
processes of the set R be called data modules. 1f each transaction requests
to lock at most k data modules at a time and if at most v transactions
can compete for a lock at a time instant t, then a real time RGS will result
in real time lock allocation per transaction. The transaction modules go
through a "round" (of constant number of steps in duration) during which

they communicate with all data modules they want to lock. They keep the
locks they get only for constant number of steps hoping in the meanwhile to
get all of them. If the round finishes and they did not succeed in getting
all the locks, then they release whatever they got and try again in the

next round. Given the previously stated response time Yk(s) for a real-
time RGS, one can now decompose the distributed system into a system of
parallel servers with almost independent geometrically distributed service
time, (one per transaction module). In [Reif, Spirakis, 1982B] we then
analyze the transaction waiting time, throughput etc., by assuming a proba-

bility distribution in the transaction arrival rate.

2.4 Handshake Communication in Real Time Via a Real Time RGS

We can implement here handshake communication in the sense of the
Appendix, assuming the existence of a real-time RGS. Assume that each of the
processes JjE€R control just one resource called the channel and when they
allocate this resource, we say they open the channel. The processes i€ U
are assumed to open their channel when they are granted their resource and to
close their channel when the resource is removed.

Each of the processes 1i€U have Iresourcet(i)l<1, 80 as soon as any

process i€U is granted one resource, process i does not compete for any

~ T T

other, until i releases that resource.

Given bounds v on the processes i€ U competing for the same p(3j),
JER and a bound k€v on the number of resources a user is willing to be
granted at any time t, a real-time RGS will imply a real-time handshake
communication Scheduler, with the same time performance (see the Appendix).
It is interesting to note (as we show in Section 3) that one can implement

also a real time RGS by a real time distributed communication subsystem.

4

3. HIGH LEVEL RGS IMPLEMENTATION ASSUMING A REAL-TIME HANDSHAKE
COMMUNICATION SYSTEM

3.1 The Algorithm

Our implementation of a probabilistic real time RGS is as follows:
The granting processes i are always willing to communicate only
to the requesting processes in the set Si which have rights to resources
p(i) (as defined in the Introduction). The requesting processes are willing
to communicate only to those granting processes whose resources they want (or
have been allocated). By communication here we mean a handshake communication.
We shall assume here the existence of a DCS with £-error response T(E), as
in the Appendix.

We may view the actions of the requesting processes time-sliced in
rounds, where each round is a minimal time interval in which i communicates
at least once with all k of the resource controlling processes of the
resources which i wishes to obtain.

The granting processes do forever the following grant algorithm which

is a loop, a single execution of which is called a grant phase:

P

-10-

Grant Algorithm

for process i€R

Do forever

begin

[1]. Do a handshake communication with anyone of the requesting
processes in si and get their priorities (in ¢ steps).

[2]. Probabilistically select j€Sj, in § steps. (The values of
the priorities determine the probability of each requesting
process to be selected as determined in Section 3.2.)

[3]. oOn first handshake with the selected process 3j, say "yes" to
j allocating your resource to 3j. (8 steps)

{d]. Por 2 § steps, the granting process says "no" to any requesting
process but Jj in any handshake and says "yes" to 3j on any
communication.

[S5]1. On handshake with any other process than 3j, the granting process
i says "no". On first handshake communication with 3j, the
granting process i says "no" to 3j, indicating that resource
p(i) has been withdrawn from 3j and ending the grant phase.

(§ steps).
[6]. Wait for |w] steps where w is randomly chosen from [0,64']).

end

In the above algorithm we fix parameters 6= FT(E/ZV)/rminl and
§' = Ié(rma /rmin)l. Hence & steps of any tame process contain at least
time T(€/2v) and the maximum time duration of § steps is egual to the
minimum time duration of &' steps. Thus the maximum possible length of the
random wait is, at least the time length of the rest of the stages of the
grant phase. Note that stages (1], [3] and [5] may take more than 6 steps

(with very low likelihood). This is taken into account in the analysis of

performance of the algorithm,

R e

-11-

3.2 Probabilistic Selection

We give here a very simple implementation of probabilistic selection
of one out of €v processes (using their priorities) in O(v) steps as
required in phase 2 of the algorithm in Section 3.1. This implementation
can easily be improved to O(log v) steps (see [Reif, Spirakis 1982]).

Suppose that each resource allocator i has just a random number
generator drawing uniform numbers between O and 1. Let nl,nz,...,nv, (for

v'€v) be the processes reguesting the resource of i at the current time

. e i x
and let piﬂl’ Piﬂz""'Piﬂv. be their priorities. Let h(x) = Zj=l Piwj'

for any x in {0,1,2,...,v'}. To implement the selection process of stage
[2]) we do the following:
[2.1) draw a random number n in [O0,1].

[2.2] £find the prccess name rx for which

h(x-1) h(x)

hv) <" S hvn :
Note that stage [2.1] takes one step and stage [2.2]) takes O(v) steps since
we have to evaluate and compare 2 partial sums each step. Since
h(x)==h(x-1)+PiTI for any x in {1,...,v'}, the current partial sum can

x
be evaluated from the previous partial sum by a single addition.

4. REAL TIME IMPLEMENTATION BY USE OF FLAG VARIABLES

4.1 The Algorithm for the Case of Equi-Speed Processes

For simplicity, we shall temporarily assume here a fixed time instant

to>0 such that for time t>t° all processes are executing at the same

o FTTTT

e i AR ' M AL A o8, s e e

-12-

speed. (Section 4.2 drops the assumption of equi-speed processes.) How-

| ever, for times t‘<to in the past, the processes may be asynchronous and

| so, at t?to the execution of their programs in time, though proceeding
with equal speed for all processes, may be shifted (in an adverse wvay)
relative to each other.

The communication between granting and requesting processes is done

here by flag variables. To read one flag regquires one of the process steps.
In case of priorities, the flags are allowed to have rational values between
0 and 1, initially 0. The flags Pij indicate the priority of user j with
respect to resource i. 1In the simple case of equal priorities all flags
need only be boolean. Each granting process i has for each requesting
process j a special flag Fij whose value indicates if the resource p(i)
is allocated to j. If 3j reads Fij and finds it O, then it understands

that it lost the resource. The granting processes execute forever the following

loop, called a grant phase:

Grant Algorithm

of Granting Process 1i€R
Do forever
: begin
(1]. Read the priority flags of the requesting processes in the set si'

{2). Probabilistically select each of the requesting processes jEZsi
according to their priorities (see Section 3.2).

[3]. Set the flag Fij to 1 indicating that resource p(i) has been
allocated to process j.

(4] Wait for c¢v (non-operative) steps.

[5) Set the warning flag Lj4 to 1 to indicate to j that he will
loose the resource after at most 2cv steps. Wait 2cv steps.

{6] Set Fy4 to 0 (indicating that i removes the resource).
q Erase tge warning by setting Lij to 0.

e . Lo-

[7} Wait for w steps where w is a random integer selected
uniformly from [0,5¢cv].

end

Stages (1], [2] are reguired to take exactly cv steps each, where c¢ is
a small constant whose exact value can be determined by counting the maximum
number of steps of the granting process per requesting process in the
stages [1], [2], [3].

The grant phase takes a random number of steps, uniform in the set
{5¢cv,5¢cv+l,...,10cv}.

Each user process j€U executes continuously the following loop, a

single execution of which is called a round.

Do forever

begin

[1}1. sSet Pjj to 1 for each resource p(i) requested by user j.
(cv stéeps)

[2). Poll for c¢v steps to see which resources have been awarded to
user j. User 3j considers the resource p(i) awarded only
if p(i) has been both allocated (Fi.=l) and not yet warned
(L,,=0). J

1)

[3). If all resources reguested by j are awarded use them for

U steps.

end

(See also Figures 1 and 2.)

e i

14
|<—— CV > &— ¢V —9|<— cv ———~>J<—- 2cy —— B Sm— w —— —
read select random
priorities wait
award start remove
resource warning resource

Figurc 1: A phasc of a grant process.

|<s———- cv ‘*7?Lj? cv —>» €«— | ———————’W
ask for Poll for If all awarded,
resources by flags resources use them
awarded

Ficure 2: A round of a requesting process.

~ T e

Tty el e e e,

4.2 The Flags Implementation of the RGS for the Case of Asynchronous,

Tame Processes

Grant Algorithm

for i€R, for asynchronous case

It is the same as in the case of equi-speed processes. However, the stage

lengths are modified as follows:

Stage [1): takes c'v steps
Stage [2]: takes c'v steps
Stage [3]): 1 step as in equi-speed case
Stage [4]: takes c'v steps
Stage ([5): takes 2c'v steps
stage (7]: choose a random integer w€ [0,5c"v]
where 2
. max " max
c = — * C and c = *c .
r b 4
min min

The round of 3j €U in asynchronous case:
Same actions as in equispeed case. The stage lengths in steps are cv,

cv and r
min
u < {(cv-1) T '
max

for stages [1], [2}, [3], respectively.

g =

-16-

5. ANALYSIS OF THE REAL TIME RGS IMPLEMENTATION BY USE OF FLAG VARIABLES

5.1 The Case of Equispeed Processes

Note that in the equispeed case assumed here, the time is a constant
multiple of the process steps. The power of the adversary is thus restricted
to only a possibly malicious initial relative shift of the program counters of

the various processes.

LEMMA 1.1. For up<cv-1, it is impossible for the user 3 to conclude
that it has got all resources and actually some of the resources to have been

removed.

Proof. Since the polling time of Jj lasts only cv steps, by the
time user 3j concludes that the last resource is allocated to 3j, the first
allocated resource can at most be in the middle of the warning period ({(and
hence not removed yet). Since up<cve~1l, j has then enough steps at its

disposal to use the resources, before the first allocated resource is removed.

LEMMA 1.2. The probability that user j will get a particular resource

in ite current round is € 1/v for the worst case oracles.

Proof. Consider the subclass of oracles € which put maximum contention
on the system. These oracles give a worst case of the response time, since
contention cannot decrease the response time. However, in this case, the
Probability that user j will get a particular resource in its current round is

at best equal to the probability that j is going to be selected by the resource

allocator, so it is not more than 1/v. o
Recall to is the time instant at which the processes became synchronous.
Let t1 be any time instant after to. Let resourcest (3) = {pl.....pk.}.

1

=]

-17-

where k'€k, for a particular requesting process jER and let

| P, § be the resource allocators associated with those resources.

1 k'
In the following we consider a time interval I starting at tl during
which the set resourcest(j) for t€1I is equal to resources (3j). Let
1
Ft be a complete description of the system's history up to time tl
1

(including the probabilistic choices of the processes up to that time). Let

tm {where 1€¥m€k') be the first time after tl at which the allocator
¢

im starts a random wait stage. Let tM be the maximum of all tm's for

m=1,...,k' and let ts be the maximum of the time instances at the ends

.1 after time t_.. The

of the first grant phase of processes i X' M

1’

time interval (tl,ts] is called a session I of processes

{3,11,12,...,1k,}.

Let gj(Z) be the probability that the process j will get all its

resources in the session I, given any history Tt .
1
Note that a session is at most two grant phases of any resource

allocator, because processes are equispeed. Note also that after tM the
effect of the history Tt is completely counteracted by the random waits
1

done by the processes.
DEFINITION. Let gj(tM,ts) be the probability that process j will

get all its resources during the interval (tM,ts), given any history Tt .
1
Obviously gj (tM.ts) (gj (2). Note that there is at least one complete

round R of process j during a session I, such that R starts after

ty. Let E be the event "the flag Pi j of user j is seen by the
’
m

resource allocator im in the round R and during (tM.ts) and j is

o k'
selected by i Then gj(tM.ts) >Prob(nm.1 Em).

R St I

by)
.
{ | time
— t
E | (YT T T s :
’ | L 1 ! 1
] | !
! l(:_ w2_ I { ! .
I | S 1 1 \ 12
! i
I
|
‘ I
| |
} . | |
| L{—Wkl >J ! o _ ;
| | J
| ‘ '
[| i
; | | | ‘
1 J
| ! .
T a session &
Y

Figure 3: A session L.

e VHl Sl . - . —_

-19-

LEMMA 1.3. The events E_,...,E

1 K are independent.

Proof. Fix a time ¢t€ (tM,ts). By time ¢t, all allocators have
executed at least a random independent wait stage. The length i
of the wait stage is uniformly randomly chosen to take any
integer value from O up to the length 5cv of all the other stages of a grant
phase. Thus, at time t any allocator m is at each step of the non-wait

part of its grant phase with equal probability. D

COROLLARY 1.3.

gi(tM,ts) >4 Prob(El)-...'Prob(Ek,) .
Proof. By the independence of events Em, m=1,...,k' as proven in
Lemma 1.3. (s}
LEMMA 1.4. For any m€({1,...,k'}
prob(E_) 2 A
m 10v

Proof. Let Eé be the event "the flag Pi j of user j is seen

ml

by im in the round R and during (tM,tS)." Then Prob(Em given E&))l/v
since im selects one out of at most v processes with equiprobability and
j is one of them. Also, prob(E$)==prob(the start of R fells into the
first stage of a grant phase of im during (tM.tS)) = ratio of length of
first stage divided by total length of the grant phase of im (by Lemma 1.3).
But the total length of any grant phase is at least 5cv and at most 1Ocv

and the length of first stage is exactly «c hence

cv 1
prob(Eé) P Tocy 10 .

-20-

Also,

> 1 :]
prob(Em) 2 prob(Em)prob(Em given Em)

By Corollary 1.3 then

COROLLARY 1.4.

1 1 .
g.(t,.t.) 2 - 2 since k' <k.
MEST T qonk (1o
Hence
g (D) 3 ;};
(10v)
Also, note that
k
1
gi(Z) < (v)

due to Lerma 1.2.

Let u be the number of sessions required for user i to be granted
all its k resources in some round, given that i starts requesting them

at time tl and assuming any history Tt and oracle 7. By the Corollary
1
1.4 and Baye's formula,

m-1
Prob (u=m) € (1 - ——l——-) 1 .

(1ov) % w ¥

If u(e) is the least number such that prob{u>u(€) €€ then

k

ule) = log{e/(10))
i 1

log {1~ %

(10v) j

T“Ww\i

-21-

It is easy to show:

PROPOSITION 1. For every né€EN,

1 - > - n
log(l y
By Proposition 1, then
‘ ule) <k-(10v)k log leg = O(kvk log %)

Since each session takes ¥X20cv steps, we have

Prob{Yk », S20ecvule)} 21 - ¢

implying ¢€-error response

+1

- k 1
yk(e) = O(kv 109(6))

and mean

Y, = o kv¥*tl)

COROLLARY 1.5. In the case of equispeed processes, our flag
implementation of RGS has real time response, with g-error response

1 k+1

Y, (6 = o (kv** log(%)) and mean ?k = O(kv).

5.2 The Case of Asynchronous Tame Processes

Our analysis for the case of asynchronous tame processes parallels that

of the equispeed case.

LEMMA 2.1. For u < (ev=)(r . /r), it 18 impossible for the user

JE€EU to conelude that it hae got all resources and actually some of the resources

to have been removed.

-22-

Proof. The polling time of i can at most be c¢v rmax' since it
includes just cv steps of i. Each resource allocator waits 2¢'v steps
after setting its warning flag to 1 and then it removes the resource. Since

c¢'=r_ _/r .)*c we have that c¢''v steps of a resource allocator are at
max’ min

least c'v r_, time which is at least cv r time. Hence, by the time
min max

j concludes that the last resource has been allocated to him, the allocator

for the first resource granted can at most be in the middle of its warning

period (in terms of steps). The maximum time corresponding to | steps is

] rmax==(cv-l)rmin and the minimum time which corresponds to the remaining

half steps of the warning period is at least c'vr ., =cvr > {cv-l)xr_. .
min max min

So, j has enough time at his disposal to use the resources, before the first
allocated resource is removed. D
As in Lemma 1.2, we have:
LEMMA 2.2. The probability that user j will get a particular

resource in its current round ig¢ € 1/v for the worst case oracles.

Let t tyr torls {pl,...,pk,}, j. 1, gi(E) and gi(tM'ts)

’ r r ’
1 t M

just as defined in Section 5.1.
A crucial difference from 5.1 is that now a session is at most two
grant phases for at least one allocator and not necessarily for all of them.

Again, gi(tM.ts) € gi(Z).

Note also that the minimum time duration of a grant phase is

(5c'v~+5c"v)rmin = 5cv(rm + (r2 /x

ax max min)) and the maximum time duration of

a round of a requesting process is now (2cv+u)rmax< (2cv + cv(rmin/rmax”rmax

= cv(2rmax4-rmin). This implies that a grant phase of any allocator contains

at least 2 rounds of any requesting process and hence there is at least one

complete round R of process 3 during Z and after tM. Again,

-23~

k') . .
gi(tM,ts) >Prob(ﬂm=l Em) with Em defined as in 5.1.

LEMMA 2.3. The events Ejs---E are independent.

kl

Proof. Fix a té€ (tM,ts). Since t>tM, by time t all allocators
have each executed one (or more) random independent wait stages. The
number of steps of a wait stage is a random integer chosen uniformly from O

to 5¢"v, where c¢" = (r /r)2~c. Hence the minimum time duration of a

R max’ min

wait stage is at least 5vc"r ., =5vc(r _/r .)-r = Svc'r = the

min max’ “min’ “max max
maximum time duration of the rest of the stages of the grant phase. So, in
any case, the random wait can completely cover the length of the rest of the
stages. So at time t2>tM any allocator m is at any step X with equal 4
likelihood, independently of other allocators. o)

As in Corollary 1.3, we have

COROLLARY 2.3.
kl

gi(tM.ts) 2 121 Prob(Ei) .

LEMMA 2.4. For any m€{1,...,k'}

prob{E } 2 — lr . rmln . %- .
m 5(1 + max) max
r
min

Proof. Let E& be the event as defined in Lemma 1.4. Again,
prob(Em/Eé) » /v add prob(Eé) = ratio of length of first stage divided

by total length of the grant phase

c'vr r

min - 1 . _min
(Sctv+ 5C "V) rmax rmax max
511 +
r .
min
and since Prob(Em) 2 Prob(EA) . Prob(Em/EA) the lemma follows. o

Hence, by Corollary 2.3.

COROLLARY 2.4.

k k
1 1
for

Tmax | Tmax
A = 5 (14 max) _max
r . r .
min min
Let u be defined as in case of equispeed processes.

By following same steps as in that case, we get

u(e) € k(>«v)k 109% = o(kvk 109(%))

A session is at most two grant phases of at least one allocator.
Therefore the time length of a session is bounded by (5c'v4-5c"v)rmax, so
we have

Pr°b{Yk~jl< 5v(c'4-c")rmax'u(€)} »1-¢ .

COROLLARY 2.5. Our flag implementation of RGS in the general case of

tame asynchromous processes, has real time response with

k+1 1
yk(c) o(kv log(e))
and

1

= k+
Y * Oo(kv) .

ST]

-25=~

5.3 Analysis of our RGS which Uses a Handshake Communication System.

By the stated properties of DCS,

PROPOSITION 3.1.

2v

I

LEMMA 3.2. The probability that a particular requesting process i

Probi{a round length is at most T(EL)

will get a 'yes" answer in a handshake irn stage 3 i € 1l/v for the worst

case oracles.

Proof. Consider again the class of oracles ¥ putting maximum
contention in the system. o
Let t,, ty, to, Tt ,

1 1
Section 5.1. Again, gi(tM,ts) <gi (Z).

Z, gi(Z) and gi(tM.ts) be just as defined in

Let Em be now the event "a requesting process j gets a "yes"
answer in a handshake with allocator im in the interval (tM.ts) and in
the first round R of j after tM." Note that gi(tM,ts)>Prob‘(n:;;1 Em).

We show again that the events Em are statistically independent, as
in the Proof of 1.3. Again we observe that the length of a random wait has
a nonzero probability of completely covering the length of the rest of the
stages in a grant phase. The length of a random wait is randomly chosen
from [0,658'] So its maximum duration is at least 66°* rmin =

6 8§(x__ /x .)

r = 68 r = the maximum time duration of the rest of the
max’ mi min max

grant phase stages. So, Lemma 1.3 holds again, hence

COROLLARY 3.3.

kl
gi(tn,ts) p n Prob(Em) .
m=)

[

-26-

LEMMA 3.3. For any m€{1,...,k'}

Prob(Em) P4

rmax Y max v
6l1 +

r .

min

Proof. Let EA be the event "the handshake of processes Jj and im
will take place at the first stage of the grant phase of im, in the first
round R of 3j, in the interval [tM,tSPH Then Prob(Em|EA)>]Jv due to
probabilistic selection of requesting processes. Also prob(Eé) = prob
(the start of R falls into the first stage of a grant phase of im

during time interval (tM,ts) = ratio of length of the first stage divided

by total length of the grant phase, because by t process im has

M
executed at least one random wait (after tl) and hence the start of R
will be any time instant of a grant phase of im with equal probability,

independent of the history Ft . Hence,

1
. min length of stage 1
prob(Em) » max length of grant phase
> érmin > 1 Tmin

(66+66)rmax 6(1 R rmax) ¥ oax

So, prob(Em))Prob(Em,) .prob(Em/Em,)

r
> 1 Jmin 1 . o
“max) ‘max "
6ll + —
4
min

Due to Corollary 3.3, Lemma 3.3 and Lemma 3.2 we get

COROLLARY 3.4.

k L3
1 1
(XT;) < qi(t) < (;)

e el

=
gy -

o AT

~27-
with
r r
A = 6(1 . max) max
r . r . :
min min

f Let u be the number of sessions after tl needed for process i to get

all k' resources in one round, given any history Ft .
1
The previous corollary implies

-1 k
prob (u=m) € (1 - -—~£—E) (l)
(A'v) v

For €€ (0,1), let wu{€) be the minimum value such that prob(u>ul(e))<e.

Then
log(e/ ') %)

sl -

and again (as in Section 5.2)

u(e) =

u(€) sx'nk log()%) .

Note that a session I contains at most two grant phases of at least one

resource allocator. So, the time length of a session I is at most

r
_ € € max
2(66+66')rm&x = 12(1(—2v) + 1(—-2v) p)rmax
‘min

Tra €
= 1211 + 2ax |, -T(__) .
rmin max 2v

Note that at least T(%%) = 0 steps are in (tM.ts]. Hence the probability

that at least one complete round R is contained in (tM.ts] is at least

E.V
a- 3;) . Now

Prob Yk ~{< (time Quration of a session) u(%):
”n

\%

Prob‘Y caofy e max), (E).f
l Ko,of r . max \2v 2
min
Prob {each session contains at least one complete round R in

(ty,tg] and u €ul(e/2)}

-3 -5)

because the "length of a round” distribution is determined by the underlying

DCS implementation independently of the number of rounds needed for a process

to get all its

Ptob‘Y

implying

k resources. So

r
kﬂg{é 12(} +

l

T T TN T T

-29-

which has mean

?k = okv* T log v) .

Using T(€) =0(v2 log(l/€)) and ?=O(v2) as given in [Reif, Spirakis,

1981] we get

Yk(e) = 0(vk+2 199(%) log(g))

and |,

;k = 0(kvk+2 log v) .

Note that our response for the flag implementation is slightly better
than those based on a handshake communication system, since there is no
uncertainty about flag communication in each round. However, when processes
are not tame, the correctrness of the implementation by flags may be
violated, while the correctness of the implementation by an underlying DCS
will be preserved (because of the handshake communication which accompanies
allocation or deallocation of a resource) given that the correctness of

the underlying DCS is not violated when processes are not tame.

-30-

REFERENCES

Andrews, G., “Synchronizing Resources," ACM Transactions on Programming
Languages and Systeme, Vol. 3, No. 4, Oct. 81, pp. 405-430.

Angluin, D., "Local and Global Properties in Networks of Processors,”
12th Annual Symposium on Theory of Computing, Los Angeles,
California, April 1980, pp. 82~93.

Arjomandi, E., M. Fischer, and N. Lynch, "A Difference in Efficiency
Between Synchronous and Asynchronous Systems," 13th Annual Symposiwm
on Theory of Computing, April 1981.

Bernstein, A.J., "Output Guards and Nondeterminism in Communicating
Sequential Processes," ACM Trans. on Prog. Lang. and Systems, Vol. 2,
No. 2, April 1980, pp. 234-238.

Bernstein, P., and N. Goodman, "Fundamental Algorithms for Concurrency
Control in Distributed Database Systems,” CCA TR. Contract No.
F30603-79-0191, Cambridge, MA, 1980.

Dennis, J.B. and D.P. Misunas, "Preliminary Architecture for a Basic Data-
flow Processor," Proec. of the 2nd Annual Sympoeium on Computer
Arehitecture, ACM, IEEE, 1974, pp. 126-132.

Fischer, M.J., N.A. Lynch, J.E. Burns, and A. Borodin, "Resource Allocation
with Immunity to Limited Process Failure," 19th FOCS, 1979, pp. 234-254.

Francez, N. and Rodeh, "A Distributed Data Type Implemented by a Probabilistic
Communication Scheme," 2lgt Annual Symposium om Foundations of Computer
Seience, Syracuse, New York, Oct. 1980, pp. 373-379,

Hoare, C.A.R., "Communicating Sequential Processes," Com. of ACHM, Vol. 21,
No. 8, Aug. 1978, pp. 666-677.

Lehmann, D. and M. Rabin, "On the Advantages of Free Choice: A Symmetric
and Fully Distributed Solution to the Dining Philosophers' Problem,"
to appear in 8th ACM Symposium on Principles of Program Languages,
Jan. 1981.

Lipton, R. and F.G. Sayward, "Response Time of Parallel Programs," Research
Report #108, Dept. of Computer Science, Yale Univ., June 1977.

Lynch, N.A., "Fast Allocation of Nearby Resources in a Distributed System,"
12th Annual Symposiwm in Theory of Computing, Los Angeles, California,
April 1980, pp. 70~-81.

Rabin, M., "N-Process Synchronization by a 4 logpN-valued Shared Variable,"
21st Annual Sympoeium on Foundations of Computer Science, Syracuse,
New York, Oct. 1980, pp. 407-410.

e £ 0 s) ——— o ‘——————a

Lade

Rabin, M., "The Choice Coordination Problem," Mem. No. UCB/ERL M80/38,
Electronics Research Lab., Univ. of California, Berkeley, Rug. 1980.

Reif, J.H., and P. Spirakis, "Distributed Algorithms for Synchronizing
Interprocess Communication Within Real Time," 13th Annual ACM
Symposium on Theory of Computation, Wisconsin, 1981, pp. 133-145,
also rewritten as "Real-time Synchronization of Interprocess
Communications,” TR-23-80, Aiken Comp. Lab., Harvard University,
Cambridge, MA.

Reif, J.H., and P. Spirakis, “"Unbounded Speed Variability in Distributed
Communications Systems," Ninth ACM Symposium on Principles of
Programming Languages, January 25-27, 1982A, Rlbuquerque, New Mexico.

Reif, J.H., and P. Spirakis, "Real Time Implementation of 2-Phase Locking
by Probabilistic Technigques,” to appear in 1982.

Schwarz, J., "Distributed Synchronization of Communicating Sequential
Processes,”" DAl Research Report No. 56, Univ. of Edinburg, 1980.

"'N —r*»—-——— " - -

-32-

APPENDIX

Distributed (Handshake) Communication Systems (DCS)

Suppose that each process has a special resource called channel which
can be in one of two states opem, closed. A handshake of ‘wo processes i,
jJ in time t is a combination of processes states at time t so that
both channels of i and 3j are open at the same time.

Successful direct communication is a handshake of at least 1 step
overlap of both processes so that the handshake relation is a matching. At
any instant t no process is allowed to be handshaking with more than one
other process. During the one step overlap, a message can be transmitted
from one process to the other. The problem is usually to synchronize
processes (via a distributed scheduler) so that they can handshake at
their will, given that the means of synchronization is some low level
construct (a message system, buffered communication, shared variables or
flags) which does not guarantee the handshake property if used in an
unsophisticated way. A distributed scheduler is called real time if it
has the property that if two processes i, j are willing to handshake
mutually for at least a constant time interval, then they will actually
achieve successful direct communication during that time interval with
arbitrarily small probability of error.

Formally, let T(€) be the smallest real number such that if two
processes i,j are mutually willing to handshake for at least T(g)
time, then they will actually succeed in 1 step overlap of open channels

during that time, with probability # 1l-€. 1(€) is called the €c-error

S

-33-

response of the handshake algorithm. The mean response 1 of a handshake
algorithm is the maximum (over all adverse speed schedules of tame processes
and overall adverse communication requests subject to restrictions stated
in the Introduction) of the mean time needed for two processes to handshake,
from the time instant they start to be mutually willing. A real time
probabilistic scheduler has T{€) depending only on v and not on any
othex global measure of the communications graph. (v is a fixed upper
bound on the out-valence of the dynamic communication willingness digraph

at any time instant t). We also reguire T(g) to increase at most

linearly with 1/e£. Note that such a scheduler has T also depending only

on V.

The handshake problem has been given some attention in literature
{schwarz, 79), [Francez, Rodeh 80], [Francez, 8l1], [Reif, Spirakis 81},
and [Reif, Spirakis 82A].

For Section 3 we require a Distributed Communication System (DCS) as
defined above with a distributed real time probabilistic scheduler. We
also require the DCS to have the following property:

If a process i is willing to communicate with k&€v processes for
at least time 2T(c) and if they are also willing to (handshake) communi-
cate with i during that interval, then the probability that i will be
able to communicate with all of them (in some order) within T(g), is
2(1-¢)Y. Such a real time DCS was implemented in [Reif, Spirakis 81) with
€-error response

t(e) = o(v? log(i/e))
and mean

T = O(vz) .

