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Real-Time Sand Dune Simulation
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We present a novel real-time method for simulating aeolian sand transport and dune propagation. Our method

is a GPU-based extension of the Desertscapes Simulation sand propagation model to additionally capture

echo dunes and obstacle interaction. We validate our method by comparing it against an existing study of

echo dune evolution in a wind tunnel environment. Additionally, we demonstrate the significantly improved

performance of our method via comparison to the existing, CPU-based method. Lastly, we validate our method

by comparing it to a published study exploring the evolution of dunes in a bidirectional wind environment

driven by an offline, cellular autonoma based method. We conclude that the presented method is a simple and

helpful tool for users in multiple domains who wish to capture physically plausible desertscape evolution in

real time.
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1 INTRODUCTION
Deserts are a type of biome characterized by low humidity and high temperatures, which evolve

primarily due to aeolian (i.e. wind-driven) sand transport. These environments can vary widely

in their presentation, often containing a variety of types of dune structures whose morphology

is defined by local wind conditions and sand availability. For example, in environments with low

sand availability and uniform wind, Barchan dunes are formed, presenting as crescent-shaped

with a wind facing steep side and two horns extending downwind. For environments with an

increased availability of sand and uniform wind, parallel transverse dunes are formed, extending

perpendicular to the wind vector. By introducing bidirectional or complex wind regimes, linear

or star dunes form. Similarly, a number of unique dunes form only with the introduction terrain

gradients. For environments with more gentle terrain gradients, dunes slowly scale the slope face,

forming climbing dunes. For those environments with steeper gradients like cliffs, echo dunes form

upwind from and extend along the cliff face, kept at bay from climbing the terrain by reverse eddy

currents.

Many disciplines, such as computer graphics, climatology, and geology, desire to accurately

simulate and model these processes and capture the full range of dune morphology. In computer

graphics, real-time video game studios and VFX studios often desire automated tools for simulating

realistic terrain generation for virtual environments. In climatology and geology, scientists aim to

accurately simulate and predict the effects of climate change on existing biomes on Earth.
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15:2 Taylor and Keyser

Existing techniques for modeling desertscape evolution typically fall into two categories. The

first category contains methods that focus on accurately modeling transport, often at the expense

of limiting their use to the offline domain and/or restricting the dimensions or resolution of the

simulated environment. The second category contains those methods targeting lower computational

cost by approximating the physical processes at work, often resulting in less accurate predictions

or a reduced ability to capture real-world features.

In this work, we present a natural evolution of the Desertscapes Simulation method [Paris

et al. 2019] for dune simulation to the GPU, enabling a real-time simulation of dune evolution.

Additionally, we present a novel extension of the sand transport model to correctly model echo

and climbing dunes. Additionally, we augment the method to allow for interaction with physical

objects in the scene.

Our main contributions are 1) a method of utilizing existing GPU hardware to transport sand

material for dune formation in real-time; 2) an extension of the model to correctly simulate echo

and climbing dunes; 3) an extension of the model to support obstacle interaction. Additionally,

we verify that our model provides realistic results by comparing to an offline technique from the

geoscience domain, an analysis we believe to be the first cross-domain verification of this behavior.

The rest of this article is organized as follows: In Section 2, we summarize existing work on

simulating dune and sand ripple environments. In Section 3, we present our method for simulating

aeolian sand transport on the GPU, as well as extensions to support echo and climbing dune

simulation and obstacle interaction. In Section 4, we validate our method and compare it to the

previous CPU-based model. Finally, in Section 5, we conclude the article with a summary of our

presented method and a discussion of limitations and future directions of the work.

2 RELATEDWORK
The existing approaches for simulating sand material transport vary widely in their target applica-

tion. In addition to work that simulates transport, another line of work focuses on measuring the

results of sand transport, such as fromwind tunnel experiments capturing significantly scaled-down

physical processes.

2.1 Real World Measurements
A number of works focus on simulating the behavior of dune creation and sand transport in wind

tunnel environments. Attempting to reproduce coarse sand propagation on a smaller scale, these

methods use fine sand and lower wind speeds to generate controlled, scaled-down versions of

large-scale dune environments.

One notable study focuses specifically on climbing and echo dunes, simulating a multitude of

environments in a wind tunnel environment [Tsoar 1983]. In this work, the authors find that a

terrain height increase at an angle of 55 degrees differentiates climbing from echo dune creation,

with climbing dunes occurring for less than 55 degrees and echo dunes forming in the alternative.

Another work focuses on investigating the evolution of barchan dunes via a wind tunnel experi-

ment. In their investigation, the authors introduce an oscillating amount of sand to the environment

and measure the change in the shape of barchan dunes, noting a monotonic, linear increase on the

wind-facing side of the dune, while the horns of the dunes were non-monotonic with time.[Zhang

et al. 2013].

A last study models sand dune formation on the western coast of Hainan island using a wind

tunnel experiment [Li et al. 2007]. For this study, the authors construct a scale model of the island

terrain, on which they introduce sand and a bidirectional wind force by placing the model on a

slowly rotating disk in the tunnel. By doing so, the authors were able to produce scale versions of

Proc. ACM Comput. Graph. Interact. Tech., Vol. 6, No. 1, Article 15. Publication date: May 2023.



Real-Time Sand Dune Simulation 15:3

the island sand deposition zones, as well as a variety of the dune types found on the island, such as

elliptical dunes, barchan dunes, and transverse dune ridges.

2.2 Precision Driven Methods
Many approaches desire an accurate simulation and are willing to restrict the computation domain

or greatly increase their computation time in order to obtain this accuracy.

Works in physics and geomorphology have targeted extremely accurate simulations of sand

dunes and sand ripple generation. One such method focuses on generating physically accurate

sand ripples [Huo et al. 2021]. In their work, the authors present a numerical model for directly

simulating 3D, long term development of sand ripples via simulation of the 3D wind field and sand

particles. Particle collisions, including mid-air collisions, as well as particle ejections from the sand

surface due to collision with other particles striking the surface largely drive the evolution of this

model. While accurate, this model is extremely expensive and in no way applicable to either offline

or real-time graphics domains.

Another novel approach reintroduces a complex computation domain, at the expense of slower

computation time [Rozier and Narteau 2013]. In their technique, these authors present a method

for utilizing a cellular autonoma model, in which the computation domain is represented by voxels,

each assigned one of a small number of states. During simulation, pairs of neighboring voxels

are stochastically selected based on their current state, and converted to a new state, to complete

the stochastically sampled event. Presenting a number of events, such as sand generation, sand

transport, etc., this method is able to accurately capture a number of sand dune structures.

In two important follow-up studies, the behavior of the previously mentioned cellular-autonoma

model is further explored under multiple levels of sand availability, and different variations of a

bidirectional wind regime parameterized by the angle of a second wind direction from a base wind

direction, as well as the ratio of the time the environment experiences the base wind vs the secondary

wind. The first study explores the evolution of sand dunes in a bidirectional wind environment,

focusing on low sand availability in the form of a localized sand source on a non-erodable bedrock,

as well as a fully available sand source in the form of an erodable sand bed [Gao et al. 2015]. The

second study then builds upon this first study, exploring the wide variety of dunes constructed

with intermediate availability of sand between fully available, and extremely low availability [Tsoar

1983]. In this second work, the authors demonstrate that varying the environment parameters,

notably sand availability and wind angle, has a large impact on the final sand dune evolution.

Focusing on a slightly different domain, one approach builds upon the cellular autonoma model,

demonstrating its applicability to different materials (specifically, snow) which experience cohesive

forces [Kochanski et al. 2019a]. The authors achieve this by introducing a number of additional

stochastic event types. While not discussed in this prior work, the introduction of cohesion to this

model would likely allow for the simulation of wet sand evolution.

2.3 Real-Time and Approximate Methods
Other methods target more interaction, allowing a user to change the simulation behavior in real

time.

Early attempts to generate physically plausible terrain environments relied on the utilization of

fractal noise and displacement to add important features to a height map for rendering [Mandelbrot

and Wheeler 1983]. However, while these techniques allow for arbitrarily high-frequency details to

be added to an environment, they struggle to generate realistic-looking terrain created naturally by

physical processes.

Taking inspiration from nature, a number of techniques attempt to simulate erosion processes to

generate more natural-looking terrain. One such technique improves on fractal noise for terrain
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generation by adding physical erosion due to thermal shocks and hydraulic erosion [Musgrave

et al. 1989]. It’s important to note that, while noted for their early foray into erosion-based terrain

simulation, these techniques do not target sand environments which are primarily due to aeolian

wind processes.

An early work targeting desert environments presents a method for simulating sand ripples

[Benes and Roa 2004]. Driven by a limited approximation of wind transport of sand, and saltation,

this method generates plausible sand ripples and even accounts for obstacles. However, it’s impor-

tant to note that the algorithm driving this method, while inspired by physical processes, is not

physically accurate.

In their early work,Wang and Hu focus on simulating aeolian sand transport and ripple formation

in real-time [Wang and Hu 2009] [Wang and Hu 2012]. Their model captures the movement of sand

particles through an environment, modeling the physical processes of sand particle interaction

[Bagnold 1971], focusing on accurate sand interaction behavior while utilizing simplified wind and

vegetation models. While their method successfully captures a wide variety of ripple formations,

as demonstrated in the paper in multiple environment constructions, the method fails to capture

large-scale dunes, focusing more on smaller-scale environmental features.

Another important approach describes a multi-layered, slab-based representation of terrain

[Cordonnier et al. 2017] and terrain evolution. While focused on wind and water erosion of bedrock

to form different terrain features, this work presents a framework that is built upon to simulate

sand material transport.

A more recent method uses a high-level wind field to drive an interactive, but not yet real-time

simulation of sand material transport [Paris et al. 2019]. This method simulates a multitude of sand

dune types, including barchan, longitude, and anchored dunes utilizing a multi-layered, slab-based

representation of terrain features. The authors show that their method is able to capture a wide

variety of sand dune structures based on different sand availability and wind characterizations.

However, their method is event-driven and thus restricted to the CPU, limiting overall performance,

with the method falling short of real-time. Additionally, the model is limited to simply bedrock, sand,

and vegetation layers, limiting the interaction of sand dunes with obstacles. However, as we show

in this work, it is possible to extend this method to GPU hardware by relaxing the event-driven

model, bringing the simulation to a real-time domain. Likewise, we demonstrate an extension of

the method to correctly model echo dune formation when obstacles are placed in the environment.

2.4 Deep Learning Approaches
While our presented method does not make use of deep learning techniques, such as GANs, a

summary of the latest related work would be incomplete without a discussion of recent works

involving the application of neural networks to predict the evolution of material, such as snow or

sand.

In their recent proposal [Kochanski et al. 2019b], one research group discusses an approach to

training a GAN-type network to predict the evolution of sand dune morphology at much greater

speeds than direct simulation could allow. Another work leverages neural networks to predict

storm erosion of Dutch coastline dunes [Athanasiou et al. 2022]. While able to reproduce beach

erosion behavior in the simulated dataset, this method is limited to a beach environment and thus

has little application to sand dune propagation. Additionally, a lack of real-world measured data

led the authors to generate and train on primarily simulated data, limiting the method’s level of

grounding in predicting real-world phenomena.

One last work utilizes neural networks to predict sand strength and cohesion parameters based

on easy-to-measure properties of sand, such as roundness, size, etc [Sharma et al. 2022]. While not
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focused on sand propagation, this method demonstrates the possibility of using a neural network

to drive/tune the parameters of other simulation methods to achieve realistic results.

One commonality to all these approaches is their requirement of large data sets for training;

data sets that are largely generated through expensive computation methods, such as a cellular

automaton model of sand transport [Zhang et al. 2010], due to a lack of real-world, measured

data. Given the wide variability in the types of interesting environments of focus for prediction

in these neural network approaches, there is a strong desire for a fast, accurate simulation model

for data generation which is able to accurately reproduce physically accurate dune creation and

propagation.

3 METHOD
The previously published sand dune simulation model by Paris et al. [Paris et al. 2019] is a great

candidate for utilizing the GPU due to its massively parallel nature, with many aspects of the

simulation pipeline trivially parallelizable. However, the sand transport and cascade event resolution

steps are not trivially parallelizable due to the possibility of a sand transport (including saltation

and reptation) or a cascade event triggering an additional set of sand cascade events, which must

then be resolved. The previous method solves this via an event-driven approach, where each sand

transport or cascade event, during their time sequential resolution, could trigger additional events.

While powerful and accurate, this event-driven model poorly maps to the GPU.

In our method, sand material is represented as small square slabs of height ℎ𝑠 meters and width 𝑙

meters. The number of slabs at a particular location determines the amount of material present in

that cell. A pair of 𝑁 x 𝑁 grids are used to store the (integer) number of sand𝐺𝑠 , and bedrock 𝐺𝑏

slabs at each cell. We additionally introduce a new obstacle layer𝐺𝑜 that represents static obstacles

placed in the scene. Each cell in the obstacle layer stores the height of the obstacle material located

in that cell. These obstacles are treated as being fully embedded in the bedrock layer, such that

sand is only able to travel over the obstacles, and can either be present for a given height extending

from the bedrock or not be present at all. To compute the overall height of the simulated surface,

the sand grid is layered on top of the obstacle grid, which is then layered on top of the bedrock

grid, such that the overall surface height at the cell located at row 𝑟 and column 𝑐 is

𝐻 (𝑟, 𝑐) = ℎ𝑠 (𝐺𝑠 [𝑟, 𝑐]) +𝐺𝑜 [𝑟, 𝑐] + ℎ𝑠 (𝐺𝑏 [𝑟, 𝑐]) (1)

Two additional grids are required, following the previous desertscapes model [Paris et al. 2019].

First, a vegetation grid 𝐺𝑣 represents the amount of vegetation present in the scene, where the

vegetation is placed on top of the sand. Each cell of the vegetation grid represents a value between

0 and 1, with 0 representing no vegetation, and 1 representing a full saturation of vegetation.

A second grid𝐺𝑑 can be provided that represents the bedrock density or hardness. Like vegetation,

each cell in this grid stores a value between 0 and 1, with values of 0 corresponding to an easily

erodible bedrock, and values of 1 representing difficult-to-erode bedrock.

Next, we present the overall desert simulation algorithm, focusing our discussion on those por-

tions that are novel and/or required important changes to be correctly and efficiently implemented

on GPU hardware.

3.1 Simulation
The result of a simulation step is updated bedrock and sand heightmaps, 𝐺𝑏 and 𝐺𝑠 , for rendering

or export. Unlike the previous desertscapes model, whose event-driven approach allows for in-

place updates of sand transport and sand cascade resolution, our parallel GPU approach requires

synchronization to correctly resolve multi-threaded updates of the same grid cell. Thus for passes

that require reading from and writing to the sand or bedrock buffers, we take the following approach
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Fig. 1. An overview of the pipeline simulating a single step of the desert environment simulation.

• First, lock a copy of the bedrock and sand grid’s current state for all readings in that pass.

• Second, write all changes to a separate copy of the bedrock and sand grid’s current state,

representing the updated grid.

• Lastly, continue forward using only the newly updated grid.

While this approach solves the issue of completing threads reading cell values of different logical

timesteps within the same pass, there remains the issue of threads competing to update write values

within the same pass.

To solve this, we utilize GPU compute shader atomic updates of cell values within the bedrock

or sand write grids. The reader will note that rather than storing a single height value per bedrock

or sand cell, we instead store an atomic integer value representing the number of discrete blocks,

from which we reproduce the height of the sand or bedrock. This representation is required as

compute shaders do not support atomic float operations.

With this, all synchronization issues are resolved, and thus we describe each step of the pipeline.

An overview of the pipeline can be seen in Figure 1.

3.1.1 Sand Injection. Starting with the previous timestep’s final sand heightmap 𝐻 (𝑥,𝑦), we
optionally allow sand to be added via compute shader. All added sand is assumed to be directly

added to the sand heightmap without experiencing cascade stabilization. We utilize this for the

injection of sand in both our wind tunnel simulation [Tsoar 1983], and our comparison to the

cellular autonoma model [Lü et al. 2018].

3.1.2 Wind Projection and Shadowing. Next, we compute the projection of wind onto the terrain

surface, as well as the wind shadowing of the surface. These passes are kept consistent with

those presented in the previous Desertscapes Simulation work [Paris et al. 2019] and are trivially

parallelizable on the GPU as each cell writes only to itself. We summarize each below.

The projected wind field𝑊 (𝑝) at point 𝑝 is computed by projecting a time-varying, high-altitude

wind field 𝐴(𝑝) to the surface of the terrain, exactly following the previous work [Paris et al.

2019]. This projection first accounts for Venturi effects (i.e. the acceleration of wind at altitude)
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by computing 𝑉 (𝑝) = 𝐴(𝑝) (1 + 𝑘𝑊𝐻 (𝑝)), where 𝑘𝑊 is set to 5𝑥10−3. Then, defining 𝐻50 (𝑝) and
𝐻200 (𝑝) as the sand heightfield convolved with a Gaussian kernel of radius 50 and 200 respectfully,

we compute the projection of𝑉 (𝑝) onto the terrain with the following equation, presented here for

completeness, and with 𝑘𝐻50
= 5 and 𝑘𝐻200

= 30. For a more general presentation and justification

of these equations and parameters, please see the previous paper. [Paris et al. 2019].

𝑊 (𝑝) = 0.2 𝐹50 (𝑝) ◦𝑉 (𝑝) + 0.8 𝐹200 (𝑝) ◦𝑉 (𝑝)
𝐹𝑖 (𝑝) ◦𝑉 (𝑝) = (1 − 𝛼)𝑉 (𝑝) + 𝛼 𝑘𝐻𝑖

∇𝐻⊥𝑖 (𝑝) 𝛼 = | |∇𝐻𝑖 (𝑝) | |

We note that the wind projection model, while physically based, is quite simplified compared to

other methods. While not the direct focus of our work, we later discuss how this is an important

direction for future work.

Next we calculate wind shadowing, representing the effect of terrain on slowing the projected

wind field and increasing the likelihood of deposition or sand retention. Starting at the target

cell 𝑝 = (𝑥,𝑦), we march upwind a max distance, 𝑅𝑠 = 10𝑚, tracking the cell 𝑞 = (𝑚,𝑛) with the

maximum terrain height difference from the target cell. Finally, we calculate the angle between

the target cell and this max cell as 𝑡𝑎𝑛 𝛼 = (𝐻 (𝑞) − 𝐻 (𝑝))/(| |𝑝 − 𝑞 | |). The wind shadow is simply

computed as 𝑆 (𝑥,𝑦) = (𝛼 − 𝜃𝑚𝑖𝑛)/(𝜃𝑚𝑎𝑥 − 𝜃𝑚𝑖𝑛) where 𝜃𝑚𝑖𝑛 = 10 degrees and 𝜃𝑚𝑎𝑥 = 15 degrees,

and 𝑆 is a grid storing the wind shadow.

3.1.3 Sticky Mask Generation. A new, novel pass presented in this work, comes next in the pipeline.

This pass extends the previous method to correctly model echo dunes, dunes that form a short

distance away from obstacles on their wind side. We design our sticky mask generation to closely

match the conclusions of measured, wind tunnel simulations of echo dunes [Tsoar 1983].

As the wind blows across a terrain with an increasing slope, that wind begins to increase in

speed. With a terrain slope of fewer than 55 degrees, sand dunes carried along by the wind will

climb up this sloped terrain, forming climbing dunes. However, if the slope of the terrain increases

past 55 degrees, the wind begins to behave differently. Wind streams at a higher altitude remain

fairly normal, continuing up and over the obstacle. In contrast, those wind streams that are located

closer to the terrain itself instead bend back due to their collision with the obstacle, forming a

reverse eddy current. As sand blows toward the obstacle of height ℎ𝑜 , a sand dune begins to form

within the distance range of 2ℎ𝑜 to 0.4ℎ𝑜 away from the obstacle where the reverse eddy and initial

incoming wind collide [Tsoar 1983]. Over time, the magnitudes of the two wind currents equalize,

and an echo sand dune forms and stabilizes within this region. Additionally, within a distance of

0.4ℎ𝑜 from the cliff face, no sand is found to be deposited, instead quickly being removed by strong

erosion due to formed eddy currents.

To capture this behavior, we present an augmentation of the existing desertscapes work called

sticky cells. In this extension, we iterate over all cells, stepping back against the wind direction to

check the neighboring cell for a steep, i.e. greater than 55-degree, dropoff that signals an obstacle

that is steep enough to trigger the reverse eddy currents. We refer to these identified cells as cliff

cells.

For these detected cliff cells, we first compute the height of the cliff ℎ𝑜 as the differential between

the cliff cell and its closest neighbor against the wind. Additionally, while not discussed in the

wind tunnel experiment, we found that allowing cliffs of unbounded height led to incorrect-

looking environments. Thus, we bound all cliff heights to a maximum cliff height ℎ𝑚𝑎𝑥 with

ℎ𝑜 = 𝑚𝑎𝑥 (ℎ𝑚𝑎𝑥 , ℎ𝑜 ), limiting the maximum distance an echo dune can form from a cliff and

improving visual quality. We then continue to step back against the wind, marking cells located
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Fig. 2. An example demonstrating the generation of a sticky mask where cliff cells have a height differential
of three cell widths. For the given wind vector, obstacle cells (in orange) determine cliff cells, ’c’, and the cells
closest to the cliff cells that are marked as erosion, ’e’. All other cells within the target distance range are
marked as sticky, with their assigned value shown.

within a threshold minimum distance 0.4ℎ𝑜 and maximum distance 2ℎ𝑜 from the initial cliff cell as

sticky cells; cells that should encourage deposition. These cells are marked as the inverse percentage

through the range of sticky cells, with the first sticky cell being assigned 1 + 𝑘𝑏 and the furthest

being assigned 0 + 𝑘𝑏 , with 𝑘𝑏 representing a small bias to avoid assignments of 0; we set 𝑘𝑏 = 0.1.

Additionally, we mark all cells located a maximum of 0.4ℎ𝑜 from the cliff cell as erosion cells; cells

that experience rapid removal of sand. Figure 2 demonstrates an example sticky mask where the

height differential of the cliff dunes is three cell widths high.

3.1.4 Sand Transport. Next, sand is transported based on the previously generated wind projection

and shadow maps, as well as the new object and sticky cell maps. Primarily, the sand transport

step models sand saltation, the lifting of sand by wind from the terrain surface, the transport of

that lifted sand by wind forward through the environment, and the ultimate deposition of that

sand. Additionally, the sand transport step correctly captures a number of potential rebound events,

where the transported sand bounces off the terrain and continues further along, rather than being

deposited. During these key bounce events, terrain sand located at the bounce position is struck

and potentially moves downward along the local terrain slope in a process called reptation. While

these sand transport phases remain largely unchanged from the desertscapes model, we modified

the algorithm with a few key differences to support echo dune formation and object interaction

[Paris et al. 2019]. Pseudocode for the sand transport algorithm is provided in Algorithm 1.

First, we modified the sand transport process to fully respect the obstacle mask, disallowing the

deposition of sand in any obstacle cells. Our modified algorithm explicitly detects cases where sand

that would normally be deposited would end up inside an obstacle and instead forcibly deposits the

sand upwind of the obstacle. Likewise, we modify the reptation algorithm to disallow the transfer

of sand into obstacle cells. Together, these modifications approximate the behavior of individual
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sand grains colliding with the obstacle, and their resulting deposition after rebounding off the

obstacle. Without these modifications, we find that visual artifacts consistently occur, with sand

visibly accumulating inside obstacles.

Next, we modified the sand transport process to respect the sticky cell mask generated in the

previous step. First, an additional check is added to each cell to prevent lifting in any cell marked

as sticky. If a cell is sticky and thus has a sticky value greater than 0, sand transport from that

cell is prevented with a probability of 𝑘𝑝 (we use 𝑘𝑝 = 0.5 in experiments). Additionally, for any

propagating sand during saltation, if the cell at the current sand’s position has a stickiness value 𝑣𝑘 ,

sand is forcibly deposited in that cell with probability 𝑣𝑘 .

Lastly, we add explicit handling of erosion cells, marked during the sticky mask generation. For

any cells marked erosion, sand is forcibly removed at a rate of 𝑘𝑒 blocks per simulation step (we

use 𝑘𝑒 = 1000 in experiments).

Algorithm 1Modified Sand Transportation Algorithm

procedureModifiedSandTransport

Input : TransportParams tp,UniformRandom rand
𝑝 ← 𝐺𝑒𝑡𝐶𝑢𝑟𝑟𝑒𝑛𝑡𝐶𝑒𝑙𝑙𝐼𝑑𝑥 ()
𝐶𝑒𝑙𝑙 𝑐𝑝 ← 𝐴𝑐𝑐𝑒𝑠𝑠𝐺𝑟𝑖𝑑𝑠 (𝑝)
if 𝑐𝑝 .𝑜𝑏𝑠𝑡𝑎𝑐𝑙𝑒 > 0 | | 𝑟𝑎𝑛𝑑 () < 𝑐𝑝 .𝑠𝑡𝑖𝑐𝑘𝑦𝑀𝑎𝑠𝑘 | | 𝑟𝑎𝑛𝑑 () < 𝑐𝑝 .𝑤𝑖𝑛𝑑𝑆ℎ𝑎𝑑𝑜𝑤 then return
end if
𝑠𝑡𝑒𝑝𝑉𝑒𝑐 ← 𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒 (𝑐𝑝 .𝑤𝑖𝑛𝑑) ∗ 𝑡𝑝.𝑠𝑡𝑒𝑝𝑆𝑖𝑧𝑒 ⊲ Calculate sand step along wind vector

𝐷𝑒𝑝𝑜𝑠𝑖𝑡𝑒𝑑 ← 𝑓 𝑎𝑙𝑠𝑒

𝑐𝑝 .𝑠𝑎𝑛𝑑𝐵𝑙𝑜𝑐𝑘𝑠.𝑆𝑢𝑏𝑡𝑟𝑎𝑐𝑡 (𝑡𝑝.𝑡𝑟𝑎𝑛𝑠𝑝𝑜𝑟𝑡𝐵𝑙𝑜𝑐𝑘𝐶𝑜𝑢𝑛𝑡) ⊲ Lift sand from initial cell

𝑞 ← 𝑝

𝑐𝑜𝑢𝑛𝑡 ← 0

while 𝐷𝑒𝑝𝑜𝑠𝑖𝑡𝑒𝑑 ≠ 𝑡𝑟𝑢𝑒 | | 𝑐𝑜𝑢𝑛𝑡 < 𝑡𝑝.𝑚𝑎𝑥𝑆𝑡𝑒𝑝𝑠 do
𝑞 ← 𝑞 + 𝑠𝑡𝑒𝑝𝑉𝑒𝑐
𝐶𝑒𝑙𝑙 𝑐𝑞 ← 𝐴𝑐𝑐𝑒𝑠𝑠𝐺𝑟𝑖𝑑𝑠 (𝑞)
if 𝑐𝑞 .𝑜𝑏𝑠𝑡𝑎𝑐𝑙𝑒 > 0 then ⊲ Handle obstacle detection

𝑞 ← 𝑞 − 𝑠𝑡𝑒𝑝𝑉𝑒𝑐 ⊲ Deposit upwind from obstacle

𝐶𝑒𝑙𝑙 𝑐𝑞 ← 𝐴𝑐𝑐𝑒𝑠𝑠𝐺𝑟𝑖𝑑𝑠 (𝑞)
𝑐𝑞 .𝑠𝑎𝑛𝑑𝐵𝑙𝑜𝑐𝑘𝑠.𝐴𝑑𝑑 (𝑡𝑝.𝑡𝑟𝑎𝑛𝑠𝑝𝑜𝑟𝑡𝐵𝑙𝑜𝑐𝑘𝐶𝑜𝑢𝑛𝑡) return

end if
if 𝑟𝑎𝑛𝑑 () < 𝑐𝑞 .𝑠𝑡𝑖𝑐𝑘𝑦𝑀𝑎𝑠𝑘 | | 𝑟𝑎𝑛𝑑 () < 𝑐𝑞 .𝑤𝑖𝑛𝑑𝑆ℎ𝑎𝑑𝑜𝑤 then

𝑑𝑒𝑝𝑜𝑠𝑖𝑡𝑒𝑑 ← 𝑡𝑟𝑢𝑒

𝑐𝑞 .𝑠𝑎𝑛𝑑𝐵𝑙𝑜𝑐𝑘𝑠.𝐴𝑑𝑑 (𝑡𝑝.𝑡𝑟𝑎𝑛𝑠𝑝𝑜𝑟𝑡𝐵𝑙𝑜𝑐𝑘𝐶𝑜𝑢𝑛𝑡) return ⊲ Handle standard deposit

end if
𝑐𝑜𝑢𝑛𝑡 ← 𝑐𝑜𝑢𝑛𝑡 + 1

end while
𝑐𝑞 .𝑠𝑎𝑛𝑑𝐵𝑙𝑜𝑐𝑘𝑠.𝐴𝑑𝑑 (𝑡𝑝.𝑡𝑟𝑎𝑛𝑠𝑝𝑜𝑟𝑡𝐵𝑙𝑜𝑐𝑘𝐶𝑜𝑢𝑛𝑡) ⊲ Deposit due to max distance

end procedure

3.1.5 Sand Cascade. The resolution of sand cascade events are not as straightforward to parallelize

due to the strong interdependence between cells on a resolved sand cascade surface.

Our GPU sand cascade model must solve two problems introduced by moving to a fully parallel

model on the GPU; 1) The new sand cascade model must be able to handle sand transported by all

cells at once, potentially leading to a more significant amount of sand accumulating at a single point
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Fig. 3. A demonstration of the sand cascade computation. For a given center cell, the tangent of the angle
relative to each neighboring cell is calculated. In this example, the two lowest neighboring columns are the
only qualifying neighbors, thus each is assigned one of the two blocks cascading in this pass. The result can
be seen on the right.

before the sand cascade step; 2) Sand cascade events are not independently resolved or able to trigger

new, independent cascade events. Rather than identifying all required sand avalanching events,

resolving those (potentially introducing new instabilities requiring resolution), and repeating until a

stable state is reached before simulating the next transport event, we propose an iterative approach

that gradually converges over the course of a fixed number of iterations; set to 50 in our case.

Our approach can be summarized as follows. For each cell, we compare that cell 𝐶𝑖 to each of its

eight neighbors𝐶 𝑗 , identifying the angle between each the center of𝐶 𝑗 and𝐶𝑖 , 𝜃 𝑗𝑖 . For all neighbors

whose angle 𝜃 𝑗𝑖 is greater than the angle of repose of sand, 33°[Al-Hashemi and Al-Amoudi 2018],

we calculate the tangent of their angle and sum them to form a total of the tangent angles, Θ. We

then assign each of these qualifying neighbors a percentage of the total slope they are responsible

for, 𝑝 𝑗 =
𝑡𝑎𝑛 (𝜃 𝑗𝑖 )

Θ . Additionally, we track neighboring cell 𝐶 𝑗 with the maximum tangent angle,

allowing a direct computation on the maximum difference in sand blocks 𝐵𝑚𝑎𝑥 . We then transport

𝑘𝑐 ∗𝐵𝑚𝑎𝑥 ∗𝑝 𝑗 to each qualified neighboring cell𝐶 𝑗 . In this model, 𝑘𝑐 represents a tunable parameter

to control the amount of sand allowed to avalanche during a single cascade pass. We found that

setting 𝑘𝑐 = 0.25 allowed for efficient simulation, converging in typically 50 iterations, while

maintaining stability by preventing oscillation of sand due to high volumes of sand transfer per

cascade step. Figure 3 shows a basic example of a single cascade event, visualizing two neighboring

cells and their angles relative to the center cell. In this example, two sand blocks cascade to the two

locations visualized on the right portion of the figure, and the blocks are removed from the center

cell.

It is important to note that, due to the discrete nature of the sand block representation and

constant rounding down when computing the number of blocks to transfer to a neighbor that it is

possible for there to be a remaining number of blocks from the target transfer block count 𝑘𝑐 ∗𝐵𝑚𝑎𝑥 .

To account for this, we simply transfer these remaining, non-cascaded blocks to the neighbor of

the greatest slope.

By design, each sand cascade iteration transfers only a subset of sand from each cell to its neigh-

bors, improving overall stability by minimizing oscillating cascades of blocks between neighboring

cells. However, when there is a significant difference in block height between neighboring cells,
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a greater number of iterations must be performed to reach a converged state. In practice, the

total number of required passes is highly dependent on the amount of sand transported in each

simulation step, the behavior of the overall wind regime (with areas of high deposition, particularly

from multiple wind directions such as star dunes requiring many passes), and the value of 𝑘𝑐 , with

more passes improving accuracy but increasing simulation time. We find that a target of 50 sand

cascade passes for reasonable and common wind speeds leads to stable and fully converged sand

cascading while still maintaining real-time simulation times. As wind speeds increase outside this

range, an increase in the number of cascade iterations maintains stability.

3.1.6 Final Heightmap Generation. One final pass fully composites all grids in the current simula-

tion timestep using equation 1 per cell into a final, renderable heightmap.

Lastly, a grid mesh placed in world space along the XZ expanse of the environment is rendered

and the final, precomputed heightmap is sampled to obtain the height position of each vertex in

world space.

4 RESULTS AND DISCUSSION
In this section, we discuss a number of experiments performed to demonstrate the validity of our

GPU implementation and novel extensions to support echo dunes.

First, we show that our method is capable of generating a variety of sand dune formations at

interactive rates. We compare directly to a CPU implementation of the previous Desertscapes model,

provided by the authors [Paris et al. 2019], slightly modified to match their paper as their public

implementation slightly differs from what their paper describes. Second, we validate the general

dune simulation model by comparing the model-produced results to those of a cellular-autonoma

model from the geoscience community that is treated as ground truth [Lü et al. 2018] [Rozier and

Narteau 2013]. Lastly, we demonstrate the novel ability of our method to generate correct echo

dunes. For this analysis, we compare the echo dunes generated by our model to those of a wind

tunnel experiment [Tsoar 1983].

For all experiments, we utilize an implementation of our method in C++ that uses the Direct3D

11 API for GPU simulation and rendering. All experiments are performed on a machine with an

i7-8700 CPU and Nvidia Titan V GPU. Unless otherwise specified, the simulated environment

covers an area of 1km x 1km with a grid resolution of 1 meter.

4.1 Comparison with Desertscapes CPU Model
We compare our method with the previously published Desertscapes paper that our method builds

upon [Paris et al. 2019]. We find that our presented method is significantly faster by fully leveraging

GPU hardware while maintaining the same feature set and simulation capabilities. A demonstration

of multiple supported types of dunes is shown in Figure 4, depicting transverse, barchan, and star

dune formations generated using our GPU implementation.

We compare the performance of our efficient and parallel GPU implementation to that of the

CPU, event-driven model. First, we show an environment with high wind speed and low sand

availability, leading to barchan dune formation. We seed both models with the same distribution of

sand, with each cell’s initial sand height selected uniformly from a distribution ranging from 0.5m

to 2.0m and a wind speed of 5𝑚𝑠−1. We perform this experiment with a number of simulation grid

resolutions.

As shown in table 1, our method significantly outperforms the CPU-based method for barchan

dune environments, with the GPU’s performance ratio increasingwith the increase in grid resolution.

Additionally, our GPU implementation was trivially able to simulate a grid size of 4096, which for
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(a) Transverse Dunes (b) Barchan Dunes (c) Star Dunes

Fig. 4. Demonstration of multiple dune types generated by our GPU implementation. Each is categorized by
a unique sand availability and wind regime. Transverse Dune: High Availablity, Dominant Wind Direction.
Barchan Dune: Low Availablity, Dominant Wind Direction. Star Dune: High Availablity, Multiple Wind
Directions.

Table 1. Simulation of 1000 Barchan Environment Steps at Different Grid Resolutions

Grid Resolution Detail Resolution Paris 2019 Our Method Speedup CPU/GPU
512 2m 28s 4.2s 6.7x

1024 1m 130s 8.3s 15.6x

2048 0.5m 958s 24.8s 38.6x

4096 0.25m 4656s 97.2s 47.9x

a 1km x 1km environment allows for details up to 0.25m in size, significantly outperforming the

CPU which takes 1.6 hours.

Additionally, we demonstrate a similar comparison, but in an environment that generates trans-

verse dunes. Notably, the sand generation parameters change to draw uniformly from sand heights

of 3m to 5m, and the wind speed is changed to 3𝑚𝑠−1. With the increase in sand availability, it is

easy to see that more time will be spent on sand transport and sand cascade resolution.

Table 2. Simulation of 1000 Transverse Environment Steps at Different Grid Resolutions

Grid Resolution Detail Resolution Paris 2019 Our Method Speedup CPU/GPU
512 2m 91s 4.2s 21.7x

1024 1m 346s 8.3s 41.5x

2048 0.5m 2280s 24.8s 91.9x

4096 0.25m 13087s 121.4s 107.8x

As shown in table 2, our method again outperforms the CPU-based method in transverse dune en-

vironments, with the GPU’s performance ratio again increasing with the increase in grid resolution.

Additionally, it is important to note that our GPU implementation maintains consistent performance

despite the change in environment, only noticeably differing from the barchan environment at a

grid resolution of 4096. However, while our GPU implementation computation time increased only

26 seconds, the CPU performed significantly worse in the transverse dune environment, with a

total time of 3.6 hours for a grid resolution of 4096.
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It’s clear that our GPU method, while maintaining the same features and generated behavior of

the previously presented work, significantly outperforms the CPU event-based model.

4.2 Comparison with Cellular-Autonoma
Next, we validate the correctness of our model by comparing its behavior in a bidirectional wind

regime against a model we consider ground truth. From the geoscience community, we select a

work based on the offline, cellular autonoma approach to simulating sand transport [Lü et al. 2018;

Rozier and Narteau 2013]. In particular, our selected work explores the behavior of the cellular

autonoma model in a bidirectional wind regime under a number of different parameterizations;

notably, the angle between wind vectors, the ratio of time spent between wind vectors, and the

amount of sand available within the environment.

To conduct this experiment, we simulate a 1km x 1km environment driven by two dominant wind

vectors. In the experiment, we simulate the evolution of generated sand dunes in the environment as

we vary the relative angle and the availability of sand in the environment, comparing our generated

results to that of the ground truth model. We match the wind vectors of the related work directly

by aligning the dominant wind vector with the x-axis, and setting the secondary wind vector as a

rotation in the terrain simulation plane by 𝜃 degrees. To model sand availability, we add a small,

circular source of sand in each simulation step, randomly placed around the environment, until the

amount of sand coverage in the environment closely matches the target sand availability. Lastly,

we set the ratio of the time spent influenced by the dominant wind vector vs the secondary wind

vector to 2, as we compare directly against the results found in related work [Lü et al. 2018].

As seen in Figure 5, our method clearly recreates equivalent environments to the results produced

by the cellular autonoma analysis paper [Lü et al. 2018]; for this analysis, please refer to Figure 3 of

the referenced work as we do not republish those results here.

For full sand availability, 𝜙 = 100%, our method generates resulting dunes that are nearly

indistinguishable from those found in the referenced work. In particular, we find that both methods

generate transverse dunes whose extents are largely perpendicular to the resulting wind vector

direction when accounting for the relative time spent influenced by either dominant wind vector.

As sand availability decreases, we find that our method continues to generate dunes very similar

to those found in the referenced work. At a sand availability of 𝜙 = 64%, our method simulates

transverse dunes with additional spacing between them. Once sand availability drops low enough,

𝜙 = 22%, generated dunes are barchan in shape. Additionally, as the relative wind angle increases

to 𝜃 = 150°, the barchan dunes elongate along one horn, forming the same railroad spike shape

found in the related work.

In addition, we find that for environments of extremely low sand availability, less than 7%, our

method also produces equivalent results to those found in the related work. As seen in Figure

6, we reproduce the wind regime found in the lower left of figure 3 in the reference work [Lü

et al. 2018], setting the wind angle to 45 degrees and a sand availability of 7%. Like the reference

work, our method clearly generates a continuous stream of independent barchan dune formations

extending from the source sand along the wind vector. While we do note additional noise in our

image between the formed dunes, this has little impact on the large structure formation.

We believe this comparison further verifies the correctness of this model for use in the real-time

graphics domain, with our model reproducing the large-scale, key structures in a wide variety of

environments at fully interactive speeds.

4.3 Echo Dunes Correctness Test
For our last experiment, we demonstrate the ability of our novel method to generate echo dunes

when interacting with obstacles.
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𝜃 = 45° 𝜃 = 105° 𝜃 = 150°
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Fig. 5. Dune formation under different wind conditions. Results seen are very similar to those in figure 3 of
related work [Lü et al. 2018]. 𝜃 represents sand availability from 0 to 100% of coverage in the environment. 𝜙
represents the angle between the two wind vectors.

.

Fig. 6. A bidirectional wind regime, with an angle of 45° and a sand availability of 7%

For this experiment, we simulate a wind tunnel environment consisting of a flat, non-sanded

ground surface placed along the direction of the wind and an obstacle of significant height compared

to the sand placed downwind. During the simulation, we allow sand to enter the scene at the other

end of the ground, upwind from the obstacle, simulating virtually a previously published wind

tunnel exploration of echo dune formation [Tsoar 1983].
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(a) Side View (b) Top View

Fig. 7. Example of echo dune formation in wind tunnel environment with a flat obstacle placed downwind.

In the first environment, we place a flat obstacle downwind from the sand. As seen in Figure 7,

as the transported sand reaches the obstacle, an echo dune forms on the wind-facing side of the

obstacle. This echo dune is correctly shaped, leaning toward the obstacle with a longer, wind-side

face and a shorter, obstacle-side face. Additionally, no sand is found between the echo dune and the

obstacle, largely due to our erosion cells. It’s important to note that sand transport is unaffected

when the transporting wind does not interact with the obstacle, and thus sand to either side of the

obstacle is transported as normal.

(a) Side View (b) Top View

Fig. 8. Example of echo dune formation in wind tunnel environment with a rounded obstacle placed downwind.

In a second environment, we demonstrate the same echo dune formation but with a rounded

obstacle. As expected, with a rounded obstacle, the generated echo dune is most prominent when

the normal of the obstacle’s surface and the wind direction align, with the echo dune reducing in

strength until falling off altogether when reaching the side of the obstacle. This behavior can be

clearly seen in Figure 8.

Lastly, Figure 9 shows a timelapse of echo dunes in an environment where an obstacle is removed

and then replaced. First, the steady state of a placed obstacle is shown. Next, a frame after the

removal of the object is shown, where sand begins propagating in the region once covered by the
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(a) Steady State Before Obstacle Removal (b) Removed Obstacle, Sand Filling In

(c) Replaced Obstacle, Echo Dune Forming (d) Steady State Reached

Fig. 9. Timeline of Echo Dune Formation during Removal and Replacement of Obstacle

object. We then show a frame just after the obstacle is placed, but before the steady state is reached

again. Note how the echo dune is forming, but not quite steady. Lastly, we show the reached steady

state after a few more steps of the simulation.

5 CONCLUSION AND FUTUREWORK
In conclusion, we present a novel extension of the desertscapes sand transport simulation model to

the GPU, bringing sand dune simulation fully to the real-time domain for artist use. Additionally,

we demonstrate the ability of our method to generate equivalent sand dune steady states to those

found in offline, more extensive computation domains [Lü et al. 2018]. Lastly, we introduce a novel

extension of the method to generate echo dunes on the wind-facing side of cliff faces that matches

wind tunnel experiments [Tsoar 1983].

5.1 Limitations
While useful, our presented method does have its limitations. Most importantly, the method is

limited in the total area that can be simulated. Currently, the model allows for only a single grid,

which must be scaled proportionally to the size of the environment desired for simulation, resulting

in the unfortunate tradeoff between computation complexity, and overall resolution achievable

due to the selected grid resolution. Additionally, we assume a square grid, so environments such

as a wind tunnel waste a significant amount of simulation time and area on grid cells that never

contain sand.

Secondly, we find that our method struggles to correctly model, low sand availability environ-

ments 𝜙 = 7% once the bidirectional wind angle increases above 65 degrees. We hypothesize that

this is largely due to a failure of the wind projection model to correctly capture complex behavior
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that leads to the merging of barchan dunes into a single, elongated linear dune in these low sand

availability environments.

Lastly, while in this work we present an extension that correctly models echo dunes wind side of

obstacles, correct modeling of the large-scale lee behavior of obstacles remains an open problem.

5.2 Future Work
One direction of future work would be to extend our presented method to tile across multiple

simulation grids. By allowing sand to transfer across simulation grid boundaries, the ability to

simulate across multiple grids would allow for the simulation of a significantly larger overall terrain

without limiting the resolution of each simulation grid. In a similar vein, relaxing the square grid

constraint would also help allocate cells to the most important parts of the grid.

A second direction of future work would be to explore the application of the presented method to

other biomes whose evolution is similarly driven by aeolian processes. For example, our approach

could be applied to simulate the transport of snow in arctic or antarctic environments. Additionally,

the method could be used to model and study the formation and evolution of desertscape structures

on other planets with dominant aeolian processes, such as Mars.

One last direction of future work would be to use machine learning to enhance the capabilities

and/or performance of our model. In one approach, machine learning could be used to learn and

fine-tune the parameters of our simulation for a specific environment, reducing the amount of artist

interaction and automating more of the process. In a different approach, machine learning could be

used to generate inputs to the physical simulation based on a rough, low-detail artist specification

of a desired final output. A last, promising direction of work could utilize neural networks to bypass

parts of, or all of, the simulation directly. For a specified amount of time, this neural network could

take the place of the simulation, directly predicting what the evolution of the environment would

look like due to aeolian processes; possibly even more complex than those presented in this work.

In total, these techniques have the potential to improve how artists or other users interact with the

presented simulation technique.
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