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Abstract

Convolutional neural networks (CNNs) are the state-of-the-art method for most computer vision tasks. However,

their excessive computational requirements make the deployment of CNNs on mobile or embedded platforms

challenging. In this paper, we present and end-to-end neural network solution to scene understanding in the

context of robot soccer. Our system uses two key neural networks: one to perform semantic segmentation on an

image, and another to propagate class labels between consecutive frames. Our networks are trained on synthetic

datasets and fine-tuned on a set consisting of real images taken using a Nao robot. Furthermore, we discuss and

evaluate several practical methods for increasing the efficiency and performance of our networks. Finally, we

present NaoDNN, a C++ neural network library designed for fast inference on the Nao robots.

1. Introduction

Deep learning [1] has been one of the most rapidly advanc-
ing fields of computer science in the last decade. While deep
neural networks (DNNs) have a vast area of applications,
they are undoubtedly the most popular in the field of intelli-
gent perception, especially computer vision. While the focus
of the field has been on image classification [2], in the last
few years there have been considerable advances on using
DNNs on other vision tasks, such as object detection [3],
tracking [4] and segmentation [5].

Due to the rapidly increasing power of hardware, the
usually computationally expensive networks have started
to appear in mobile and embedded systems [6]. Several
teams [7–11] have used convolutional neural networks in
the 2017 SPL league in RoboCup to classify relevant ob-
jects on the soccer field. However, due to the limitations of
the robot’s hardware, these networks were relatively shallow
and were designed to classify fixed-resolution image patches
only. This meant that the teams had to use separate object
proposal methods to feed their network with candidate im-
age regions.

In this paper we propose an end-to-end real-time ob-
ject detection method for the Nao robots using deep neural
networks. Our method combines two separate networks to
achieve high accuracy at reasonable speed. The first network

is a deep neural network trained to perform semantic seg-
mentation (pixel-wise classification) on the image from the
robot’s camera. The second is a somewhat smaller network,
trained to propagate the class labels from the previous image
onto the next. Our system is capable of localizing four fore-
ground classes (ball, robot, goalpost, and field line), without
the use of a separate object proposal system.

Furthermore, we also present our experiments with meth-
ods used to accelerate deep neural networks on the Nao
robots. These techniques include using field edge detec-
tion to reduce the image size without decreasing the reso-
lution of the relevant image parts, and pruning the weights
of the neural network. We also experiment with different net-
work structures in order to find the optimal accuracy/runtime
trade-off.

Finally, we present NaoDNN, a lightweight C++ deep
neural network library. NaoDNN is a forward-only library,
designed for maximum performance on the Nao robot hard-
ware. The library has no dependencies, and does not use
the C++11 standard, which makes it easy to compile for
the robots. Moreover, it has been designed to compile us-
ing the strictest compiler settings. Our implementation also
offers compatibility with the popular Pytorch [12] DNN
framework, with the ability to import neural nets trained us-
ing Pytorch. The NaoDNN library, the code and datasets
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used to train our networks are available on our website
(mipal.net.au).

2. Related Work

Deep neural networks have become a widely-used and pow-
erful solution to numerous machine learning problems. The
renewed interest in DNNs was largely sparked by the dra-
matic increase in the availability of high quality datasets
and computational resources. The lack of these was one of
the major barriers to training deep neural networks, in addi-
tion to some numerical problems [13]. Their applications are
countless, ranging from natural language processing prob-
lems such as query answering [14] and translation [15] to
implementing Turing machines [16] or other complex re-
current systems. They are also frequently used as agents
in games, trained using some form of reinforcement learn-
ing with considerable success, as demonstrated by AlphaGo
Zero [17].

The use of deep learning is perhaps most prominent in
the field of computer vision, where deep neural networks are
used for standard classification [2], object detection [3] and
(semantic or instance) segmentation tasks [5,18]. Lately, the
applications expanded to several more complex areas, such
as video and motion analysis [4], image captioning [19],
translation and generation [20].

Semantic segmentation is one of the major tasks aiming to
achieve visual scene understanding. The objective is to seg-
ment the image by classifying each pixel individually. The
simplest way to achieve this with neural networks is to use a
classification network, and replace the final fully connected
layers by (usually 1x1) convolutional layers. This network
can output a segmented image at a lower resolution, which
can be upsampled using techniques, such as bilinear upsam-
pling [21]. Other works [22] employ a superpixel segmen-
tation method, and classify these superpixels individually in
order to approximate object boundaries with higher accu-
racy.

One of the first major works in this field proposed the Seg-
Net architecture [21], which uses so-called unpooling layers
to upsample the feature maps. In SegNet the max pooling
layers in the first half of the network store the index of the
maximum value and share this information with the corre-
sponding unpooling layer. This extra piec of information al-
lows the unpooling layer to recover the spatial information
lost during downscaling. Nonetheless, the full feature map
is not recovered, since the non-maximum values are perma-
nently lost.

In the last few years, several important advances have
been made to improve the accuracy of SegNet-based seg-
mentation, especially when it comes to capturing the fine de-
tails of objects. The first of these improvements is the Fully
Convolutional Network (FCN) architecture [5], which intro-
duced shortcuts (skip connections) from the front layers of

the network. By adding shortcuts from early layers, the final
layer has more information on the fine-resolution details of
the image, resulting in better approximation of object bound-
aries. Shortcuts also improve the convergence properties of
deep neural networks considerably [23].

Choosing the upscaling and downscaling methods in the
network can also affect the performance significantly. The
FCN network uses strided convolutions instead of pooling
and using transposed convolutional layers instead of unpool-
ing in order to implement a learnable downsampling and up-
sampling operations, increases the complexity of network
greatly [5]. Wang et al. [24] introduced the dense upsam-
pling convolution operation (DUC), which was shown to in-
crease the accuracy further, although at a considerable in-
crease of computational cost.

The field of view of the final classification neuron is an-
other important property that influences the accuracy of the
segmentation network, since it determines the amount of
contextual information the final neuron can use to determine
the class of each pixel. Chen et. al. [25] showed that using di-
lated/atrous convolutional filters increases the performance
without increasing the computational cost. Pooling opera-
tions may also be atrous [25], resulting in a similar improve-
ment.

While convolutional neural networks have achieved stag-
gering accuracy in numerous applications, their power
comes with high computational cost. Such high computa-
tional cost seems to prohibit the use of CNNs on board of
mobile and embedded platforms, but recent research in CNN
optimisation is alleviating this issue. The focus of this field
to reduce the size of trained models as well as the computa-
tion needed for inference. Several methods exist for this pur-
pose, such as weight sharing [26], quantization [6] and low-
rank approximation [27]. Considerable research has been de-
voted to binary networks [28].

The technique most relevant to our application is called
pruning [29]. During the pruning process, a ranking method
is used to order the weights or neurons of a layer by im-
portance, then a fixed percentage of the least important neu-
rons/connections are deleted/set to zero. The network is fine-
tuned afterwards, while keeping the pruned elements on zero
value. Several ranking methods exist ranging from brute-
force methods, that simply use the magnitude of the weights
to more complex ones, such as pruning weights so that
the change in the network’s loss function would be mini-
mal [30].

2.1. Computer Vision in RoboCup

The stated goal of RoboCup is to design a team of au-
tonomous robots that are able to defeat the world champion
soccer team using FIFA rules by the middle of the 21st cen-
tury. Achieving human-level vision and scene understand-
ing is an essential component of achieving this goal. In ac-

mipal.net.au
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cordance with this insight, the RoboCup environment has
steadily changed from featuring objects that are easy to rec-
ognize using low-level features, such as color, to ones that
greatly resemble the actual objects used in human soccer.

The vision pipelines used by the competing teams have
changed in tandem, going from human-engineered vision
methods [31, 32] to pipelines relying increasingly on ma-
chine learning. Several teams have used convolutional neural
networks either for binary classification tasks [7,8] or to de-
tect several relevant object categories [9,10]. These methods,
however, use CNNs for classification only, therefore they
still require a separate object proposal method, and the qual-
ity of the system may largely depend on the efficiency of the
algorithm used to generate candidates for classification. A
further disadvantage is that running the same neural network
on potentially overlapping image regions is wasteful, since
the same features are computed twice.

One of the most important advances of recent years is the
work published by Hess et al. [11] in which they present
a high-quality virtual RoboCup environment created in Un-
real Engine. Using their work allows one to easily create
large datasets of realistic images of a soccer field along with
pixel-level semantic labeling. Since the performance of a
trained neural network is highly dependent on the quality
and quantity of the training data, and creating a large hand-
labeled database is highly time-consuming, their work was
profoundly valuable for our research.

3. Preparation of the Training Data

In most machine learning applications the quality and
amount of the training data is a major determinant of the
algorithm’s eventual performance. For training the seman-
tic segmentation network, we created a synthetic image set
of 5000 images using the tool presented by Hess et al [11].
We used 100 different random sets of environmental vari-
ables, and generated 50 images with each setting. The im-
ages were separated into train and test sets randomly, us-
ing an 80-20 division. The automatically generated labels
are available as PNG images, and contain labels for all five
relevant categories (background, ball, robot, goal and line).

In addition, we modified the project blueprint to allow for
the creation of image sequences instead of images of inde-
pendent, randomly-arranged scenes. We used this mode to
create a dataset of 800 images to train the label propagation
network. This database also features 100 individual image
sequences with different random scene parameters. In each
sequence, however, the position and orientation of the cam-
era and field objects only changes marginally between con-
secutive frames.

Synthetic images are an excellent way of pre-training
a network on a large dataset, yet due to the differences
between a synthetic and a real environment we require a
database of real images to fine-tune the network. But as a

result of the pre-training, a much smaller dataset is suffi-
cient than would be otherwise required. For these reasons,
we created a real semantic segmentation database consisting
of 570 images taken at 3 separate locations: at the venue of
RoboCup17, at the venue of IJCAI17 and in our lab at Grif-
fith University. A portion of this database consists of image
sequences, which are used as a dataset for label propagation.

We manually annotated the images using a tool of our own
creation. Our tool provides several ways to aid the annota-
tion process, such as tools for drawing polygons and lines,
as well as square and circular brush tools. The program also
uses the superpixel segmentation method proposed by Li and
Chen [33] to speed up the labeling process. In the case of
successive images, the tool is able to use dense optical flow
to approximate the labels of the next image. Using the tool it
is also possible to mark the edges of the field, setting pixels
and labels outside the field to black and background respec-
tively.

Despite having a fair number of real images, they were
considerably less varied than the synthetic images, since
they included only three locations with their unique environ-
mental settings (such as lighting and carpet color). To com-
pensate for this disadvantage, we used aggressive, unique
data augmentation in addition to standard techniques, such
as flipping images horizontally. In order to emulate changes
in lightning conditions, we applied random changes in the
brightness and contrast of the images. To introduce further
variation into the dataset, we also applied random shifts to
the hue and saturation of our pictures, which may help the
robots with unique carpet colors. In Section 6 we show that
our data augmentation techniques improve the accuracy of
the trained models greatly.

4. Model Selection and Training

For training the network we use the popular Pytorch frame-
work [12] and perform the optimization using stochastic gra-
dient descent (SGD) with momentum and weight decay reg-
ularization. During training, we used an adaptive learning
rate schedule, which reduced the learning rate of the network
after N consecutive epochs in which the validation loss could
not fall below the current lowest value. We made a slight
modification to Pytorch’s learning rate scheduler, to allow
us to reload the current best model in every learning rate
reduction event. We observed that this made it more likely
for the optimizer to find a new optimum after reducing the
learning rate. We present the hyperparameters used for pre-
training and fine-tuning the semantic segmentation and label
propagation networks in Table 1.

One of the major challenges faced during training was
due to the nature of the scene setup specific to robot soc-
cer fields. In a usual image taken of the soccer field the vast
majority of the pixels belong to the background class. In our
datasets the ratio of background pixels was around 93-94%,
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(a) Standard FCN-based
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(b) "Pot-Bellied" FCN

Figure 1: Our model architectures. Blue nodes represent standard convolutional layers, green nodes are strided convolution
layers, while red nodes are strided transposed convolution. Every level lowers the resolution by a factor of 2. Note, that batch
normalization layers present after every convolution layer were omitted for brevity.

moreover, the rest distributed rather unevenly amongst the
other classes. This results in a heavily unbalanced dataset,
which can make convergence difficult, and may result in a
final network that is heavily biased towards making false
negative-type errors. It is important to note, that this imbal-
ance stems from the distribution of classes in the individual

images themselves, therefore it is not possible to re-sample
the training set.

We used two solutions in order to combat this difficulty.
First, we selected the images to be used in the training set
so that they would contain a relatively high percentage of
foreground pixels. Second, we used a weighted version of
the 2 dimensional negative log likelihood (NLL) loss func-
tion, which is implemented in Pytorch, encouraging the net-
work to emphasize the relevant object categories more.

Another important aspect of the training procedure was to
find an efficient and powerful network structure. At first, we
used an architecture based on FCN [5], using strided con-
volution for downsampling and transposed convolution for
upsampling, as well as employing dilated convolutions to in-
crease the field of view of the final classification layer. We
avoided using DUC for upsampling, due its higher compu-
tational requirements. Our network had three modules con-
sisting of convolutional and downsampling layers, combined
with three upsampling layers, as illustrated in Figure 1a.

Most CNNs used for semantic segmentation are relatively
waist-heavy, meaning that the middle section of network,
where the feature map has the smallest spatial dimensions
has the largest number of filters. This has obvious advan-
tages when it comes to memory consumption and compu-
tational efficiency. In our experiments, we decided to push

this feature even further, using few and shallow layers to
downsample the feature map quickly, then using a larger
number of deep convolutional layers at the lowest level, fol-
lowed by a similarly shallow and quick upsampling. In Sec-
tion 6 we demonstrate that this network structure is much
more efficient, providing better accuracy for lower compu-
tational cost. Figure 1b illustrates our new alternative, the
"Pot-Bellied" (PB-FCN) architecture.

Our training procedure consists of three steps. First, the
first half of the segmentation network is trained on the
dataset provided by Hess et. al [11] for classification. We
modified the dataset by separating the background a field
line classes. Next, the full segmentation network is trained
on the synthetic database. Finally, the full segmentation net-
work is finetuned on the real database. The training proce-
dure for the label propagation network is similar, except the
the first step is ommitted.

5. Real-time Implementation

In order to ensure real-time performance of our object de-
tection pipeline, we had to employ several techniques to im-
prove the speed of the trained neural network. In this case,
these improvements were essential, since the networks pre-
sented in the previous sections took approximately 1 second
to run on a Nao V5 robots using the Darknet library [34].
For all our experiments, we used 160x120 images in YUV
color space.

The first technique we employed was weight pruning:
since convolution is implemented as a matrix multiplica-
tion, setting weights to zero increases the efficiency signifi-
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Training Segm. Finetune LP Finetune

Learning Rate 0.1 0.01 0.2 0.05

Momentum 0.5 0.1 0.5 0.1

Weight Decay 1e-3 1e-3 1e-5 1e-5

LR Reduction 0.5 0.5 0.5 0.5

Patience (N) 20 50 10 25

Batch Size 32 8 16 8

Epochs 200 500 100 250

Table 1: Hyperparameters used for the training procedures.

cantly, even when an extra operation (checking if the weights
are zero) is introduced. We used a brute-force pruning tech-
nique, simply setting approximately 75% of the weights in
every layer to zero, and then fine-tuning the network, while
forcing the pruned weights to remain zero. We found, that
this technique reduced the runtime of the network by ap-
proximately 70%.

Moreover, our vision pipeline includes a hand crafted field
detection system, which is used by our network to crop the
part of the image, outside the field (this is usually the top
part of the image), and only run the network on the relevant
part. This approach comes with two advantages. First, it re-
duces the number of pixels to be processed without reduc-
ing the level of detail. Second, if the network is trained on
images where the parts outside the field are omitted, it may
avoid learning complex backgrounds outside the field (which
are easily confused with field objects). While this technique
provides considerable improvement in the networks speed,
this improvement is highly dependent on the robot’s posi-
tion in the field. For this reason, we used uncropped images
when comparing the execution times of different models and
methods.

5.1. Label Propagation

Our other major attempt at increasing the speed of our
pipeline was to employ label propagation, a technique to es-
timate the labels of the next image by using the labels of the
previous one. By only running the main neural network ev-
ery 10 or 20 frames, we are able to achieve a considerable
increase in speed, provided that accurate label propagation
can be implemented using a significantly faster algorithm.

In our first experiments, we employed Gunnar
Farneback’s dense optical flow algorithm [35] to move
the labels to their new location. While the algorithm’s
speed was more than satisfactory, there were issues with
the accuracy. Namely, small, single-pixel errors would
accumulate over time, constantly eroding small objects.

Also, the optical flow-based method is completely unable
to handle faster movements or new objects appearing in the
image (or partially seen objects sliding in).

Our second choice was to implement label propagation
with a considerably smaller version of PB-FCN (Figure 1),
which would run at approximately twice the speed of the
segmentation network. This network uses only the Y chan-
nels of the YUV images, and it also takes the difference of
the two frames as an input. The labels of the previous im-
age are concatenated to this array, resulting in an 8-channel
input. For numerical reasons, the binary labels were scaled
between -1 and 1. The label propagation network was trained
using the synthetic and real datasets mentioned in Section 3.
We used the same data augmentation techniques, and trained
the network to be able to predict the new labels in both ways
(previous-to-next and vice versa), since the vast majority of
movements might occur in both directions.

Since this method is able to combine knowledge about the
visual appearance of the classes and the movement between
the images it is arguably able to account for the appear-
ance of new objects and handle larger movements. More-
over, for the same reason, the label propagation network has
some form of self-correcting ability, thus misclassifying a
pixel in one frame does not mean that the error will be car-
ried on until the next run of the segmentation network. We
observed during our experiments that the label propagation
network seemed to be able to incrementally correct the mis-
takes made by the segmentation network, especially when
the robot was not moving (Figure 2).

Layer Optimization

Convolutional Pruning, Crop

Transposed Conv Pruning, Crop

Fully Connected Pruning, Crop

Pooling (Avg/Max) Crop

Activations In-place, Crop

Batch Normalization In-place, Crop
Pre-compute 1

√

var

Concatenation Crop

Shortcut In-place, Crop

ReOrg/Pixel Shuffle Crop

SoftMax Crop

Table 2: List of layers implemented in the NaoDNN library,
along with the optimization techniques we applied.
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Technique TPA MCA MIoU

Baseline 97.72 92.19 75.57

Data Augmentation 0.61 2.55 6.66

Field Extraction 0.31 0.82 2.36

Reload 0.09 1.08 0.19

Prune -0.18 -0.8 -0.4

Table 3: Comparison of the training techniques we used
to increase the accuracy of out networks. We present the
changes compared to the baseline.

5.2. The NaoDNN Library

The last important detail of implementation is finding an ap-
propriate neural network library to use on the Nao robots.
The first option is Caffe [36], which is a relatively old library
with numerous dependencies, making it difficult to compile
for the Nao robot. The other option is Darknet [34], which
has no dependencies and is more recent. Darknet, however,
lacks support for several important features we used in our
network, such as dilated convolutions and affine batch nor-
malization.

For this reason, we created our own library called
NaoDNN, which is heavily based on Darknet, and uses C++
to implement some of the most common neural network lay-
ers. Our library is designed for inference only, therefore all
code for training the networks was stripped. Our library has
no external dependencies, does not require C++11, and - like
all of MiPal’s code - compiles using the strictest compiler
settings.

We have updated the library’s code to make it compati-
ble with Pytorch, which included adding support for dilated
convolutions, output padding for transposed convolutions,
and affine batch normalization layers. Altogether, NaoDNN
is fully compatible with neural networks trained in Pytorch,
and we provide code to export the weights Pytorch models
along with the library. Our library is also optimized for max-
imum efficiency, including support for accelerating pruned
networks, running on cropped images and several in-place
operations for memory efficiency. Table 2 provides al list of
the layers we implemented and the optimisation we applied.

6. Experimental Results

In this section we present the result of our experiments with
the trained networks. In the first part, we focus on testing
the accuracy of dirrenet models and techniques employed.
Our experiments regarding the speed of our pipeline on the
Nao V5 robots are presented in the second part of this sec-
tion. Some of the best and worst results of the segmentation
are displayed in Figure 3.

Model TPA MCA MIoU

FCN 98.42 94.95 80.31

PB-FCN 98.50 94.40 81.30

PB-FCN-VGA 98.64 95.74 81.09

Resnet152 98.71 94.88 83.98

Table 4: Comparison of the different neural netowrk archi-
tectures.

6.1. Tests on Accuracy

For comparing the accuracy of different models and tech-
niques, we use three measures. The first is the Total Pixel
Accuracy (TPA), which is simply the percentage of pixels
classified correctly. The second is the Mean Class Accuracy
(MCA), which is TPA computed separately for each class,
and averaged. With our unbalanced dataset there is signifi-
cant trade-off between these two measures: While TPA will
tend to be higher with models that are more likely to err on
the side of background, MCA will be higher for models that
are more likely to make false positive predictions. The third
measure is Mean Intersection over Union (MIoU), which (on
our dataset at least) prefers models with minimal confusion
between foreground classes.

In our first experiment, we demonstrate the increase in
accuracy provided by techniques such as our data augmen-
tation operations, field extraction, reloading learning rate
scheduler, and the effect pruning. We measured the improve-
ments of these techniques separately on a fine-tuned PB-
FCN network, therefore the improvements we present in Ta-
ble 3 are not additive. The results indicate that our tech-
niques increase the accuracy considerably, while our brute-
force pruning retains most of the networks predictive power.

Secondly, we compare the results of different mod-
els. In this comparison we use all of our aforementioned
techniques. In Table 4, we compare four different mod-
els: The standard FCN-based model, our PB-FCN used on
both 160x120 and 640x480 resolution images, and an ex-
tremely deep segmentation network using Resnet152 [23]
and deep DUC upsampling. From these result, we can draw
several conclusions: First, PB-FCN is slightly more power-
ful compared to the standard FCN structure. Second, a com-
paratively shallow PB-FCN loses surprisingly little in terms
of accuracy compared to the Resnet152-based model, espe-
cially when used on VGA resolution.

Lastly, we compare the results of our pruned, fine-tuned
PB-FCN-based label propagation network with the results
acquired using optical flow. The results in Table 5 indi-
cate that neural label propagation clearly outperforms the
optical-flow based method. Note, that optical flow produc-
ing slightly better MIoU results is an artifact caused by the
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heavily unbalanced dataset (optical flow introduces minimal
confusion between foreground classes). We used the real im-
age dataset for all the results in this section.

6.2. Comparison against other solutions

We also compare our results against the networks or de-
tection pipelines used by other teams. First, we evaluate
the first half of our PB-FCN network against the classifica-
tion results reported by Hess et al. [11] using the same test
dataset. Our algorithm clearly outperforms theirs, produc-
ing XY.xy% accuracy compared to 94.4% using a synthetic
dataset of matching size.

We also compared our full segmentation network against
UT Aston Villa’s detection pipeline using our own validation
set consisting of real images. In this test we simply counted
the amount of correct detections, as well as false positives
and false negatives. The results in Table 6 show that our
method seems to achieve considerably higher accuracy.

6.3. Tests on Execution Time

We have also tested the execution time of our methods on
a Nao V5 robot. Table 7 shows the execution time of the
pruned versions of the models compared in the previous sub-
section. For reference, we also included the non-pruned ver-
sion of PB-FCN. The results show a clear improvement as a
result of pruning, and that PB-FCN outperforms the vanilla
FCN in speed as well. We remark that the data shows that
running a relatively shallow network on a higher resolution
image seems to be much faster than running ResNet on a
downscaled version, while providing comparable accuracy.

In Table 7 we also present the comparison of label prop-
agation using optical flow and CNNs. The results show that
the extra accuracy coming with the neural network comes
at lower speeds. Still, the fully neural vision pipeline is able
to run at 7 frames per second, which is sufficient. For refer-
ence, we include our measurements of the speed of the UT
Aston Villa team’s vision pipeline. The comparison shows,
that although we were able to achieve significant improve-
ments in accuracy and the neural network’s efficiency, it is
still several times slower than other methods.

Model TPA MCA MIoU

Optical Flow 95.82 86.15 82.7

PB-FCN 96.52 90.7 79.15

Table 5: Comparison of the two methods we used for Label
Propagation.

Method Accuracy False positives False negatives

UT AV BAD BAD BAD

PB-FCN GOOD GOOD GOOD

Table 6: Comparison of PB-FCN agains UT Aston Villa’s
detection pipeline.

7. Conclusion

In this paper, we presented a deep neural network-based
method for scene understanding in the context of robot soc-
cer. Our method uses a semantic segmentation network and
a separate label propagation net to increase the frame rate of
the vision system. With our experiments, we demonstrated
the efficiency of our method, including the improvements we
achieved using our data augmentation techniques, pruning
and field-edge cropping. Our method has superb accuracy at
satisfactory speed.

We also presented large semantic segmentation and label
propagation datasets consisting of synthetic images, as well
as small real datasets for the same tasks, including a tool for
manual pixel-wise labeling of images. Finally, we presented
a Pytorch-compatible C++ deep neural network library de-
signed for fast inference on the Nao robots supporting the
acceleration techniques discussed in this paper. Our library
has been designed to compile for the Nao robots using the
strictest compiler settings.
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Model Execution Time (ms) FpS

FCN 520 0.5

PB-FCN 1160 0.9

PB-FCN Pruned 290 3.4

PB-FCN-VGA 2,500 0.4

Resnet152 8,000 0.125

Optical Flow 80 12.5

Neural LP 130 7.6

UT AV 40 25

Table 7: Comparison of the execution times of different
models.
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(a) Original image (b) Semantic segmentation (c) Label propagation after 5 frames (d) Ater 10 frames

Figure 2: The self-correcting ability of the label propagation network.

Figure 3: A few examples of good (top) and bad (bottom) results.
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