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Abstract The power of using machine learning to improve or investigate the expe-

rience of play is only beginning to be realised. For instance, the experience of play is a

psychological phenomenon, yet common psychological concepts such as the typology

of temperaments have not been widely utilised in game design or research. An effec-

tive player typology provides a model by which we can analyse player behaviour.

We present a real-time classifier of player type, implemented in the test-bed game

Pac-Man. Decision Tree algorithms CART and C5.0 were trained on labels from the

DGD player typology (Bateman and Boon, 21st century game design, vol. 1, 2005).

The classifier is then built by selecting rules from the Decision Trees using a rule-

performance metric, and experimentally validated. We achieve ∼70 % accuracy in this

validation testing. We further analyse the concept descriptions learned by the Decision

Trees. The algorithm output is examined with respect to a set of hypotheses on player

behaviour. A set of open questions is then posed against the test data obtained from

validation testing, to illustrate the further insights possible from extended analysis.
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1 Introduction

In player-centred computer games it is valuable to leverage, as much as possible, the

current understanding of human cognition and emotion. Obtaining a better under-

standing of the differences between players can help substantially in the design of

games, and accurate player modelling may be used to create adaptive real-time game

mechanics. In recent years, the importance of player modelling in commercial games

has grown greatly, and many companies now data mine to support this technology

(Grimes 2007; Herbrich et al. 2007). Applying game metrics to create a player model

may have many purposes, basic and applied, including implementation of persistent

player profiles (e.g. in MMOGs such as World of Warcraft, Blizzard 2005) or to aid

investigation of the psychology of play (Mountain 2010). In either case, a player model

will only be as good as the theoretical model that supports it and the learning model

that instantiates it.

However, as may be surmised from a reading of the literature, player behaviour can

be complexly varying and difficult to interpret (Caillois 1961; Huizinga 1949; Salen

and Zimmerman 2004). Various models of player psychology have been put forward

to facilitate the classification of different player groups, with varying degrees of suc-

cess (Bateman et al. 2011), including the Demographic Game Design (DGD) typology

which we have used (Bateman and Boon 2005). On the other hand, approaches that use

machine learning (ML) methods have shown that learning a non-theoretical model of

player behaviour can still produce reasonable results (Drachen et al. 2009). Therefore,

combining the psychological and ML approaches holds the potential to surpass either

approach alone, and yet to our knowledge this has not been decisively explored. Our

contention is that, using a psychologically-derived theory of player type as the target

of a supervised ML algorithm, one can build a real-time classifier and obtain useful

accuracy results.

Thus we demonstrate a method of player modelling by learning class labels from

a player typology, and deploy the output as a real-time classifier in the test-bed game

Pac-Man. Pac-Man was chosen for the many advantages it offers when player mod-

elling—in other words, when building features of play. As a well-known example of

the ‘predator-prey’ genre of games, the player motivation will be quite clear at almost

all times. The control scheme is simple. The game space is completely represented

onscreen so player confusion is unlikely. These aspects help ensure that subjects spend

their time playing, and not confused or stuck. However, simplicity of elements does

not preclude complexity of play, which must be possible to allow differentiated player

behaviour—Pac-Man contains both immediate and evolved tactics. The 2D grid-like

game space allows efficient representation and reasoning, and although agents in the

game move in real-time, their movement can be quantised in the metrics, allowing

certain turn-based logic such as tree search to be applied.

Our classifier is built using ML methods from the robust Decision Tree (DT) class,

which were chosen after a comparative analysis of DTs, Radial-Basis-Function Neural
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Networks (RBFNs) and K-Means clustering. DTs were in fact a logical choice because

they give good concept descriptions, which are communicable and help the investiga-

tor derive applications that retain fidelity to the psychological model of player type.

The rules derived from the learned trees were filtered by their performance and imple-

mented within the Pac-Man game engine. This is a relatively complex multi-stage

process, and we summarise these steps briefly in order below.

1. Materials of the experiment were created:

a. Bateman and Boon’s DGD questionnaire was adapted.

b. A nonstandard version of Pac-Man with game-play logging was devel-

oped.

c. Log and DGD data was collected from 100 players.

2. Methods were implemented to learn from the data:

a. Observation and deconstruction of Pac-Man game-play led to a list

of behavioural traits and relevant to those, game metrics/features were

devised.

b. A set of hypotheses of player-type behaviour was proposed.

c. Feature data was used to learn ML models of the play behaviour for one

dichotomous or binary class, Conqueror/Not Conqueror.

d. DT results were chosen as the best performers, and trees and rules were

ranked by performance.

e. A subset of best-performing rules was extracted.

f. We specified scope and conflict resolution policies, combinations of which

defined a number of potential classifiers.

3. The classifiers were evaluated:

a. A new set of game log and DGD data was collected from a further 37

players.

b. Based on accuracy results over this test set, the best performing classifier

was chosen.

4. Analysis of results was performed to test our proposed hypotheses and generate

new insights that could lead to new and improved models in future work.

The structure of this work has been strongly motivated by the target audience—while it

is an academic work, the motivation is to also serve practitioners such as game design-

ers. For instance it is notable that this approach has many qualitative elements which

may reduce the generality; but qualitative methods may be appropriate in a practical

context where the level of concrete knowledge (knowledge of the game and its play-

ers) is high. Similarly, the ML methods we use are not groundbreaking, but they are

accessible to the ML layperson and they are transparent, in that the output can be easily

‘read’. The latter point is of high importance: as we mentioned above, communicable

concept descriptions can aid the interpretation and application process—in Sect. 5 we

demonstrate the point. While one may always utilise rule extraction methods such as

G-REX (Johansson et al. 2004) on more opaque ML methods but this might not be so

appropriate in a practitioner’s context where the level of abstract methodology knowl-

edge might not be so high. This is not done to undersell the talents of practitioners,

but merely to pitch the work at an ‘entry level’ audience.
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In the next section we review the background and relevant state of the art. Then we

describe the classification experiment methodology in Sect. 3, and present our results

in Sect. 4. Section 5 gives our analysis of the results while Sect. 6 is a summarising

discussion. Finally, Sect. 7 concludes the paper. Supplementary material is given in

Appendices A–D.

2 Background

We build our thesis on the assumption that every player of games has to possess some

form of play-related ‘personality’. By this we mean that the act of playing requires

adopting an attitude to the game being played that constitutes a personality, even in

the case of Artificial Intelligence (AI) players. The act of play requires commitment

to a course of action that ends with an invested outcome, winning or losing being

the most common type of outcome. This commitment of a player, and their particular

style in undertaking the play actions, forms most of their play personality. Style of

play is used here to encapsulate modes of cognitive processing which can differ in the

approach to play tasks. A play personality is not to be thought of as static but quite

contextualised and relative.

Considering one’s own style of playing games (be they computer or traditional

games) can help illustrate these points for the case of human players. One may play

‘just for fun’ or ‘for keeps’ and may prefer to strategise or intuit, deliberate or ‘dash

about’. In the case of an AI player, their commitment would presumably be indefat-

igable and their style, perhaps rational if rule-based, or stochastic, but less probably

heuristically close-to-optimal as for a skilled human player (Acuña and Parada 2010).

This may be quite un-human-like, but it is still recognisably an attitude toward the

game, and thus constitutes a personality in the context of play. Eliciting insights from

observable indicators of the building blocks of player personality is thus the main

challenge of player modelling.

We consider our player modelling approach as one primarily aimed at facilitating

player-centred design with a method that supports ease of interpretation and adap-

tation of results. User-centred design (Katz-Haas 1998) arose in domains other than

entertainment such as Technology Enhanced Learning (TEL). These systems in fact

often use the game-play paradigm of interaction (Cowley et al. 2011; Malone 1980;

McGinnis et al. 2008), and rely heavily on user modelling techniques (Beal et al. 2002;

Zhou and Conati 2003). In recent years there has grown a rich literature on model-

ling players of entertainment games; for reviews see Bowling et al. (2006), Fürnkranz

(2010), and Galway et al. (2008).

2.1 Classification

Methods to support the understanding of player behaviour generally involve some form

of pattern recognition from either labelled or unlabelled training data. Kaukoranta et al.

(2004) and Kaukoranta and Smed (2003) provide a high-level overview of the appli-

cation of generic pattern recognition in games. Provision of the labels is the reason

we use a player typology—although there are difficulties inherent in a supervised
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approach (since the solution space is constrained by the training data), for our design-

oriented method we favour these difficulties over those of an unsupervised approach,

i.e. interpreting algorithm output which has no labels.

Acuña and Parada (2010) attempt to model the behaviour of expert players’ through

data mining (DM), in order to show that such modelling could find novel solutions

to ‘NP hard’ problems. Others have used DM to look for the distinguishing charac-

teristics of expert play. Fu et al. (2004) implemented this with DTs. The algorithmic

basis of DTs can be traced back to Breiman (1984) and has been used widely in games

(Levillain et al. 2010). Geisler (2002) used a trio of ML algorithms—Decision Trees,

Artificial Neural Networks and Naïve Bayes Classifiers to model feature vectors from

the play of a single expert over an hour of play. In a very similar vein, there is some

work on modelling player behaviour that has the goal of lending a game-controlled

avatar some of the behavioural characteristics of a human player. The approach seems

popular in the racing game genre, both because the set of inputs to learn is relatively

small and also good training data and fitness functions exist. Both Togelius et al.

(2006) and Chaperot and Fyfe (2006) attempted to model human players of racing

games using neural networks in order to build better automatically controlled drivers.

Commercially, a similar method was implemented in the driving games Colin McRae

Rally (Codemasters 1998) and Forza Motorsport (Microsoft Game Studios 2005),

in order to train their AI to mimic the playing style of the human player (Tipping

and Hatton 2006). In a similar vein in a multiplayer setting, Thurau and Bauckhage

(2006) used Hidden Markov Models for behaviour recognition in team soccer games.

Tveit and Tveit (2002) have suggested a process for DM Massively Multiplayer Online

Game (MMOG) usage, inspired by existing processes for web usage mining. Kennerly

(2003) outlines the key steps required when DM an MMOG, with the motivation of

improving cyclical game design updates through player analysis.

Our particular use for modelling player actions (through DM) is to uncover the

player’s behavioural preferences, not just noting what they do, but attempting to infer

what they prefer to do. In previous similar work, Johansson et al. (2006) used a def-

inition of player types drawn directly from descriptions in the poker literature (Jones

2000; Sklansky and Malmuth 1999) of how poker is played. The DT algorithm J48

(based on C4.5 (Quinlan 1993)), and rule extractor G-REX (Johansson et al. 2004),

were then used to build descriptions of how the differing types of poker player behave

in online games. This approach differs to our own in that the authors have constructed

their typology without reference to a surveyed sample of players. Thawonmas and Ho

(2007) used a classic MMOG typology (Bartle 1996) to model players, although their

data is derived artificially, i.e. their player logs are in fact based on artificial agents.

Wong et al. (2009) derive a typology of play styles for 2D shooting games, also based

on the Bartle typology. They use self-organising maps to learn the differences in behav-

iour shown by real players. The clusters that result are manually mapped to the Bartle

types, and players are classified based on their proximity to these clusters.

Recently two approaches have tried to do player modelling by learning patterns

of behaviour from the play logs. One approach, which is particularly relevant to our

work, is that of Baumgarten (2010), who used Linear Discriminant Analysis (LDA)

to group a set of Pac-Man players into similar playing styles, and then interpreted

their activity by examining the linear combinations of features that define the axes in
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the LDA space. In a superficially similar approach, Drachen et al. (2009) analysed a

large data set of complete games of Tomb Raider: Underworld (Eidos 2008), using

Emergent Self-Organising Maps (ESOMs) to cluster and visualise a set of six game

metrics. The clusters enabled classification of players into four types, labelled by the

manual process of examining the typical game-play behaviour associated with each

cluster.

All the cited work had slightly different aims than our core focus of classifying real

players by an empirically-derived typology in real-time. As far as we are aware, this

is the only automated classifier of its kind in this domain.

2.2 Player typology

As stated above, players exhibit some form of play-related personality, which may be

described using a typology. Player typologies aim to classify the variation in abilities

and temperament that impact on the play experience—thus they are an abstracting

model. The player’s personality may relate differently to each given game’s content

[or other contextual factors such as presence of other players (Ravaja et al. 2006)]; thus

they may express their play-related personality as entirely different types on different

occasions. This reflects the fact that typologies have been shown to be more valid as

descriptors of trait-variances rather than dichotomies (McCrae and Costa 1989), as

players move within continuous dimensions of personality. This may raise the ques-

tion of how any given set of game-play data (such as our data) can represent a player

type since it might reflect one or another type at different times during play (over one

or more games). Naturally this is a key question for type classifiers, the answer to

which lies in the ability to handle concept drift, which we touch on later in Sect. 5.2.2

Thus, with a modelling method capable of handling concept drift (Black and Hickey

1999), typological classification can be a useful basis for player modelling.

There are only a small number of player typologies; for a review, see Bateman et al.

(2011). Bartle’s typology is perhaps the most well-known, developed from observation

of the players of Multi-User Dungeon (MUD) online social games pioneered in the late

70s (Curtis 1992). There are four types of players specified in this work: Achievers,

Explorers, Socialisers and Killers. These types describe the play attitudes expressible

within a MUD environment. Given the contextualised nature of play preferences, Bar-

tle could be considered unsuitable for more general applications; what was required

for our modelling approach was a typology of players that was applicable to any kind

of game and preferably based on a wide set of empirical observations. After careful

review we chose the DGD typology (Bateman and Boon 2005), illustrated in Fig. 1.

This figure shows the distribution of types across the sample which was surveyed in

the original work to build the typology. The values on the ordinate are actual numbers

of respondents.

The DGD typology has taken the Myers Briggs Type Indicator (MBTI) and Tem-

perament Theory approaches as its basis in describing player types and their asso-

ciated game-play-preferences over four categories, which are each two-valued. The

MBTI (Ludford and Terveen 2003) describes one’s instinctive preference for modes

of thought and behaviour. MBTI could be said to derive from Temperament theory
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Fig. 1 DGD types and distribution across survey respondents (in actual numbers of respondents); adapted

from Bateman and Boon (2005)

(Jung 1971), and is referenced by Keirsey and Bates (1984). The MBTI is a con-

troversial instrument since despite strong empirical support it has theoretical issues:

namely that, despite having construct validity, a broader assessment found insufficient

evidence to support all of the claims made about MBTI (Pittenger 1993). The deeper

implications of this on the DGD typology are covered in Bateman et al. (2011).

As is typical in typologies, players will belong to each of the DGD types to a greater

or lesser degree, because type membership is non-exclusive. The types can be briefly

described as follows:

1. Conqueror: Competitive, win-at-all-costs. Players of this type are goal-oriented

and enjoy feeling dominant in the game or in social circles set around the game.

2. Manager: Logistical, plays to develop mastery. Such players are process-

oriented and will replay completed games if they can use their newfound mastery

to unearth novelty at deeper levels of detail.

3. Wanderer: Desires new and fun experiences. Less challenge-oriented than the

above types, these players primarily seek constant, undemanding and novel enjoy-

ment.

4. Participant: Enjoys social (living-room) play, or involvement in an alternate world.

In this typology there is a further cross-type split between dedicated or hardcore play-

ers, and recreational or casual players.

3 Materials and methods

Our method involves matching logs of game-play to labels of player type, using super-

vised ML algorithms whose output can be interpreted, to provide the researcher/devel-

oper a picture of player behaviour for that game.

Although the ultimate goal would be to learn the four DGD types, learning multi-

class targets in a high-dimensional search space (i.e. the possibility space of player
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behaviour) runs the risk that algorithms would not converge to an accurate discrimina-

tor. Our approach is thus to consider binary targets: classifying only a single type, with

all records not of that type classified as an ‘anti-type’ class (Mitchell 1997). Ultimately

we should thus derive four binary targets, and when classifiers for all four such targets

were learned, they would then be run in parallel and a conflict resolution strategy used

to pick one final answer. However, for the duration of this paper we will evaluate the

binary target Conqueror/Not Conqueror.

We begin with Conqueror because as a play style it may have the best match with

the Pac-Man test-bed alongside Manager—which we did not choose because it was

not so well represented in the recorded sample. While the other types are not equally

well-suited to Pac-Man play, this does not invalidate the approach because a type does

not represent a particular player at all times—players may adopt the type that suits

them in the context of a particular game. Thus it is really only relevant that the game

can recognise the type that a player is expressing at a given time, and react to it.

Indeed, what type the player expresses another time is of much less importance.1

We list in Table 1 a set of hypotheses about the probable behaviour of Pac-Man

players, split between Conqueror and Not Conqueror. These were based on our DGD

typology and Pac-Man descriptions. The Not Conqueror set was obtained by first

creating hypotheses for each type (other than Conqueror) alone, joining them as one

set and then removing any overlapping or mutually conflicting hypotheses. For each

hypothesis, the corresponding null hypothesis is simply that the opposed type of player

would not pursue such play behaviours (which is not to say that they would pursue

opposite kinds of behaviours—omission is sufficient).

Thus the key essence of the hypotheses is that the types would differ mainly on

their approach to risk: the Conqueror should differ from the Not Conqueror by chas-

ing Ghosts more, and by being less cautious when doing so. They may have shorter

level-clearance times, and have speedier games overall.

3.1 Materials: Pac-Man game and questionnaire

A Pac-Man game was constructed as a test bed for the experiments, and is an inter-

pretation of the original Namco game rather than a clone (see Fig. 2). In Pac-Man the

goal is to move around the game level and obtain all the collectables, thus progressing

to the next level. Points are awarded for collectables and eating Ghosts. A full list of

game rules is given in Appendix D.

Ghosts move according to a pseudo-random probabilistic control function based

on the game state, the (increasing) difficulty level and Pac-Man’s relative location. In

the normal game state, the probability of moving closer to Pac-Man is higher than the

probability of moving to any other adjacent point. The direction is reversed when the

game is in the Hunt state.

Compared to the original Pac-Man ours is very similar, except for the control inter-

face where we used keyboard rather than joystick. Also with the control function

1 This is also a reason to avoid typologies designed for online role-playing games, which are designed to

track players who remain largely similar over instances of play, because they are playing a role.
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Table 1 Our hypotheses on the behaviour of DGD player types in Pac-Man

Conqueror

This is our key type, as it assumed to provide the most easily distinguishable characteristics of play

in Pac-Man. It is expected that Conqueror type play revolves around the conflict with the Ghosts. Ghosts

provide the heart of the challenge, and as such would be the focus of the Conqueror’s fiero-seeking drive

to overcome obstacles. Thus we propose five testable hypotheses:

H1. The Conqueror will try to hunt as many Ghosts as possible at one time.

H2. The Conqueror will aim to clear more levels, faster—manifesting as faster clear times.

H3. The Conqueror will show less caution, and be more likely to take risks. Thus

average distance from Ghosts will be lower (or distance will equal 1 more

often).

H4. The Conqueror will make more attempts to catch Fruit when it appears.

H5. The Conqueror returns to the game more often in the face of defeat.

Not Conqueror

Unlike the Conqueror, the strategic approach for high scoring is to treat Ghosts cautiously, not

chase them too far, to prolong the game and score from Dots. The key here is that our Pac-Man

Ghosts are not predictable; they operate on probabilities (based on a time-seeded pseudo-random

generator). Getting near them is risky. Thus the best strategy is to lure the Ghosts to the Pill,

waiting beside it until they are in close proximity and then chase them. A non-strategic player,

meanwhile, might simply play cautiously to clear new levels. Play would thus be straightforward,

with little attempt at strategy or risky manoeuvres.

Thus we have predicted:

H6. The Not Conqueror has longer level clearance times.

H7. The Not Conqueror performs more backtracking.

H8. The Not Conqueror keeps the Ghosts at a distance.

H9. The Not Conqueror does more waiting, especially in proximity to a Pill.

H10. The Not Conqueror does not perform risky runs to collect the Cherry.

H11. The Not Conqueror does no extensive chases after Ghosts when in Hunt mode.

H12. The Not Conqueror has a shorter overall game length.

Bolded expressions emphasise the most important points

for Ghost movement we use probabilistic controllers, whereas original Pac-Man had

a set of simple rules (which ultimately made Ghost movement deterministically

predictable).

Players were labelled according to the DGD typology after answering a Question-

naire instrument based on material from Bateman and Boon (2005). This instrument

gives 16 five-point Likert scale statements or questions (see Appendix C), where each

question corresponds to one of four factors: Conqueror, Manager, Wanderer and Par-

ticipant. The agreement expressed with each question is added to the score for a player

type to generate a play style profile for each player.

3.2 Learning from Pac-Man players

To obtain a machine-learned classifier we collected data from 100 players, logging

their Pac-Man games and recording play preferences. The protocol followed three

steps: first players were located in a computer lab and briefed on the requirements

and procedure. Secondly they answered a questionnaire to give their play preferences
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Fig. 2 Annotated screenshots from a Pac-Man game level. Left panel the entire map, in the course of

being played. Right panels (top and below): the game screen is overlaid with metrics of game-play, such as

distance from Pac-Man to Ghosts or to Pills

and background information (age, gender, skill level in Pac-Man, Casual/Hardcore/No

idea). Thirdly each player was asked to play Pac-Man three times, two practice games

and a test game, to diminish the difference between experienced and inexperienced

Pac-Man players. Only games of at least two levels were accepted as either test or

practice games; only data from the test game was used for modelling. All software

was pre-loaded and data recording was automated, restricting participant effort to the

game.

The distribution of types over our respondents was {Conqueror: 45, Manager: 24,

Wanderer: 19, Participant: 12}—thus the Conqueror type dominates and using it in a

binary target implies a default of 55 % (i.e. 55 % of the sample will be of one type).

Moving on to the distribution over other values, there were 77 males and the age

range was from 17 to 41 (mean: 21.4). Demographic information suggests a bias

in the respondent set toward non-expert casual players {Expert: 8, Intermediate: 14,

Beginner: 69, Newbie: 9} and {Casual: 59, Hardcore: 31, No Idea: 10}. Note that these

demographic attributes are only mentioned for completeness as they had negligible

impact on the results. This may have been because they contributed no information

regarding game-play behaviour, perhaps due to our protocol for data collection which

had practice games to make all players more equal in skill.

In order to describe player behaviour, we built a set of game metrics, including

simple game engine variables and more complex features. The first step in this pro-

cess was to create a list of high-level behavioural traits that can be expressed, either

positively or negatively and to varying degrees, in most games (certainly in Pac-Man)

and by most players. The list comprises Aggression (forward and hasty action with

respect to opponents or obstacles), Speed, Caution (guarding against risk to failure),

Planning (achieving higher level goals with a premeditated, linked series of actions),

Decisiveness (lack of backtracking or vacillation), Thoroughness (attempting to do
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Table 2 Example features of game-play

Speed Natural language and pseudo-code descriptions

Sp1_Average states Count how many moves it takes the player to clear a level

Sp2_Average cycles Count how long in computer cycles it takes the player to clear a level (because

cycles are hardware specific, they relate more precisely to player actions than

does time, since player actions are limited by the hardware’s own speed of

execution)

.

These two features primarily indicate a player’s speed of play, and thus may be related to several of the

traits—but primarily Aggression. Other features may relate more precisely to single traits

or see everything available), Control Skill (fine, precise and detailed command of

control schemes) and Resource Hoarding [these traits are further defined in Cowley

et al. (in preparation, a)]. Each member of this list was then matched to a number

of features, which were derived by analysis of the game-play (both observational

and deconstructing the mechanics). Analysis allowed us to build a natural language

description for each feature and then quantise it with a function (generally of first-

order logic) over the state-space of the game-play log. These natural and functional

descriptions are illustrated by the simple example features in Table 2, while a full list

is given in Appendix A.2 Although it is not in scope to discuss these DM details here,

all these steps are described in more detail in Cowley et al. (in preparation, a). These

feature-based descriptions of player behaviour were applied to individual levels, and

then all level-specific data were averaged over the duration of the game. For the final

step in pre-processing, the data were normalised (by division by largest member), and

appended to demographic data and the DGD type labels for the players. This resulted

in one ‘feature-vector’ for each of the 100 players, forming the train-and-test data-set

we used to learn classifiers for the DGD labels.

3.2.1 Learning from features of Pac-Man game-play

We used the DM program SPSS Clementine (now known as SPSS Modeller) for its

implementations of ML algorithms CART, C5.0, RBFN and K-Means. CART and

C5.0 were chosen because of their facility for handling categorical as well as con-

tinuous features, and have been shown to perform well by comparison to other DT

algorithms (Anyanwu and Shiva 2009). RBFN and K-Means were chosen as exemplar

alternative ML approaches to test whether the DT approach was deficient in accuracy.

The ‘feature vectors’ described above were fed to these algorithms and the results for

all four were compared for accuracy and interpretability. We ran each algorithm with

a battery of parameter settings designed to explore the solution space and obtain best

accuracy (parameters are described in the documentation for Clementine, but briefly

they were: for CART, feature importance and tree depth; for C5.0, Boosting, cross-

validation, pruning and winnowing). In short, the valid range (or categories) of each

2 Thoroughness and Control Skill traits generated several features, but none of these feature survived the

feature selection process to be included in the methodology—thus they are not included in the paper.
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parameter was explored step-wise, holding all other variables fixed, generating several

hundred DTs.

Train and test sets were randomly extracted from the 100 vectors in a 2:1 ratio, with

7× replication of every parameter setting, such that seven runs were made for each

setting with randomly selected train/test sets. Sets did not overlap except where the

C5.0 algorithm cross-validation setting was enabled. All seven test results from each

parameter were averaged to get the accuracy. With this approach, the best accuracies

obtained were: CART—59 %, C5.0—61 %, RBFN—54 %, K-Means—43 %.

This superior accuracy result reinforced our choice of DTs. Based on the exploratory

analysis described a large collection of DTs was obtained. Converting this collection

to an ensemble of rules, which can be seen in full in Appendix B, a heuristically

optimised classifier was built by selecting a ‘best bet’ rule set, as described next.

3.2.2 ‘Highly-ranked’ rule set

In order to represent what our DTs learned about the labels {Conqueror, Not Con-

queror}, and to ensure we only had rules of good quality, we built one rule-set for

each label: rules were taken from the best performing DTs by a rule selection policy.

There are two main principles behind not simply using all the rules from every DT.

Firstly, there is real-time efficiency. We need to ensure computational parsimony of

the classifier, because in the middle of game-play, the less features calculated in order

to provide data for a rule set, the more computational resources are free for other

purposes. This is a general principle of AI for commercial games, where the emphasis

of computation allocation is on aesthetic aspects.

Secondly, cutting rules from a tree also enables weak-feature pruning, because

excluding a rule will also exclude features which occur only in that rule. The DT

algorithms act to test and relegate the least informative features. Thus a feature, which

(for instance) only occurs in one rule which classifies two individual cases, represents

either an instance of non-descriptive data or outlier behaviour (within the scope of our

data set). It is likely that describing such outlier behaviour would imply over-fitting,

thus it is generally good to find and exclude corresponding features.

In addition, the rule extraction is empirically justified by comparing the poor results

obtained for the DTs during the initial train and test, 59 % for CART and 61 % for C5.0,

against the results given in Sect. 4 below which depended on an extracted rule-set.

The primary measure for the quality of a DT rule is the size of the leaf node, i.e. how

many records it holds; and how pure it is: in our case, we define this as the proportion

of the leaf that the majority class3 occupies (other definitions include, e.g. entropy).

Leaf purity and size are respectively defined as confidence and support. In this work

we prioritised the relative support of the leaf, that is, how proportionally representative

it is. We define this as support divided by total number of records in the test set. Thus

a rule with support 31 for a set of 61 players is about one-fifth better than a support 31

rule for 75 players. Support tends to diminish as trees get deeper and purity increases

(although purity may increase spuriously, e.g. a leaf node containing one record is

3 That is, the class which represents the majority of records at that leaf. If only a single class is represented

in the leaf, the corresponding rule is a ‘pure’ representation of that class, and thus the leaf is very pure.
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Table 3 The ranked value of a CART rule

Rule ID Support Split Relative support Confidence Rank

Not_Conqueror 6 21 61 0.344262295 0.952 0.327737705

completely pure). Thus, if a good rule could be found within a shallower depth (and

consequently a smaller number of features) it may be reasonably thought of as more

generally applicable than a rule from a greater depth, which may be over-fitted. It will

also require utilising less potentially unreliable features during deployment, an issue

discussed in detail elsewhere (Mitchell 1997).

3.2.2.1 Rule ranking. The first step in extracting the best rules was to extract the

best trees. Our exploratory analysis (see Sect. 3.2.1) of CART and C5.0 algorithms

generated several hundred trees with over a thousand rules. From these, we took only

those trees with positive lift4 (Tuffery 2011) over the default of their individual test

set. Each tree was ranked based on its relative accuracy using the following policy: the

squared difference between the tree accuracy and the mean accuracy of all trees which

used the same parameters (i.e. 1 replication) was divided by the squared difference

between the overall default and the default for that replication. Formula 1 illustrates

this valuation, and was used to pick out 52 trees with an average of five rules each.

TreeRank =
(TreeAccuracy − TreeAccuracy)2

(OverallDefault − ReplicationDefault)2
(1)

In order to have a minimum standard for rules, we set some exclusion thresholds

for support and confidence. Rules with a very low support can be regarded as ‘case

unproven’ and rules with a low confidence do not discriminate very well between two

class values. These thresholds were initially set very high—minimum confidence to

0.9 and minimum relative support to 0.2—and then iteratively lowered to obtain a

useful number of rules. One might visualise as increasing the union between two sets.

Setting high thresholds for both measures excludes any rules with very good score in

only one. Rules were ranked according to their relative support and confidence, as in

formula 2 below.

RuleRank = Support/Test Set Size × Confidence (2)

For example, a rule from a tree using the 75:25 train and test split, that classified 45

records, would have a relative support of 45/75 = 0.6 (which is relatively high). That

rule classified 34 Conquerors and 11 Not Conquerors (as Conquerors), which means

its confidence was 34/45 = 0.756. Thus we gave it a rank of 0.6 × 0.756 = 0.4536. In

this way we specified a valuation for all rules produced using CART and C5.0. Table 3

illustrates an example ranked rule, where Rule ID is the target classified with the rule

number.

4 Lift is defined as the ratio of response in the target group compared to the average, i.e. the default value.
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Table 4 The chosen rules which have a single condition

Rank Rule # Target Support Confidence Rule condition (averaged data) Rule

0.2353 15 Not Cq 19 0.842 if Lives_StdDev > 0.597 then Not Cq

0.2133 20 Not Cq 14.22 0.915 if D2_Player Vacillating > 0.678 then Not Cq

0.2132 21 Not Cq 14 0.929 if A4_Hunt Even After Pill Finishes ≤ 0.212 then Not Cq

0.1618 32 Conqr 12.99 0.847 if Points_Max ≤ 0.446 then Conqr

0.1475 36 Conqr 9 1.0 if A4_Hunt Even After Pill Finishes > 0.563 then Conqr

0.1475 38 Not Cq 10 0.9 if Sp2_AverageCycles > 0.573 then Not Cq

0.1333 39 Not Cq 10 1.0 if Cherry Onscreen Time ≤ 0.137 then Not Cq

0.1067 48 Not Cq 8 1.0 if C5_Moves With No Points Scored > 0.584 then Not Cq

0.1065 49 Conqr 7.219 0.9 if P6_Put Off Dots Near Ghost House > 0.656 then Conqr

The final set comprised 50 high-performing rules. We have illustrated a sample of

(shortest) rules in Table 4 the full list of rules appears in Appendix B. These short

rules help illustrate the ease of interpretation rules can give, as the fact that they use

one Boolean split of a value to classify a binary target means they describe a quite

unambiguous hypothesis with respect to their feature. They are listed in order of rank.

3.2.2.2 Overview of rules. We examined the frequency of features within the chosen

rule set to evaluate their match to our hypotheses. Based on this analysis, the overall

trend of these highly ranked rules is to distinguish between different approaches to

the generic behaviours of Aggression, Caution and Speed (Planning is represented to

a lesser degree). Features like A4_Hunt Even After Pill Finishes, Lives_StdDev and

Sp2_Average Cycles dominate in terms of frequency of use. The top 16 (or ∼50 %

of) features were used three times or more. Of these 16 most-used features, four had

to do with how lives were gained and lost, four dealt with aspects of the Hunt mode,

four were associated with Caution, and two with Speed (the last two dealt with other

aspects of play). Therefore on first inspection we would say that this rule set, tar-

geted on the Conqueror/Not Conqueror classes, supports our hypotheses regarding

the Conqueror tendency to concentrate on Ghosts and to play quickly with incaution.

Section 5 furthers this approach to building insight from rules.

It may be noted that the rules tend to be quite short; the majority have fewer than four

conditions. Although we noted earlier that short hypotheses might be an advantage,

we didn’t choose rules based on this principle, but on their coverage and accuracy.

The higher ranking of shorter rules reflects the higher performance of shallow, and

therefore general, trees. In our complex data space and small testing data sets, longer

and more ‘fitted’ rules either missed many players, or included too many by not dis-

criminating. Having said that, good long rules may still exist—such as our highest

ranked rule with five conditions—they are just rarer.

3.3 Classification experiment methods

Prior to describing the results of rule testing in Sect. 4 we will briefly discuss imple-

mentation: in Sect. 3.3.1 we address the particular issues involved in implementing the
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rules within the Pac-Man game engine, and in Sect. 3.3.2 the validation experiment

format is described.

3.3.1 Rule set implementation

In deployment the values of features and output of rules were derived level-by-level.

This was done for practical reasons, because firstly the history of a level cannot be

held in working memory indefinitely, it must be written out. Therefore the classi-

fier must utilise the level state history before it is saved to disk and its memory

de-allocated. All that then needs to be stored is the values of features, which can

be retrieved when required so the value for each feature, averaged over some inter-

esting number of levels, is readily available for the rule set classifier. Secondly, it is

desirable to have a classifier that works on any length of game, even if the player only

lasts one level. This left two main issues to resolve: the scope of previous levels to be

considered when classifying, and the resolution of conflict between different rules in

the set. Both are discussed in detail in the two next sections.

3.3.1.1 Scope of the rule set over prior levels. The operational time-frame for the

classifier was set at one level. This works because in principle Pac-Man is a modular

repetition of a single level design with some variation in speed of events and behaviour

of Ghosts over time. Although most features are calculated over a handful of states

(to capture an individual play event), features are evaluated only at the end of a level

because there can be little certainty in conclusions derived from too short a time-

frame; rather they should rely on aggregates of player behaviour such as the reaction

of a player to all four Pills in a level (not just their reaction to one Pill). However

we may want to make classifications based on feature-averages from more than just a

single-level at a time, since average values over multiple levels might fire a different

rule subset. This approach enables evaluation of the player type in the moment where

it matters most, but also as an aggregate which is necessarily only an approximation of

the truth but may still be useful (much like demographic data on the shopping public

is useful to supermarkets). This creates the issue that our classifier must consider more

than one scope of levels.

The scope is equivalent to the value of a feature representing some number of lev-

els: from the value of the last level only, to the average of all levels played, or any

window size in between. The classifier’s scoping system is defined over windows of

prior levels, with labels (in bold) as Window of 1 level: single-level; Window of three

levels: average-of-3; Window of all levels: average-all.

Features which have been averaged over multiple levels will thus appear in most

rules as real numbers, such as the number of Cherries eaten per level which could

be either zero or one per level, thus varying in the range 0–1. However due to the

discrete nature of some of the features, single-level rules cannot use the same values

as for a larger window. This is because some behaviours occur at most once per level,

so the corresponding features such as P6_Put Off Collecting Dots Near Ghost House

can have value 0 or 1; and some behaviours occur in a discrete rather than continu-

ous range. For instance Pills are eaten four times per level, so A4_Hunt Even After

Pill Finishes can have only the values {0, 1, 2, 3, 4}. Thus to make the single-level
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implementation of the rule-set operable, we rounded off those conditions which were

real-valued but which used features that must be integer or binary when measured for

only one level.

3.3.1.2 Conflict resolution for the rule set. Deploying a classifier built out of multiple

learned discriminators, such as a rule set, requires a method to resolve conflict between

rules. To resolve any conflict between the rules, we looked to the statistics with which

they were ranked and selected.

Each rule was weighted by the value of its importance in the ranking (in the range

0.1–0.45). Not Conqueror rule weights were sign-inverted so they would return a

negative value. There was statistical justification for weighting according to our rule

ranking, since higher rules applied more uniquely (confidence) to more players (sup-

port).5 The two methods we tried were: counting a vote from each rule, or counting

only the first rule to fire; each method could itself be implemented in two ways, giving

four resolution options.

By counting all the rules that fire as equal (positive for Conqueror and negative for

Not Conqueror), the majority decides the type classification: an equal-voting system.

In equal-voting the difference between the count of Conqueror and Not Conqueror fir-

ing rules provides the classification. Yet this ignores the rank of rules, so an alternative

is to sum the rule-ranks as weights to determine the type: a weighted-voting system.

The weighted-voting method would increment (for Conqueror) or decrement (for Not

Conqueror) an aggregate variable by the rank-value of each firing rule. The final value

of the aggregate would be positive or negative, and thus provide the classification.

Voting methods run a small risk of arriving at no conclusion, i.e. a result of 0 (nev-

ertheless the record of which and how many rules fired for and against could still be

useful). An alternative approach is to take the classification from the first rule to fire in

a sequence ordered by ascending or descending value of rule weights. These methods

are first-rule-to-fire: the rules are evaluated in an order based on their rank, and the

first to fire decides the classification. The obvious ordering follows the ranking of

the rules, highest down to lowest rank, but we also tried the inverse ordering. This is

because the ranking of rules was largely influenced by rule support, meaning that the

highest ranked rules tended to be the most general, and thus potentially firing for a

greater range of players. Such an ordering has a chance of obscuring more discrim-

inatory, informative rules lower in rank. If we propose the hypothesis that a rule’s

generality will be roughly inversely proportional to its discrimination in this context,

and discrimination of players is a classification goal, then it is reasonable to also test

the inverse-first-rule to fire. The inverse-first-rule will be the least general.

Tests and results for each method of conflict-resolution and scoping in the classifier

validation are described in Sect. 4 below. Prior to this, the format of the classifier

validation experiment is described in the next section.

5 This does not necessarily mean that a higher rule more strongly represents a tendency of the player to

whom the rule applies, which would imply a weak induction from statistics to psychology.
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Fig. 3 Plot of every player’s Conqueror score against their highest Not Conqueror score. The dividing line

is the function y = x , thus points below represent Conqueror players

3.3.2 Experiment format

In order to test the classifier in the Pac-Man game we recruited 37 subjects to play the

game, none of whom were among the respondents from the first phase of data gath-

ering. Subjects each played at least three test games so that the average classification

from all games could be used as a final result.

The data acquisition method here was similar to that described above in Sect. 3.

Again, the test subjects provided data on their DGD type by taking the player type

survey, resulting in a four-valued profile which was abstracted to the binary target

Conqueror/Not Conqueror. The distribution was 19, or 51 % with a main type of Con-

queror, 17 were Not Conqueror and one was tied Conqueror/Manager. Figure 3 plots

the players over the space between their Conqueror and highest Not Conqueror scores,

representing overlapping data points with a circle of area proportional to the number of

players. The diagonal line separating Conqueror and Not Conqueror classes illustrates

relative scores (by proximity to the data points).

Maximum score in the DGD survey data is used to define players as either Con-

queror or Not Conqueror. However, in this experiment we also wished to know the

relative ‘Conqueror-ness’ of a player, because we anticipated that the magnitude of

the difference between a player’s Conqueror score and their other DGD scores might

relate significantly to the rule set classification results. We measured the ‘Conqueror-

ness’ of a player by taking the difference between Conqueror score and highest other

type score, as shown on the abscissa of Fig. 4. The entropy6 of DGD scores on the

6 Calculated using, H(x) = −
∑4

i=1 p(xi ), log2 p(x)i ,wherep(xi ) = xi /
∑4

i=1 xi .
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Difference: Conqueror - Not Conqueror
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Fig. 4 On the abscissa, the ‘Conqueror-ness’ of the 37 players based on their DGD scores. On the ordinate,

the entropy of the player’s DGD profile scores

ordinate of Fig. 4 shows the strength of variation of players’ profiles, and thus the

strength of bias expressed in their play preferences in the survey. Only 12 out of 37

players, just under one third, have entropy less than 1.95, suggesting that if behaviour

in Pac-Man directly followed DGD profiles, we should find our test subjects difficult

to discriminate amongst. Relatedly, the players also clearly tend to have quite small

difference scores, whether positive or negative. The Conqueror and Not Conqueror

groups do not statistically differ on these two measures, according to Student’s t test.

Aside from the DGD scores, the respondents were asked the same questions as in

the previous experiment: to self-report their sex, age, previous Pac-Man experience,

and kind of gamer (hardcore, casual or no idea).

The next section shows results of the classifier validation over the 37 players’ game

logs, testing all 12 settings for the rule conflict resolution and scope methods.

4 Results

The primary output of the testing process was 12 result values from 12 classifiers,

reporting once per level and then averaged over all levels and all games to produce a

final classification. Each of the 12 results could be said to be a statement about the null

hypothesis: that there is no linear relationship between the game-play and the typology

instrument. Our accuracy results and associated p values (with confidence interval of

16.1 for a confidence level of 95 %) test this hypothesis, as shown in Table 5. All tests

represent the classifiers’ output at the end of three test games, averaged over the results

from each level. These accuracy results were found by comparing the classification
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Table 5 The final accuracy results from our classifier, sorted by settings

Setting %Accuracy Bias Correlation p

Scope Conflict resolution Total Conqueror Not Conqueror

Single-level Equal-voting 61.75 100 23.5 0.24 0.26 <0.0005

Weighted-voting 64.7 100 29.4 0.29 0.39 <0.5

First-rule-to-fire 63.6 68.4 58.8 0.90 0.18 <0.3

Inverse-first-rule 58.35 57.9 58.8 0.99 0.25 <0.2

Average-of-3 Equal-voting 45.2 31.6 58.8 0.73 0.18 <0.03

Weighted-voting 50.75 36.8 64.7 0.72 0.18 <0.1

First-rule-to-fire 49.85 52.6 47.1 0.95 0.04 <0.3

Inverse-first-rule 45.5 26.3 64.7 0.62 0.17 <0.2

Average-all Equal-voting 65.15 42.1 88.2 0.54 0.4 <0.006

Weighted-voting 73.35 52.6 94.1 0.59 0.42 <0.1

First-rule-to-fire 62.85 31.6 94.1 0.38 0.41 <0.1

Inverse-first-rule 47.5 42.1 52.9 0.89 0.12 <0.3

for each setting with the players’ maximum DGD type score. The accuracy obtained

compares to a population baseline of 50 % (i.e. a random choice from a binary target),

or a sample baseline of 51 % represented by the Conqueror class in our sample. Table 5

describes the accuracy in percentiles, plus individual accuracy for each class, along

with a bias figure7 (the ratio between accuracy for each label), the Pearson correlation

and t test p value (one-tailed, two sample unequal variance). The best three values in

each column are in bolded and italicised text.

Each setting can be ranked according to its place in each column, and a crude

evaluation can pick the best setting as the one with the most columns among the

top three. From this we can at least see that average-of-3 and Inverse-first-rule are

relatively poor performers. To make a further distinction between settings requires a

more principled evaluation, given that relying only on the values above could lead to

over-fitting. The naive approach would combine all 12 of these results together and

this is presented first, below. However this lacks justification as a solution since no

setting is in principle better than another, so we also compare combinations of the 12

rule-set results in Sect. 4.2.

4.1 Exploration of results

The average across all games of the 12 conflict-resolution and scope-setting values

gave a single classification score for each player. That combined result is detailed in

7 Note that the final score could be achieved with a high accuracy for one type and a low accuracy for the

other. For the current context such a biased classifier would be a poor solution overall. It is preferable to have

a classifier that performs similarly with both player types, so that accuracy for each type is roughly equal

(across multiple tests). Thus the performance differential between accuracy in each type can be considered

a metric for classifier quality, and that is what the Bias column shows.
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Fig. 5 below: the abscissa indicates the familiar difference score between Conqueror

and highest Not Conqueror, and the ordinate indicates classification scores from the

rule-set. Both axes are negative for Not Conqueror, positive for Conqueror. Note that

the player with a difference score of 0 is included in the graph for completeness, but

not in accuracy calculations.

The averaged approach rendered a final classification accuracy percentage of

69.4 %. The Spearman correlation coefficient between these final results and the DGD

type scores was 0.35, statistically significant with a two-tailed p < 0.05. Accuracy

was 73.7 % for Conquerors alone, while for Not Conquerors accuracy was 64.7 %. For

brevity’s sake, these partition-accuracies will be written below as {Conqueror score,

Not Conqueror score}.

The slope and intercept of the linear trend-line in Fig. 5 suggests that this correlation

represents data with a linear relationship, and is not an incidental value for a non-linear

or other type of relationship (such as demonstrated by Anscombe 1973). Though not

a strong correlation it is still potentially sufficient for successful classification.

The above method for combining all 12 results poses a problem: the value of the

classifier output was about one order of magnitude greater for equal-voting than

for the first-rule-to-fire and inverse-first-rule approaches. This suggests that simply

combining these values to obtain a final result may in fact obscure the results from

the two first-rule methods. An alternative approach is to normalise the results for

each separate setting before taking their average as the final result. This normalising

approach rendered a classification accuracy percentage of 69.4 % again, with one more

misclassification for Conqueror and one less for Not Conqueror. The score for each

Difference: Conqueror - Not Conqueror
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Fig. 5 Final results for the average of all games for each player using all 12 settings combined. They are

plotted against the difference scores between Conqueror and Not Conqueror
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Fig. 6 The average results of voting methods versus the average results of 1st rule methods, for all players,

coloured by the DGD type of each player. (Color figure online)

type alone was {68.4, 70.6}. After normalisation, the Spearman coefficient was still

0.35, statistically significant with two-tailed p < 0.05: so little change in correlation

with the DGD differences.

It should be noted however that normalisation as we have performed it cannot be

the default approach, because the maximum value used to normalise is not available

when the classifier is used in situ—this is the reason we did not use it first.

4.2 Combining results from parameter settings

Perhaps the most important distinction between the various test settings is the dif-

ference between the two first-rule-to-fire methods, and the two voting methods, for

conflict resolution. The distinction is important because only admitting one rule per

level has the potential to exclude important information on the player from lesser

ranked rules, and it is desirable to know if that fact renders the two first-rule methods

less accurate or biased. Figure 6 shows the results for the two voting methods on the

ordinate, against the results for the first-rule-to-fire and inverse-first-rule methods

on the abscissa. The linear correlation between the two methods illustrates that they

are largely in agreement. Each data point is labelled according to that player’s DGD

type score.

The accuracy of the first-rule methods is 66.7 % or {57.9, 76.5}, while the voting

methods maintain an accuracy of 69.4 % or {73.7, 64.7}. The first-rule methods also

have a slightly lower correlation coefficient to the DGD types of the players, of 0.31,
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with a two-tailed p-value of marginal significance at 0.06. The voting methods have

a correlation of 0.35 and p < 0.05. Thus only voting methods for conflict resolution

give statistically significant results, suggesting that voting methods make a slightly

better classifier than first-rule methods.

Next we tested the three scope settings. For these settings, each final result combines

values from four conflict resolution settings, so the data was normalised beforehand

(by division by maximum value). The average-all setting gives an accuracy of 66.7 %

or {47.4, 88.2}. Interestingly correlation of the average-all scope result with the DGD

difference score is the highest seen at 0.36, and statistically significant with p < 0.03.

On the other hand the correlation coefficient for the average-of-3 setting is 0.16.

With a non-significant p-value of 0.35 these are the least predictive of all the results.

Additionally, this setting has worse accuracy at 58.3 % or {47.4, 70.6}. Clearly, the

method of averaging over a fixed-size window of levels is sub-optimal without tuning.

The single-level setting shows accuracy of 69.4 % or {84.2, 52.9}. Correlation to the

DGD scores is comparable to the average-all setting with a coefficient of 0.33, and

statistically significant with p < 0.05.

The accuracy of classifications using each scope setting was surprising, since it

did not relate linearly to the number of levels in scope. This may have been because

different pre-processing steps were used for single-level as compared to multi-level

approaches. Figure 7 illustrates the two higher-scoring settings, average-all on the

ordinate and single-level on the abscissa. The linear correlation again shows that both
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Fig. 7 Results for the scope setting average-all plotted against results for the single-level scope setting

(in each case combining values from the four conflict resolution settings)
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settings are quite similar. The colouring by Conqueror membership shows the bias of

each setting: i.e. the majority of values are on one side of the zero-line for each setting,

the negative side for average-all and the positive side for single-level.

From an accuracy perspective, taking any given scope setting in isolation seems to

guarantee a definite bias either for or against Conqueror. One setting, such as single-

level, might still have the same accuracy as the combined settings, but that would be

because its Conqueror bias will correctly classify more Conquerors just as it misclas-

sifies more Not Conquerors. This evidence of bias emphasises the need to combine

settings to generate a usable final accuracy result. In the final analysis, obtaining accu-

rate reliable classifications and overcoming (apparent) bias leads us to the combined

voting methods over the combined average-all and single-level scopes as the best solu-

tion. This combination achieves 72 % accuracy {78.9, 64.7} with correlation of 0.36.

Concluding this section on classifier accuracy, it could be considered over-fitting to

obtain high accuracy in classifying players, from a classifier built with the data of only

100 subjects and tested on less than 40. So reliable accuracy at ∼70 % (up from 51 %,

based on the default of the set of test players) is a satisfactory result, given the inherent

instability of the testing domain and the fuzziness of the DGD survey instrument, and

it motivates further development of this approach.

5 Analysis

This analysis illustrates the support for the proposed hypotheses (next section) and

shows a deeper examination of the results with the aim of uncovering further features

operating beyond the level-by-level scope of those already used (Sect. 5.2). In both

subsections we look mainly at individual outputs from the classifier or DTs. While

this does not give generalised results, it is rather our goal to illustrate the start of a

DM iteration (in this case a later iteration), in the domain of player modelling. This is

partly motivated by the fact that in reading existing player modelling literature (e.g.

as in Sect. 2.1), one might be led to think that the first iteration (which is usually the

only one described) is the only one that needs to be done.

5.1 Model output analysis

In this subsection we examine how concepts learned by the DTs corresponded to our

hypotheses of player behaviour in Pac-Man, referring back to Table 1 for comparison.

The value of this analysis is both to get an impression of the rules’ descriptive accu-

racy, and to show how one can deepen the understanding of types by examining the

rules and features.

We might conduct a simple hypothesis test on the group mean differences of the

features relevant to each hypothesis. Results from using one-tailed t tests are shown in

Table 6 below—only the best supporting feature for each hypothesis is shown (or the

second best where the hypothesis is complementary to one already tested: H2 and H6;

H3 and H8; H1 and H11; Table 1). However, as we can see, most of our hypotheses

cannot be captured in such a simple statistic, suggesting that the investigator of player

behaviour must try to interpret the output of ML algorithms as we do below. In fact
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Table 6 Results of t tests on group mean differences for hypothesis-related features

Hypothesis Feature Expected t-value df p

H1 A4_Hunt Even After Pill Finishes*** + 2.4 98 0.008

H2 Sp1_Average States* − −1.6 98 0.06

H3 Pac-Man-Ghost1 Distance_Max*** − −2.6 98 0.005

H4 R2_Average Cherry Eaten Per Level + 0.7 98 0.2

H6 C5_Moves With No Points Scored* + 1.6 98 0.06

H7 D2_Player Vacillating + 1.0 98 0.16

H8 S4_Teleport Use + 0.8 98 0.2

H9 P1.b_Lure: All Ghosts Lured** + 1.7 76 0.04

H10 Lives Std Dev* + 1.4 94 0.09

H11 P4.b_Average Speed Hunting 2nd Ghost − −0.6 98 0.3

two hypotheses, #5 and #12, could not even be tested as they are out of scope of the

current feature set. This is discussed further below.

In Table 6, column 1 shows the hypothesis tested and column 2 lists the features

used for testing with their significance (* marginal <0.1, **<0.05, ***<0.01). Col-

umn 3 holds the expected direction of the relationship as per the hypothesis, and then

in columns 4–6 the statistical values are listed for the t test. In all cases Levene’s test

was used to ensure equality of variance.

These simple tests support less than half of the hypotheses significantly (although

tellingly the sign of the t-value always agrees with the expected direction of the test).

Nevertheless, the real support is found in the data derived from the DTs.

Raw logged data, such as the variables representing score or Pac-Man position,

encode player behaviour at a very high resolution and low level of interpretability. By

representing moments of the log data, features encode behaviour at a higher level of

abstraction and can be easier to interpret. DTs or rules represent yet a further ‘level’

of encoding, logically combining features to enable interpretation. The upshot is that

these encodings allow interpretation of play just as would personal observation, but

in a more generalised way. Features, DTs and rules are thus ‘interpreted’ below as

an example of what can be done. Note that these discussions relate to the original

data set of 100 players, not the 37 players from the validation test reported in Sect. 4.

Thus one will see numbers of players in the DTs which are the training sets of these

100.

5.1.1 Tree analysis—correspondence to hypotheses

We use aggregate data features to represent game-play logs compactly. DTs represent

facts about that data space by iteratively using linear separations of individual features

to maximally discriminate between classes, which in this case are DGD types. Rules

are thus a combination of one or more facts or separations, which are termed con-

ditions, and represent a direct prediction for behavioural preferences. However, we

must be wary of claiming the fact associated with each rule condition as a trait for all

Conquerors, as rules are only inferences from a sample of the population. Thus instead
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Fig. 8 DT for C5.0 algorithm with 63:37 train:test ratio and accuracy of 70 %. Players captured in each

node are from the test set

of associating each condition like a trait to all Conquerors, the value of Conqueror

is applied to each condition/trait. Then at the final analysis, we may look at all traits

and derive an over-arching tendency for behaviour for the Conqueror class. We begin

by examining the tree in Fig. 8, learned by C5.0 with one of the better performing

parameter configurations of this algorithm (i.e. this tree represents one replication for

a parameter set where the average over seven replications performed relatively well).

The tree is quite small, trading off size for generality, and neatly encapsulates the

difference between approaches to acquiring and losing Lives in Pac-Man. In broad

terms, this tree seems to suggest that Conquerors both gain more Lives (Node 3 vs.

Node 2), and yet stay close to the mean value for Lives (Node 1 vs. Node 4). Node

1 details how 91 % of the Conquerors in this training set do not show wide variation

in their number of Lives across a game. In other words (since they start off with five

Lives) they are maintaining close to five Lives throughout the game.

Further, in Node 3, 69 % of those Conquerors (from ‘Node 1’) ate the Cherry in

four out of every five levels or more. As the game mechanics of our Pac-Man dictate,

eating the Cherry confers a life. Thus we have a large group of Conquerors, 64 %

of the training set’s Conquerors, who gain a lot of Lives but do not show it in the

standard deviation over Lives. Given how the features are calculated, this must mean
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that these same Conquerors also regularly lose Lives, and that loss and gain happen

synchronously, one following another. If we take both facts together we obtain the

path or rule ending at Node 3, and we have a complete statement about Conquerors

with an associated support and confidence. This statement is indicative of traits for

the class Conqueror, implying that Conquerors take more risks—pushing the enve-

lope of caution—but are tenacious enough in play to prioritise survival by going after

life-giving bonuses (i.e. the Cherry fruit) as well. This all bears out the first causal part

of H3 (playing with less caution), and H4 (more attempts to collect fruit).

The path/rule terminating at Node 2 describes Not Conquerors. The implication

here is orthogonal to the Conqueror rule—low standard deviation in Lives, with few

Lives gained, implies that few Lives were lost—and achieving that requires a more

cautious attitude to play, supporting H8 and H10 to some degree.

Other signs of the Conqueror type’s characteristic ‘enthusiastic incaution’ can be

seen in other trees with better support and confidence. Figure 9 shows a C5.0 tree

which managed both a modest amount of lift and high confidence: the average purity

over leaf nodes is 92 %. From this high confidence quite a clear picture of Conqueror

type behaviour can be interpreted.

Starting at Node 1, the feature A4_Hunt Even After Pill Finishes splits off 13 %

of Not Conquerors. A very low score associates them with a particular caution in the

hunt, or even indisposition to hunt at all, providing support for H8 and H11 (this could

be for strategic reasons—some Pac-Man players prefer to minimise exposure to risk

to prolong survival—which is suggestive of Manager play). It also fits quite well with

our H1, stating that the Conqueror type may be more likely to chase Ghosts with such

aggression that they are still chasing even after the effects of the Pill end.

Then in Node 3, a low score in Sp1_Average States is associated with a relatively

high number of Conquerors, supporting H2. This feature does not necessarily equate

to the speed of play, which is measured by Sp2_Average Cycles, but is based on the

number of moves a player takes to finish a level. Being less cautious than the Manager,

more eager to progress and get high scores than Wanderer or Participant, this trait fits

the typological description of the Conqueror.

S4_Teleport Use splits off a small number of Conquerors in Node 5, implying that

less use of teleporters can be a Conqueror trait. Since teleporters are a device more

useful at the strategic level of play for keeping Ghosts at bay, this is some evidence

for H7 and H8, although because the opposite Node 6 is quite impure (still containing

30 % Conquerors) it is not compelling.

Finally, ‘Node 7’ and ‘Node 8’ are split by C3_Close Calls, where lower values

indicate the Conqueror type—this runs contrary to the second evidential part of H3.

This is not intuitive since we expect Conquerors to show less fear of Ghosts and thus

get closer. The fact that Conquerors have such low scores (under 0.1) in the left branch

of this split suggests that they never come too close to the Ghosts when not in Hunt

mode. When we remember that these particular Conquerors have higher than average

scores (for Conquerors) in Sp1_Average States and S4_Teleport Use, we get a clearer

picture. These players may simply be playing a more Ghost-aware game, using tele-

porters and extra moves to keep their distance, perhaps waiting until the time comes

to Hunt. This insight goes beyond what was suggested in H1-H11, indicating further

ways to look at player behaviour.
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Fig. 9 C5.0 tree trained on 63 records, tested at 60 % accuracy on 37 records
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Studying whole DTs offers a picture of player behaviour with good clarity because

both sides of every split are shown. Yet classification rules can be also be taken alone

to operate without reference to these splits. Thus we look at them individually to inter-

pret how they represent player types. Additionally, the traits mentioned in Sect. 3.2

are neatly encapsulated in the trees shown, but we must look to the rules to see how

significantly each trait is represented within the rule set.

5.1.2 Rule analysis—correspondence to hypotheses

Several of our rules stand out in distinguishing Conqueror from Not Conqueror. The

support and confidence of rules is a factor, as is simplicity. To illustrate simpler aspects

of the Conqueror type, we start off with two interesting rules, with single conditions

unrelated to the trees examined above.

Rule 20; Not (support 14.22; confidence 0.915) if D2_Player Vacillating > 0.678 then Not

Rule 36; Conqr (support 9; confidence 1) if A4_Hunt Even then Conqr

After Pill Finishes > 0.563

The first rule (number 20 in the rule-set) showing that higher values of the feature

D2_Player Vacillating indicates Not Conquerors, agrees with the Conqueror traits of

fast and incautious play and gives further support to H6 and H7.

Then rule 36, where Conquerors score higher for A4_Hunt Even After Pill Finishes,

shows the strong evidence for H1 since there are no Not Conqueror players scoring in

the top half of the distribution for this feature (recall that feature values are normalised

in these rules, thus ∼0.5 represents the mean).

We next examine a complex multi-dimensional rule as further illustration of the

interplay between features, selecting rule 2 for its high support and confidence.

Rule 2; Not (support 27; confidence 0.889)

if C5_Moves With No Points Scored > 0.413 and P4.b_Average Speed Hunting 2nd Ghost ≤ 0.504

and P6_Put

Off Dots Near Ghost House ≤ 0.469

then Not

This rule classifies 24 players correctly as Not Conquerors. There are three con-

ditions in this rule to describe what Conqueror behaviour isn’t. A higher value for

C5_Moves With No Points Scored indicates more unnecessary movement (evidence

for H7) which combines with less instances of P6_Put Off Collecting Dots Near Ghost

House, and a lower average speed to catch the second Ghost during a Hunt (third con-

dition). Together these conditions suggest a player who enacts strategies (to clear the

map or to Hunt Ghosts), and thus does more manoeuvring over empty areas to ‘set up’

their strategies. Overall this seems like a Manager type, but there is another possible

interpretation. Lower scores in P4.b_Average Speed Hunting 2nd Ghost could also be

scores of zero, meaning that the player did not use their Pills to Hunt both Ghosts at

all. Such a reading supports both the more timid types of Wanderer and Participant,

and the high strategy of a Manager who uses the repulsive effect of the Pill to buy

more time for Dot collecting. Although there is more than one possible interpretation
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of the rule, none describe Conqueror play, so this ambiguity helps to illustrate how,

even given some uncertainty, there exists a stable basis for Not Conqueror behaviour.

The rule set listed in Appendix B is accompanied by further analyses of the top five

rules. These throw up additional support for our hypotheses of the Conqueror and Not

Conqueror types. From all analyses, two hypotheses were not addressed out of the 12

proposed: #5 and #12. These pertain to the number of times a player repeats the game,

and length of individual games. Such total-game features were left out of the rule set

in this case, because we were focused on features that would apply over a single level,

to facilitate real-time deployment. The inapplicable hypotheses are retained in this

paper for completeness—they represent types of statements beyond the scope already

discussed.

5.2 Test results analysis

In this section we use the test results to illustrate a further utility of the player modelling

method: that the classifier output can be used to expand the investigator’s knowledge

by examining player actions, and generate fresh insights. This process represents iter-

ation back to the initial stage of DM; the outcomes here could serve as the basis for a

new round of ML, generating new testable models and insights. We however go only as

far as generating the insights. In other words, we will present the domain exploration

part of DM rather than the outcome of applying the resulting algorithm—thus please

note Sect. 5.2 is not intended to present generalisable conclusions. Rather, investi-

gators of game-effects on players, such as game developers, would benefit from the

insights afforded by this step in DM their game.

The procedure presented so far has mainly addressed the question: how well do the

DGD survey and rule set classifier descriptions of players match? Further questions

of immediate interest are those which would generate readily-implemented updates to

the existing models; and the first of these involve the meta-game, i.e. variations over

an entire game. This section is structured in two parts around the following questions:

Q1. Does game length correlate either with player type or changes over levels?

Q2. Can we extend the current approach in a simple manner to detect concept drift:

i.e. how players change type over their full set of games?

5.2.1 Game length

Examining the characteristics of game length with respect to DGD type certainly

uncovers some distinct differences. The data in Fig. 10 shows the average levels

played for all the games of each player plotted against their rule-set classification,

with separately marked data series for DGD labels Conqueror and Not Conqueror.

Although the DGD type clearly correlates with the number of levels played (Pear-

son = 0.39 p <.02), with Not Conquerors producing less levels on average, we found

that the number of levels played does not really correspond with the magnitude of

the DGD difference score. Players with low differences are playing as many levels as

those with high differences, with non-significant correlations. The variation between
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Classifier results
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Fig. 10 Average levels plotted against rule classification of players, coloured by their DGD type Conqueror

or Not Conqueror. (Color figure online)

players also seems to distinguish Conqueror from Not Conqueror players. The cal-

culated variance across the Conqueror data series was 32.8 compared to 4.8 for Not

Conquerors. This is variance of average length of game between players; if we exam-

ine the within-player variance between the lengths of games, and then average the

results over all players, Conqueror variance is 9.2 and Not Conqueror is 3.0.

If we use the rule classifier to divide players, these distinctions vanish: the gap

between average numbers of levels and the respective variance of average levels within

the Conqueror and Not groups become insignificant. The various differences related to

game length are an empirical indication of a genuine difference between DGD-typed

player behaviours, yet they are not predicted by the rule-set classifier. The implication

is that game length and variation are two metrics operating beyond the scope of our

classifier, but which help to distinguish playing styles. Thus they could be used as

additional discriminants to improve end-of-game classification.

5.2.2 Concept drift

We anticipated that our player modelling solution would encounter problems involv-

ing concept drift in real-time data capture. Concept drift refers to the changes that

occur over time in the data domain that our ML classifier operates on. According to

the literature “such change may affect one or more classes and, within a class, may

affect one or more of the rules which constitute the definition of that class” (Black and
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Fig. 11 Top row classification results from the first 10 levels of the first (left) and last (right) games played

by eight Conqueror players (who achieved at least 10 levels in their first and last games). Bottom row the

same data for Not Conqueror players

Hickey 1999). Although it is not within our scope to implement and test drift handling

routines here, we can attempt to identify how and if drift is occurring.

We first note that most players exhibit behaviour classified as both Conqueror and

Not Conqueror in levels across their games. Indeed it would be unusual if the classifica-

tion was uniform across all levels, as players are not expected to exhibit behaviour con-

forming to their type absolutely 100 % of the time. For example, someone playing like

a Conqueror and incautiously losing too many lives in a level might decide to play more

cautiously in the next level, and exhibit Not Conqueror style behaviour. Thus evidence

for concept drift must be sought across entire games and series of games, for instance

as trends of classifications over levels within each game and over a series of games.

To illustrate the trends over games, classification scores for first and last games

of both types of players are shown in Fig. 11. To show a representative sample of

players and behaviour, we selected those players whose games had at least 10 levels

(which was the average total game length)—that meant eight players of each type. In

these figures, game levels are shown on the abscissa; positive values on the ordinate

represent a Conqueror classification; the linear trend line and standard error bars are

shown, and all figures share the same axes scaling for reference.

A major influence on player status is the difficulty curve. This is visualised in

the shaded areas. The two bands of shading show two measures of difficulty—Ghost

speed (top band, dark grey) and the probability of Ghosts moving toward Pac-Man.

The values that the bands represent are the cumulative count of increments for both
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difficulty measures (with no relationship to the ordinate), giving an indication of the

overall difficulty trend to compare with player classifications.

Perhaps the most immediately interesting behaviour is the central tendency in

play style from first to last games. In first games, we see only one contra-DGD type

(average) classification for players of both types; in last games, classifications are split

almost 50/50 between Conqueror and Not Conqueror. This change in classifications

could reflect how players learned to improve: each type engaging in some non-typical

behaviour, e.g. Conquerors showing more caution, in order to achieve higher scores.

It is also notable that the correlations between classification and difficulty level are

all positive—as the game becomes more difficult, classification results tend toward

Conqueror.

Examining the trends of classification from first to last games suggests that a likely

contender for causing concept drift is player learning. Additionally, reaction to con-

text in terms of the changing game difficulty also impacts the style of play such that

classification of player type is affected. This reinforces the notion that type is a local

contextual construct of player personality. Overall, the analysis suggests that the trend

of classifications over a game (i.e. the fitted curve), or else the correlation between the

classifications and some metric of the global state of the game (such as the difficulty

curve), could be considered an important indicator of player type and potential extra

metric for classification.

6 Discussion

Our main result is achieving over 70 % classification accuracy on a player model-

ling task using typology class labels. Moreover, the main and much broader aim of the

paper was to show a complete player modelling solution in fairly high detail, including

the ‘messy’ domain analysis parts which are too often available only from expansive

textbooks or even hidden in researchers tacit knowledge.

The DGD typology was chosen to be general, yet by its nature it is rather broad.

Typologies are an approach that has an inherent error, because specificity must come

from a consideration of not just the player psychology, but the context and game type.

Even just considering player psychology, still the players’ preferences, performance

and learning must be disentangled. Such a general framework does not currently exist,

although there are ongoing efforts.8 Meanwhile, general typologies with more clas-

ses have been proposed since this work was initiated (Bateman et al. 2011). Before

considering a general model including context and game type, the inherent error of

the typology could be minimised by extending our approach to create an ensemble of

binary classifiers, one for each type label.

One interesting convergence is evident looking at other approaches (Baumgarten

2010; Drachen et al. 2009), in that their feature creation also turned up meta-behav-

ioural groups similar to our behavioural ‘traits’. These methods are quite different

yet complementary to ours, in that their features are derived more readily and yet the

following interpretation is not as rich. The two approaches could be combined with a

8 See for example Cowley et al. (in preparation, b), or the ‘Fun of Gaming’ project at http://fuga.aalto.fi/.
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new test-bed game to further validate, and hopefully improve on, the kinds of results

shown by all three papers.

In general, for work such as conflict resolution and rule selection, the methods we

used are rather simple. In fact the aim of the paper is not to illustrate data-mining

methods, but rather methods to model and understand player behaviour. The latter is

the key reason why so much of the approach is manual. It is also potentially a more

transparent read for the data-mining layperson. Nevertheless we would still advocate

more sophisticated methods for, at least, feature and rule selection (Chen et al. 2006;

Kludas et al. 2009). With a sufficiently large dataset, scope selection could be easily

achieved with a basic hill-climbing algorithm or perhaps a genetic algorithm (GA),

using classifier accuracy as fitness function. Chen et al. (2006) also addressed conflict

resolution.

The classification result itself can be considered on its contextual merits, since it is

(a) derived from a rather simple game, and (b) very plausible to improve via methodo-

logical upgrades. On the other hand, we can see from recent changes in the commercial

game market that simple games are still very relevant [e.g. Angry Birds (Rovio 2010)].

Additionally, it is clear that we had a somewhat small data set size, compounded in

this case by data complexity (the ‘curse of dimensionality’). A small data set makes it

difficult to both learn a good predictive model and test it, since as feature dimensions

increase the degrees of freedom inherent in the data set decreases. In other words,

the concepts learned from training set data may be over-fitted and not apply to test

set data. We may say that the small size of the corpus militates against finding a split

that provides representative, statistically significant training and test sets. A footnote

to this issue is that when modelling with continuous predictor variables, linear DT

algorithms are prone to the problem of sub-tree replication. This occurs especially

with proportionally large continuous variables which may have to be split into many

threshold-based Boolean attributes (Mitchell 1997). The outcome is an increase in

spurious dimensionality and no correlated increase in descriptive power. A solution

might be mutual information-gain based sub-tree pruning.

The hypothesis examination process threw up an interesting insight—the game

itself plays an important role in polarising play into specific styles, which may corre-

spond more or less closely with one of the existing types. Although Not Conqueror

is probably not as homogenous a type as Conqueror in the context of Pac-Man, it is

probably more homogenous than Not Manager. We believe this is the case because

the Conqueror style seems more removed from the Wanderer or Participant style than

does Manager, in the context of Pac-Man. However it is not proven, and remains spec-

ulation pending further work. The purported polarisation ties in with the argument of

Bateman et al. (2011) that player type is more valid when viewed as a measure of trait

rather than state.

In terms of the case study in Sect. 5.2.2, it is clear that this work is not meant

to imply general results. Instead, the process throws up meta-level features which

lie beyond the scope of the rule-set classifier and indicate how to extend the ap-

proach. Indeed, this examination of ML results, and subsequent (proposed) extension

thereof, is characteristic of the recursive nature of practical DM. We apply statements

of formal systems to a domain where we are in fact dealing with certain levels of
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player psychology which cannot be captured by rules which exist within the formal

system.

6.1 Future work

A first priority of future work would be to experiment with the selection of rules from

the DTs, both to improve reliability and to ensure fidelity to the original trees built

by the C5.0 and CART algorithms. Cherry picking rules based on a ranking selection

method was necessary for the reasons explained in Sect. 3.2.2, but there was always a

risk that this approach introduced methodological errors. An ensemble of trees might

provide a more reliable rule deployment than a ranked set.

The rules themselves might be improved by binning the continuous predictor vari-

ables. This would have the effect of categorising the behaviours of player types, which

could be valuable from an interpretation perspective. Worthwhile binning requires

informed analysis of the data to ensure partitions are placed constructively, otherwise

artificial limitations are placed on the learning algorithms and results can be made

worse. This implies that binning might work well only in 2nd or later iterations of a

DM process. In a larger project that used our method, where feature derivation and

deployment are carried out by separate individuals, categorising data by binning might

improve the comprehensibility of rules, a potential benefit for collaborative processes.

Instead of the conflict resolution approach used, it could be beneficial to implement

a choice function, to allow automated selection of the most appropriate rules that fired

in each set. This implies some higher level decision making, so that the modelling

method could reason about the player based on lower level data gathering like the

feature output so far.

Manually tuning the parameters of each algorithm we tested, to achieve best accu-

racy, was very time consuming (at the least). A novel method of tuning DT algorithm

parameters for large DM projects is to apply a GA (Mugambi et al. 2004). The param-

eters of the DT algorithm are used to build the chromosomes of the GA’s population,

and the GA is run until the most effective set of parameters is found. This was not

compatible with our Clementine-based approach but future efforts should take account

of such advances in DT methods.

Finally, we would envision using meta- or compound features combining lower

& higher levels of game-play, moving beyond the dichotomy between level-by-level

features and whole-game features. For interesting work in this direction, see Kludas

(2011).

7 Conclusions

We have presented a method for classifying players in an arcade-style game such as

Pac-Man in real-time. After learning a set of DTs, the optimal rule-set for the task

was ‘cherry–picked’ and deployed. Deployment of learned DT rules was a non-trivial

process, due to the various conflict resolution and scope settings that had to be imple-

mented. Nevertheless, results did prove the viability of the method we embarked upon

to determine the type of computer game-players.
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As described, the rule set generated by learning from the training data of the first 100

players was then deployed to the Pac-Man game to do classification testing for a fur-

ther 37 players, resulting in accuracy of ∼70 %. While the classification is interesting,

we feel it is incomplete in the general case without further analysis of the behaviour

of the test players, because this classified behaviour represents the ground truth of

player interaction with the game. In other words, with enough deep analytical work,

the classifier results can lead back to an understanding of how the player experienced

the game.

In summary, solid results were already obtained in both classification and inter-

pretation, two equally important aspects of player modelling. Yet there is significant

room for improvement and cross-fertilisation with other ML methods or psychologi-

cal theories. The rule-based learning demonstrated has the positive property of being

highly legible, which leaves it very open to further innovation.
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