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Abstract

An end-to-end real-time scene text localization and

recognition method is presented. The real-time perfor-

mance is achieved by posing the character detection prob-

lem as an efficient sequential selection from the set of Ex-

tremal Regions (ERs). The ER detector is robust to blur,

illumination, color and texture variation and handles low-

contrast text.

In the first classification stage, the probability of each

ER being a character is estimated using novel features cal-

culated with O(1) complexity per region tested. Only ERs

with locally maximal probability are selected for the sec-

ond stage, where the classification is improved using more

computationally expensive features. A highly efficient ex-

haustive search with feedback loops is then applied to group

ERs into words and to select the most probable character

segmentation. Finally, text is recognized in an OCR stage

trained using synthetic fonts.

The method was evaluated on two public datasets. On

the ICDAR 2011 dataset, the method achieves state-of-the-

art text localization results amongst published methods and

it is the first one to report results for end-to-end text recog-

nition. On the more challenging Street View Text dataset,

the method achieves state-of-the-art recall. The robustness

of the proposed method against noise and low contrast of

characters is demonstrated by “false positives” caused by

detected watermark text in the dataset.

1. Introduction

Text localization and recognition in real-world (scene)

images is an open problem which has been receiving signif-

icant attention since it is a critical component in a number

of computer vision applications like searching images by

their textual content, reading labels on businesses in map

applications (e.g. Google Street View) or assisting visu-

ally impaired. Several contests have been held in the past

years [10, 9, 20] and the winning method in the most recent

ICDAR 2011 contest was able to localize only 62% words

correctly [20] despite the fact that the dataset is not fully

Figure 1. Text detection in the SVT dataset. All “false posi-

tives” in the image are caused by watermarks embedded into the

dataset. This demonstrates robustness of the proposed method

against noise and low contrast of characters (in the bottom-right

corner the area of interest is enlarged and contrast artificially in-

creased, “ c©2007 Google” is readable).

realistic (words are horizontal only, they occupy a signifi-

cant part of the image, there is no perspective distortion or

significant noise).

Localizing text in an image is potentially a computation-

ally very expensive task as generally any of the 2N subsets

can correspond to text (where N is the number of pixels).

Text localization methods deal with this problem in two dif-

ferent ways.

Methods based on a sliding window [6, 2, 7] limit the

search to a subset of image rectangles. This reduces the

number of subsets checked for the presence of text to cN
where c is a constant that varies between very small values

(< 1) for single-scale single-rotation methods to relatively

large values (≫ 1) for methods that handle text with a dif-

ferent scale, aspect, rotation, skew, etc.

Methods in the second group [5, 17, 14, 15, 24] find indi-

vidual characters by grouping pixels into regions using con-

nected component analysis assuming that pixels belonging

to the same character have similar properties. Connected

component methods differ in the properties used (color,

stroke-width, etc.). The advantage of the connected com-

ponent methods is that their complexity typically does not

depend on the properties of the text (range of scales, ori-

entations, fonts) and that they also provide a segmentation
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which can be exploited in the OCR step. Their disadvan-

tage is a sensitivity to clutter and occlusions that change

connected component structure.

In this paper, we present an end-to-end real-time1 text

localization and recognition method which achieves state-

of-the-art results on standard datasets. The real-time perfor-

mance is achieved by posing the character detection prob-

lem as an efficient sequential selection from the set of Ex-

tremal Regions (ERs). The ER detector is robust against

blur, low contrast and illumination, color and texture varia-

tion2. Its complexity is O(2pN), where p denotes number

of channels (projections) used.

In the first stage of the classification, the probability of

each ER being a character is estimated using novel features

calculated with O(1) complexity and only ERs with lo-

cally maximal probability are selected for the second stage,

where the classification is improved using more computa-

tionally expensive features. A highly efficient exhaustive

search with feedback loops (adapted from [15]) is then ap-

plied to group ERs into words and select the most probable

character segmentation.

Additionally, a novel gradient magnitude projection

which allows edges to induce ERs is introduced. It is fur-

ther demonstrated that by inclusion of the gradient projec-

tion 94.8% of characters are detected by the ER detector.

The rest of the document is structured as follows: In

Section 2, an overview of previously published methods is

given. Section 3 describes the proposed method. In Section

4, the experimental evaluation is presented. The paper is

concluded in Section 5.

2. Previous Work

Numerous methods which focus solely on text localiza-

tion in real-world images have been published [6, 2, 7, 17].

The method of Epstein et al. in [5] converts an input im-

age to a greyscale space and uses Canny detector [1] to find

edges. Pairs of parallel edges are then used to calculate

stroke width for each pixel and pixels with similar stroke

width are grouped together into characters. The method is

sensitive to noise and blurry images because it is depen-

dent on a successful edge detection and it provides only sin-

gle segmentation for each character which not necessarily

might be the best one for an OCR module. A similar edge-

based approach with different connected component algo-

rithm is presented in [24]. A good overview of the methods

and their performance can be also found in ICDAR Robust

Reading competition results [10, 9, 20].

Only a few methods that perform both text localization

and recognition have been published. The method of Wang

1We consider a text recognition method real-time if the processing time

is comparable with the time it would take a human to read the text.
2A www service allowing testing of the method is available at

http://cmp.felk.cvut.cz/ neumalu1/TextSpotter
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run time(ms) No. of ERs

Initial image - 6× 106

Classification (1st stage) 1120 2671

Classification (2nd stage) 130 20
Region grouping 20 12
OCR 110 12

(g)

Figure 2. Text localization and recognition overview. (a) Source

2MPx image. (b) Intensity channel extracted. (c) ERs selected

in O(N) by the first stage of the sequential classifier. (d) ERs

selected by the second stage of the classifier. (e) Text lines found

by region grouping. (f) Only ERs in text lines selected and text

recognized by an OCR module. (g) Number of ERs at the end of

each stage and its duration

et al. [21] finds individual characters as visual words us-

ing the sliding-window approach and then uses a lexicon to

group characters into words. The method is able to cope

with noisy data, but its generality is limited as a lexicon of

words (which contains at most 500 words in their experi-

ments) has to be supplied for each individual image.

Methods presented in [14, 15] detect characters as Max-

imally Stable Extremal Regions (MSERs) [11] and per-

form text recognition using the segmentation obtained by

the MSER detector. An MSER is an particular case of an

Extremal Region whose size remains virtually unchanged

over a range of thresholds. The methods perform well but

have problems on blurry images or characters with low con-

trast. According to the description provided by the ICDAR

2011 Robust Reading competition organizers [20] the win-

ning method is based on MSER detection, but the method
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Figure 3. Intensity gradient magnitude channel ∇. (a) Source im-

age. (b) Projection output. (c) Extremal Regions at threshold

θ = 24 (ERs bigger than 30% of the image area excluded for

better visualization)

itself had not been not published and it does not perform

text recognition.

The proposed method differs from the MSER-based

methods [14, 15] in that it tests all ERs (not only the subset

of MSERs) while reducing the memory footprint and main-

taining the same computational complexity and real-time

performance. The idea of dropping the stability require-

ment of MSERs and selecting a class-specific (not neces-

sarily stable) Extremal Regions was first presented by Zim-

mermann and Matas [12], who used image moments as fea-

tures for a monolithic neural network, which was trained

for a given set of shapes (e.g. textures, specific characters).

In our method, the selection of suitable ERs is carried out

in real-time by a sequential classifier on the basis of novel

features which are specific for character detection. More-

over, the classifier is trained to output probability and thus

extracts several segmentations of a character.

3. The Proposed Method

3.1. Extremal Regions

Let us consider an image I as a mapping I : D ⊂ N
2 →

V , where V typically is {0, . . . , 255}3 (a color image). A

channel C of the image I is a mapping C : D → S where

S is a totally ordered set and fc : V → S is a projection

of pixel values to a totally ordered set. Let A denote an

adjacency (neighborhood) relationA ⊂ D×D. In this paper

we consider 4-connected pixels, i.e. pixels with coordinates

(x± 1, y) and (x, y ± 1) are adjacent to the pixel (x, y).
Region R of an image I (or a channel C) is a contigu-

ous subset of D, i.e. ∀pi, pj ∈ R ∃pi, q1, q2, . . . , qn, pj :
piAq1, q1Aq2, . . . , qnApj . Outer region boundary ∂R is a

set of pixels adjacent but not belonging to R, i.e. ∂R =
{p ∈ D \ R : ∃q ∈ R : pAq}. Extremal Region (ER) is

a region whose outer boundary pixels have strictly higher

values than the region itself, i.e. ∀p ∈ R, q ∈ ∂R : C(q) >
θ ≥ C(p), where θ denotes threshold of the Extremal Re-

gion.

An ER r at threshold θ is formed as a union of one or

more (or none) ERs at threshold θ − 1 and pixels of value

θ, i.e. r =
(

⋃

u ∈ Rθ−1

)

∪
(

⋃

p ∈ D : C(p) = θ
)

,

where Rθ−1 denotes set of ERs at threshold θ − 1. This

induces an inclusion relation amongst ERs where a single

Channel R (%) P (%)

R 83.3 7.7
G 85.7 10.3
B 85.5 8.9
H 62.0 2.0
S 70.5 4.1
I 85.6 10.1
∇ 74.6 6.3

Channel R (%) P (%)

I∪H 89.9 6.0
I∪S 90.1 7.2
I∪∇ 90.8 8.4
I∪H∪S 92.3 5.5
I∪H∪∇ 93.1 6.1
I∪R∪G∪B 90.3 9.2
I∪H∪S∪∇ 93.7 5.7
all (7 ch.) 94.8 7.1

Table 1. Recall (R) and precision (R) of character detection by

ER detectors in individual channels and their combinations. The

channel combination used in the experiments is in bold

ER has one or more predecessor ERs (or no predecessor if

it contains only pixels of a single value) and exactly one

successor ER (the ultimate successor is the ER at threshold

255 which contains all pixels in the image).

In this paper, we consider RGB and HSI color spaces [3]

and additionally an intensity gradient channel (∇) where

each pixel is assigned the value of “gradient” approximated

by maximal intensity difference between the pixel and its

neighbors (see Figure 3):

C∇(p) = max
q∈D : pAq

{

|CI(p)−CI(q)|
}

An experimental validation shows that up to 85.6% char-

acters are detected as ERs in a single channel and that

94.8% characters are detected if the detection results are

combined from all channels (see Table 1). A character is

considered as detected if bounding box of the ER matches

at least 90% of the area of the bounding box in the ground

truth. In the proposed method, the combination of inten-

sity (I), intensity gradient (∇), hue (H) and saturation (S)

channels was used as it was experimentally found as the

best trade-off between short run time and localization per-

formance.

3.2. Incrementally Computable Descriptors

The key prerequisite for fast classification of ERs is a fast

computation of region descriptors that serve as features for

the classifier. As proposed by Zimmerman and Matas [12],

it is possible to use a particular class of descriptors and ex-

ploit the inclusion relation between ERs to incrementally

compute descriptor values.

Let Rθ−1 denote a set of ERs at threshold θ − 1. An

ER r ∈ Rθ at threshold θ is formed as a union of pix-

els of regions at threshold θ − 1 and pixels of value θ,

i.e. r =
(

⋃

u ∈ Rθ−1

)

∪
(

⋃

p ∈ D : C(p) = θ
)

.

Let us further assume that descriptors φ(u) of all ERs at

threshold u ∈ Rθ−1 are already known. In order to com-

pute a descriptor φ(r) of the region r ∈ Rθ it is neces-

sary to combine descriptors of regions u ∈ Rθ−1 and pix-

els {p ∈ D : C(p) = θ} that formed the region r, i.e.



φ(r) =
(

⊕φ(u)
)

⊕
(

⊕ψ(p)
)

, where ⊕ denotes an opera-

tion that combines descriptors of the regions (pixels) and

ψ(p) denotes an initialization function that computes the

descriptor for given pixel p. We refer to such descriptors

where ψ(p) and ⊕ exist as incrementally computable (see

Figure 4).

It is apparent that one can compute descriptors of all ERs

simply by sequentially increasing threshold θ from 0 to 255,

calculating descriptors ψ for pixels added at threshold θ and

reusing the descriptors of regions φ at threshold θ−1. Note

that the property implies that it is necessary to only keep

descriptors from the previous threshold in the memory and

that the ER method has a significantly smaller memory foot-

print when compared with MSER-based approaches. More-

over if it is assumed that the descriptor computation for a

single pixel ψ(p) and the combining operation ⊕ has con-

stant time complexity, the resulting complexity of comput-

ing descriptors of all ERs in an image of N pixels is O(N),
because φ(p) is computed for each pixel just once and com-

bining function can be evaluated at most N times, because

the number of ERs is bounded by the number of pixels in

the image.

In this paper we used the following incrementally com-

puted descriptors:

Area a. Area (i.e. number of pixels) of a region. The

initialization function is a constant function ψ(p) = 1 and

the combining operation ⊕ is an addition (+).

Bounding box (xmin, ymin, xmax, ymax). Top-right and

bottom-left corner of the region. The initialization func-

tion of a pixel p with coordinates (x, y) is a quadruple

(x, y, x + 1, y + 1) and the combining operation ⊕ is

(min,min,max,max) where each operation is applied to

its respective item in the quadruple. The widthw and height

h of the region is calculated as xmax−xmin and ymax−ymin

respectively.

Perimeter p. The length of the boundary of the region

(see Figure 4a). The initialization function ψ(p) determines

a change of the perimeter length by the pixel p at the thresh-

old where it is added, i.e. ψ(p) = 4− 2|{q : qAp∧C(q) ≤
C(p)}| and the combining operation ⊕ is an addition (+).

The complexity of ψ(p) is O(1), because each pixel has at

most 4 neighbors.

Euler number η. Euler number (genus) is a topological

feature of a binary image which is the difference between

the number of connected components and the number of

holes. A very efficient yet simple algorithm [18] calculates

the Euler number by counting 2 × 2 pixel patterns called

quads. Consider the following patterns of a binary image:

Q1 =

{

1 0
0 0

,
0 1
0 0

,
0 0
0 1

,
0 0
1 0

}

Q2 =

{

0 1
1 1

,
1 0
1 1

,
1 1
1 0

,
1 1
0 1

}

Q3 =

{

0 1
1 0

,
1 0
0 1

}

Euler number is then calculated as

η =
1

4
(C1 − C2 + 2C3))

where C1, C2 and C3 denote number of quads Q1, Q2 and

Q3 respectively in the image.

It follows that the algorithm can be exploited for incre-

mental computation by simply counting the change in the

number of quads in the image. The value of the initializa-

tion function ψ(p) is determined by the change in the num-

ber of the quads Q1, Q2 and Q3 by changing the value of

the pixel p from 0 to 1 at given threshold C(p) (see Figure

4b), i.e. ψ(p) = 1

4
(∆C1 −∆C2 + 2∆C3)). The complex-

ity of ψ(p) is O(1), because each pixel is present in at most

4 quads. The combining operation ⊕ is an addition (+).

Horizontal crossings ci. A vector (of length h) with

number of transitions between pixels belonging (p ∈ r) and

not belonging (p /∈ r) to the region in given row i of the

region r (see Figure 4c and 7). The value of the initial-

ization function is given by the presence/absence of left and

right neighboring pixels of the pixel p at the threshold C(p).
The combining operation ⊕ is an element-wise addition (+)

which aligns the vectors so that the elements correspond to

same rows. The computation complexity ofψ(p) is constant

(each pixel has at most 2 neighbors in the horizontal direc-

tion) and the element-wise addition has constant complexity

as well assuming that a data structure withO(1) random ac-

cess and insertion at both ends (e.g. double-ended queue in

a growing array) is used.

3.3. Sequential Classifier

In the proposed method, each channel is iterated sepa-

rately (in the original and inverted projections) and subse-

quently ERs are detected. In order to reduce the high false

positive rate and the high redundancy of the ER detector,

only distinctive ERs which correspond to characters are se-

lected by a sequential classifier. The classification is bro-

ken down into two stages for better computational efficiency

(see Figure 2).

In the first stage, a threshold is increased step by step

from 0 to 255, incrementally computable descriptors (see

Section 3.2) are computed (in O(1)) for each ER r and the

descriptors are used as features for a classifier which esti-

mates the class-conditional probability p(r|character). The

value of p(r|character) is tracked using the inclusion rela-

tion of ER across all thresholds (see Figure 6) and only the

ERs which correspond to local maximum of the probabil-

ity p(r|character) are selected (if the local maximum of the

probability is above a global limit pmin and the difference

between local maximum and local minimum is greater than

∆min).



p1

p3p2

r1

Ψ(p2)=2

Ψ(p1)=0

r2

φ(r1)=12

φ(r2)=9Ψ(p3)=0

r3

φ(r3)=12+9+0+2+0=23

(a) perimeter p

p1

p2 r1

Ψ(p2)=¼((+1)-(+1)+0)=0  

Ψ(p1)=¼((-1)-(+1)+2(-1))=-1 

φ(r1)=1

φ(r2)=1-1+0=0

r2

(b) Euler number η

p1

p3p2

r1

Ψ(p2)=0

Ψ(p1)=2

r2

φ(r1)=(2,2) φ(r2)=(2,2,4,2)

Ψ(p3)=-2

r3

φ(r3)=(0,2,2,0)+(2,2,4,2)+(2,0,0,0)+

(0,0,0,0)+(0,0,-2,0)=(4,4,4,2)

(c) Horizontal crossings ci

Figure 4. Incrementally computable descriptors. Regions already

existing at threshold θ − 1 marked grey, new pixels at threshold

θ marked red, the resulting region at threshold θ outlined with a

dashed line
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Figure 5. The ROC curve of the first stage of the sequential clas-

sifier obtained by cross-validation. The configuration used in the

experiments marked red (recall 95.6%, precision 67.3)

In this paper, a Real AdaBoost [19] classifier with de-

cision trees was used with the following features (cal-

culated in O(1) from incrementally computed descrip-

tors): aspect ratio (w/h), compactness (
√
a/p), number

of holes (1 − η) and a horizontal crossings feature (ĉ =
median {c 1

6
w, c 3

6
w, c 5

6
w}) which estimates number of char-

acter strokes in horizontal projection - see Figure 7. Only a

fixed-size subset of c is sampled so that the computation has

a constant complexity. The output of the classifier is cali-

brated to a probability function p(r|character) using Logis-

(a)

p
(r
|
ch
a
ra
ct
e
r)

θ 

Ì Ì Ì 

(b)

Figure 6. In the first stage of the sequential classification the prob-

ability p(r|character) of each ER is estimated using incremen-

tally computable descriptors that exploit the inclusion relation of

ERs. (a) A source image cut-out and the initial seed of the ER

inclusion sequence (marked with a red cross). (b) The value of

p(r|character) in the inclusion sequence, ERs passed to the sec-

ond stage marked red
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Figure 7. The horizontal crossings feature that is used in the 1st

stage of ER classification

tic Correction [16]. The parameters were set experimentally

to pmin = 0.2 and ∆min = 0.1 to obtain a high value of re-

call (95.6%) (see Figure 5).

In the second stage, the ERs that passed the first stage

are classified into character and non-character classes using

more informative but also more computationally expensive

features. In this paper, an SVM [4] classifier with the RBF

kernel [13] was used. The classifier uses all the features

calculated in the first stage and the following additional fea-

tures:

• Hole area ratio. ah/a where ah denotes number of

pixels of region holes. This feature is more informative



κ = 0 κ = 5 κ = 6
(a)

κ = 14 κ = 15 κ = 93
(b)

Figure 8. The number of boundary inflexion points κ. (a) Charac-

ters. (b) Non-textual content

than just the number of holes (used in the first stage) as

small holes in a much larger region have lower signifi-

cance than large holes in a region of comparable size.

• Convex hull ratio. ac/a where ac denotes the area of

the convex hull of the region.

• The number of outer boundary inflexion points κ.

The number of changes between concave and convex

angle between pixels around the region border (see

Figure 8). A character typically has only a limited

number of inflexion points (κ < 10), whereas regions

that correspond to non-textual content such as grass or

pictograms have boundary with many spikes and thus

more inflexion points.

Let us note that all features are scale-invariant, but not

rotation-invariant which is why characters of different ro-

tations had to be included in the training set.

3.4. Exhaustive Search

The detector was incorporated into a system described

in Neumann and Matas [15], which uses efficiently pruned

search to exhaustively search the space of all character se-

quences in real-time. It exploits higher-order properties of

text such as word text lines and its robust grouping stage is

able to compensate errors of the character detector. The sys-

tem was chosen because it is able to handle multiple chan-

nels, multiple segmentations for each character (see Figure

6) and to combine detection results from multiple channels

using the OCR stage. It also provides text recognition for

characters segmented by the character detector. For more

details see [15].

4. Experiments

The method was trained using approximately 900 exam-

ples of character ERs and 1400 examples of non-character

ERs manually extracted the from the ICDAR 2003 train-

ing dataset [10] (sequential classifier training) and synthet-

ically generated fonts (OCR stage training). The method

method recall precision f

Kim’s Method * 62.5 83.0 71.3

proposed method 64.7 73.1 68.7

Yi’s Method [23] 58.1 67.2 62.3

TH-TextLoc System [8] 57.7 67.0 62.0

Neumann and Matas [15] 52.5 68.9 59.6
Table 2. Text localization results on the ICDAR 2011 dataset. Un-

published methods marked with a star

was then evaluated with the same parameters on two inde-

pendent datasets.

4.1. ICDAR 2011 Dataset

The ICDAR 2011 Robust Reading competition

dataset [20] contains 1189 words and 6393 letters in 255
images. Using the ICDAR 2011 competition evaluation

scheme [22], the method achieves the recall of 64.7%,

precision of 73.1% and the f-measure of 68.7% in text

localization (see Figure 9 for sample outputs).

The method achieves significantly better recall (65%)

than the winner of ICDAR 2011 Robust Reading compe-

tition (62%), but the precision (73%) is worse than the win-

ner (83%) and thus the resulting combined f-measure (69%)

is worse than the ICDAR 2011 winner (71%), which had

not been published. The proposed method however signif-

icantly outperforms the second best (published) method of

Yi [23] in all three measures (see Table 2). Let us further

note that the ICDAR 2011 competition was held in an open

mode where authors supply only outputs of their methods

on a previously published competition dataset.

Word text recognition recall is 37.2%, precision 37.1%
and f-measure 36.5% respectively; a word is considered

correctly recognized if it is localized with recall at least 80%
and all letters are recognized correctly (case-sensitive com-

parison) [10]. The average processing time (including text

localization) is 1.8s per image on a standard PC.

The word recognition results cannot be compared to any

existing method because end-to-end text localization and

recognition was not part of the ICDAR 2011 Robust Read-

ing competition and no other method had presented its text

recognition results on the dataset.

4.2. Street View Text Dataset

The Street View Text (SVT) dataset [21] contains 647
words and 3796 letters in 249 images harvested from

Google Street View. The dataset is more challenging be-

cause text is present in different orientations, the variety of

fonts is bigger and the images are noisy. The format of

the ground truth is different from the previous experiment

as only some words are annotated (see Figure 11). Of the

annotated words the proposed method achieved a recall of

32.9% using the same evaluation protocol as in the previous

section (see Figure 12 for output examples).

The precision of the text localization (19.1%) cannot be
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Figure 9. Text localization and recognition examples on the IC-

DAR 2011 dataset. Notice the robustness against reflections and

lines passing through the text (bottom-left). Incorrectly recognized

letters marked red, text recognized by the proposed method but not

present in the ground truth marked green

(a) (b) (c)
Figure 10. Problems of the proposed method. (a) Characters with

no contrast. (b) Multiple characters joined together. (c) A single

letter (the claim that the McDonald’s logo is a letter “M” as defined

by the annotation is questionable)

taken into account because of the incomplete annotations.

It can be observed that many of the false detections are

caused by watermark text embedded in each image (see

Figure 1), which demonstrates robustness of the proposed

method against noise and low contrast of characters.

The results can be compared only indirectly with the

method of Wang et al. [21] which using a different evalu-

ation protocol reports the f-measure of 41.0% (achieved for

recall 29.0% and precision 67.0%) on the dataset. More-

over the task formulation of the method of Wang et al. dif-

fers significantly in that for each image it is given a lexicon

of words that should be localized in the image (if present)

whereas the proposed method has no prior knowledge about

the content of the image and its output is not limited by a

fixed lexicon.

Figure 11. Missing annotations in the SVT dataset (annotations

marked green, output of the proposed method marked red).
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Figure 12. Text localization and recognition examples from the

SVT dataset. Notice the high level of noise and the blur (zoomed-

in PDF viewing highly recommended). Incorrectly recognized let-

ters marked red.



5. Conclusions

An end-to-end real-time text localization and recognition

method is presented in the paper. In the first stage of the

classification, the probability of each ER being a charac-

ter is estimated using novel features calculated with O(1)
complexity and only ERs with locally maximal probability

are selected for the second stage, where the classification is

improved using more computationally expensive features.

It is demonstrated that including the novel gradient magni-

tude projection ERs cover 94.8% of characters. The average

run time of the method on a 800 × 600 image is 0.3s on a

standard PC.

The method was evaluated on two public datasets. On

the ICDAR 2011 dataset the method achieves state-of-the-

art text localization results amongst published methods (re-

call 64.7%, precision 73.1%, f-measure 68.7%) and we are

the first to report results (recall 37.2%, precision 37.1%, f-

measure 36.5%) for end-to-end text recognition on the IC-

DAR 2011 Robust Reading competition dataset.

On the more challenging Street View Text dataset the

recall of the text localization (32.9%) can be only com-

pared to the previously published method of Wang et al. [21]

(29.0%), however direct comparison is not possible as the

method of Wang et al. uses a different task formulation

and a different evaluation protocol. Robustness of the pro-

posed method against noise and low contrast of characters

is demonstrated by “false positives” caused by detected wa-

termark text in the dataset.
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