
 Open access Proceedings Article DOI:10.23919/ECC51009.2020.9143732

Real-time Robot Arm Motion Planning and Control with Nonlinear Model Predictive
Control using Augmented Lagrangian on a First-Order Solver — Source link

Ajay Suresha Sathya, Joris Gillis, Goele Pipeleers, Jan Swevers

Institutions: Katholieke Universiteit Leuven

Published on: 12 May 2020 - European Control Conference

Topics: Solver, Nonlinear programming, Augmented Lagrangian method, Robotic arm and
Sequential quadratic programming

Related papers:

 Real-Time Collision- Free Trajectory Optimization of Robot Manipulators via Semi-Infinite Parameter Optimization

 Nonlinear Predictive Control With End Point Constraints

 Constrained Motion Cueing for Driving Simulators Using a Real-Time Nonlinear MPC Scheme

 Structure-control dynamic design of parallel robots for end-effector trajectory tracking and singularity avoidance

 Trajectory tracking control of a 6-degree-of-freedom robot arm using nonlinear optimization

Share this paper:

View more about this paper here: https://typeset.io/papers/real-time-robot-arm-motion-planning-and-control-with-
3lf6tbqpob

https://typeset.io/
https://www.doi.org/10.23919/ECC51009.2020.9143732
https://typeset.io/papers/real-time-robot-arm-motion-planning-and-control-with-3lf6tbqpob
https://typeset.io/authors/ajay-suresha-sathya-48ww6xqdc5
https://typeset.io/authors/joris-gillis-2039kg7gwd
https://typeset.io/authors/goele-pipeleers-48dreni9cq
https://typeset.io/authors/jan-swevers-184gw18wds
https://typeset.io/institutions/katholieke-universiteit-leuven-j400mi90
https://typeset.io/conferences/european-control-conference-1vvumn4o
https://typeset.io/topics/solver-3rpiu7zh
https://typeset.io/topics/nonlinear-programming-3ckkp9wl
https://typeset.io/topics/augmented-lagrangian-method-1fy3n8ax
https://typeset.io/topics/robotic-arm-q9269c9n
https://typeset.io/topics/sequential-quadratic-programming-16htyuh8
https://typeset.io/papers/real-time-collision-free-trajectory-optimization-of-robot-2n9pqociie
https://typeset.io/papers/nonlinear-predictive-control-with-end-point-constraints-ijau1be51b
https://typeset.io/papers/constrained-motion-cueing-for-driving-simulators-using-a-2vpm91cw4v
https://typeset.io/papers/structure-control-dynamic-design-of-parallel-robots-for-end-jbgoff4hhs
https://typeset.io/papers/trajectory-tracking-control-of-a-6-degree-of-freedom-robot-49w68cwquy
https://www.facebook.com/sharer/sharer.php?u=https://typeset.io/papers/real-time-robot-arm-motion-planning-and-control-with-3lf6tbqpob
https://twitter.com/intent/tweet?text=Real-time%20Robot%20Arm%20Motion%20Planning%20and%20Control%20with%20Nonlinear%20Model%20Predictive%20Control%20using%20Augmented%20Lagrangian%20on%20a%20First-Order%20Solver&url=https://typeset.io/papers/real-time-robot-arm-motion-planning-and-control-with-3lf6tbqpob
https://www.linkedin.com/sharing/share-offsite/?url=https://typeset.io/papers/real-time-robot-arm-motion-planning-and-control-with-3lf6tbqpob
mailto:?subject=I%20wanted%20you%20to%20see%20this%20site&body=Check%20out%20this%20site%20https://typeset.io/papers/real-time-robot-arm-motion-planning-and-control-with-3lf6tbqpob
https://typeset.io/papers/real-time-robot-arm-motion-planning-and-control-with-3lf6tbqpob

Real-time Robot Arm Motion Planning and Control with Nonlinear

Model Predictive Control using Augmented Lagrangian on a

First-Order Solver

Ajay Suresha Sathya1, Joris Gillis1, Goele Pipeleers1 and Jan Swevers1

Abstract— In this work we implement motion planning and
control of a robot arm with nonlinear model predictive control
using the optimization algorithm PANOC. PANOC is a first
order nonlinear optimization solver, with convergence guaran-
tees, that is matrix-free unlike the popular sequential quadratic
programming and nonlinear interior-point methods. We extend
this solver to deal with hard constraints using an augmented
Lagrangian method. This is used to implement a multiple-
shooting MPC algorithm with collision avoidance capabilities on
a robot arm. The computational time is benchmarked against
other nonlinear optimization solvers. The algorithm is validated
with simulations.

I. INTRODUCTION

A. Background

Motion planning with obstacle avoidance for a robot

manipulator is an important problem. It has applications in

several cluttered environments where a robot needs to reach

a goal position, such as an automatic warehouse, factory

assembly shop or even a personal home chore robot. With

humans increasingly sharing the workspace of the robot and

considering the imperfections of the perception algorithms,

it is vital that our motion planning and control algorithm is

highly reactive to changes in the environment.

Manipulator motion planning with obstacle avoidance has

been an active area of research and there are several paradigms

for approaching this problem. Some early approaches included

using an artificial potential field to repel the manipulator from

the obstacle while attracting it towards the goal region at

the same time [1]. Such methods are prone to get stuck in

a local minima easily and follow very slow motions near

the obstacles. Sampling based graph search methods such as

Rapidly-exploring Random Trees (RRT) and Probabilisitic

RoadMaps (PRM) [2], [3] provide probabilistic completeness

guarantees, that is, the probability of finding a successful

motion plan (provided that one exists) increases with the

search time and approaches 1. Karaman and Frazzoli [4] also

demonstrate that such planners are asymptotically optimal

for a class of methods. But these methods suffer from the

drawback of requiring an extra smoothing step to compute the

*The authors gratefully acknowledge support from Flanders Make SBO
project - MULTIROB. Flanders Make is the Flemish strategic research
centre for the manufacturing industry. This work also benefits from
OPTEC: KU Leuven-BOF PFV/10/002 Centre of Excellence: Optimization
in Engineering (OPTEC), and projects G0C4515N and G0A6917N of the
Research Foundation - Flanders (FWO - Flanders).

1The authors are with MECO Research Team, Department of Mechanical
Engineering, KU Leuven, C300 BE-3001, Belgium DMMS Lab, Flanders
Make, Leuven, Belgium firstname.lastname@kuleuven.be

trajectory before executing it. Optimization-based methods

[5], [6] avoid this problem by directly computing a locally

optimal, smooth path in the joint space. These methods are

also faster than the sampling-based methods, but do not

possess any completeness guarantees and might fail to find a

solution, even if one exists, if the solver is stuck in a region

of local infeasibility.

The potential field methods are fast and reactive but are

suboptimal while the sampling and optimization-based meth-

ods are optimal but are not fast enough to react to changes

in the environment in real-time as it requires replanning.

Moreover both the sampling-based and the optimization-based

motion planners compute only a joint path and therefore

require a separate joint path following controller. Model

Predictive Control (MPC) is a powerful strategy to address

the aforementioned drawbacks. With MPC, we combine the

task of motion planning and path following and we also

obtain the reactivity because of the feedback given to the

MPC controller.

The optimal control problem for robot manipulator trajec-

tory generation requires the solution of a nonlinear program

(NLP). Two of the standard methods for solving the NLPs are

Interior-Point (IP) [7] methods and the Sequential Quadratic

Programming methods (SQP) [8]. But these methods invoke

a QP solver for each iteration which requires generating and

solving a linear system of the KKT matrix. In this work,

we employ a recently proposed first order solver proximal

averaged Newton-type method for optimal control (PANOC)

[9] to solve the problem. PANOC is a matrix-free method

for non-convex problems that only requires vector-vector

operations, that is shown to exhibit fast convergence [10],

[11].

B. Contributions

The NLP formulation for robot motion control using MPC

imposes constraints and costs (such as tracking error) on the

end effector frame of the robot. This involves constraints and

penalties of the robot kinematics which is a highly nonlinear

function for a seven degree-of-freedom (dof) robot. In a

single-shooting approach, such penalties at an instant are

nonlinear functions of all the preceding input actions. This

leads to a problem that is, too ill-conditioned to robustly

achieve a feasible solution. While, in a multiple-shooting

approach, constraints and penalties on the end-effector frame

are a function of only the joint state at that instant and is not

directly a function of the control actions. This decoupling

leads to an optimization problem that is better conditioned

and therefore, a multiple-shooting approach is preferred.

These multiple-shooting constraints must be satisfied to

high accuracy for a computed trajectory to be meaningful. But

vanilla PANOC algorithm can only deal with hard constraints

that lead to feasible sets that permit an efficient projection op-

eration. In this work, we implement an augmented Lagrangian

method on top of the vanilla PANOC algorithm to enforce

both equality constraints and inequality constraints. This

method is also used to enforce obstacle avoidance constraints.

The method is shown to be fast by benchmarking it against

other solvers. The reactivity of the solver is studied on a

case where the obstacle is moving and the robot needs to

reactively avoid the obstacle.

II. NMPC FOR POINT-TO-POINT TRAJECTORY

GENERATION

A. Problem Statement

Let q ∈ R
n denote the joint angles, where n refers to the

number of degrees-of-freedom (DOF) of the robotic arm. Let

TEE refer to the End-Effector (EE) frame of the manipulator

with respect to the inertial frame. The relationship between

TEE and the joint angles q is generally a nonlinear function

and is denoted as follows:

TEE = fkin(q) (1)

Let q̇ refer to the joint velocities. Let the state of the control

system denoted by x be defined as x = [q, q̇]T . Assuming an

acceleration-resolved robot controller, let the control action

u = q̈. The dynamical system is a double-integrator system

and is given as follows:

ẋ = fc(x,u) =

[

q̇

u

]

(2)

This continuous-state system is discretized, assuming a

piecewise constant control action, to obtain the discrete-time

system with a sampling time of ts. expressed as follows:

xk+1 = fk(xk,uk) = xk +

[

q̇ts +
1
2
ut2

s

uts

]

(3)

The controller aims to compute a trajectory that takes the

robot manipulator from a starting pose q0 to a desired end-

effector frame Tgoal. The trajectory must prevent collision of

the manipulator with obstacles that are denoted as Ok j ⊂ R
3

for the jth obstacle at kth instant. These objects are described

by open sets (possibly non-convex):

Oobs
k j ⊂ R

3 (4)

The geometry of the manipulator is modelled as a union

of convex objects and described as:

Orob
kl (xk)⊂ R

3 (5)

The distance between the manipulator object and environ-

mental obstacle is defined as:

dist(Oobs
k j ,O

rob
kl (xk)) = min(‖p−q‖2, p ∈ Oobs

k j ,q ∈ Orob
kl (xk))

(6)

The states xk and the control actions uk also have a feasible

set denoted as:

xk ∈ Xk uk ∈Uk (7)

where Xk and Uk are assumed to be closed compact

and convex sets projecting onto which, is computationally

inexpensive, such as box, balls or hyperplanes. In this work,

Xk and Uk refer to the box-constraints corresponding to joint

position and velocity limits and the joint acceleration limits

respectively.

B. Nonlinear model predictive control

The nonlinear model predictive control for the trajectory

planning problem can be formulated in the following form

minimize ℓN(xN)+
N−1

∑
k=0

ℓk(xk,uk), (8a)

subject to x0 = xstart, fkin(qN) = Tgoal (8b)

xk+1 = fk(xk,uk), k ∈ IN[0,N−1], (8c)

uk ∈Uk, k ∈ IN[0,N−1], (8d)

xk ∈ Xk, k ∈ IN[0,N], (8e)

dist(Oobs
k j ,O

rob
kl (xk))≥ 0,

k ∈ IN[0,N−1], l ∈ N[1,n], j ∈ N[1,nobs] (8f)

Here ℓk(xk,uk) : IRnx×nu → IR refers to the stage costs that

is taken to be reference tracking error. The reference tracking

error is described as a quadratic error on the translation and

the orientation terms and also a quadratic penalty on the

control calculated as follows:

ℓk(xk,uk) = ‖uk −ugoal‖
2
Rk
+‖pk − pgoal‖

2
Qpos,k

+

‖diag(CT
k Cgoal)−1‖2

Qrot,k
(9)

where pk refers to the translational terms and Ck refers

to the rotation matrix or the direction cosine matrix in

homogeneous transformation matrix for the EE at the kth

instant, Tk(xk) = fkin(qk).

C. PANOC Algorithm

The main features of PANOC algorithm [9] is summarized

here. Let o(z) : IRnz → IR be a function that is C
1,1
Ll

. Let Z

denote the feasibility set of z. One can define a projected

gradient step as:

zν+1 = ΠZ(z
ν − γ∇o(zν) (10)

where Π denotes a projection operation to the feasible set Z

and (10) always leads to a decrease in cost function if γ < 1
Ll

.

Reaching the accumulation point of (10) can be equivalently

viewed as fixed-point iteration. A series of iterates zν ,zν+1, ...

and so on are used to implement a quasi-Newton method

like the limited-memory BFGS (L-BFGS) method [12]. The

L-BFGS method exploits the curvature information of the

fixed point residual to speed up convergence. Globalization

is achieved by using Forward-Backward Envelope (FBE) as

a merit function [13], [14]. This FBE is real-valued and

continuous and is proved to have the same minima as the

original problem (10). For each descent step in PANOC, a

linesearch is performed to find a convex combination of the

quasi-Newton step and the projected-gradient step that ensures

a decrease in the FBE thus providing PANOC with global

convergence properties. Since Ll is, in general, not known in

advance for a given function, an initial value L0
l is chosen

for the Lipschitz constant and backtracking is performed to

increase the value of Ll whenever the assumed value of the

constant is found to be too small in a local region.

Therefore, PANOC is a first-order matrix-free solver for

nonconvex optimization problems with favourable conver-

gence properties. It can easily deal with hard constraints that

have a feasibility set that permits a computationally simple

projection operation. If not, one can resort to relaxation of

the hard constraint to a soft constraint and use the penalty

method when accurate constraint satisfaction is not a key

requirement (such as the case of obstacle avoidance where

the obstacles are enlarged to provide a tolerance against the

constraint violation that is inevitable with the penalty method

[10]).

D. Augmented Lagrangian Formulation

In [10] and [11], where PANOC was used for the motion

planning of a cart-and-trailer system and a quadcopter

respectively, the dynamics constraints of the form in (8c)

were enforced using single-shooting. For the current problem,

which consists of penalty terms that are highly nonlinear

functions of the joint states, a single-shooting formulation

was found to be unsuitable. The ill-conditioning of the

formulation slowed down convergence and was even prone

to get trapped in local infeasibilities thus failing to find a

trajectory to the goal position.

For a multiple shooting formulation, the system dynamics

in (8f) is treated as constraints of the nonlinear program

(NLP). Using PANOC algorithm, such hard constraints are

typically solved using the quadratic penalty method [8].

In the quadratic penalty method, the sum of square of the

constraint violation is multiplied by a factor and added to the

original cost function. This factor is increased sequentially in

an outer iteration step to satisfies the constraints more closely.

It is important for the multiple shooting constraints to be

satisfied accurately. This calls for a high factor in the penalty

method, which can however cause ill-conditioning and

convergence issues. With the Augmented Lagrangian method

(ALM) [15] , we try to satisfy constraints more accurately

without increasing the factor to a very high value. In an

ALM method, the quadratic penalty term is added to the

Lagragian, thus “augmenting” it. Let x =
[

x1 x2 ... xN

]

and u =
[

u1 u2 ... uN−1

]

Let us define the equality

constraints as the residual from 8b and (8c) as h(x,u) and

the inequality constraints from equations (8f) as g(x,u). Let

the total total objective function from (8a) be defined as:

Q(x,u) = ℓN(xN)+
N−1

∑
k=0

ℓk(xk,uk) (11)

The augmented Lagrangian formulation for this problem,

following the notation from [15], is defined as:

L (x,u,λ ,µ,c1,c2) = Q+λ T h(x,u)+
1

2
c1‖h(x,u)‖2+

µT g+(x,µ,u)+
1

2
c2‖g+(x,µ,u)‖2

(12)

where g+(x,µ,u)=max{g(x,u),− 1
c2

µ}. The algorithm for

minimizing the augmented Lagrangian is shown below in

Algorithm 1.

Algorithm 1 Augmented Lagrangian algorithm for prob-

lem (12)

Require: x0, u0, λ0, µ0, c10
, c20

, max inner iter,

max outer iter, con tol,

1: for ν = 0,1 . . . ,max outer iter do

2: Minimize L (xν ,uν ,λν ,µν ,c1ν ,c2ν) in variables u and

x with PANOC until max inner iter to obtain uν+1 and

xν+1

3: if max(‖h(xν+1,uν+1)‖∞,‖g(xν+1,uν+1)‖∞)≤ con tol

then

4: STOP and return xν , uν , λν , µν

5: else if max(‖h(xν+1,uν+1)‖∞,‖g(xν+1,uν+1)‖∞) ≤
0.75max(‖h(xν ,uν)‖∞,‖g(xν ,uν)‖∞) then

6: λν+1 = λν + c1ν h(xν+1,uν+1)
7: µν+1 = µν + c2ν g+(xν+1,uν+1,µν)
8: c2ν+1

= c2ν , c1ν+1
= c1ν

9: else

10: c2ν+1
= 2c2ν , c1ν+1

= 2c1ν

11: µν+1 = µν , λν+1 = λν

12: return xν+1,uν+1,µν+1,λν+1

III. SIMULATIONS

The controller is validated on a KUKA LBR robot

manipulator with 7 DOF shown in the Figure 1. The goal

position for the EE is shown as a green cuboid under the

robot end-effector. The obstacle to be avoided is modelled as

a black coloured ball. The MPC algorithm that is explained

in the section II is executed for this task. MPC sampling

time is taken to be 0.2 seconds with a horizon of 20 steps,

thus providing a prediction horizon of 4 seconds. The MPC

controller itself is however run at a rate of 50Hz. The joint

states are read (velocities are computed) from the robot once

every 20 ms and is taken as the starting point for the MPC

solver which recomputes the control action every 20ms. The

MPC output is then applied to the simulated robot model

to obtain the joint states and the velocity after 20 ms. To

this value a Gaussian noise with standard deviation of 10−4

Fig. 1: The KUKA iiwa robot on which simulations are

performed

is added before being fed back to the MPC controller to

simulate the real world noise and disturbances.

PANOC with ALM is benchmarked against two other

algorithms: IPOPT [7], which is an interior-point solver

and WORHP [16] which is an SQP solver. PANOC with

ALM is allowed a maximum of 3 outer ALM iterations

and 30 inner PANOC iterations. Optimization engine (OpEn)

implementation of PANOC is used in this work. Interior-

Point solver is called with the option of L-BFGS hessian

approximation because it was found to be faster than the

default BFGS approximation. A buffer size of 10 is used for

the L-BFGS memory of both the PANOC and IPOPT solvers.

WORHP was used with a full hessian computation. The

maximum SQP iterations of WORHP is limited is the spirit

of the real-time iteration scheme [17]. All the simulations

were done on a system with Intel i7-8850H CPU @ 2.60GHz

× 12 running an Ubuntu 16.04 operating system.

A. Stationary Obstacle

In this case the robot plans and executes a trajectory from

the starting position shown in the Figure 1 to the green

cuboid. The computation times required for different solvers

is shown in the Figure 2a. One can see that PANOC is

orders of magnitude faster than both WORHP and IPOPT

solvers. Unlike PANOC or WORHP, the maximum number

of iterations of IPOPT is not restricted, but is instead solved

till it converged to a tolerance of 10−3. This is because,

IPOPT being a barrier method, is not suitable for real-time

iteration. The maximum number of iterations in WORHP per

MPC step was restricted to 6 because it was found that the

WORHP solver needed atleast 6 SQP iterations to reach the

goal location within the allocated time. WORHP was found

to be as slow as IPOPT mainly because WORHP computed

a full hessian which alone took about half of the total time

taken by WORHP. Hence the time taken by WORHP can be

reduced by almost half through appropriate code-generation

methods for computing the Hessian so that solving the KKT

0 1 2 3 4 5 6 7

Time(s)

10 -3

10 -2

10 -1

10 0

C
o
m

p
u
ta

ti
o
n
 t
im

e
 (

s
)

Computation time taken by the solvers for one MPC computation

PANOC

IPOPT

WORHP

(a) Computation time for stationary obstacle avoidance case

0 1 2 3 4 5 6 7

Time (s)

10 -15

10 -10

10 -5

10 0

M
a
x
im

u
m

 v
io

la
ti
o
n
 -

 m
u
lt
ip

le
 s

h
o
o
ti
n
g
 c

o
n
s
tr

a
in

ts

Residual on equality constraints

PANOC

IPOPT

WORHP

(b) Maximum constraint violation of the multiple-shooting con-
straints in stationary obstacle case

0 1 2 3 4 5 6 7

Time (s)

-3

-2

-1

0

1

2

3

4

D
is

ta
n
c
e
 f
ro

m
 o

b
s
ta

c
le

 (
m

)

10 -3 Distance from obstacle

PANOC

IPOPT

WORHP

(c) Distance from the stationary obstacle

Fig. 2: Computation time and primal feasibility residuals for

the motion planning for the stationary case

system becomes the bottle-neck, but it would still be an order

of magnitude slower than PANOC. The mean, maximum and

the standard deviations of the computation times can be seen

in the table III-A. PANOC has a mean time of 4.98 ms with

a standard deviation of 1 ms. Even the maximum time taken

by PANOC is 9.27 ms and does not exceed 20 ms. Therefore,

it is highly suitable for deployment on a robot with an MPC

controller rate of 50 Hz. the other two solvers take over a

100 ms for each MPC computation and are hence not suitable

for deployment on a real robot.

Figure 2b shows the maximum residual of the equality

constraints for the three solvers. It is is very important for

this residual to be low for the multiple-shooting constraints

to lead to a meaningful trajectory. PANOC with ALM

understandably performs the worst in this regard because

it does not provide superlinear convergence to the optimal

primal-dual point. But the important thing to note is that the

constraint satisfaction is still sufficiently satisfied for robot

MPC purposes with the violation being around 10−3. While

IPOPT consistently computes trajectories that closely satisfy

the equality constraints, the performance of WORHP solver is

more inconsistent in this regard and is sometimes worse than

PANOC as well. This is likely due to 6 SQP iterations not

https://alphaville.github.io/optimization-engine/

(a) The robot is in the starting po-
sition and needs to reach the goal
pose denoted by the green box
while avoiding the black coloured
ball the is moving upwards.

(b) The robot is crossing over the
moving obstacle avoiding it

(c) The final pose of the robot
reaches the goal position with
succesfull obstacle avoidance.

(d) Collision is observed several
times when the obstacle avoid-
ance constraints are not imple-
mented inclusing at the final goal
pose

Fig. 3: Visualization of obstacle avoidance

being sufficient to satisfy the constraints to a low tolerance all

the time. Figure 2c compares the obstacle penetration of the

robot motion from the three solvers. All the solvers achieve

obstacle avoidance except for PANOC at a particular instance,

but the violation is still a small value of 3mm and did not

result in collision because the robot geometry is modelled

slightly conservatively.

solvers PANOC IPOPT WORHP

Mean time 4.98 ms 226.6 ms 189.7 ms

Standard deviation 1 ms 84.5 ms 64.8 ms

Max time 9.27 ms 800 ms 477 ms

B. Moving Obstacle

In this section we simulate a scenario where the obstacle is

moving and actuate robot with MPC control actions from the

different solvers. The ball is given a small velocity such that it

moves in the upward direction. We can see the initial position

of the robot and the obstacle in the figure 3a. In the figure 3b

we see the robot crossing over the moving obstacle to reach

the goal position in 3c. If the collision avoidance constraints

are not added, the final goal position, that is reached is shown

in the figure 3d which we can clearly see is a configuration

in collision. In the figures 4a and 4b, are plotted the joint

position and joint velocity values computed by MPC using

PANOC with ALM. The smoothness of the control action

despite the multiple shooting constraints not being satisfied

to a very low tolerance is worthy of being noted.

We do not form a motion model of the obstacle. Forming

0 1 2 3 4 5 6 7

Time(s)

-3

-2

-1

0

1

2

3

J
o
in

t
P

o
s
it
io

n
s
 (

ra
d
)

Joint positions computed by the MPC

J1

J2

J3

J4

J5

J6

J7

(a) The joint position values of the trajectory followed by the robot

0 1 2 3 4 5 6 7

Time(s)

-1.5

-1

-0.5

0

0.5

1

1.5

J
o

in
t

v
e

lo
c
it
y
 (

ra
d

s
-1

)

Joint velocities computed by the MPC

J1

J2

J3

J4

J5

J6

J7

Max velocity limit

Min velocity limit

(b) The joint velocity values for the trajectory computed by the
MPC

Fig. 4: Computed trajectories during obstacle avoidance

such a motion model in many cases is not feasible, for

example when humans and robots share the workspace, it

is not always possible to predict the motion of humans.

Instead we record and send the instantaneous position of

the obstacle to the MPC solver, thus forcing the MPC solver

to react to newly received obstacle position each time. We

hypothesize that PANOC-ALM would be more reactive to

the changing robot position and achieve better constraint

satisfaction because it takes more inner iteration steps than

an SQP method. This is indeed what is observed in 5a. One

can see that PANOC regularly satisfies the equality constraints

better than the WORHP solver. In fact for this example, it

was found that robot simulated with control actions from

WORHP MPC failed to reach the goal state within 7 seconds

when the maximum allowed SQP iterations are 6. IPOPT

still accurately satisfies the constraints because the number

of iterations are not limited for this solver.

The computation times taken by the different solvers remain

very similar as can be seen in 5b. This is reasonable because

computationally, the problem remains the same. However

0 1 2 3 4 5 6 7

Time (s)

10 -15

10 -10

10 -5

10 0

M
a

x
im

u
m

 v
io

la
ti
o

n
 -

 m
u

lt
ip

le
 s

h
o

o
ti
n

g
 c

o
n

s
tr

a
in

ts

Residual on equality constraints

PANOC

IPOPT

WORHP

(a) Maximum constraint violation of the multiple-shooting con-
straints in moving obstacle case

0 1 2 3 4 5 6 7

Time(s)

10 -3

10 -2

10 -1

10 0

10 1

10 2

C
o

m
p

u
ta

ti
o

n
 t

im
e

 (
s
)

Computation time taken by the solvers for one MPC computation

PANOC

IPOPT

WORHP

(b) Computation time for moving obstacle avoidance case

Fig. 5: Computation time and primal feasibility residuals for

the motion planning in the moving obstacle case

computation time of WORHP solver towards the end of the

trajectory is worse compared to the stationary obstacle case

because WORHP has not reached the goal pose yet which

would have prevented WORHP from computing all 6 SQP

iterations.

IV. CONCLUSIONS AND FUTURE WORK

PANOC with ALM is demonstrated to be orders of

magnitude faster than IPOPT and WORHP. But the constraint

satisfaction of the multiple shooting and other initial and

terminal constraints is worse when the MPC is solved using

PANOC. However, it was found to be still accurate enough to

result in smooth trajectories that successfully reach the goal,

when the robot is simulated with the joint acceleration inputs

from the MPC. The PANOC solver was found to always

compute the input action within 10 ms and is thus suitable

to be used for an MPC controller that runs at 50 Hz.

However, with multiple shooting formulation, the obstacle

avoidance constraints are enforced only at discrete points

providing no guarantee of constraint satisfaction between

these points. In future work we aim to address this problem

by computing the swept volume of the robot to avoid the

obstacles and also extend the obstacle shape to other convex

primitives following the treatment in [5]. We also aim to

extend the solver to deal with L1 norm of the distance error

in order to obtain more time-optimal trajectories.

ACKNOWLEDGMENT

The authors would like to thank Ben Hermans for discus-

sion on the implementation of the augmented Lagrangian

method.
REFERENCES

[1] O. Khatib, “Real-time obstacle avoidance for manipulators and mobile
robots,” in Proceedings. 1985 IEEE International Conference on

Robotics and Automation, vol. 2. IEEE, 1985, pp. 500–505.

[2] L. E. Kavraki, P. Svestka, J.-C. Latombe, and M. H. Overmars, “Prob-
abilistic roadmaps for path planning in high-dimensional configuration
spaces,” IEEE transactions on Robotics and Automation, vol. 12, no. 4,
pp. 566–580, 1996.

[3] J. J. Kuffner and S. M. LaValle, “Rrt-connect: An efficient approach to
single-query path planning,” in Proceedings 2000 ICRA. Millennium

Conference. IEEE International Conference on Robotics and Automa-

tion. Symposia Proceedings (Cat. No. 00CH37065), vol. 2. IEEE,
2000, pp. 995–1001.

[4] S. Karaman and E. Frazzoli, “Sampling-based algorithms for optimal
motion planning,” The international journal of robotics research,
vol. 30, no. 7, pp. 846–894, 2011.

[5] J. Schulman, J. Ho, A. X. Lee, I. Awwal, H. Bradlow, and P. Abbeel,
“Finding locally optimal, collision-free trajectories with sequential
convex optimization.” in Robotics: science and systems, vol. 9, no. 1.
Citeseer, 2013, pp. 1–10.

[6] M. Zucker, N. Ratliff, A. D. Dragan, M. Pivtoraiko, M. Klingensmith,
C. M. Dellin, J. A. Bagnell, and S. S. Srinivasa, “Chomp: Covariant
hamiltonian optimization for motion planning,” The International

Journal of Robotics Research, vol. 32, no. 9-10, pp. 1164–1193, 2013.

[7] A. Wächter and L. T. Biegler, “On the implementation of an interior-
point filter line-search algorithm for large-scale nonlinear programming,”
Mathematical programming, vol. 106, no. 1, pp. 25–57, 2006.

[8] J. Nocedal and S. Wright, Numerical optimization. Springer Science
& Business Media, 2006.

[9] L. Stella, A. Themelis, P. Sopasakis, and P. Patrinos, “A simple and
efficient algorithm for nonlinear model predictive control,” in 2017

IEEE 56th Annual Conference on Decision and Control (CDC). IEEE,
2017, pp. 1939–1944.

[10] A. Sathya, P. Sopasakis, R. Van Parys, A. Themelis, G. Pipeleers, and
P. Patrinos, “Embedded nonlinear model predictive control for obstacle
avoidance using panoc,” in 2018 European Control Conference (ECC).
IEEE, 2018, pp. 1523–1528.

[11] E. Small, P. Sopasakis, E. Fresk, P. Patrinos, and G. Nikolakopoulos,
“Aerial navigation in obstructed environments with embedded nonlinear
model predictive control,” in 2019 18th European Control Conference

(ECC). IEEE, 2019, pp. 3556–3563.

[12] D. C. Liu and J. Nocedal, “On the limited memory bfgs method for
large scale optimization,” Mathematical programming, vol. 45, no. 1-3,
pp. 503–528, 1989.

[13] A. Themelis, L. Stella, and P. Patrinos, “Forward-backward envelope
for the sum of two nonconvex functions: Further properties and
nonmonotone linesearch algorithms,” SIAM Journal on Optimization,
vol. 28, no. 3, pp. 2274–2303, 2018.

[14] L. Stella, A. Themelis, and P. Patrinos, “Forward–backward quasi-
newton methods for nonsmooth optimization problems,” Computational

Optimization and Applications, vol. 67, no. 3, pp. 443–487, 2017.

[15] D. P. Bertsekas, Constrained optimization and Lagrange multiplier

methods. Academic press, 2014.

[16] C. Büskens and D. Wassel, “The esa nlp solver worhp,” in Modeling

and optimization in space engineering. Springer, 2012, pp. 85–110.

[17] M. Diehl, H. G. Bock, and J. P. Schlöder, “A real-time iteration scheme
for nonlinear optimization in optimal feedback control,” SIAM Journal

on control and optimization, vol. 43, no. 5, pp. 1714–1736, 2005.

