
VU Research Portal

Real-Time Robot Vision on Low-Performance Computing Hardware

Lan, Gongjin; Benito-Picazo, Jesus; Roijers, Diederik M.; Dominguez, Enrique; Eiben, A.
E.

published in
15th International Conference on Control, Automation, Robotics and Vision (ICARCV 2018)

2018

DOI (link to publisher)
10.1109/ICARCV.2018.8581288

document version
Publisher's PDF, also known as Version of record

Link to publication in VU Research Portal

citation for published version (APA)
Lan, G., Benito-Picazo, J., Roijers, D. M., Dominguez, E., & Eiben, A. E. (2018). Real-Time Robot Vision on
Low-Performance Computing Hardware. In 15th International Conference on Control, Automation, Robotics and
Vision (ICARCV 2018) (pp. 1959-1965). Institute of Electrical and Electronics Engineers, Inc..
https://doi.org/10.1109/ICARCV.2018.8581288

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

            • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
            • You may not further distribute the material or use it for any profit-making activity or commercial gain
            • You may freely distribute the URL identifying the publication in the public portal ?

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

E-mail address:
vuresearchportal.ub@vu.nl

Download date: 27. Aug. 2022

https://doi.org/10.1109/ICARCV.2018.8581288
https://research.vu.nl/en/publications/f6554cf6-286c-442f-bfff-51c663061c1b
https://doi.org/10.1109/ICARCV.2018.8581288


Real-time Robot Vision on Low-performance Computing Hardware

Gongjin Lan, Jesús Benito-Picazo, Diederik M. Roijers, Enrique Domínguez, A.E. Eiben

Abstract— Small robots have numerous interesting applica-
tions in domains like industry, education, scientific research,
and services. For most applications vision is important, however,
the limitations of the computing hardware make this a challeng-
ing task. In this paper, we address the problem of real-time ob-
ject recognition and propose the Fast Regions of Interest Search
(FROIS) algorithm to quickly find the ROIs of the objects
in small robots with low-performance hardware. Subsequently,
we use two methods to analyze the ROIs. First, we develop a
Convolutional Neural Network on a desktop and deploy it onto
the low-performance hardware for object recognition. Second,
we adopt the Histogram of Oriented Gradients descriptor and
linear Support Vector Machines classifier and optimize the
HOG component for faster speed. The experimental results
show that the methods work well on our small robots with
Raspberry Pi 3 embedded 1.2 GHz ARM CPUs to recognize
the objects. Furthermore, we obtain valuable insights about the
trade-offs between speed and accuracy.

I. INTRODUCTION

Recognizing other objects is a prerequisite for most
robotic tasks. For small robots however, there are some
specific constraints that make object recognition particularly
challenging, i.e., limited computational resources, a small
memory capacity, and limited physical size. For example, the
modular robots proposed in [1], only have space inside to fit
a small battery and a small computer with low computational
power. The same is true for other types of robots like drones
[2] and swarm robots [3]. These constraints make real-time
robot vision on such small robots a difficult challenge. Of
course, it can be argued that for any given volume, e.g., 50
cm3, the computing power fitting in that volume will increase
over time by the development of technology. However, the
need for even smaller robots will likely also increase. For
instance, robots that can navigate the human digestive system
to recognize abnormalities such as wounds or cancer would
be of great relevance. Thus, we foresee that the trend of
squeezing more computing power in the same volume will
go in parallel with the trend of willing to have smaller
and smaller robots. This means that the challenge of real-
time robot vision on low-performance computing hardware
is likely to stay relevant in the foreseeable future.

In this paper we address this challenge in the context of
our ongoing research on modular robots whose shapes are
variable by evolution [4], [5], [6], but the ‘head’ that contains
the battery and the onboard computer is fixed and limited
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in size [1]. After considering several alternatives, we have
chosen the Raspberry Pi 3 for the head for it offers a good
trade-off between size, computing power, power dissipation,
and price. In addition, the Raspberry Pi is a general CPU
and Linux platform with good compatibility that facilitates
the portability of the algorithms to other hardware.

The visual task our robots need to handle is to recognize
other robots in real-time in a standalone mode, without
communicating with each other or a central mainframe. To
solve this problem we present two methods, one based on
Convolutional Neural Networks (CNN) and one based on
the Histogram of Oriented Gradients (HOG) descriptor and a
linear Support Vector Machine (SVM) classifier. To increase
the efficiency we propose the Fast ROI Search (FROIS)
algorithm to quickly find the Regions of Interest (ROI).

To assess how the methods work, we investigate the
trade-offs between accuracy and speed, under the following
conditions:

1) The speed on the Raspberry Pi 3 must be above 1.5 fps
to meet the requirement that it is real-time.

2) The accuracy must be higher than 95%.
The remainder of this paper is structured as follows. In

section II, we describe related work in object recognition,
particularly in real-time object recognition for robots. A
detailed description of our methods are described in section
III. We present the experimental results, analyze and discuss
these results in section IV. Last, we conclude this paper and
provide an outlook on future research.

II. RELATED WORK

As one of the early real-time object recognition techniques
P. Viola and M. Jones [7], [8] proposed the famous method
of simple features and cascade AdaBoost classifier for rapid
object detection. Although it worked fast on a desktop
computer with Intel Pentium III, it operated on 384 by 288
pixels images and is still not fast enough for the Raspberry
Pi. In 2005, N. Dalal and B. Triggs [9] proposed the classic
solution of Histograms of Oriented Gradients (HOG) features
and a Support Vector Machine (SVM) classifier for human
detection. This method became popular in object recognition
for not only human detection but also for applications in
other fields. Although HOG features and linear SVM classi-
fiers are fast and accurate, the exhaustive search component
is computationally expensive so that it is not fast enough on
low-performance computational hardware.

In recent years, CNNs became the state-of-the-art methods
for object recognition [10], R-CNN[11], fast R-CNN[12],
Faster R-CNN[13], YOLO[14], SSD[15]. Although these
methods have high accuracy, they usually work on a GPU



system, and are far from working on low-performance com-
putational hardware. An interesting convolutional neural net-
work for object recognition was proposed in [16]. Although
this work optimized fast R-CNN on an embedded platform
for real-time object recognition, it works at 1.85fps speed on
the CPU and GPU system. Similarly, a low-complexity fully-
convolutional neural network that works on a GPU platform
was proposed in [17] for object recognition based on YOLO.
Yet, none of [17] and [16] is fast enough on a Raspberry Pi
3.

Both early and recent popular methods have been widely
and successfully applied in many areas, such as pedestrian
recognition, face recognition, etc. However, there is a com-
mon issue, all of them require expensive computation, hence
they only work on powerful computational hardware. A
real-time solution on the DSP-based embedded system was
proposed in [18]. This solution works only on the dedicated
DSP hardware platform, not on a general CPU system. An
exciting solution was proposed based on HOG features and
SVM classifier for pedestrian detection at 135 fps on a
desktop computer equipped with an Intel Core i7 870 and
a GPU [19]. Similarly, [20] presented an implementation
of vehicle recognition at 4 fps at a resolution of 1224 by
370 pixels based on HOG feature and linear SVM classifier.
However, none of these methods is fast enough on low-
performance systems like the Raspberry Pi 3.

Although some of the above methods have fast speed and
high accuracy, they still do not work well given the con-
straints related to small robots. J. Wu et. al. proposed a real-
time solution for human recognition based on CENTRIST
feature [21] and linear SVM classifier, which achieves object
recognition at 20fps on a mobile robot (PackBot) embedded
a CPU of Intel 1.2GHz Core 2 Duo in [22]. Yet, this is still
not fast enough for our hardware because the Intel 1.2GHz
Core 2 Duo significantly outperforms a Raspberry Pi 3. In
spite of this, it shows the state-of-the-art speed for real-time
object recognition in robot vision.

In addition, there are many studies that work on different
robots and hardware for real-time object recognition. An
end-to-end deep vision network model was proposed to
predict possible good grasps, which works in real-time on
a Baxter robot at a rate of 80 frames per second using
a GPU system [23]. [24] proposed an approach for robot
detection and localization based on Convolutional Neural
Networks (CNNs) for RoboCup soccer robots at 8 fps on a
weak GPU system. [3] presented an experimental framework
for exploiting vision in e-puck swarm robot by recognizing
the Quick Response (QR) code. Although it has the same
constraints as our system, it only works for recognizing
QR codes. [2] proposed an automatic detection and tracking
method for the drone based on deep neural networks at 1.6
fps on a GPU system. [25] used the exclusive Qualcomm
Snapdragon Flight board embedded a 2.4GHz processor to
implement a visual-inertial drone system for real-time mov-
ing object detection. Although this computational board has
good performance and small size, it is a proprietary system
exclusive for the drone and the method only recognizes

moving objects.
An alternative approach was proposed in [26] that im-

plemented real-time object recognition using wireless com-
munication between the mobile robot and the servers. [27]
implemented the near real-time object recognition for drones
by offloading the computation onto an off-board computation
cloud. Although using a server with powerful computational
resources can be a feasible solution, several applications need
methods that can operate independently without a server. For
instance, the communication time between the robots and
servers are affected by variations in wireless bandwidths and
this can form a severe bottleneck [26].

In summary, existing methods usually rely on powerful
computing resources. In spite of this, some of the algorithms
using convolutional neural networks and linear SVM classi-
fier are reasonably fast, yet not fast enough to implement
real-time object recognition on a Raspberry Pi 3.

III. METHODOLOGY

The main requirements for our methods are that they work
on the Raspberry Pi 3 in real-time, and with high accuracy.
For that purpose, we propose the Fast ROI Search (FROIS)
algorithm to quickly identify regions of interest (ROIs) for
object recognition. The ROIs proposed by FROIS are then
fed to a CNN or HOG and SVM classifier. We propose
improved HOG features for added performance benefits. The
work-flow diagram of our methods is shown in figure 1.
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Fig. 1: The work-flow of our methods. The top shows the
process that CNNs are trained and compiled into C/C++
library on the computer. The bottom shows the work-flow
that our methods work on Raspberry Pi including 1) FROIS
and CNNs, 2) FROIS, HOG features and SVM classifiers.

We test our approach on recognizing three different mod-
ular robots [1] shown in figure 2, called ‘Baby’, ‘Gecko’,
‘Spider’. Real-time object recognition is essential for these
robots to effectively perform tasks such as moving towards
a destination [28] while avoiding collisions, or following
one of the other robots. As can be seen from the figure,
recognizing other robots is quite a different task from, e.g.,
distinguishing between different human faces or classifying
genera of plants from images of leaves. The main challenge
is not to reach the highest possible accuracy given as much
computational resources as possible; it is to reach a high
accuracy in real time. We discuss the robot dataset, as well
as the additional task of recognizing coffee cups, in more
detail in section IV.



Baby Gecko Spider

Fig. 2: Images of three real moving modular robots with
different morphologies. The ‘Baby’ has 8 components in
blue, white, and green color. The ‘Gecko’ has 7 green
components. The ‘spider’ has 9 blue components.

A. Fast ROIs search (FROIS)

The region proposal and exhaustive search of current
methods generate a large number of ROIs that are fed to
the feature extractor and classifier. This is a key reason that
the current methods for object recognition like R-CNN[11],
fast R-CNN[12], Faster R-CNN[13], take prohibitively much
computation time for real-time object recognition. In ad-
dition, algorithms for region proposal like selective search
[29] also take a lot of computation time. In robot vision,
the objects usually have simple and fixed features, and in
particular fixed color features. We therefore propose the Fast
ROIs Search algorithm to quickly find the ROIs based on the
color features of objects.

First, FROIS detects and segments the images into the
valid regions with the different colors. The HSV based color
recognition is best suited for the images with less complex
background [30], in particular uniform background for the
environment of small robots.1 Therefore, we convert the
original RGB images into HSV. Then, the colors of pixels in
the images are detected by matching HSV threshold values,
given in table I, including Red, Green, Blue, Yellow, Black.
We optimized these HSV threshold values by testing the
color samples of various objects in the real environment, i.e.,
the environment the robots operate in. Therefore, the color
detection based on table I are more practical and adaptable in
the real environment. Although we show the HSV threshold
value of 5 common colors in table I, this table can be
extended to more colors for different objects.

colors H S V

Red
0∼10

160∼255 120∼255
170∼180

Green
35∼40 140∼255

104∼255
41∼59 69∼255

Blue 99∼121 120∼255 57∼211

Yellow 26∼32 130∼255 150∼255

Black 3∼180 40∼235 6∼48

TABLE I: The HSV threshold values of colors.

After the color detection, we need to segment the images

1We tested other color models like RGB, YCbCr, and YUV, but the HSV
based color detection has the best performance in our experiments.

into valid regions with different colors. The algorithm detects
the contours of continuous regions with the same color. Then,
FROIS calculates the areas of continuous regions according
to the contours. Invalid regions that may be noise can be
filtered by removing small area regions, using a minimal
threshold value. The images thus are segmented into valid
color regions. The number, size, and position of valid color
regions are different for different objects. To make a clear
description, we adopt the modular robot ‘baby’ as the object
to show how the algorithm proposes the ROIs based on the
valid color regions. The valid green and blue regions of the
modular robot ‘baby’ after the segmentation are shown in
figure 3.

Fig. 3: Segmentation image of the modular robot ‘Baby’.
The regions 1 and 2 (green contours), region 3 and 4 (blue
contours) are valid regions. lth is a threshold value. A is a
constant. The left and right white dashed lines are the edges
of lth. The red dashed rectangle is the ROI of a modular
robot ‘baby’.

Second, the algorithm detects ROIs based on the valid
color regions. The algorithm searches the center regions
from all of the regions. The minimum distance between
each region is calculated. For instance, D23 in figure 3 is
the minimum distance between region 2 and 3. The sum of
the distances from a region to the nearest two regions, is
denoted Dn. For instance, the sum of distances of regions 2
is D2 = D21 + D23. The method chooses the region with
the minimum Dn as the center region. In figure 3, region 2
is the center region because D2 is less than Di, i 6= 2. The
regions around a center region belong to the same ROI of
the objects if the distances to the center region less than a
threshold value. Therefore, determining a suitable threshold
value for the distance from a region to a center region is
important to find the right ROIs of the objects, denoted lth
in figure 3. However, it is difficult to find a fixed threshold
value. The color regions from different objects have different
distances to the center regions, and even the same regions of
an object have different distances to the center regions when
the objects rotate. In spite of this, we noted that the median
height of regions are basically invariant or change only very
slightly as the objects do not rotate vertically. Furthermore,
the distance from other regions to the center regions is
proportional to the median height of the regions when the
objects display at different scales in the images. We denote
the median height as hm in figure 3. lth is proportional to
hm whatever the scales of the objects are, because hm is an
adaptive value based on the images captured from different
views and distances. Taking the modular robot ‘Baby’ as an
example, we set lth = A ∗ hm, A equals 5. For the modular
robot ‘Baby’ in figure 3, the green and blue regions belong to



the same ROI because their minimum distance to the region 2
are less than lth. That is, the ROI is the minimum rectangle
region that covers the color regions of the same ROI. For
instance, the red dashed rectangle is the ROI in figure 3.
The full FROIS algorithm is provided in algorithm 1.

Last, although we used a modular robot ‘baby’ as the
object to address the FROIS algorithm, it works well for
the different objects that have basic fixed features in robot
vision. The ROIs of the objects can be found quickly, which
significantly reduces the computation time. We show that
FROIS quickly finds the ROIs of the modular robots (and
coffee cups) in section IV.

Algorithm 1: The Fast ROIs Search algorithm

Input: RGB image
Output: ROI[r] of the objects

1 while image do

2 initialize A, Dcenter, k, r;
3 Detect and segment the image with color, n regions;
4 for i ∈ n do

5 for j ∈ n do

6 calculate distance Dij , i 6= j;
7 end

8 ranking Dij as Di1, Di2, ..., Din;
9 Di = Di1 +Di2;

10 if Di > Dcenter then

11 center = i;
12 end

13 end

14 calculate hm;
15 for i ∈ n, i 6= center do

16 if Di center < A ∗ hm then

17 coor[k][(minx,miny), (maxx,maxy)];
18 k = k +1, remove i from n;
19 end

20 ROI[r][min(minx,miny),max(maxx,maxy)];
21 end

22 return ROI[r];
23 r = r + 1;
24 if n >= 2 then

25 repeat 4 to 22;
26 end

27 end

B. The Improved HOG features and SVM classifier

The ROIs of the objects are proposed by FROIS algorithm.
However, ROIs need to be further analyzed because ROIs
may or may not contain the right objects. Therefore, the
ROIs are fed to the feature extractor and classifier. This work
presents two methods for feature extraction and classifica-
tion, i.e., CNNs [31] and the combination of HOG and SVM
[9]. The method of HOG descriptor and SVM classifier,
proposed by N. Dalal and B. Triggs, is not only popular
in human detection, but is widely applied in the field of
object recognition. The traditional HOG features and SVM

classifier recognize the objects using the exhaustive search to
scan the images for objects of different positions and sizes,
which takes much computation time. In this subsection, we
address how the HOG features and linear SVM classifiers
work together with the FROIS algorithm for real-time object
recognition on low computational resources. We propose an
improvement for HOG features, making them even faster.

The different parameters of HOG features have different
performance for accuracy and speed. We trained and tested
SVM classifier with different parameters of the HOG fea-
tures, include block size, block stride, cell size, and bins.
The main parameter configuration is shown in table III.
Although the HOG features and the limited ROIs are not
computationally expensive, we note that the computing HOG
features can be optimized by employing the techniques of the
lookup table. In this way, the computation can be reduced
since retrieving a value from memory is often faster than
undergoing an “expensive” computation. For the HOG fea-
tures, the magnitude and angle [9] for each pixel of an ROI
needs to be calculated. The possible values for magnitude
and angle are bounded. The magnitudes are in the interval
(−255, 255), and the angles in (0◦, 360◦). Furthermore, the
magnitude and angle of each pixel are used to vote into
the histograms of oriented gradients in 9 bins. Therefore,
we created a lookup table containing the possible values of
magnitude and angle, which is sufficient to vote accurately.
Both in theory and practice, this optimization reduces the
computation time. Last, we used the standard linear SVM
classifier from the OpenCV library to classify the objects
based on the HOG features.

C. The Convolutional Neural Network

To investigate the available trade-offs that exist between
speed and accuracy, we use different feature descriptors and
classifiers to test speed and accuracy. We implement the
CNNs on the Raspberry Pi 3 for real-time object recognition.
The CNNs take the ROIs that are proposed by the FROIS
algorithm as input. Although CNNs have the state-of-the-art
performance for object recognition, it is well known that the
CNNs are difficult to implement on the low computational
hardware like the Raspberry Pi. However, Darknet [32] and
the new Embedded Learning Library (ELL2) provides the
possibility to implement CNNs on the Raspberry Pi.

Darknet is an open source neural network framework writ-
ten in C, optimized for speed. ELL is an embedded AI and
machine learning toolbox developed at Microsoft Research,
which allows us to design and deploy CNNs onto resource
constrained platforms and small single-board computers, like
the Raspberry Pi, Arduino, and micro:bit. We trained CNNs
with different topologies to identify the available trade-offs
between speed and accuracy. The trained CNNs are compiled
into a C/C++ library by ELL, subsequently deployed onto the
Raspberry Pi 3. The work-flow is shown in figure 1.

2https://github.com/Microsoft/ELL

https://github.com/Microsoft/ELL


IV. EXPERIMENTS

We aim to achieve real-time object recognition on low
computation hardware. Therefore, we compare the perfor-
mance of our proposed methods, i.e., FROIS in combination
with either CNNs or HOG and SVM, in terms of accuracy
and speed. All methods were implemented in C/C++. We im-
plement and train CNNs using Darknet and the linear SVM
classifier using OpenCV, and test them on the Raspberry Pi
3.

We test the algorithms in different situations with the
modular robots, including those with occlusions. The dataset
we use for this is outlined in section IV-A, and the results
in section IV-B. Furthermore, to validate the generality and
scalability of our methods for real-time object recognition in
robot vision, we also test whether our methods can recognize
the other objects. For this we use coffee cups in section IV-C.

A. The Robot Dataset

In object recognition, the comprehensiveness of the dataset
is directly related to the performance. We took a large
number of images for three modular robots from different
views and distances to create a comprehensive dataset3.
All of the images were taken by the modular robots while
moving. We divided the samples into training and a testing
dataset, as shown in table II. We use the same datasets to
train and test CNNs and SVMs. All of the samples have a
resolution of 112 by 32 pixels.

Baby Gecko Spider

Training 3246 2943 3204

Testing 2211 2131 2193

TABLE II: The statistics of the dataset.

B. Robot Results

We train and test CNN and SVM classifiers for differ-
ent parameter configurations (Table III). The accuracy and
computation time are averaged over ten frames at differ-
ent times. To determine the accuracy we ran the methods
(FROIS+HOG+SVM or FROIS+CNN) on a testing dataset
on the computer and to determine the speed we ran the
methods on video input on the Raspberry Pi 3 and Raspberry
Pi camera V2. The top three accuracies across parameter
configurations for HOG and SVM, are over 98%. Those
configurations of HOG and SVM that have higher accuracies
also have higher computation times. The best HOG and
SVM configuration (the gray row) achieves a real-time object
recognition of 99.1% accuracy and around 10 frames per
second on the Raspberry Pi 3. The CNN with 8 convolutional
layers achieved 94.51% accuracy and 1.6 frames per second.
Although the accuracy of CNNs can be improved by adding
layers, this leads to lower speeds than required for operation
in real-time. Furthermore, the accuracy and speed of the best

3https://bitbucket.org/langong/robotsdataset/

downloads/

CNN with 7 convolutional layers performs well at a 95.99%
accuracy and 1.8 frames per second. We thus conclude that
while CNNs are more suitable for high accuracy object
recognition on more powerful hardware, for object recogni-
tion on low computing hardware, HOG and SVM is actually
more promising. In particular the faster speed of HOG and
SVM makes it a more suitable approach. We observe that
accuracy and speed are two conflicting objectives, and that
several possible trade-offs exist between accuracy and speed.

We tested the computation times, of the FROIS algorithm,
HOG features, SVM classifier, and CNNs, individually as
well in figure IV. The HOG with the techniques of lookup
table takes less computation time than the original HOG.
The SVM classifier is significantly faster than the CNNs. In
addition, the FROIS is indeed fast at about 17ms.

Using the performance results of table III, we would
choose the gray configuration of HOG and SVM as the
best due to high (99.9%) accuracy and fast speed (10 fps).
A typical result of recognizing the modular robots ‘baby’,
‘gecko’, ‘spider’ using this configuration is shown in figure
4. The three modular robots in the figure are recognized
accurately. The ‘spider’ is recognized even though about a
third of ‘spider’ is occluded by a black box. In figure 5,
the region of modular robot ‘baby’ (middle) is proposed
as the ROI (red rectangle) by FROIS algorithm, but it is
recognized as ’Not Robot’ because it is strongly occluded by
the black box, and only two loose components are visible.
It is therefore not clear whether this is a robot or just loose
blocks. We therefore conclude that our methods work well,
even in occlusion situations.

Fig. 4: The recognition of three modular robots. The left
is ‘Gecko’. The middle is ‘Baby’. The right is ‘Spider’.
The green texts above bounding box are the names of
recognized robots. The green bounding boxes are the regions
of recognized robots. The black box occludes a piece of
‘Spider’. please note that black color is not a color feature
of the modular robots ‘baby’.

We compared to our methods to standard HOG and SVM
[9] on the Raspberry Pi 3 with Raspberry Pi camera v2 for
recognizing modular robots ‘baby’. The computation time
of standard HOG and SVM was 4740.954 ms (average) per
frame, which is prohibitively slow for real-time computation.
In addition, our methods recognize the position of the mod-
ular robots more accurately. In figure 6, the modular robot
‘baby’ was recognized by HOG and SVM with exhaustive
search rather than the FROIS algorithm. Note that the same
robot is recognized twice in different positions. Furthermore,
the right red bounding box does not accurately reflect the

https://bitbucket.org/langong/robotsdataset/downloads/
https://bitbucket.org/langong/robotsdataset/downloads/


The configurations Accuracy(in percent) Computation time(ms/f)

blocksize blockstride cellsize bins baby gecko spider average original improved

(8, 8) (4, 4) (4, 4) 9 0.996834 0.990615 0.974191 0.991099 99.3862 98.1998

(8, 8) (4, 4) (4, 4) 6 0.984622 0.977475 0.982216 0.983594 98.2688 97.1797

(8, 8) (8, 8) (4, 4) 9 0.982813 0.974191 0.98404 0.984659 95.9153 94.3975

(8, 8) (8, 8) (4, 4) 6 0.917232 0.933834 0.952576 0.947332 95.5965 94.0269

(16, 16) (8, 8) (8, 8) 9 0.928991 0.935711 0.943 0.947459 96.412 94.7658

(16, 16) (16, 16) (8, 8) 9 0.848033 0.870483 0.877793 0.886323 95.4248 93.9846

8 layers CNN 0.911111 0.924419 1.000000 0.945177 634.3959

7 layers CNN 0.896296 0.994186 0.989071 0.959851 568.3451

6 layers CNN 0.681481 0.988372 1.000000 0.889951 545.9009

TABLE III: The experimental results w.r.t. accuracy and speed for different parameters of our methods. The top half are the
accuracy and the speed for the HOG and SVM with different parameters. The computation time includes the full procedure
of FROIS, HOG, and SVM. Note that it is not including the time of reading images.

tROI(ms) tHOG(ms) tSVM (ms)

original
17.1086

8.101
0.6035

improved 5.9577

tROI tCNN

CNN 17.1664 537.0053

TABLE IV: Distribution of computation time of our methods.
The CNN is the 8 layers CNN in table III. NB: it takes about
80ms to read in the image, resulting in the higher processing
times of table III.

Fig. 5: The recognition for an occlusion situation. The center
part of robot ‘Baby’ (middle) is occluded by a black box. The
red bounding box is the ROI proposed by FROIS algorithm.
The green text above the red bounding box is ‘Not Robot’.

robot’s position. This problem does not occur our methods
because as the ROIs are proposed more effectively and
accurately by the FROIS algorithm. We thus conclude that
our methods are key for real-time object recognition with
low computational resources.

C. Coffee Cups

To validate the generality and scalability of our methods,
we also test recognizing common coffee cups that we took
from the automatic coffee machine. In this trial, we detected
black color for proposing the ROIs, and modified the thresh-
old value lth from lth = 5 ∗hm to lth = 3.5 ∗hm, to reflect
the proportions of the cups. Then, we created the dataset for
the coffee cups and trained an SVM classifier for real-time

Fig. 6: The recognition of the HOG features and linear SVM
classifier with the exhaustive search. The red bounding boxes
are the regions recognized as a ‘baby’ robot.

coffee cup recognition on low-computation hardware. Figure
7 shows that our methods work well for the recognition of
the cups as well. The green region is proposed as ROI by
FROIS algorithm and recognized as a cup by HOG and SVM.
Although the half of the right cup is proposed as an ROI
(the red bounding box), half of the cup is occluded and thus
recognized it as ‘nothing’ by HOG and SVM.

V. CONCLUSIONS

In this paper, we addressed the challenge of real-time
robot vision on low-performance computing hardware. Our
robots have a small ‘head’ containing a Raspberry Pi 3
and they need to recognize other objects in real-time in a
standalone mode, without communicating with each other
or a central mainframe using a Raspberry Pi camera V2.
To solve this problem we proposed the FROIS algorithm
to quickly search the ROIs of the objects. This algorithm
was tested in combination with a CNN and a method based
on HOG and SVM. The tests included several algorithm
variants and the winning combination (FROIS+HOG+SVM)
achieved a high accuracy (99.1%) and fast speed (10 fps).
The recognition of other objects validates the generality and



Fig. 7: The recognition of the common coffee cups. The
green bounding box is the recognized regions by HOG and
SVM. The red bounding box on the right half-cups is the
region of interests that proposed by color feature, but not
recognized as the cups.

scalability of our methods for real-time object recognition
in robot vision. We thus conclude that this method can be
applied to real-time object recognition in robots with low-
performance computing hardware. Ongoing and future work
concerns more and more demanding test cases, including
more complex environments. This will provide more sig-
nificant support for the applicability of small robots for
interesting tasks that require vision capabilities.
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