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Abstract

There are some practical factors, such as arm position change and donning/doffing, which

prevent robust myoelectric control. The objective of this study is to precisely characterize

the impacts of the two representative factors on myoelectric controllability in practical control

situations, thereby providing useful references that can be potentially used to find better

solutions for clinically reliable myoelectric control. To this end, a real-time target acquisition

task was performed by fourteen subjects including one individual with congenital upper-limb

deficiency, where the impacts of arm position change, donning/doffing and a combination of

both factors on control performance was systematically evaluated. The changes in online

performance were examined with seven different performance metrics to comprehensively

evaluate various aspects of myoelectric controllability. As a result, arm position change sig-

nificantly affects offline prediction accuracy, but not online control performance due to real-

time feedback, thereby showing no significant correlation between offline and online perfor-

mance. Donning/doffing was still problematic in online control conditions. It was further

observed that no benefit was attained when using a control model trained with multiple

position data in terms of arm position change, and the degree of electrode shift caused by

donning/doffing was not severely associated with the degree of performance loss under

practical conditions (around 1 cm electrode shift). Since this study is the first to concurrently

investigate the impacts of arm position change and donning/doffing in practical myoelectric

control situations, all findings of this study provide new insights into robust myoelectric con-

trol with respect to arm position change and donning/doffing.

1. Introduction

There are a large number of upper-limb amputees who are restricted in conducting daily life

activities, such as dressing, eating, and body care. To restore their hand functions at least
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partly, many efforts have been devoted to the development of both active prostheses and their

control algorithms using electromyographic (EMG) signals. However, although the current

state-of-the-art prosthetic hand devices allow even for individual finger movements (e.g.,

Touch Bionics’s i-LIMB), so far no myoelectric control algorithm is available, which fully fol-

lows the advance in mechatronics [1].

Pattern recognition techniques have been most actively studied to develop control algo-

rithms for electrically powered hand prostheses [2–4], and demonstrated the excellent perfor-

mance of discriminating different hand/wrist motions (i.e.,> 95% for 10 classes) [5–10].

However, most pattern recognition approaches have an inherent limitation that only one

prosthetic function can be controlled at a time due to their sequential and ON/OFF control

manners. Such control strategies make it impossible to perform natural hand movements con-

sisting of continuous and simultaneous activation of multiple DoFs. To provide a proportional

control in pattern-recognition-based myoelectric prostheses, the classical approach can be

extended by an estimation of the contraction level, which is combined with the classifier

output [11, 12]. A recent study demonstrated excellent control performance with such an

approach [13]. Also, some studies have introduced novel pattern recognition schemes which

classify combined motions for simultaneous prosthesis control [14–18], and one of them

showed the possibility of an independent proportional control of a selected motion [15]. One

drawback of the new approach is that the total number of classes is dramatically increased

because all possible class-combinations are regarded as new classes. This increases not only the

(computational) complexity of the classification algorithm, but may also become a practical

problem when training data for each class combination has to be recorded.

Recently, regression-based approaches have attracted researchers’ attention as a possible

alternative to the above classification schemes [2, 3]. This is because regression algorithms pro-

vide independent simultaneous and proportional control information for myoelectric prosthe-

ses with multiple DoFs, which enables more natural and intuitive prosthesis control. In the last

years, offline studies have introduced various linear and non-linear regression methods [1, 19–

24] and shown the possibility of applying regression techniques in controlling upper-limb

prostheses simultaneously and proportionally. Most recent studies have further proven the

applicability of regression approaches in online control scenarios that mimic real situations of

myoelectric prosthesis control [25–33]. However, their clinical reliability and robustness have

not fully been investigated so far.

Despite the great advances in the development of myoelectric control algorithms based on

pattern recognition and regression techniques, most commercially available prosthetic hands

still use the direct control method introduced more than a half century ago [3]. The conven-

tional control approach can actuate only a single DoF of a prosthesis at a time by comparing

EMG amplitudes measured from two different muscle locations (e.g., extensor and flexor),

and uses heuristics such as a co-contraction strategy to switch between available DoFs. The

inconsistency between academic achievements and industrial products (see [2]) can be

explained by the fact that research results are generally obtained without considering robust-

ness and nonstationarity issues [34, 35] that significantly affect the myoelectric control perfor-

mance in practical conditions, thereby making it hard to directly transfer advanced academic

achievements to the industry. It was not until recently that myoelectric control based on pat-

tern recognition became commercially available for the first time [36], and a clinical trial was

performed with a bilateral upper limb amputee [37]. More recent results showed positive out-

comes of pattern-recognition-based myoelectric control in clinical studies [38, 39].

Arm position change and prosthesis donning/doffing are important factors associated with

robust myoelectric control because they most frequently occur during use of a prosthetic hand

and change important environmental conditions in myoelectric control. In particular, arm

Real-time robustness evaluation of regression basedmyoelectric control

PLOSONE | https://doi.org/10.1371/journal.pone.0186318 November 2, 2017 2 / 22

(NRF) funded by the Ministry of Education, and the

DFG (DFG SPP 1527, MU 987/14-1). The funders

had no role in study design, data collection and

analysis, decision to publish, or preparation of the

manuscript.

Competing interests: The authors have declared

that no competing interests exist.

https://doi.org/10.1371/journal.pone.0186318


position change mainly causes muscle displacement due to altered joint angles, gravity muscle

contractions, and compression at electrode sites in a prosthetic socket. Donning/doffing

potentially results in electrode shifts and altered electrode impedances. Previous studies exam-

ined the impacts of electrode shift [20, 40–42] and arm position change [21, 43–47] on myo-

electric control performance, and showed that changing the control conditions negatively

affects the performance of both pattern recognition [40–46] and regression [20, 21] algo-

rithms. Some of them suggested potential solutions to alleviate the adverse effect of the condi-

tion changes in myoelectric control, such as incorporating the data collected from shifted

electrode positions into training data [42] and using accelerometers to detect arm position

changes [43, 44, 47].

On the other hand, a recent study investigated the relationship between offline and online

(real-time) myoelectric control performance with three regression algorithms [48]. The main

finding of this study was, surprisingly, that there is little correlation between offline and online

performance indices. All subjects participated generally achieved good online performance

even though some of them did not show reliable offline performance (< 40%), underlining

that precise myoelectric control in practical closed-loop conditions can be achieved by the

interaction between the user and a myoelectric controller through proper feedback regardless

of offline performance. The results also indicate that an offline performance index is imperfect

to accurately predict real myoelectric controllability attained in practical situations. In this

respect, the impacts of the representative condition changes (arm position change and don-

ning/doffing) in myoelectric control should be also examined in online environments to

obtain a realistic characterization of myoelectric control and to find promising solutions to

relieve their adverse impact. However, most of relevant results have been obtained from offline

experiments [20, 21, 42–46]. Only a few studies using pattern-recognition schemes reported

the impacts of arm position change [49] and channel shift [40, 41] on online myoelectric con-

trollability, and there are little relevant results for regression-based myoelectric control algo-

rithms that are promising alternatives to pattern-recognition techniques.

In the present study, we investigated how the two important factors, arm position change

and donning/doffing, affect myoelectric controllability based on a regression approach in

online control conditions that reflect practical myoelectric control situations. To this end, the

impacts of arm position change and donning/doffing were independently and concurrently

tested on three different arm positions for which we designed a two-dimensional target acqui-

sition task that adopts a linear regression method allowing simultaneous and proportional

myoelectric control. Seven performance metrics were employed to evaluate the changes in

real-time myoelectric controllability in terms of arm position change and donning/doffing,

and statistical tests were appropriately conduced for each performance measure. The rest of

the paper is organized as follows. The detailed experimental procedures and analysis methods

are described in section 2, followed by the experimental results in section 3. The obtained

results are discussed and summarized in section 4.

2. Methods

2.1. Subject

Fifteen normally limbed subjects (11 males and 4 females aged 25–53 years; all right handed)

were recruited by personally contacting graduate students in the Machine Learning Laboratory

of Technical University of Berlin, and via a local community website in Berlin, Germany

between April and May of 2014. One person with congenitally deficient upper limb (male, 41

years) whose right forearm terminates at wrist level was recruited via personal contact in Göt-

tingen, Germany. All recruited subjects participated in this study and no subjects were
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dropped out for data analysis. Six normally limbed subjects took part in preliminary experi-

ments, four of which also took part in main experiments. Fourteen subjects including the con-

genital amputee subject took part in main experiments. None of them had a previous history

of neuromuscular disorders that might influence experimental results. The fully detailed sum-

mary of our research goal and experimental procedures were explained to each subject, and

they signed written consents before the experiment. Adequate reimbursement was given to

them for their participation after the experiment. This study was approved by the ethics com-

mittee of Charité-University of Berlin Medicine (approval number EA4/085/11), and all exper-

iments were conducted in accordance with the declaration of Helsinki.

2.2. EMG data acquisition

EMG signals were recorded using a 16 channel biosignal amplifier (g.USBamp, g.tec Inc.,

Graz, Austria) with a dry active electrode system (g.SAHARA). Since the g.SAHARA dry elec-

trode system was originally designed for recording brain signals, it was not adequate to mea-

sure EMG signals on the forearm. Thus, pin-type g.SAHARA electrodes were replaced with

custom made flat-type dry electrodes (12 mm diameter) [31]. For fast and easy experiment

setup, the new electrodes were integrated into a custom-made stretchable textile hose, where

they were equidistantly mounted along two circles with an inter-electrode distance of 35 mm.

In the experiment, the hose was placed on the left forearm of the able-bodied subjects and the

affected right forearm of the subject with congenital limb deficiency. The position of the elec-

trodes integrated in the hose was fitted around the thickest part of the forearm, which was

approximately at 1/3 of the distance from the elbow to the wrist. The reference and ground

electrodes were placed around the olecranon process and the styloid process of the ulnar,

respectively. Fig 1 shows the configuration of the 16 electrodes integrated into the textile hose.

The surface EMG signals were acquired at a sampling rate of 1200 Hz using a 24-bit A/D con-

verter. All EMG data used in this study are available from the following website: http://doc.ml.

tu-berlin.de/AMYO.

2.3. Real-time myoelectric system and its control algorithm

To investigate the impacts of arm position change and donning/doffing in online control sce-

narios, a real-time myoelectric control system implemented in MATLAB™ was used in which a

cursor on a computer monitor is controlled based on EMG signals in two-dimensional Carte-

sian space (see Fig 2 to see the system interface in advance). To control a cursor, two wrist

DoFs were used in this study, which are wrist flexion/extension and radial/ulnar deviation.

The wrist flexion-extension was mapped to the horizontal movement of the cursor, while the

radial-ulnar deviation was mapped to the vertical movement of the cursor. The speed of the

cursor was simultaneously and proportionally controlled in 2D space by the combinations of

the two wrist DoF movements (velocity control). When no contraction was made (rest posi-

tion), the cursor stayed at the current position. All data processing was performed using a win-

dow length of 200 ms and an increment of 40 ms, meaning that the cursor was updated every

40 ms (25 Hz update rate). This window length is within acceptable controller delays for pros-

thesis control [50].

2.3.1. Preprocessing. A common average reference (CAR) spatial filter was applied to

real-time EMG data to remove common noise components across the recording electrodes.

To this end, the mean EMG values of all channels was calculated and then subtracted from

those of each channel for every time point. The power-line interference and its harmonic com-

ponents were also eliminated by using 50 Hz comb filters, and then the EMG data were
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bandpass filtered using a 4th order Butterworth filter between 30 Hz and 300 Hz to remove

movement artifacts and high frequency noise.

2.3.2. Feature extraction. Root-mean-square (RMS) values were calculated from the pre-

processed EMG data of each channel, yielding a 16-dimensional feature-vector x(t) used for

estimating continuous wrist movements in 2D space. As mentioned above, because the data

processing was performed every 40 ms, a new 16-dimensional feature-vector x(t) was created

every 40 ms. RMS features were successfully employed for simultaneous and proportional

myoelectric control of multiple DoFs [25, 51, 52].

Fig 1. Forearm of a normally limbed subject wearing the textile hose including 16 electrodes.

https://doi.org/10.1371/journal.pone.0186318.g001

Fig 2. Graphical user interface (GUI) of the implemented onlinemyoelectric control system. (a) Screen
shot of the calibration run. At the beginning of the calibration run, three small circles sequentially start moving
to a predefined direction corresponding to one of the two DoF wrist movements (flexion-extension and radial-
ulnar deviation), during which the subject is asked to wait for an upcoming a larger circle. The three small
circles are introduced to give the subject a preparation time, and the larger circle is the actual visual target the
subject should follow. When the larger circle appears and starts following the three small circles, the subject is
prompted to make wrist contractions based on the position of the larger circle moving from the center (rest
position) to the end point of the outer circle (full contraction). The time used for each direction is 8 s, which
consists of 3 s movement from the center to the end position, 2 s dwell time at the end position, and 3 s
returning movement to the center. The target circle (larger one) is sequentially presented to extension, radial
deviation, flexion and ulnar deviation direction. (b) Location of all 16 targets used in the online evaluation run.
At the beginning of the online test run, a pink cursor first appears in the center for 3 s, and then a target is
randomly presented with a pure-tone beeping sound, which is the signal to start performing the task. To
acquire a target, the cursor should be entered into the circle within a time limit and stayed for 1 s. The time limit
is set to 5 s for the preliminary experiment and 10 s for the main experiment, considering task difficulty after
arm position change and donning/doffing. After the subject hits or misses a target, the cursor is automatically
returned to the center and a new target is given to the subject with the beeping sound. There is a 1-s pause
between targets for the subject to prepare the next acquisition task. This procedure is iterated for all 16
targets. The targets are presented with differently randomized orders for each evaluation run and each
subject.

https://doi.org/10.1371/journal.pone.0186318.g002
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2.3.3. Regression. A linear regression method was applied to each analysis window for

decoding continuous wrist movements of the two DoFs ŷ(t) from the feature-vector x(t):

ŷðtÞ ¼ WTxðtÞ þ w
0
; ð1Þ

whereW is a matrix of regression coefficients and the bias w0 is included inW by extending

x(t) with the constant 1. The regression output ŷ(t) is a vector in two-dimensional space and

represents the wrist angles estimated from the EMG features by linear regression. It will be

used as input for real-time cursor control as described in section 2.3.4. To estimate the regres-

sion modelW, a series of x(t) and y(t) were acquired in the calibration session described in the

section 2.4.1, which are represented as X 2 RC×T and Y 2 RD×T. Since the RMS features were

extracted from 16 channels and two wrist DoFs movements were employed, C and D are six-

teen and two, respectively. Also, T represents the number of samples in the training set, and

thus the size of X and Y can be flexible depending on the experimental time. The simplest and

most common approach for estimating the regression matrix is ordinary least squares (OLS)

that minimizes the sum of squared residuals by which the solution can be obtained in a closed

form:

W ¼ ðXXTÞ
�1
XYT ð2Þ

Once the regression estimatorW is obtained, myoelectric cursor control information ŷ(t) is

continuously estimated by simple multiplication ofW and the feature vector x(t) acquired in

real-time, as denoted in (Eq 1).

2.3.4. Post-processing. The instantaneous regression output ŷ requires post-processing

for smooth and reliable myoelectric control because it inherently contains undesired high-fre-

quency components that appear as unstable cursor movement (e.g., jumping up and down),

despite the moving average smoothing of the preprocessed EMG data [31]. Thus, post-process-

ing was conducted by additionally applying an exponential moving-average filter (EMA) that

reacts relatively fast and does not introduce a systematic overshoot in its step-response, com-

pared to a widely used Butterworth post-processing filter. The EMA filter is given as:

ŷ 0 ðtÞ ¼ ð1� gÞŷ 0 ðt � 1Þ þ gŷðtÞ; ð3Þ

where γ is the filter-constant that controls the amount of smoothing. We used a velocity con-

trol modality which is generally used in prosthetics, and can be seen as another post-process-

ing step:

ẑðtÞ ¼ ẑðt � 1Þ þ dŷ 0 ðtÞ; ð4Þ

where δ is the velocity coefficient that determines the movement velocity of the cursor and ẑ(t)

is the final cursor position in 2D space, controlled by the users’ EMG in real time. Since the

two parameters interplay together to control the smoothness of the cursor and its speed, a

proper combination of those two parameters should be determined. Based on the results of the

preliminary study (see section 3.1.), both system parameters were determined to 1/25, with

which none of the subjects perceived a delayed system response. Also, the post-processed final

regression output ẑ(t) was restricted not to exceed the limitation of the unit-circle. If the final

output ẑ(t) exceeded the boundary of the unit-circle, the position of the cursor was restricted

to the circle boundary.

2.4. Experimental protocol and procedures

2.4.1. Calibration run. In the calibration run, a visual synchronization training approach

was employed to acquire training data X and Y and a linear regression modelW, where the
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subject was instructed to perform wrist contractions based on the position of moving visual

targets. The training data X and Y consisted of the RMS features extracted from each electrode

and their corresponding positions of visual targets, respectively. Because it was confirmed in

our previous study [19] that a high decoding accuracy of combined wrist movements of two

DoFs can be obtained by a linear regression model trained with single DoF movements, only

single motions of each DoF were used in the calibration run. Fig 2(a) shows a screenshot of a

calibration run, where the subject was prompted to make wrist contractions based on the posi-

tion of the larger circle moving from the center (rest position) to the end point of the outer cir-

cle (full contraction). The four directions of the two wrist DoFs (flexion-extension and radial-

ulnar deviation) were presented once, during which both EMG signals and target traces were

concurrently recorded. The time used for each direction is 8 s.

2.4.2. Online evaluation run. In the online evaluation run performed for investigating

the impacts of arm position change and donning/doffing, the subject performed a target acqui-

sition task where the subject controlled the vectorial velocity of a cursor based on muscle con-

tractions to achieve targets. To acquire a target, the cursor should be entered into the circle

within a time limit (5 s for the preliminary experiment and 10 s for the main experiment) and

stayed for 1 s. There is a 1-s pause between targets for the subject to prepare the next acquisi-

tion task. Each evaluation run consisted of 16 circular targets with a radius of 0.15 units. Fig 2

(b) shows the location of all 16 targets, which was fixed but randomly presented for each run

and each subject.

2.4.3. Preliminary experiments. The preliminary experiments were conducted to deter-

mine the two post-processing parameters of the online myoelectric control system (filter con-

stant and velocity coefficient). The subject sat on a comfortable chair facing a computer

monitor with a distance of about 1 m, and wore the electrode integrated hose. A break was

given whenever the subject wanted between experimental runs. Since the goal of the prelimi-

nary study was to determine the post-processing parameters, only one arm position was

employed (elbow flexed at 90˚, ‘P2’ denoted in Fig 3). As both the EMA filter and the velocity

controller receive one sample in each system update step, their parameters depend on the sys-

tem update rate fsu(25 Hz in this study). Four values with logarithmic scaling (0.5/fsu, 1/fsu,

2/fsu, 4/fsu) were empirically selected as potential candidates and all 16 combinations were

tested in the preliminary experiment. One calibration run was conducted on P2 position for

modeling a linear regression estimator, and then sixteen online acquisition test runs were per-

formed with the different combinations of the two system parameters. The order of the sixteen

parameter combinations was randomized for each subject.

2.4.4. Main experiments. The main experiments were conducted to evaluate the effect of

arm position change and donning/doffing on online myoelectric control performance under

the same condition with the preliminary experiments. Three different arm positions were used

to test the impact of limb position change. Fig 3 shows the experimental paradigm used in the

main experiment, where each arm position is denoted as P1, P2 and P3. In the calibration ses-

sion, three calibration runs were sequentially performed on each arm position (P1! P2! P3),

and this procedure was repeated three times (run 1–9). Then, three position-specific regression

models were separately constructed using the calibration data sets measured on each arm posi-

tion (P1 Model, P2 Model and P3 Model in Fig 3). Another regression model was also con-

structed by combining one run of each arm position (run 4–6) (‘Com’ Model in Fig 3). The

reason for use of the second iteration of the three calibration runs is that it is assumed that

using either the first (run 1–3) or the third (run 7–9) iteration would result in biased regression

models because the subject is less or more familiar with the experimental paradigm. In fact,

there were no statistically significant differences between the training performances of the four

regression models, which were estimated with the multivariate R2 index according to the below
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(Eq 5) (Friedman test; P1: 0.69 ± 0.06, P2: 0.66 ± 0.05, P3: 0.68 ± 0.05, Com: 0.66 ± 0.04). The

‘Com’ Model is introduced because some studies based on pattern recognition approaches

reported that a classifier trained with calibration data acquired frommultiple arm positions

can prevent significant performance drop when test arm positions are changed, compared to

using single position calibration data [43–45]. In the online test runs, the target acquisition task

was performed for all possible combinations of the four regression models and three arm posi-

tions. Donning and doffing was performed after the first twelve online runs, and the same

online test runs were repeated.

2.5. Performance metrics and statistical analysis

Offline regression accuracy was evaluated using the calibration EMG data (run 1–9) to check

the impact of arm position change on offline performance for which a three-fold cross-valida-

tion was applied [53]. In every cross-validation step, two of three calibration runs for each

position were used for training the linear regression models of each position, and the other

remaining run for the same position and all three calibration data for different positions were

used for estimating the offline performance of intra- and inter-arm positions. For a combined

regression model, one iteration of each position (i.e. run 1–3, 4–6 or 6–9) was used for train-

ing, and the other two calibration runs measured from each position were used for evaluating

the offline performance of the combined model for each position. This procedure was repeated

three times by alternating the calibration data set. Note that because a combined model was

built with more training data (3 runs) than individual position models (2 runs), there might be

Fig 3. Experimental paradigm designed for investigating the impacts of arm position change and
donning/doffing on the online performance of myoelectric control. Three calibration runs are
sequentially performed on each arm position (P1! P2! P3) and this procedure is repeated three times (run
1–9). Then, three position-specific and one combinatory regression models are separately constructed by
using the calibration data sets measured on each arm position and by combining one run of each arm position
(run 4–6) (P1 Model, P2 Model, P3 Model, and ‘Com’ Model). Note that the same amounts of calibration data
are used for modeling the four linear regression estimators to avoid biased results (3 calibration data for each
model). In the online evaluation run, all possible combinations of the four regression models and three arm
positions are tested using the target acquisition task (run 10–21), where the regression models and arm
positions are randomly paired and presented to each subject. While the information of the current arm position
is presented to the subject in the top right of the monitor screen (see Fig 2(a)), the given regression model is
blinded to not only the subject but also the experimental instructor so as to prevent possibly biased results
(double-blind study). After the first 12 online test runs (run 10–21), the electrode integrated hose is taken off
and again put on around the original position without specific criterion to simulate a natural donning/doffing
situation, and then the same 12 test runs are performed with another randomized order of the regression
models and arm positions (run 22–33). The original and shifted locations of the electrodes are manually
measured and recorded to see the effect of shift distance on online performance, for which the electrode
locations are marked with a water-based sign pen and the distance between the original and shifted electrode
locations is estimated with a tapeline. Note that electrode positions are clearly imprinted on target muscles
because the electrode integrated hose naturally presses the muscles during the experiment (no subjects
claimed any pain).

https://doi.org/10.1371/journal.pone.0186318.g003
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the possibility that the performance of a combined model is generally higher than those of

individual ones. However, the aim of offline analysis was to see the relative performance

change with respect to different test arm positions on a fixed training position; we note that

the performance difference between regression models did not significantly affect the main

results of the offline analysis. Offline estimation performance was calculated with the multivar-

iate R2 index [54], which has been widely used to estimate the performance of regression algo-

rithms:

R2 ¼ 1�

P
dVarðy d � ŷdÞP

dVarðy dÞ
; ð5Þ

where yd and ŷd indicate the reference cursor positions of the d-th DoF (the position of the

larger circle presented in the calibration session) and cursor positions estimated by the trained

linear regression model, respectively. The numerator in the second term is the total mean

square error, which is normalized by the variance of the reference cursor positions. Therefore,

the maximal r-square value is one in case that the trained linear regression model completely

predicts the true cursor positions. A negative r-square value is also possible when the predic-

tion error is larger than the variance of the reference cursor positions.

To choose the two post-processing parameters (filter constant and velocity coefficient), two

performance metrics were considered, e.g., completion rate and completion time. For the

main experiment, additional five quantitative performance metrics were employed to assess

various aspects of real-time myoelectric controllability, thereby comprehensively investigating

the effect of arm position change and donning/doffing. The description of all seven perfor-

mance metrics are given in Table 1. For the throughput metric, the task difficulty index (TDI)

was defined as a function of the target distance because the same width was used for every tar-

get:

TDI ¼ log
2
ð1þ DÞ; ð6Þ

where D is the target distance from the center in the GUI interface, and throughput was finally

calculated by dividing completion time from TDI. Even though throughput contains the infor-

mation of completion time, throughput and completion time were separately reported in this

study because throughput cannot directly represent completion time. Among the seven perfor-

mance metrics, user effort is introduced as a measure of effort to complete the target acquisi-

tion task. Since the RMS feature used in this study has been used for evaluating user effort in

Table 1. Description of seven performancemetrics.

Metric Description

Completion Rate (%) Ratio of successfully achieved targets to the total number of targets

Completion Time (s) Mean time taken achieving a target; the time limit of 10 s was counted for missed
targets

Throughput (bit/s) Ratio of the task difficulty index (TDI) and the completion time; information
transfer rate defined by Fitt’s law [58]

Path Efficiency (%) Ratio of the shortest path between a target and the initial (center) position to the
actual path travelled

Overshoot (%) Ratio of the number of times a target is reached but left before 1 s dwell time to
the total number of targets

Stopping Path (travel
length)

Path length travelled in a target circle for 1 s dwell time; it is applied only for
achieved targets

User Effort Ratio of the mean RMS value measured during each online test run to that
averaged over the calibration runs

https://doi.org/10.1371/journal.pone.0186318.t001

Real-time robustness evaluation of regression basedmyoelectric control

PLOSONE | https://doi.org/10.1371/journal.pone.0186318 November 2, 2017 9 / 22

https://doi.org/10.1371/journal.pone.0186318.t001
https://doi.org/10.1371/journal.pone.0186318


previous EMG studies [55–57], we also used the mean RMS value averaged over all recording

channels and the whole experimental time to calculate the user effort for each experimental

run.

To check how significantly the impacts of limb position change and donning/doffing influ-

ences myoelectric control performance, non-parametric statistical tests, Friedman andWil-

coxon signed-rank, were performed because all testing data sets were not normally distributed

which was assessed by the Kolmogorov-Smirnov test. The Friedman andWilcoxon signed-

rank tests correspond to the parametric statistical tests, one-way repeated measures ANOVA

and paired t-test, respectively. In case of testing significant differences between more than

three groups (e.g, comparing performance values of three test arm positions obtained from a

fixed training position), the Friedman test was first applied to reveal overall differences

between the groups. When the result of the Friedman test showed the overall significant differ-

ence between the related groups, the Wilcoxon signed-rank test was then separately performed

on all possible combinations of two groups as post-hoc analysis to pinpoint which groups dif-

fer from each other in which a Bonferroni-adjusted significance level was used, i.e., p = 0.05/

the number of post-hoc tests. To compare two groups for a statistical difference (e.g., compar-

ing two mean performance values obtained before and after donning/doffing), the Wilcoxon

signed-rank test was simply conducted. Besides the statistical tests, a Pearson correlation anal-

ysis was also performed to examine the relationship between offline and online performance

in terms of arm position change, and between electrode shift distance and online performance

change, respectively. The significant level for all statistical tests was set to 0.05. The data of the

subject with congenital upper-limb deficiency was not included in the statistical tests, but inde-

pendently analyzed as a case study.

3. Results

3.1. Results of preliminary experiments

Fig 4 shows the mean resulting matrices of completion rate and completion time with respect

to velocity coefficient and filter constant, where the first row and last column (denoted by ‘av’)

represent the average performance for each testing value of velocity coefficient and filter con-

stant, respectively. The two performance metrics show the best results when 1/25 is used for

both velocity coefficient and filter constant, considering the mean performance of each

Fig 4. (a) Completion rate and (b) completion time calculated during the preliminary experiments. The
label, ‘av’, denotes ‘average’, and the first row and last column show the average performance obtained using
the corresponding parameter values. The best mean completion rate and time are obtained when 1/25 is used
for the both parameters, considering the average performance of each parameter value. Also, the subjects
who participated in the preliminary experiments mentioned more stable controllability with a combination of 1/
25 filter constant and 1/25 velocity coefficient. Note that the values in x- and y-axis are normalized by the
update rate (25 Hz).

https://doi.org/10.1371/journal.pone.0186318.g004
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parameter value. Thus, the two post-processing parameters were set to 1/25 through the whole

experiments, as mentioned in the section 2.3.4.

3.2. Impact of arm position change and donning/doffing

3.2.1. Offline results with respect to arm position change. Fig 5 shows the mean inter-

and intra-position offline performance over all able-bodied subjects, where the red, green and

blue bars represent the offline performance of three respective test positions (P1, P2 and P3)

for each training position (P1, P2, P3, and Com). The mean intra-position R2 values are signifi-

cantly higher than the inter-position ones at all training positions (p< 0.05). On the other

hand, good offline performance is attained from all test positions at the ‘Com’ training position

(p> 0.05).

3.2.2. Online results with respect to arm position change and donning/doffing. Fig 6

(a) presents the mean online performance obtained before donning/doffing for the seven per-

formance metrics, thereby showing the impact of arm position change solely when real-time

feedback is provided. In general, high online performance is achieved regardless of test arm

positions from all training positions (e.g.,> 90% completion rate). Interestingly, contrary to

the offline performance, there is no significant performance loss even when test arm positions

are different from training positions, compared to the performance obtained from the same

training and test positions. The little impact of arm position change on online performance is

also confirmed after donning/doffing in Fig 6(b), even if overall online performance decreases.

Fig 6(c) presents the statistical test results showing the impact of donning/doffing for each per-

formance metric, where the gray colored element indicates that the online performance signif-

icantly decreases after donning/doffing at the corresponding combinations of training and test

positions. Significant performance drop is frequently observed in all performance metrics after

donning/doffing.

Fig 7 is another result that illustrates the impact of donning/doffing on the online control

performance in which Fig 7(a) shows the performance of each metric in the sequence of online

evaluation runs (10–33 runs). Even though differently randomized combinations of training

and test positions were used for each subject during the experiments, the sequence results

shown in Fig 7(a) would be reasonable to examine the general impact of donning/doffing and

potential performance improvements due to growing user-experience because there was little

Fig 5. Mean intra- and inter-position offline performance of the thirteen able-bodied subjects. The red,
green, and blue bars show the mean R2 values estimated from three test arm positions (P1, P2, and P3),
respectively, for the corresponding training positions (P1, P2, P3, and Com). The mean intra-position R2

values are significantly higher than the inter-position ones at all training positions, and there are statistical
differences between them for most cases (p < 0.05). Good offline performance is attained from all test
positions at the ‘Com’ training position and there is no considerable performance difference between test
positions. The error bars represent the standard deviations of the mean R2 values.

https://doi.org/10.1371/journal.pone.0186318.g005
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effect of arm position change on the online performance, as shown in Fig 6. A similar trend is

observed in most performance metrics: the online control performance is generally increasing

as the test run proceeds until donning/doffing occurs (run10–21), rapidly deteriorated right

after donning/doffing (run 22), fairly recovered in the next run (run 23), and then retained in

overall (run24–33). Fig 7(b) shows the average performance attained before and after don-

ning/doffing. It is statistically confirmed that the performance considerably decreases after

donning/doffing in all performance metrics (p< 0.05), which is in line with the results shown

in Fig 6(c). In order to visually describe these trends, a representative example of cursor traces

shown during the first two evaluation runs before (run 10 and 11) and after donning/doffing

(run 22 and 23) is presented in Fig 8. The subject shows somewhat unstable controllability in

Fig 6. Online performance estimated (a) before and (b) after donning/doffing for all metrics, and (c)
statistical test results showing the significant difference (gray colored entry, p < 0.05) between the
performance obtained before and after donning/doffing at the corresponding combinations of
training and test positions. The error bars in (a) and (b) represent the standard deviations of the
performance values of the thirteen normally limbed subjects. No significant performance loss is observed
even when test arm positions are different from training positions, compared to the performance obtained
from the same training and test positions (a) before donning/doffing. Only two cases show significant
performance differences between test arm positions (P1 and P2 training positions for user effort before
donning/doffing). When comparing the online performance in terms of the training position, there is only one
case showing statistically better performance than the others (P2 > P1 for path efficiency before donning/
doffing). A similar trend is also observed (b) after donning/doffing even if overall online performance
decreases, compared to before donning/doffing. (c) Statistically significant performance loss is frequently
observed between before and after donning/doffing, except one performance metric (stopping path).

https://doi.org/10.1371/journal.pone.0186318.g006

Real-time robustness evaluation of regression basedmyoelectric control

PLOSONE | https://doi.org/10.1371/journal.pone.0186318 November 2, 2017 12 / 22

https://doi.org/10.1371/journal.pone.0186318.g006
https://doi.org/10.1371/journal.pone.0186318


the first test run (run 10) especially when attempting to achieve some targets presented around

the edge of the outer circle, but much more stable controllability in the next test run (run 11).

The controllability gets significantly worse right after donning/doffing (run 22), but is consid-

erably improved in the next test run (run 23). Despite of the improvement, however, the con-

trollability is still not completely recovered as the most stable one (run 11) shown before

donning/doffing.

3.2.3. Relationship between offline and online results with respect to arm position

change. Fig 9 shows the relationship between the offline and online performance respectively

shown in Figs 5 and 6(a) for all possible combinations of training and test positions for each

performance metric. In the correlation matrices in Fig 9, colored element represents the statis-

tically significant correlation between the offline and online performance at the corresponding

combinations of training and test arm positions. While there is no significant correlation

between the offline and online control performance (see the diagonal entries of the correlation

matrices) when training and test arm positions are the same, three cases show statistically

Fig 7. (a) Online performance estimated according to the sequence of online evaluation runs for each
performancemetric (run 10–33). Note that due to the subject-specific randomization different combinations
of training and testing arm positions were averaged, and thus the general impact of donning/doffing and
growing user-experience on control performance can be observed. (b) Comparison of the mean performance
estimated before and after donning/doffing (*p < 0.05 and ***p < 0.001). The error bars represent the
standard deviations of the mean performance values of the thirteen able-bodied subjects.

https://doi.org/10.1371/journal.pone.0186318.g007
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significant correlation when the impact of arm position change is introduced (see the off-diag-

onal entries of the correlation matrices).

3.3. Impact of electrode shift distance

An EMG study based on classification approach reported that electrode shift caused by don-

ning/doffing generally decreases myoelectric control performance and the degree of the

Fig 8. Example of cursor traces travelled during the first two evaluation runs (a) before (run 10 and 11)
and (b) after donning/doffing (run 22 and 23), which are derived from the same subject.Different
colored circles and traces indicate randomly presented 16 targets and the paths travelled to achieve the
corresponding targets, respectively. The numbers in each target represent the sequence of target
appearance. The solid and dashed circles mean successfully achieved and missed targets, respectively, and
the small black rectangles represent overshoot. The mean path efficiencies of run 10, 11, 22, and 23 are
40.40, 62.16, 40.75, and 46.29%, respectively.

https://doi.org/10.1371/journal.pone.0186318.g008

Fig 9. Correlationmatrices showing the significant correlation (colored element) between the offline
and online performance at the corresponding combinations of training and test positions.Diagonal
and off-diagonal elements represent the correlation results when no impact and arm position change impact
are introduced, respectively. When training and test arm positions are the same (no control condition change),
there is no significant correlation between the offline and online control performance (see the diagonal entries
of the correlation matrices). Only three of forty-two cases show statistically significant correlation between the
offline and online performance when the impact of arm position change is introduced (see the off-diagonal
entries of the correlation matrices). The correlation analysis results for the ‘Com’ training position were not
considered in counting the number of the significant cases, because the ‘Com’ model was trained by
combining the training data of all training positions.

https://doi.org/10.1371/journal.pone.0186318.g009
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performance loss highly depends on shift distance [41]. Therefore, we also investigated the

impact of electrode shift distance on the control performance, for which the correlation

between shift distance and the performance change triggered by donning/doffing was esti-

mated. The performance change was estimated by subtracting the performance attained before

donning/doffing from that attained after donning/doffing. Note that the shift distance of the

electrodes was not significantly different among the subjects (1.16 cm ± 0.34) because we

donned and doffed the textile hose including the recording electrodes in a natural way rather

than restricting shift distance to precisely simulate real donning/doffing situations. Interest-

ingly, there are no cases showing significant correlation between electrode shift distance and

changes in the online performance (not shown here).

3.4. Results for the subject with congenital deficiency

The offline inter- and intra-position performance of the subject with congenital deficiency is

presented in Fig 10, where the red, green and blue bars indicate the offline performance

obtained from respective three test positions for the corresponding four training positions (P1,

P2, P3, and Com), respectively. The fundamental trend shown in the able-bodied subjects’

result (Fig 5) is similarly observed in Fig 10, in that the original offline performance attained

from the same training and test position is relatively high, but that is not retained for all other

arm positions.

Fig 11(a) shows the online control performance of the subject with congenital upper-limb

deficiency obtained before donning/doffing for each combination of training and test position,

respectively, for all performance metrics. Similar to the online results of the able-bodied sub-

jects shown in Fig 6, high control performance is seen even when test positions are changed

(e.g., 100% completion rate for most cases), and the original performance obtained before

donning/doffing is fairly retained even after donning/doffing (Fig 11(b)). This trend is also

confirmed in Fig 11(c) showing the mean online performance estimated before and after don-

ning/doffing, respectively.

Fig 12 shows the statistical relationship between the offline and online performance for

each performance metric, where the gray circles in each panel represent online performance

against offline performance for all twelve combinations of training and test positions. It is

clearly observed in Fig 12 that the congenial subject can achieve high online performance

Fig 10. Offline intra- and inter-position performance of the subject with congenital deficiency. The red,
green and blue bards show the R2 values estimated from three test arm positions (P1, P2, and P3),
respectively, for the four training positions (P1, P2, P3, and Com). The fundamental trend shown in the able-
bodied subjects’ result (Fig 5) is similarly observed, in that intra-position R2 values are generally higher than
inter-position ones. Compared to the offline result of the intact-limb subjects (Fig 5), there are two distinct
points: 1) P2 test position performs good for all training positions and 2) P3 test position is more severely
influenced by the training position (see the performance of P3 test position at P2 and ‘Com’ training positions).

https://doi.org/10.1371/journal.pone.0186318.g010
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Fig 11. Results of the subject with congenital upper-limb deficiency.Online Performance estimated (a)
before and (b) after donning/doffing for all metrics, and (c) comparison of the mean performance estimated
before and after donning/doffing (*p < 0.05 and ***p < 0.001). The error bars represent the standard
deviations of the performance values. Although the overall online performance decreases after donning/
doffing as the results of the able-bodied subjects, the original performance obtained before donning/doffing is
fairly retained even after donning/doffing. Unlike the online results of the able-bodied subjects, significant
decrease in online performance is shown in only two performance metrics, throughput and user effort, after
donning/doffing. Also, two other performance metrics, overshoot and path efficiency, even show slightly better
performance after donning/doffing in average.

https://doi.org/10.1371/journal.pone.0186318.g011

Fig 12. Correlation between offline and online performance obtained from the subject with congenital
deficiency. The circles in each panel indicate online performance against offline performance for all twelve
combinations of training and test positions. No statistically strong correlation is found for each performance
metric.

https://doi.org/10.1371/journal.pone.0186318.g012

Real-time robustness evaluation of regression basedmyoelectric control

PLOSONE | https://doi.org/10.1371/journal.pone.0186318 November 2, 2017 16 / 22

https://doi.org/10.1371/journal.pone.0186318.g011
https://doi.org/10.1371/journal.pone.0186318.g012
https://doi.org/10.1371/journal.pone.0186318


irrespective of offline performance, and thereby there is no case showing statistically signifi-

cant correlation between the offline and online performance.

The electrode shift distance occurred during donning/doffing is 1.12 cm, which is similar to

the mean shift distance of the able-bodied subjects (1.16 cm ± 0.34).

4. Discussion

Myoelectric control algorithms for multifunction hands have been extensively studied and

substantially advanced, but as indicated above, most commercially available prostheses are still

operated by the direct control method proposed about fifty years ago [3]. This is because sev-

eral practical factors significantly deteriorate the reliability of the current-state-of-art of con-

trol algorithms, and further restrict the clinical applicability of myoelectric control. Two of the

most important factors are the changes in arm postures and electrode locations that often

occur during the daily use of prostheses. To tackle the reliability problem associated with these

two factors, many studies examined how they affect myoelectric control performance [20, 21,

40–46, 51]. However, unfortunately, the effect of the clinically relevant factors has been mostly

studied in offline experimental settings that fundamentally do not reflect practical myoelectric

control environments, where the user and a myoelectric controller interplay with each other.

Only few classification studies examined the effect of channel shift [40, 41] and arm position

change [47] on real-time myoelectric controllability, but the impact of the respective condition

change has rarely been investigated in online control environments for regression-based

approaches. Furthermore, no studies have investigated the combined impact of arm position

change and electrode shift mainly caused by donning/doffing together neither in offline nor

online settings even though they generally occur simultaneously during use of a prosthetic

hand. In this study, we investigated the two factors independently and concurrently in practi-

cal closed-loop control scenarios to precisely characterize the impacts of the two sources of

non-stationarities.

The strong negative impact of arm position change on offline performance that was shown

in previous studies [21, 43–46] was also confirmed in our offline experiments (Figs 5 and 10),

meaning that the applied linear regression algorithm itself was not robust to arm position

change similar as previously investigated pattern recognition methods. However, the online

control performance did not significantly change between different arm positions when real-

time feedback was provided, even when training and test positions were mismatched (see Figs

6(a) and 11(a)). The retained online performance can be explained by the fact that the user can

overcome the adverse impact of arm position change by interacting with a myoelectric control

system if instantaneous real-time feedback is provided. This indication could also explain that

there was little advantage in using the ‘Com’ model trained by a combination of all training

positions over the other models trained from each single position (Figs 6 and 11) when tested

in online control condition. Because of the different tendency in the experimental results, sig-

nificant correlation between the offline and online performance was observed in only few

cases (Figs 9 and 12), inferring that offline performance cannot accurately predict online con-

trol performance. Even though there may exist other offline performance metrics that do cor-

relate with online performance, our study is an example that this is not generally the case, as

also found in other recent studies [48, 59].

On the other hand, donning/doffing was still problematic even in online control environ-

ments (see Figs 6(c), 7(b) and 11(c)), which means that the adverse impact of donning/doffing

was too strong to be overcome even with real-time feedback, in contrast to that of arm position

change. Nevertheless, real-time feedback might still play a role in partly compensating the neg-

ative effect of donning/doffing on the control performance (Fig 7). In particular, the congenital
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subject showed less impact to donning/doffing in terms of online performance (Fig 11), show-

ing the importance of real-time feedback.

The online performance significantly decreased after donning/doffing, but did not decrease

considerably further after the impact of arm position change was additionally introduced (see

Figs 6(b) and 11(b)), which is another indication of little impact of arm position change on

real-time myoelectric controllability. Thus, it can be thought that arm position change is of

lesser critical concern in practical control situations, but mechanical or algorithmic solutions

are needed to resolve the negative impact of donning/doffing. Future work for alleviating the

negative impact of donning/doffing could be the development of a well fitted prosthetic socket

which heavily depends on the skills and the experience of the orthopedic technician, and novel

control algorithms that are more robust to related non-stationarities.

Although our control system has shown a high robustness against changing arm position

when tested online, other posture related factors may still impact the performance. According

to recent studies [60–62], changing wrist positions can significantly deteriorate both offline

and online myoelectric control performance for able-bodied subjects and partial-hand ampu-

tees. Therefore, further work should be conducted to investigate related factors in more detail

and for other user groups such as trans-carpal amputees.

User effort was the only index significantly affected by the change of arm position (Fig 6

(a)), and the most sensitive to the donning/doffing impact in both able-bodied subjects (Fig 6

(c)) and the subject with congenital deficiency (Fig 11(c)). This indicates that the user indeed

adapted his/her EMG activation patterns to changed control environments in order to com-

pensate them, even if this was fully successful only for arm position change. The stronger mus-

cle contractions reflected in the increased user effort may lead to an increased muscle fatigue

in long-term use of prostheses. Thus, user effort first introduced for myoelectric prosthesis

control in this study could be considered as a useful index in developing clinical myoelectric

prostheses along with the conventional performance metrics directly inferring myoelectric

controllability (e.g., completion rate and time).

In this study, donning/doffing was performed in a natural way so that a realistic donning/

doffing can be simulated as in clinical control situations. The mean distance of electrode shifts

was approximately 1 cm (1.16 cm ± 0.34) which is within the same range that occurs in clinical

practice [41]. Even though donning/doffing caused a substantial decrease in myoelectric con-

trollability, there was no strong correlation between electrode shift distance and control per-

formance. This could be partly caused by other factors, besides electrode-shifts, such as

changed impedances, or potential correlations might not be detected due to the relatively

small variations in shift-distance presented in the naturally applied donning/doffing proce-

dure. Also, a non-linear behavior such as a step-like drop in performance at lower shift-dis-

tances could be the reason for the lack of any significant correlation. Although out of the scope

of this study, future work could investigate these aspects in more detail.

One subject with congenital upper-limb deficiency participated in this study, whose overall

results were similar as in case of the able-bodied subjects. This indicates that prosthetic end-

users can also adapt to changing myoelectric control conditions similar as able-bodied subjects

when real-time feedback is provided. This is in line with a recent online study showing no sig-

nificant difference on all performance metrics between amputees and able-bodied subjects

[30]. Traditionally, it has been accepted that the results obtained from intact-limb subjects can

be fairly transferred to persons with amputation even though the absolute performance of

amputees is somewhat lower than that of able-bodied subjects [4]. Thus, although the results

of only one congenital subject were shown in this study, it is highly possible that our main out-

comes underlined in this study apply to the majority of amputees and subjects with congenital

limb deficiency.
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In summary, the effect of arm position change and donning/doffing were systematically

investigated in online control environments to accurately understand how the both condition

changes affect myoelectric controllability. The main findings of this study are as follows: (1)

changes in arm positions significantly affect offline performance as shown in previous litera-

tures, but are nearly negligible in online control conditions regardless of donning/doffing,

thereby showing no correlation between offline and online performance, (2) donning/doffing

significantly influences myoelectric online control performance, as already shown in several

previous offline studies, (3) a model trained using multiple position data does not give a spe-

cific benefit over the single position models when applied online, (4) there is no significantly

better training position than the others with respect to myoelectric controllability, (5) user

effort can be used as a practical index to quantitatively estimate the risk of user fatigue, and (6)

distance of electrode shift caused by donning/doffing is not significantly related to the magni-

tude of performance drop within our experimental settings. Except the finding (2), the other

results provide new insights into robust myoelectric control, and in particular some of them

are conflicting with previously reported results (findings (1) and (3)), which would be caused

by different control conditions (offline without instantaneous feedback vs. online with real-

time feedback). In conclusion, in future studies all clinical factors involving robust myoelectric

control should be investigated in real-time under practical control conditions to precisely

define their impact on myoelectric controllability. This will ultimately permit to find better

and more practically robust solutions for the clinical setting.
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