
Real-Time Schedulability

Tests for Preemptive Multitasking

C. J. Fidge∗

Abstract

When developing multitasking real-time systems, schedulability tests are
used to formally prove that a given task set will meet its deadlines. A
wide range of such tests have appeared in the literature. This tutorial
acts as a guide to the major tests available for preemptive multitasking
applications.

1 Introduction

Safety-critical applications often involve several distinct activities, each of which
has ‘hard’ inviolable timing constraints (Burns and Wellings, 1990). Developing
such systems so as to guarantee that no critical task ever misses a deadline is
a significant intellectual challenge.

In the past programmers resorted to a rigid, pre-determined order for exe-
cution of (parts of) tasks, so that the times at which jobs will complete could
be predicted in advance. Unfortunately this cyclic executive model results in
programs that are hard to understand and maintain because the code for logi-
cally independent tasks is interleaved. Such methods are now being superseded
by preemptive scheduling approaches (Locke, 1992).

However, because preemptive scheduling results in an order for task execu-
tion that changes dynamically, it is difficult to know in advance whether each
task will meet its deadlines or not. A formal tool to overcome this is the notion
of a schedulability test . Given information such as the execution time of each
task, the frequency with which it needs to run, and the particular scheduling
policy used, these tests tell the programmer whether a given task set can meet
its deadlines.

Over the years a bewildering variety of these tests have been proposed,
for a wide range of scheduling policies. They vary considerably in their com-
plexity and capabilities. This review summarises the most well-known tests

∗Software Verification Research Centre, School of Information Technology, The University

of Queensland, Queensland 4072, Australia. Email: cjf@it.uq.edu.au

1



currently available, using consistent notations and terminology, in order to pro-
vide a comparative catalogue of the tests available. The survey considers tests
for hard real-time tasks, executing under a preemptive scheduling policy, in a
uniprocessor environment.

The tests work by considering a worst-case scenario and checking that each
task gets a sufficient allocation of shared resources in this situation; if so then it
will also succeed under more favourable circumstances. Historically, there have
been two distinct approaches. Tests based on the notion of processor utilisation,
i.e., the percentage of processor time that may be occupied by tasks, developed
first. Later work saw the emergence of tests based on response times, i.e., the
exact duration by which tasks may be delayed. Examples of both methods are
considered here. Ultimately, however, the two approaches have been recognised
as equivalent (Lehoczky, 1990, p.203) (Audsley et al., 1995, p.182), offering the
same capabilities in different styles.

As far as possible the tests are grouped into broad categories based on their
capabilities. (This grouping is inevitably somewhat arbitrary due to the varying
mix of features supported.)

This report is not a self-contained tutorial on schedulability theory; com-
plementary tutorials by Audsley et al. (1995) and Mercer (1992) give gentler
introductions to the field.

Section 2 briefly reviews the overall computational model assumed by
scheduling theory. Section 3 describes schedulability tests developed for sets
of independent, non-communicating tasks. Section 4 describes tests for inter-
acting, communicating task sets. Section 5 presents a tabular summary of the
capabilities of each test reviewed. Precise citations are given throughout so that
the reader may easily access further information on any of the tests presented,
especially their proofs of correctness and examples of their use. A glossary of
terminology is provided as an appendix, again accompanied by precise citations
throughout. Bold text denotes a cross reference to the glossary.

2 Computational model for preemptive multitasking

Hard real-time schedulability theory uses a simplified, abstract computational
model to represent the behaviour of a preemptive, multitasking system (Audsley
et al., 1993, §2).

The model assumes that the programmer wishes to implement a task set
on a particular processor. Each task i arrives infinitely often, each arrival
separated from the last by at least Ti time units. A periodic task arrives
regularly with a separation of exactly Ti time units. A sporadic task arrives
irregularly with each arrival separated from its predecessor by at least Ti time

2



units. (Aperiodic tasks, which arrive irregularly with no minimum separation,
are not usually considered because hard real-time guarantees cannot be made
for them.)

At each arrival, task i issues a notional invocation request for up to Ci

units of processor time, its worst case computation time. Each invocation of
task i must have this request satisfied before its deadline Di expires.

The scheduler services these requests according to a particular scheduling
policy . Each task making a request is notionally placed in a ready queue (ISO,
1994, §D.2.1) at which time the task is said to be released (Audsley et al.,
1993, §2). The scheduler selects a task to run from the ready queue as per
the scheduling policy it implements. Tasks of higher priority can preempt
the running task i, resulting in a degree of interference Ii to the progress
of task i. Tasks stop being ready by suspending themselves (by executing a
‘delaying’ statement). Suspended tasks wait in a separate delay queue until
they become ready again (Burns et al., 1995, p.476).

Scheduling decisions are based on the priority of ready tasks. In static-
priority scheduling there is a fixed base priority associated with each task,
although the task may temporarily acquire a higher active priority at run
time. Static-priority policies include rate monotonic and deadline mono-
tonic scheduling. When discussing static-priority policies we assume there are n

tasks, with (usually) unique base priorities, ranked from highest-priority task 1
to lowest-priority task n.

Dynamic-priority scheduling policies assign variable priorities at run time.
Dynamic-priority policies include earliest deadline first and least laxity
scheduling. Dynamic-priority policies can lead to better processor utilisation
than static-priority ones, but are harder to implement (Manabe and Aoyagi,
1995, p.213), and thus less common.

All communication between tasks residing on the same processor is through
controlled access to shared variables, with mutual exclusion guaranteed by
semaphores or a similar locking protocol . This communication model supports
timing predictability because the worst-case blocking time Bi that task i may
experience while awaiting access to a shared variable can be determined a priori .
Locking protocols include the priority ceiling, ceiling locking, kernelised
monitor and stack resource protocols.

For simplicity the computational model usually assumes that only tasks
consume time. The scheduler itself is treated as if it executes instantaneously.
The overheads of context switching, interrupt handling, and shared resource
locking are factored into the worst case computation time for each task in-
vocation (Klein and Ralya, 1990, p.12) (Leung and Whitehead, 1982, p.238)
(Audsley et al., 1994).

3



Ci Worst case computation time that may be required by an invo-
cation of task i.

Ti Lower bound between successive arrivals of task i. This is the
period of a periodic task and the minimum separation of the trig-
gering event for a sporadic task.

Di The deadline for each invocation of task i, measured from its ar-
rival time (Tindell et al., 1994, p.149).a Usually Di ≤ Ti (Audsley
and Burns, 1990, p.6) (Tindell et al., 1994, p.134). If no deadline
is specified for a periodic task i then Di = Ti is assumed.

aAudsley et al. (1993, p.285) measure Di from release time.

Figure 1: Task characteristics specified by the programmer (Audsley et al.,
1993, §3).

3 Independent tasks

The tests in this section apply to a set of n tasks, residing on the same pro-
cessor, when the tasks are independent (i.e., they do not interact or other-
wise communicate using shared resources and hence cannot block one another).
Mathematical symbols used are defined in Figures 1 and 2.

3.1 Deadlines equal periods

The following tests apply to sets of independent periodic tasks whose deadlines
are equal to their periods.

Rate monotonic scheduling In a seminal paper, Liu and Layland (1973)
proved that any such task set is schedulable using rate monotonic scheduling
if

n∑

i=1

Ci

Ti
≤ n(2

1
n − 1) .(1)

Expression Ci/Ti is the percentage of time that task i will occupy the processor
at each arrival, in the worst case. The test thus states that the sum of these
processor utilisation percentages, for all n tasks, must not exceed the ‘utili-
sation bound’ (Liu and Layland, 1973, §5) (Baker, 1991, p.68). The utilisation
bound expression n(21/n − 1) converges to 69% for large values of n, so task
sets passing this test may have low processor utilisation. This is a sufficient
but not necessary test (Audsley et al., 1993, p.284).

4



Bi Worst case blocking time an invocation of task i may experience
due to shared resources being locked by lower-priority tasks.

Ii Worst case interference an invocation of task i may experience
due to preemptions by higher-priority tasks.

Ui Worst case processor utilisation percentage by task i and tasks
of higher priority.

Ji Worst case release jitter for an invocation of task i due to
scheduling delays.

Ri Worst case response time for an invocation of task i, measured
from its arrival time.a Usually Ri = Ji+Ci+Bi+Ii. A schedulable
task must have Ri ≤ Di.

ri Worst case response time for an invocation of task i, measured
from its release time (Audsley et al., 1993, p.286). Usually ri =
Ci + Bi + Ii. When there is no release jitter ri = Ri.

aTindell et al. (1994, p.150) use “ri” where we use “Ri”.

Figure 2: Task characteristics defined by the scheduling policy and locking
protocol used (Audsley et al., 1993, §3).

Lehoczky et al. (1989) then developed a more discerning test. Let

Ui(t) =

∑i
j=1 Cj

⌈
t

Tj

⌉

t
,

be the worst-case processor utilisation needed by all tasks j of priority greater
than or equal to i during an interval of duration t (Lehoczky et al., 1989,
p.167). The amount of processor time required is calculated as the sum of each
computation time Cj multiplied by the number of periods dt/Tje started by task
j within t time units.1 This is divided by t to give the utilisation percentage.
The test then states that the task set is schedulable if,

for all tasks i, min0<t≤Ti Ui(t) ≤ 1 .(2)

In other words, for each task i, at every moment of time t within its period Ti,
processor utilisation Ui up until time t must not exceed 100%. The equation

1For some number x, dxe is the smallest integer greater than or equal to x.

5



defining Ui assumes the worst-case scenario where all tasks arrive simultane-
ously, so it is only necessary to test that each task i will meet its first deadline
to know that it will never miss a deadline (Lehoczky et al., 1989, p.167).

Although harder to check, schedulability test 2 may pass task sets that test 1
fails, and thus allows higher processor utilisation. Test 2 is both necessary and
sufficient (Lehoczky et al., 1989, p.168).

A variant, also defined by Lehoczky et al. (1989), shows that rather than
checking all times t it is possible to reduce the number of calculations required
for test 2 by checking only certain scheduling points. These are all multiples of
the periods of each higher-priority task. For some task i let

Pi = {kTj | 1 ≤ j ≤ i, k = 1, . . . ,
⌊

Ti
Tj

⌋
}

be the scheduling points that occur within its period Ti, i.e., each absolute
time of the kth arrival of each higher or equal priority task j (Lehoczky et al.,
1989, p.167). Task j can arrive up to bTi/Tjc times in Ti time units.2 A set of
independent periodic tasks using rate monotonic scheduling will then meet all
its deadlines if (Lehoczky et al., 1989, p.168),

for all tasks i, mint∈Pi Ui(t) ≤ 1 ,(3)

where utilisation Ui(t) is as defined for test 2 above.
Manabe and Aoyagi (1995, §4) recently suggested a further optimisation of

test 3. It defines the significant scheduling points for task i as only Ti, the
largest multiple of Ti−1 less than or equal this point, the largest multiple of
Ti−2 less than or equal this new point, and so on.

Earliest deadline first scheduling Since the dynamic earliest deadline
first scheduling policy is optimal for independent tasks, Liu and Layland
(1973, p.186) showed that any task set is schedulable under this policy if pro-
cessor utilisation by all tasks does not exceed 100% (Giering III and Baker,
1994, p.55). A sufficient and necessary test (Liu and Layland, 1973, p.183) for
independent tasks using earliest deadline first scheduling is thus trivial (Liu and
Layland, 1973, p.184) (Baker, 1991, p.69):

n∑

i=1

Ci

Ti
≤ 1 .(4)

3.2 Deadlines less than periods and sporadic tasks

The following tests were developed to relax the assumptions that all tasks are
periodic and have deadlines equal to their periods. They allow sporadic tasks

2For some number x, bxc is the largest integer less than or equal to x.

6



to be introduced to the task set, and deadlines to be less than or equal to task
interarrival times.

Deadline monotonic scheduling Audsley et al. (1991, §2) observed that
an invocation of some task i, in a task set with static priorities allocated accord-
ing to the deadline monotonic scheduling policy, will experience worst-case
interference

Ii =
i−1∑

j=1

⌈
Di

Tj

⌉
Cj

from tasks with higher deadline-monotonic priorities. Ii is the sum, for each
higher-priority task j, of its computation time Cj multiplied by the number of
times dDi/Tje it arrives before the deadline Di of task i.

The entire deadline-monotonic task set can be scheduled if,

for all tasks i,
Ci

Di
+

Ii

Di
≤ 1 .(5)

Since deadlines can be less than their periods, Di is used instead of Ti to
determine utilisation. The test checks that the processor utilisation Ci/Di by
task i before its deadline, plus the degree of interference Ii/Di it experiences
before the deadline, does not exceed 100%. This test is suitable for sporadic as
well as periodic tasks (no explicit sporadic server is needed to handle sporadic
events).

The above interference measure is overly pessimistic, however, because it
includes the entire worst-case computation time Cj of each task invocation
that arrives even though part of task j may complete after deadline Di has
passed. A more precise definition is (Audsley et al., 1991, §2)

Ii =
i−1∑

j=1

(⌊
Di

Tj

⌋
Cj + min

(
Cj , Di −

⌊
Di

Tj

⌋
Tj

))
.

For each higher priority task j, the left-hand term defines the overhead of whole
invocations of task j completed before Di and the right-hand term defines
whatever fraction of Cj can be accommodated in the time remaining before
deadline Di.

Both variants of test 5 are sufficient but not necessary (Audsley et al., 1991,
§2) because they assume a worst-case interleaving of higher-priority tasks that
may never actually occur. A necessary test for deadline monotonic scheduling
must account for the actual interleaving of tasks; the tests presented in Sec-
tion 4.3 below do this. (Audsley et al. (1991, §2) also present an algorithm that
achieves such a result.)

7



Recently, Manabe and Aoyagi (1995, §5) proposed a test for deadline mono-
tonic scheduling, based on the principles illustrated in test 3. Again the test
works by checking processor utilisation for task i, and higher-priority tasks, at
all its schedulability points (Manabe and Aoyagi, 1995, p.217):

for all tasks i, mint∈Qi Ui(t) ≤ 1 .(6)

Term Ui(t) is defined as for test 2 above. The new feature is the choice of
scheduling points,

Qi = {Di} ∪ {kTj | 1 ≤ j ≤ i− 1, k = 1, . . . ,
⌊

Di
Tj

⌋
} .

Here the significant scheduling points for an invocation of task i are its deadline
Di, and all multiples k of the period of higher priority tasks j that can arrive
within Di time units. (As they did for test 3, Manabe and Aoyagi (1995, Def.6)
also suggest an optimisation of this definition to further reduce the number of
scheduling points that need to be evaluated.)

Static-priority scheduling The following tests apply to any static assign-
ment of base priorities to tasks, including that defined by the rate monotonic
and deadline monotonic scheduling policies.

Recently, Park et al. (1996) proposed an approach to schedulability testing
based on linear programming. Unlike the other tests we consider, it can be used
when worst-case computation times are not yet known. For each task i, their
minimum utilisation bound Mi is defined as the result of applying the following
procedure (Park et al., 1996, p.59):

Find the smallest Mi =
i∑

j=1

Cj

Tj

subject to
i∑

j=1

Cj

⌈
Di

Tj

⌉
= Di ,

where each Cj must be greater than 0. In other words, we must find suitable
computation times for all tasks j, of equal or higher priority than i, that min-
imise the processor utilisation bound for task i. The condition on the second
line ensures that all task arrivals by some task j, before the deadline Di of task
i, are completed at exactly the deadline. (The minimum utilisation bound is
found when there is no processor idling before the deadline (Park et al., 1996,
p.59).) Note that this allows us to discover suitable computation times, in
terms of the task deadlines and periods, rather than supplying them.

An entire task set is then schedulable if,

for all tasks i,
n∑

j=1

Cj

Tj
≤ Mi .(7)

8



In other words, the overall processor utilisation for all n tasks must be less than
every individual task utilisation bound Mi (Park et al., 1996, p.60).

The following test, unlike its predecessors, is not based on the principle of
processor utilisation bounds. Joseph and Pandya (1986) showed that a task set
will meet all its deadlines if,

for all tasks i, Ri ≤ Di ,(8)

where Ri = Ci + Ii

and Ii =
i−1∑

j=1

⌈
Ri

Tj

⌉
Cj .

In other words, for each task i, the test checks that its response time Ri is always
less than its deadline Di. The worst case response time for an invocation of
task i is defined to be its worst case computation time Ci plus its worst case
interference Ii.

Interference term Ii determines how much preemption task i will experience,
due to higher-priority tasks j, during the interval of time defined by Ri. For
each task j this interference is execution time Cj multiplied by the number of
arrivals dRi/Tje that j may have in Ri time units. Thus interference during
Ri is defined in terms of the number of preemptions that may occur during
the interval of time defined by Ri: the definition of Ri is recursive! Joseph
and Pandya observe that “equations of this form do not lend themselves easily
to analytical solution” (Joseph and Pandya, 1986, p.391), but see Section 4.3
below.

4 Communicating tasks

The tests above assumed that tasks do not interact. The tests in this section
allow for communication between tasks on the same processor, via access to
shared variables, controlled using a particular locking protocol.

4.1 Deadlines equal periods

The following tests apply to communicating periodic (or sporadic with a peri-
odic server) tasks whose deadlines equal their period.

Rate monotonic scheduling Sha et al. (1987) showed that any such task
set, when using the priority ceiling protocol, is schedulable if the following
generalisation of test 1 holds (Baker, 1991, p.68):

for all tasks i,
i∑

j=1

Cj

Tj
+

Bi

Ti
≤ i(2

1
i − 1) .(9)

9



Thus, for every task i, the sum of processor utilisation by equal or higher priority
tasks j, plus processor utilisation lost due to blocking, must be less than the
bound. Blocking figure Bi is the worst-case computation time of the longest
critical section of a task of lower priority than task i (Chen and Lin, 1990,
p.329) (Baker, 1991, p.69). Expression Bi/Ti is thus the worst case ‘blocking
utilisation’ for task i: the task can be blocked at most once in period Ti when
the priority ceiling protocol is enforced.

An equivalent variant of test 9, applicable to the full set of n tasks, is (Sha
et al., 1989, p.248)

C1

T1
+ · · ·+ Cn

Tn
+ max

(
B1

T1
, . . . ,

Bn−1

Tn−1

)
≤ n(2

1
n − 1) .(10)

Test 9 also applies when sporadic tasks are introduced using the sporadic
server algorithm (Sprunt et al., 1989, p.57).

A further generalisation of test 9 accounts for tasks whose priority does not
obey rate monotonicity (Gomaa, 1993, §11.4.8). Since the minimum arrival sep-
aration of a sporadic task, such as an interrupt server, may not necessarily be
a measure of its true importance or required responsiveness, the test allows for
the base priority of sporadic tasks to be higher than the value that would be al-
located according to their interarrival times. (Under these circumstances tests 1
and 9 are not sufficient to guarantee schedulability (Gomaa, 1993, p.133).)

For some periodic task i let Hi be the set of tasks with higher priority than,
and periods shorter than, task i. These tasks obey the usual rate monotonicity
relationship. Let Si be those tasks with higher priority than, but periods longer
than, task i. These tasks do not obey rate monotonic priority allocation. Pre-
emption by such a task is treated in the test like blocking: like lower-priority
tasks they can block task i at most once during period Ti because their period
is longer than Ti. The schedulability test, assuming use of the priority ceiling
protocol, is then

for all tasks i,
∑

j∈Hi

Cj

Tj
+

Ci

Ti
+

Bi

Ti
+

∑

k∈Si

Ck

Ti
≤ n(2

1
n − 1) .(11)

For each task i the first term is the degree of interference i can experience in
its period due to tasks j in Hi: each task j may preempt an invocation of task
i several times because Tj ≤ Ti. The second term is the processor utilisation
of task i itself. The third term is the degree of blocking i may encounter
from lower (rate monotonic) priority tasks. The fourth term is the preemption
utilisation that i can experience due to tasks k in Si: each task k may preempt
an invocation of task i at most once because Tk ≥ Ti, so Ti is used instead of
Tk to calculate utilisation lost due to these tasks.

10



Again this test is not a necessary one and a generalisation of test 3 is also
available that may pass task sets that test 11 fails. Sprunt et al. (1989, p.57)
use the following test in the situation where rate monotonic scheduling is used
for periodic tasks except for a high-priority sporadic server task whose assigned
priority may be higher than that warranted by its minimum interarrival time:

for all tasks i, mint∈Pi

(
Ui(t) +

Bi

t

)
≤ 1 .(12)

Pi is defined as for test 3, and Ui(t) as for test 2 above. At each scheduling point
t the first term defines utilisation due to periodic tasks with rate-monotonic
priorities higher or equal to i, and the second is the percentage of blocking due
to tasks with lower rate-monotonic priorities. However, when calculating the
blocking time Bi, for a task i that has a rate monotonic priority higher than the
rate monotonic priority of a sporadic server, then the execution time of that
server must be counted as a possible source of ‘blocking’ (Sprunt et al., 1989,
p.58). Such high-priority servers may ‘block’ (in fact preempt!) task i (once)
during Ti.

Earliest deadline first scheduling Test 4 can be trivially extended for
systems using earliest deadline first scheduling and the kernelised monitor
protocol (Chen and Lin, 1990, p.328):

n∑

i=1

Ci + B

Ti
≤ 1 .(13)

Here blocking time B is the longest computation time that any task may spend
in any critical section. If B is large then task sets passing this test will have
low utilisation.

Chen and Lin (1990) then showed that a much tighter bound can be achieved
when their dynamic version of the priority ceiling protocol is used instead of
the kernelised monitor (Giering III and Baker, 1994, p.56) (Baker, 1991, p.69):

n∑

i=1

(
Ci

Ti
+

Bi

Ti

)
≤ 1 .(14)

Blocking time in test 14 is again due to lower-priority tasks only, thus showing
that this scheduling approach is more efficient than that assumed by test 13.

4.2 Deadlines less than periods

The following test applies to communicating periodic tasks, and allows their
deadlines to be less than or equal to their periods.

11



Earliest deadline first scheduling Baker (1991) developed a tighter bound
on utilisation than in test 14 by using the stack resource protocol (Baker,
1990) to control semaphore locking, under earliest deadline first scheduling.
A set of tasks, with higher priorities allocated to tasks with shorter (static!)
deadlines Di (Baker, 1991, §2.5.1), is then schedulable if (Baker, 1991, p.83),

for all tasks i,
i∑

j=1

Cj

Dj
+

Bi

Di
≤ 1 .(15)

For each task i, Bi is the execution time of the longest critical section in some
task k such that Di < Dk. However even when task deadlines equal periods
this test gives a better bound than test 14 (Baker, 1991, p.84) because the stack
resource model offers better schedulability.

4.3 Deadlines less than periods and sporadic tasks

The following tests apply to communicating periodic, sporadic and, in later
cases, sporadically periodic tasks, with deadlines that may be less than or
equal to their interarrival times.

Static-priority scheduling Audsley et al. (1993) define a general static-
priority schedulability test for communicating tasks by extending test 8. It is
suitable for rate monotonic and deadline monotonic priority allocations. The
test applies to truly sporadic tasks as well as periodic ones.

A set of periodic and sporadic tasks is schedulable if,

for all tasks i, Ri ≤ Di ,(16)

where Ri = Ci + Bi + Ii

and Ii =
i−1∑

j=1

⌈
Ri

Tj

⌉
Cj .

As before, the test checks that the response time Ri of task i is always less than
its deadline Di. Assuming use of the priority ceiling protocol, blocking time Bi

equals the longest critical section of any lower priority task accessing a shared
variable with a ceiling priority as great as the priority of task i (Audsley et al.,
1993, p.286).

Again the definition of response time is recursive. Fortunately, however,
Audsley et al. (1993, p.287) show that it is possible to solve this equation
iteratively. Let Rx

i be the xth approximation to the value of Ri. Starting with
R0

i = 0, equation

Rx+1
i = Ci + Bi +

i−1∑

j=1

⌈
Rx

i

Tj

⌉
Cj

12



converges to Ri. Evaluation stops either when the equation has converged, i.e.,
Rx+1

i = Rx
i , or, because Rx+1

i ≥ Rx
i for any x, iteration can stop as soon as

Rx+1
i > Di in which case the test has failed.

In cases where the scheduler implementation may introduce appreciable
release jitter Ji for task i, test 16 can be generalised to (Audsley et al., 1993,
p.288),3

for all tasks i, Ri ≤ Di ,(17)

where Ri = Ji + ri

and ri = Ci + Bi + Ii

and Ii =
i−1∑

j=1

⌈
ri + Jj

Tj

⌉
Cj .

Interval ri is used instead of Ri to calculate interference because the task cannot
be preempted before it is released. Also, whereas the worst-case scenario is
usually a moment when all tasks arrive simultaneously, this is not the case when
there may be release jitter. The worst case for some task i in this situation is
when it is released at the same moment that all higher-priority tasks j are
themselves released (Audsley et al., 1993, p.288). The jitter value Jj accounts
for this by allowing a preemptive invocation of task j to arrive before task i is
released. Again the recursive definition can be solved iteratively.

Audsley et al. (1993) then extend these tests to allow for sporadically
periodic tasks. Figure 3 shows the symbols used in this case. A sporadically-
periodic task j has sporadic ‘outer’ arrivals separated by Tj but, having arrived,
then rearrives repeatedly according to some ‘inner’ period tj a fixed number
of times mj (Audsley et al., 1993, §5). This behaviour is found in “bursty”
communications media, for instance. To use the inner period as the task’s
interarrival time would be unnecessarily pessimistic and lead to low processor
utilisation, so a more complex analysis is desirable.

The approach is to extend the definition of Ii from test 16 to account for
preemptions by a higher-priority sporadically-periodic task j (Audsley et al.,
1993, p.290):

for all tasks i, Ri ≤ Di ,(18)

where Ri = Ci + Bi + Ii

and Ii =
i−1∑

j=1


min







Ri − Tj

⌊
Ri
Tj

⌋

tj




, mj


 + mj

⌊
Ri

Tj

⌋
Cj .

3We use a different definition of Di than Audsley et al. (1993, p.285), starting from arrival

instead of release time.

13



Tj Lower bound between successive arrivals of sporadically peri-
odic task j’s outer ‘period’.

tj The inner period of sporadically periodic task j.

mj The number of inner arrivals of sporadically periodic task j per
each outer arrival: mjtj ≤ Tj .

Figure 3: Task characteristics specified for a sporadically periodic task (Audsley
et al., 1993, p.290).

As before, interference Ii, due to each higher priority task j, is determined by
the number of arrivals of j multiplied by its execution time Cj , in the interval
Ri. The second major term in the summation determines the total number of
arrivals occurring due to ‘complete’ outer arrivals in Ri, i.e., the number of outer
arrivals bRi/Tjc times the number of inner arrivals mj per outer arrival. The
first major term is the number of inner arrivals due to a remaining ‘incomplete’
outer arrival. This is found by subtracting the time consumed by complete
outer arrivals Tj bRi/Tjc from Ri and determining how many inner periods tj

can occur in the remaining time, bounded by the maximum number of such
arrivals mj . (This new definition of Ii is a generalisation of the previous one.
For tasks in which tj = Tj , i.e., standard periodic or sporadic tasks, it simplifies
to the definition in test 16 (Audsley et al., 1993, p.290).)

A further generalisation of the interference definition in test 17 again allows
for release jitter (Audsley et al., 1993, p.291):4

for all tasks i, Ri ≤ Di ,(19)

where Ri = Ji + ri

and ri = Ci + Bi + Ii

and Ii =
i−1∑

j=1


min







Jj + ri − Tj

⌊
Jj+ri

Tj

⌋

tj




,mj




+ mj

⌊
Jj + ri

Tj

⌋)
Cj .

Other extensions to this method allow for more accurate characterisations
of implementation overheads due to tick scheduling (Burns et al., 1995).
Figure 4 shows the special symbols used in this case.

4We use a different definition of Di than Audsley et al. (1993, p.285), starting from arrival

instead of release time.

14



Si Tick scheduling overheads encountered while an invocation of task
i is runnable.

Ttic Polling period of tick scheduler.

Cint Computation time required to service an interrupt (excluding the
interrupt routine itself).

Cql Computation time required to ‘awaken’ the first suspended task
(i.e., move it from the delay queue to the ready queue).

Cqs Computation time required to awaken a subsequent suspended
task (assumed to be significantly smaller than handling the first
one).

Figure 4: Tick scheduler implementation characteristics (Burns et al., 1995).

Although a tick scheduler can be modelled as a high-priority periodic pro-
cess, this has been found to be overly pessimistic because the worst case exe-
cution of the scheduler, when all tasks need to be moved to the ready queue
simultaneously, occurs rarely (Burns et al., 1995, p.477) (Burns and Wellings,
1995, p.715). The following test is more precise. It assumes that periodic tasks
are awoken by a polling tick scheduler with period Ttic. Thus a periodic task
i will experience release jitter proportional to the phase difference between its
own period Ti and that of the scheduler (Burns et al., 1995, p.479):

Ji = Ttic − gcd(Ttic, Ti) , for periodic task i.

For a sporadic task i initiated by an external interrupt there is no release jitter
(although the overheads of implementing the interrupt handler must be included
in Ci). However a sporadic task whose arrival is signalled by another task may
have to wait for up to Ttic time units to be alerted to the event by the scheduler:

Ji = Ttic , for ‘polled’ sporadic task i.

Another factor to be considered is the delay caused to an invocation of task
i by occurrences of the tick scheduler (Burns et al., 1995, p.478) (Tindell et al.,
1994, §6). Task i runs for up to ri time units. The tick scheduler can be invoked

Li =
⌈

ri

Ttic

⌉

times during this interval. We can also determine that the scheduler will be

15



required to move some task j from the delay to ready queues up to

Ki =
n∑

j=1




⌈
ri

Ttic

⌉
Ttic

Tj




times while i is running. This is the interval dri/TticeTtic in which the tick
scheduler may be invoked divided by the interarrival time Tj of j. (This assumes
each task j suspends itself only at the end of each invocation.) The overall
interference caused by the tick scheduler to an invocation of task i is then

Si = LiCint + min(Ki, Li)Cql + max(Ki − Li, 0)Cqs .

The first term is the basic cost of handling Li interrupts. The second term is
the overhead of moving ‘first’ tasks, if any. This is the (long) time Cql to move
each one multiplied by the number to be shifted; this may be as low as Ki times,
but no more than Li. The third term is the cost of moving any remaining task
invocations; this is the (short) computation time Cqs multiplied by the total
number to be moved Ki less the number of ‘first’ tasks Li, or 0 if no such tasks
remain.

The test is then (Burns et al., 1995, p.479),

for all tasks i, Ri ≤ Di ,(20)

where Ri = Ji + ri

and ri = Ci + Bi + Ii + Si

and Ii =
i−1∑

j=1




⌈
ri

Ttic

⌉
Ttic

Tj




Cj .

The response time now includes an explicit allowance Si for tick scheduling
overheads. The interference term replaces the simple bound from test 17 with
an exact bound expressed in terms of how many times the tick scheduler can
invoke each higher-priority task j during time interval ri.

Burns and Wellings (1995) present a further variant of this approach in
which the overheads of the initial and final context switch associated with each
task invocation, and the overheads of implementing the interrupt handler asso-
ciated with a sporadic task, are expressed explicitly, rather than being incorpo-
rated into each Ci. They also discuss the practicalities of dealing with these and
other system timing characteristics in an Ada programming environment. In
particular, they show how to factor application-specific characteristics into the
schedulability test, such as tasks with worst-case computation times that vary
according to a known pattern, and task sets that never encounter the worst-case
situation in which they all arrive simultaneously.

16



wi Level i busy period, the longest interval during which tasks of
priority equal or greater than i are continuously executing.

Figure 5: Task characteristic defined for tasks with arbitrary deadlines (Tindell
and Clark, 1994, §7).

4.4 Arbitrary deadlines

The following tests apply to communicating periodic, sporadic and, in some
cases, sporadically-periodic tasks, with arbitrary deadlines that may exceed
their interarrival times. Special notation used in this situation is shown in
Figure 5.

Static-priority scheduling All of the tests below can be used for any static-
priority scheduling policy, including rate and deadline-monotonic scheduling.
Unique static priorities are assumed (Lehoczky, 1990, p.202).

Lehoczky (1990) showed that a processor-utilisation based schedulability
test can be established in terms of a level i busy period, i.e., the total time for
which tasks of priority level i or higher execute continuously. When deadlines
may exceed periods there can be more more than one incomplete invocation of
some task i in existence at a time. The computational model adopted assumes
that later invocations are delayed until all earlier ones have completed (Tindell
et al., 1994, §2).

Firstly, define

wi(x, t) =
i−1∑

j=1

Cj

⌈
t

Tj

⌉
+ xCi

to be the duration of the level i busy period for up to x invocations of task i and
however many invocations of higher-priority tasks j can occur in a window of
duration t time units. (Lower-priority tasks are ignored (Lehoczky, 1990, p.203),
so blocking time is not considered by this test.) From this we can determine
the processor utilisation by these tasks, in this window, as follows (Lehoczky,
1990, p.203):

Ui(x, t) = minu≤t
wi(x, u)

t
.

The minimum such utilisation value represents the time at which the xth invo-
cation of task i is completed (Lehoczky, 1990, p.203).

17



The maximum number of invocations of task i that occur in a level i busy
period is then (Lehoczky, 1990, p.204)

Ni = min{x |Ui(x, xTi) ≤ 1} .

This is the smallest number of invocations x such that the level i utilisation,
within x periods Ti, is less than 100%. That is, all x invocations of task i have
completed within this interval.

The schedulability test is then,

for all tasks i, maxx≤Ni Ui(x, (x− 1)Ti + Di) ≤ 1 .(21)

For each task i, the test checks that the maximum processor utilisation for all
Ni invocations of task i occurring in a level i busy period is less then 100%,
when the xth such invocation is required to complete before its deadline. The
deadline, measured from the start of the busy period, for the xth invocation of
task i is Di plus the xth arrival time, which is x− 1 times period Ti.

Tindell et al. (1994) then extended this result to define a response-time
test that includes blocking times. Their schedulability test defines a worst-case
response time Ri in terms of a busy period window wi for a particular task
invocation:

for all tasks i, Ri ≤ Di ,(22)

where Ri = maxq=0,1,2,... (wi(q)− qTi)

and wi(q) = (q + 1)Ci + Bi +
i−1∑

j=1

⌈
wi(q)
Tj

⌉
Cj .

Term wi(q) represents the duration of the level i busy period that includes the
(q + 1)th overlapping invocation of task i, i.e., covering the execution of this
task invocation and q preceding (incomplete) invocations. Thus the response
time for any invocation of task i is found by taking the window wi(q) that
includes this invocation, and subtracting the part of the window qTi due to the
q previous invocations. The worst-case response time Ri is then the maximum
such value for any q. The test is bounded, however, because it can stop when a
value of q is reached such that wi(q) ≤ (q + 1)Ti, i.e., when the qth occurrence
of task i completed before the next arrival. This marks the end of the busy
period for task i (at which time a lower priority task is free to run).

In calculating wi(q), the first term (q + 1)Ci is the execution time required
by this invocation and its predecessors. The blocking term Bi assumes that the
priority ceiling protocol is used and equals the longest critical section executed
by a task of lower priority than i where the shared object has a priority ceiling
at least as high as the priority of task i. While task i is ‘busy’ a lower-priority

18



task can block the whole set of incomplete invocations of i only once (Tindell
et al., 1994, pp.138-9)! The final term defines the preemption time encountered
by task i due to higher-priority tasks j in the interval wi(q), i.e., the worst-case
number of arrivals dwi(q)/Tje of task j during wi(q), multiplied by its worst-
case execution time Cj . As for test 16, the recursive equation can be solved
iteratively (Tindell et al., 1994, p.138).

Numerous variants of test 22 have been proposed. Release jitter can be
accounted for with an extension analogous to that introduced in test 17 (Tindell
and Clark, 1994, p.120) (Tindell et al., 1994, §4):

for all tasks i, Ri ≤ Di ,(23)

where Ri = maxq=0,1,2,... (Ji + wi(q)− qTi)

and wi(q) = (q + 1)Ci + Bi +
i−1∑

j=1

⌈
Jj + wi(q)

Tj

⌉
Cj .

Sporadically periodic tasks can also be incorporated (Tindell et al., 1994,
§5). Here we need to know the number Pi of complete, outer invocations of
sporadically periodic task i active at the beginning of the window of interest.
For the qth successive, incomplete invocation of i there can be

Pi =
⌊

q

mi

⌋

such arrivals. Similarly, the number pi of remaining incomplete inner invoca-
tions of i can be determined. For the qth instance of i this must be q less the
number of incomplete i tasks due to whole outer arrivals, i.e.,

pi = q − Pimi .

To account for higher-priority, preemptive, sporadically-periodic tasks j, we
must allow for the number of arrivals they may have in the window of interest.
Allowing for release jitter, let

Fj =
⌈

Jj + wi(q)
Tj

⌉
− 1

be the number of complete outer periods of higher-priority task j occurring
in window wi(q), less the last one which can be treated as a simple periodic
task (Tindell et al., 1994, p.143). Similarly, let

fj =
⌈

Jj + wi(q)− FjTj

tj

⌉

be a bound on the number of inner invocations of j in the remaining part of
the window, i.e., the amount of time remaining once the outer invocations are
removed, divided by the inner period tj .

19



CD
i The worst case computation time required by task i to complete

all externally observable events: CD
i ≤ CT

i and CD
i ≤ RD

i .

CT
i The worst case computation time required by task i to complete

all activity: CT
i ≤ RT

i but CT
i may exceed Di.

RD
i The worst case time by which task i must complete all externally

observable events: RD
i ≤ RT

i and RD
i ≤ Di.

RT
i The worst case time by which task i must complete all activity:

RT
i may exceed Di.

Figure 6: Task characteristics defined for tasks with deadlines prior to comple-
tion times (Burns et al., 1994).

The test then becomes,

for all tasks i, Ri ≤ Di ,(24)

where Ri = maxq=0,1,2,... (Ji + wi(q)− piti − PiTi)

and wi(q) = (Pimi + pi + 1)Ci + Bi

+
i−1∑

j=1

(min(mj , fj) + Fjmj)Cj .

In calculating Ri we subtract all the previous, incomplete outer Fi and inner
fi arrivals of i multiplied by their interarrival times Ti and ti, respectively.
The recursive definition of wi(q) is (a) the number of outer Pimi and inner pi

invocations of i, plus the current invocation, multiplied by its execution time Ci,
plus (b) the blocking time Bi, plus (c) the number of preemptions from higher-
priority tasks j multiplied by their worst case execution time Cj . The number
of preemptions is determined by the number of arrivals of j due to complete
outer periods Fjmj and the least upper bound on the remaining number of
inner arrivals min(mj , fj).

Another variant of test 22 allows for the case where each task must complete
all externally observable activity before the deadline Di, but internal activities
can continue after the deadline has elapsed (Burns et al., 1994, §3). Task
behaviour is divided into two parts, that which must be completed by the
deadline, and ‘local’ actions that may be performed after the deadline. Special
symbols used in this case are shown in Figure 6. Schedulability test 22 then

20



becomes,

for all tasks i, RD
i ≤ Di ,(25)

where RD
i = maxq=0,1,2,... (wi(q)− qTi)

and wi(q) = qCT
i + CD

i + Bi +
i−1∑

j=1

⌈
wi(q)
Tj

⌉
CT

j .

The definition of window wi(q) requires the first q occurrences of i to have
completed their entire computation time CT

i , but it is sufficient for the (q +
1)th occurrence to have completed only CD

i units of execution time before the
deadline. (Interference due to higher-priority tasks j still depends on their total
execution times CT

j . Whether j is performing externally observable behaviour
or not it still prevents task i from progressing.)

Tindell and Clark (1994) define an extension of tests 22 and 20 to allow
for tick scheduling overheads when deadlines exceed periods and the task set
contains only sporadic and periodic tasks.

In this case the tick scheduler can be invoked

Li =
⌈

wi(q)
Ttic

⌉

times during busy period wi(q). We can also determine that the scheduler will
be required to move a task j from the delay to dispatch queues up to

Ki =
i−1∑

j=1

⌈
Jj + wi(q)

Tj

⌉

times while overlapping invocations of i are runnable.5 The overall interference
Si caused by the tick scheduler to an invocation of task i is calculated as for
test 20. The test is then (Tindell and Clark, 1994, p.121),

for all tasks i, Ri ≤ Di ,(26)

where Ri = maxq=0,1,2,... (Ji + wi(q)− qTi)

and wi(q) = (q + 1)Ci +
i−1∑

j=1

⌈
Jj + wi(q)

Tj

⌉
Cj + Si .

(Blocking time has been ignored in this test.)
A further extension to test 24 then allows for sporadically periodic tasks

and tick scheduling (Tindell et al., 1994, §6). The values for Pi, pi, Fj , fj are

5The formula for Ki used here by Tindell and Clark (1994, p.121), sums over higher-priority

tasks, rather than all tasks. This differs from all other definitions of this form (Tindell et al.,

1994, p.144) (Burns and Wellings, 1995, p.717) (Burns et al., 1995, p.478).

21



calculated as for test 24. The worst case number of times tasks move from the
pending to ready queues during wi(q) is (Tindell et al., 1994, p.144)

Ki =
n∑

j=1

min(mj , fj) + mjFj ,

i.e., the arrivals mjFj due to complete outer arrivals of j, plus the least upper
bound on the possible inner arrivals in the remaining time min(mj , fj). Values
of Li and Si are calculated as per test 20. The test is then,

for all tasks i, Ri ≤ Di ,(27)

where Ri = maxq=0,1,2,... (Ji + wi(q)− piti − PiTi)

and wi(q) = (Pimi + pi + 1)Ci + Bi

+
i−1∑

j=1

(min(mj , fj) + Fjmj) Cj + Si .

5 Schedulability tests summary

The tables in this section summarise the major capabilities of the schedulability
tests presented in this report.

Table 1 shows the types of tasks that the tests can deal with. The column
labelled ‘sporadic’ is for truly sporadic tasks with no explicit task server. Pre-
sumably any of the tests would allow a sufficiently-determined programmer to
implement a sporadic task server as a periodic task, but only tests 11 and 12
make explicit allowance for the possibility. Park et al. (1996, p.61) briefly men-
tion that test 7 is suitable for use with a sporadic server. Gomaa (1993, §11.4.8),
when discussing test 11, refers to sporadic tasks initiated by external interrupts,
so we infer that the test is suitable for general sporadic tasks. Lehoczky (1990)
and Manabe and Aoyagi (1995), when discussing tests 21 and 6, respectively,
refer to periodic tasks only, but we see no impediment in applying these tests
to sporadic tasks.

Not shown in table 1 are aperiodic tasks handled by the priority ex-
change or deferrable server algorithms (Sprunt et al., 1989) because (ide-
ally!) any soft real-time tasks absorb idle time only and thus do not feature in
these schedulability tests. (In fact both algorithms may introduce some degree
of interference, and the priority exchange algorithm even makes the task set
unstable!)

Table 2 shows the scheduling policies assumed by the tests. Tests that allow
any static priority allocation have been marked as supporting rate and deadline
monotonic scheduling too because such a capability can be used to construct a

22



Task type
Test periodic sporadic sporadic with

server
sporadically
periodic

1 X
2 X
3 X
4 X
5 X X
6 X X
7 X X
8 X X
9 X

10 X
11 X X X
12 X X
13 X
14 X
15 X
16 X X
17 X X
18 X X X
19 X X X
20 X X
21 X X
22 X X
23 X X
24 X X X
25 X X
26 X X
27 X X X

Table 1: Types of tasks modelled

rate or deadline monotonic priority allocation if desired. None of the tests in
our survey assumed least laxity scheduling.

Table 3 shows the shared variable locking protocols supported. Those tests
with no check marks do not consider task communication at all. In a worst case
scenario the behaviour of the priority ceiling and ceiling locking protocols
is identical, so those tests designed for the priority ceiling protocol have been
shown as suitable for both.

Burns et al. (1994) do not state which locking protocol is anticipated for
test 25 but, given the test’s lineage, it is safe to assume suitability for priority
ceiling locking. Although Tindell and Clark (1994) do not include a blocking
term in test 26, there seems to be no impediment to easily making such an
allowance. Similarly, test 21 could be easily extended to consider blocking
times. Park et al. (1996, p.62) claim that test 7 can be easily extended with a

23



Scheduling policy
Static priorities Dynamic priorities

Test rate
monotonic

deadline
monotonic

any static
allocation

earliest
deadline first

least laxity

1 X
2 X
3 X
4 X
5 X
6 X
7 X X X
8 X X X
9 X

10 X
11 X
12 X
13 X
14 X
15 X
16 X X X
17 X X X
18 X X X
19 X X X
20 X X X
21 X X X
22 X X X
23 X X X
24 X X X
25 X X X
26 X X X
27 X X X

Table 2: Scheduling policies modelled

blocking term for the priority ceiling protocol but, since this is not demonstrated
in their paper, we have not marked this in the table.

Table 4 shows the allowed relationships of deadlines to interarrival times.
Tests that allow deadlines less than or equal to periods can, of course, always
handle the case of deadlines equal to periods, and tests that allow arbitrary
deadlines can handle all three situations.

6 Conclusions

Schedulability tests have progressed in sophistication (and complexity!) consid-
erably in the last few years. As the tests have moved from academia to indus-
trial applications, they have been forced to increase their scope. The concept of

24



Locking protocol
Test priority

ceiling
ceiling
locking

dynamic
priority
ceiling

kernelised
monitor

stack
resource

1
2
3
4
5
6
7
8
9 X X

10 X X
11 X X
12 X X
13 X
14 X
15 X
16 X X
17 X X
18 X X
19 X X
20 X X
21
22 X X
23 X X
24 X X
25 X X
26
27 X X

Table 3: Locking protocols modelled

sporadically periodic tasks, and the addition of tick scheduling overheads into
some of the later tests, were both in response to the need for more accuracy in
particular practical applications. Other application-specific characteristics have
been used to customise tests (Burns and Wellings, 1995) and variations have
been suggested to remove the simplifying assumption that context-switching
overheads are accounted for in task execution times (Sha et al., 1991, §3). An-
other area of investigation is the addition of offsets to task release times so that
the worst-case scenario in which all tasks want to be released simultaneously
never occurs. The analysis required for this is surprisingly complex, and an
exact schedulability test has proven to be computationally infeasible (Tindell,
1994, p.11)!

Indeed, as the tests have become more and more complex it is natural to ask

25



Deadlines vs. interarrival times
Test deadlines

equal periods
deadlines less
than periods

deadlines
greater than
periods

1 X
2 X
3 X
4 X
5 X X
6 X X
7 X X
8 X X
9 X

10 X
11 X
12 X
13 X
14 X
15 X X
16 X X
17 X X
18 X X
19 X X
20 X X
21 X X X
22 X X X
23 X X X
24 X X X
25 X X X
26 X X X
27 X X X

Table 4: Relationship of deadlines to interarrival times

if they can be automated. In fact tools to do so are already appearing (Audsley
et al., 1995, p.192). For instance, the stress scheduling simulator developed by
the University of York (Audsley et al., 1994) has a number of in-built feasibility
tests. The sew toolset, developed at Carnegie Mellon University (Strosnider,
1995), is even more powerful, with an emphasis on checking schedulability of
large-scale, multimedia systems.

Furthermore, some authors have directly addressed the computational issues
involved in evaluating the tests. Audsley et al. (1991) presented an algorithm for
implementing a sufficient and necessary test for deadline-monotonic scheduling.
Concerned by the difficulty of assessing schedulability for dynamic scheduling
policies, Ripoll et al. (1996, §4) recently proposed a new, efficient testing al-
gorithm that works by simulating earliest deadline first scheduling. The tests

26



developed by Manabe and Aoyagi (1995) were motivated by a desire to reduce
computational complexity.

We have considered only preemptive scheduling here, but there is currently
a renewed interest in non-preemptive scheduling policies (Burns and Wellings,
1996). Although such policies usually have lower processor utilisation than
preemptive ones, they are cheaper to implement because mutually-exclusive
access to shared variables is guaranteed automatically, without the need for
a locking protocol. Also their conceptually simpler run-time behaviour makes
this approach attractive in safety-critical applications (Bate et al., 1996).

Consideration of soft real-time tasks is another active area of research, aim-
ing to allow non-critical tasks to profitably absorb any processor time left un-
used by those tasks with hard timing constraints (Davis, 1994).

An especially dramatic development in recent years has been the impact
scheduling theory has had on programming language design. Numerous features
in the new Ada 95 standard (ISO, 1994) have been included specifically to
make it possible to write Ada programs amenable to real-time schedulability
testing (Stoyenko and Baker, 1994).

Finally, we note that although we have limited this survey to uniproces-
sor systems, schedulability techniques for multiprocessor and distributed sys-
tems are beginning to emerge (Sha and Sathaye, 1995) (Tindell and Clark,
1994) (Audsley et al., 1993, §4.1) (Joseph and Pandya, 1986, §8) (Shin and Ra-
manathan, 1994, p.9). Unfortunately multiprocessor scheduling is not simply a
matter of extending the uniprocessor methods. For instance, optimal scheduling
policies for uniprocessor systems are not necessarily optimal for multiprocessor
systems (Audsley et al., 1995, §8.2) and deciding schedulability for multipro-
cessor systems can be NP-hard (Leung and Whitehead, 1982).

Acknowledgements

I wish to thank the anonymous referees for their many helpful suggestions and
pointers, Andy Wellings for advice on the ceiling protocols, Michael Pilling and
Jay Strosnider for comments on schedulability testing, and Peter Kearney for
reviewing a draft of this report. This work was funded by the Information
Technology Division of the Defence Science and Technology Organisation.

References

Audsley, N. and Burns, A. (1990). Real-time system scheduling. Technical Report YCS
134, Department of Computer Science, University of York.

Audsley, N., Burns, A., Richardson, M., Tindell, K., and Wellings, A. (1993). Ap-

27



plying new scheduling theory to static priority pre-emptive scheduling. Software
Engineering Journal, 8(5):284–292.

Audsley, N. C., Burns, A., Davis, R. I., Tindell, K. W., and Wellings, A. J. (1995). Fixed
priority pre-emptive scheduling: An historical perspective. Real-Time Systems,
8:173–198.

Audsley, N. C., Burns, A., Richardson, M. F., and Wellings, A. J. (1991). Hard real-
time scheduling: The deadline monotonic approach. In Eighth IEEE Workshop
on Real-Time Operating Systems and Software, pages 133–137.

Audsley, N. C., Burns, A., Richardson, M. F., and Wellings, A. J. (1994). Stress: A
simulator for hard real-time systems. Software—Practice & Experience.

Baker, T. P. (1990). A stack-based resource allocation policy for realtime processes.
In Proc. Real-Time Systems Symposium, pages 191–200. IEEE Computer Society
Press.

Baker, T. P. (1991). Stack-based scheduling of real-time processes. Real Time Systems,
3(1):67–99.

Barnes, J. G. P. (1993). Programming in Ada Plus an Overview of Ada 9X. Addison-
Wesley.

Bate, I. J., Burns, A., and Audsley, N. C. (1996). Putting fixed priority scheduling
theory into engineering practice for safety critical applications. In Proc. Second
Real-Time Applications Symposium, pages 2–10, Boston.

Burns, A., Tindell, K., and Wellings, A. J. (1994). Fixed priority scheduling with
deadlines prior to completion. In Proc. Sixth Euromicro Workshop on Real-Time
Systems, pages 138–142.

Burns, A., Tindell, K., and Wellings, A. J. (1995). Effective analysis for engineer-
ing real-time fixed priority schedulers. IEEE Trans. on Software Engineering,
21(5):475–480.

Burns, A. and Wellings, A. J. (1990). Real-Time Systems and their Programming
Languages. Addison-Wesley.

Burns, A. and Wellings, A. J. (1991). Priority inheritance and message passing com-
munication: A formal treatment. The Journal of Real-Time Systems, 3:19–44.

Burns, A. and Wellings, A. J. (1995). Engineering a hard real-time system: From
theory to practice. Software–Practice & Experience, 25(7):705–726.

Burns, A. and Wellings, A. J. (1996). Simple Ada 95 tasking models for high integrity
applications. Department of Computer Science, University of York.

Chapman, R., Burns, A., and Wellings, A. J. (1994). Integrated program proof and
worst-case timing analysis of SPARK Ada. In ACM Workshop on language, com-
piler and tool support for real-time systems. ACM Press.

Chen, M.-I. and Lin, K.-J. (1990). Dynamic priority ceilings: A concurrency control
protocol for real-time systems. Journal of Real-Time Systems, 2(4):325–346.

28



Davis, R. (1994). Dual priority scheduling: A means of providing flexibility in hard
real-time systems. Technical Report YCS 230, Department of Computer Science,
University of York.

Giering III, E. and Baker, T. (1994). A tool for deterministic scheduling of real-time
programs implemented as periodic ada tasks. ACM Ada Letters, XIV:54–73.

Gomaa, H. (1993). Software Design Methods for Concurrent and Real-Time Systems.
Addison-Wesley.

ISO (1994). Ada Reference Manual: Language and Standard Libraries, 6.0 edition.
International Standard ISO/IEC 8652:1995.

Jones, M. B., Barrera III, J. S., Forin, A., Leach, P. J., Rosu, D., and Rosu, M.-C.
(1996). An overview of the Rialto real-time architecture. In Proc. Seventh ACM
SIGOPS European Workshop.

Joseph, M. and Pandya, P. (1986). Finding response times in a real-time system. The
Computer Journal, 29(5):390–395.

Kenny, K. and Lin, K.-J. (1991). Measuring and analyzing real-time performance.
IEEE Software, 8(5):41–49.

Klein, M. H. and Ralya, T. (1990). An analysis of input/output paradigms for real-time
systems. Technical Report CMU/SEI-90-TR-19, Software Engineering Institute,
Carnegie Mellon University.

Lehoczky, J. P. (1990). Fixed priority scheduling of periodic task sets with arbitrary
deadlines. In Proc. Real-Time Systems Symposium, pages 201–209. IEEE Com-
puter Society Press.

Lehoczky, J. P., Sha, L., and Ding, Y. (1989). The rate monotonic scheduling algorithm:
Exact characterization and average case behavior. In Proc. Real-Time Systems
Symposium, pages 166–171. IEEE Computer Society Press.

Leung, J. Y.-T. and Whitehead, J. (1982). On the complexity of fixed-priority schedul-
ing of periodic, real-time tasks. Performance Evaluation, 2:237–250.

Lim, S.-S., Bae, Y. H., Jang, G. T., Rhee, B.-D., Min, S. L., Park, C. Y., Shin, H., Park,
K., Moon, S.-M., and Kim, C. S. (1995). An accurate worst case timing analysis
for RISC processors. IEEE Transactions on Software Engineering, 21(7):593–604.

Liu, C. L. and Layland, J. W. (1973). Scheduling algorithms for multiprogramming in
a hard real-time environment. Journal of the ACM, 20(1):46–61.

Locke, C. D. (1992). Software architecture for hard real-time applications: Cyclic
executives vs. fixed priority executives. The Journal of Real-Time Systems, 4:37–
53.

Manabe, Y. and Aoyagi, S. (1995). A feasibility decision algorithm for rate mono-
tonic scheduling of periodic real-time tasks. In Proc. Real-time Technology and
Applications Symposium (RTAS’95), pages 212–218.

Mercer, C. W. (1992). An introduction to real-time operating systems: Scheduling
theory. School of Computer Science, Carnegie Mellon University.

29



Park, D.-W., Natarajan, S., and Kanevsky, A. (1996). Fixed-priority scheduling of
real-time systems using utilization bounds. Journal of Systems and Software,
33(1):57–63.

Puschner, P. and Koza, C. (1989). Calculating the maximum execution time of real-
time programs. Journal of Real-Time Systems, 1(2):159–176.

Ripoll, I., Crespo, A., and Mok, A. K. (1996). Improvement in feasibility testing for
real-time tasks. Real-Time Systems, 11(1):19–39.

Sha, L. and Goodenough, J. B. (1990). Real-time scheduling theory and Ada. IEEE
Computer, 23(4):53–62.

Sha, L., Klein, M. H., and Goodenough, J. B. (1991). Rate monotonic analysis for
real-time systems. Technical Report CMU/SEI-91-TR-6, Software Engineering
Institute, Carnegie Mellon University.

Sha, L., Rajkumar, R., and Lehoczky, J. (1990). Priority inheritance protocols: An
approach to real-time synchronization. IEEE Trans. Computers, 39(9):1175–1185.

Sha, L., Rajkumar, R., Lehoczky, J., and Ramamritham, K. (1989). Mode change pro-
tocols for priority-driven preemptive scheduling. Journal of Real-Time Systems,
1(3):243–264.

Sha, L., Rajkumar, R., and Lehoczky, J. P. (1987). Priority inheritance protocols:
An approach to real-time synchronisation. Technical Report CMU-CS-87-181,
Department of Computer Science, Carnegie Melon University.

Sha, L. and Sathaye, S. S. (1995). Distributed system design using generalized rate
monotonic theory. Technical Report CMU/SEI-95-TR-011, Software Engineering
Institute, Carnegie Mellon University.

Shaw, A. C. (1989). Reasoning about time in higher-level language software. IEEE
Transactions on Software Engineering, 15(7):875–889.

Shin, K. G. and Ramanathan, P. (1994). Real-time computing: A new discipline of
computer science and engineering. Proceedings of the IEEE, 82(1):6–24.

Sprunt, B., Sha, L., and Lehoczky, J. (1989). Aperiodic task scheduling for hard real-
time systems. Journal of Real-Time Systems, 1(1):27–60.

Stoyenko, A. D. and Baker, T. P. (1994). Real-time schedulability-analyzable mecha-
nisms in Ada 9X. Proceedings of the IEEE, 82(1):95–107.

Strosnider, J. K. (1995). Performance engineering real-time/multimedia systems. Sem-
inar presentation, Uni. Qld. Contact: Department of Electrical and Computer
Engineering, Carnegie Mellon University, Strosnider@gauss.ece.cmu.edu.

Taft, S. T. (1992). Ada 9X: A technical summary. Communications of the ACM,
35(11):77–82.

Tindell, K. (1994). Adding time-offsets to schedulability analysis. Technical Report
YCS 221, Department of Computer Science, University of York.

30



Tindell, K., Burns, A., and Wellings, A. J. (1994). An extendible approach for analyzing
fixed priority hard real-time tasks. Real-Time Systems, 6:133–151.

Tindell, K. and Clark, J. (1994). Holistic schedulability analysis for distributed hard
real-time systems. Euromicro Journal (Special Issue on Parallel Embedded Real-
Time Systems), 40:117–134.

31



A Glossary of preemptive scheduling terminology

The following terminology has been used when discussing scheduling principles
in this article. Bold text denotes a cross reference.

Active (or effective) priority (ISO, 1994, §D.1) (Audsley et al., 1993, §2)
In static-priority scheduling, a variable priority value associated with
each task, usually at least as great as the base priority of the task.
Priority inheritance may temporarily raise the active priority of a task
above its base priority.

Aperiodic task (Sprunt et al., 1989, p.28) (Audsley and Burns, 1990, §2.1)
Some job that arrives randomly, typically in response to an external
triggering event. Many such arrivals may occur in rapid succession. Hard
real-time deadlines are impossible to enforce for aperiodic tasks: they may
have soft ‘performance’ goals only. Also see sporadic task.

Arrival (Audsley et al., 1993, §2) The time at which a task invocation wishes
to start running. This is the start of each period for a periodic task
and the occurrence of the triggering event for an aperiodic or sporadic
task.

Base priority (Audsley et al., 1993, §2) In static-priority scheduling, a fixed
priority permanently associated with each task.

Blocking (Sha et al., 1990, p.1177) (Audsley and Burns, 1990, p.6) A task is
blocked if it is ready to run but cannot because some shared variable it
requires is locked by a task of lower priority (c.f. preemption).

(Worst case) blocking time (Audsley et al., 1993, p.285) An upper bound
on the duration for which a task may be prevented from executing by a
low priority task that has locked a shared resource needed by the higher-
priority task. The actual worst-case blocking time is a property of the
particular scheduling policy and locking protocol used, as this determines
how many times each task invocation may be blocked. Typically, how-
ever, the value will be some multiple of the worst-case computation time
spent by lower-priority tasks executing code in a critical region (Sha et al.,
1990, p.1177), or protected object (ISO, 1994, §17.8.1). Actual computa-
tion times for these activities can be determined experimentally (Kenny
and Lin, 1991) or, more reliably, through formal analysis of high-level lan-
guage (Chapman et al., 1994) (Shaw, 1989) (Puschner and Koza, 1989),
or assembler (Lim et al., 1995), code.

Busy period (Lehoczky, 1990, p.202) (Tindell et al., 1994, p.137) When task
deadlines may exceed their interarrival times, the longest contiguous
interval of time during which there are one or more unsatisfied invocation
requests for a particular task.

32



(Priority) ceiling locking (or emulation) protocol (Stoyenko and
Baker, 1994, p.104) (ISO, 1994, §D.1, D.3) A special case of the stack
resource protocol (Stoyenko and Baker, 1994, p.104) for static-priority
scheduling. It modifies priority inheritance by (a) statically allocating
each shared variable a ceiling value defined as the maximum base pri-
ority of all tasks that may use it, and (b) making each task that locks a
shared variable inherit the ceiling value from that variable as its active
priority. This effectively prevents any task invocation from starting to
run until all the shared variables it may want to use are free (ISO, 1994,
§D.2.1). Ceiling locking may cause tasks to be blocked in situations where
they are not blocked by the priority ceiling protocol. However, in the
worst case the same degree of blocking is experienced by both protocols
and, since schedulability tests assume worst-case scenarios, any schedu-
lability test applicable to the priority ceiling protocol also applies to the
ceiling locking protocol. Ceiling locking is simpler to implement than the
priority ceiling protocol.

(Worst case) computation time (Audsley and Burns, 1990, §5.1) An up-
per bound on the amount of processor time required by a task for any
invocation. Schedulability tests usually assume that scheduling overheads
are included in the computation time for each task (Gomaa, 1993, p.124):
each invocation includes one context switch to the task itself, and one
switch back to the task it preempted (Burns and Wellings, 1995, p.714)
(Burns et al., 1995, p.477); a sporadic task initiated by an external in-
terrupt must incorporate the interrupt handling overhead (Burns et al.,
1995, p.479); regular interrupts due to a tick scheduler must also be
considered (Burns et al., 1995). Actual computation times can be deter-
mined experimentally (Kenny and Lin, 1991) or, more reliably, through
formal analysis of high-level language (Chapman et al., 1994) (Shaw,
1989) (Puschner and Koza, 1989), or assembler (Lim et al., 1995), code.

Deadline (Tindell et al., 1994, p.149) A fixed time by which a task invocation
must have completed its computation, measured relative to its arrival
time. (Some authorities measure the deadline from release time (Aud-
sley and Burns, 1990, §2.1) (Audsley et al., 1993, p.255).) If no specific
deadline is provided for a periodic task it is assumed to equal the period.

Deadline monotonic (or inverse-deadline) scheduling
(Leung and Whitehead, 1982, p.240) (Lehoczky, 1990, p.202) (Audsley
et al., 1991) A static-priority preemptive scheduling policy in which tasks
with shorter (relative) deadlines have higher priority.

Deferrable server algorithm (Sprunt et al., 1989, §2.2) A method of servic-
ing aperiodic tasks when using rate monotonic scheduling. It (a)

33



implements a high-priority periodic task to handle aperiodic activities,
(b) allows this task to suspend itself if it is activated when there are no
outstanding aperiodic requests, while preserving its allotted computation
time until such a request arrives, and (c) replenishes the computation time
for the server task at the start of each period. The algorithm is simple
and stable for the periodic tasks (Audsley and Burns, 1990, p.12) but
allows lower utilisation than the priority exchange algorithm (Sprunt
et al., 1989, p.35).

Delay (or pending) queue (Burns et al., 1995, p.476) A notional queue in
which tasks that have been suspended wait, usually ordered by the time
at which they become ready again. A task suspends itself by executing a
‘delay’ statement. This removes it from the ready queue and places it
in the delay queue. It is removed from the delay queue and placed back
in the ready queue by the scheduler, typically following a clock-driven
interrupt. Also see tick scheduling.

Earliest deadline first (or deadline driven) scheduling (Liu and Lay-
land, 1973, §7) (Audsley and Burns, 1990, §3.2.1) A dynamic-priority
preemptive scheduling policy in which the task with the earliest (abso-
lute) deadline from the current moment has the highest priority.

Feasible task set (Audsley and Burns, 1990, §2.2) A task set for which a
schedule exists.

Interference (Audsley et al., 1993, §3) The degree of time for which a task
invocation may be preempted.

Invocation (or job) request (Audsley et al., 1993, §2) A nominal event
marking the arrival of a task. This ‘event’ involves the task requesting
computational resources from the scheduler.

Jitter (Giering III and Baker, 1994, p.55) (Locke, 1992, p.49) Variability in
the actual separation between invocations of a periodic task from its
intended period due to its ability to be scheduled anywhere between its
arrival time and deadline. Jitter can be reduced by shortening the
task deadline, but this may make the task set infeasible (Giering III and
Baker, 1994, p.55). Also see release jitter.

Kernelised monitor protocol (Chen and Lin, 1990, §2.2) A shared vari-
able access method for use with earliest deadline first scheduling. It
assumes all tasks in critical sections are not preemptible. It can lead to
low processor utilisation if there are critical sections with long execu-
tion times.

Least laxity scheduling (Audsley and Burns, 1990, §3.2.2) (Jones et al.,
1996, §5) A dynamic-priority preemptive scheduling policy in which high
priority is given to task invocations with the smallest difference between

34



their upcoming absolute deadline and the remaining computation time
they require.

Necessary test (Audsley et al., 1993, p.284) A schedulability test that fails
only infeasible task sets (c.f. sufficient test).

Optimal scheduling policy (Audsley and Burns, 1990, p.6) (Manabe and
Aoyagi, 1995, p.213) A scheduling policy which can produce a schedule for
any feasible task set. Among static-priority policies rate monotonic
scheduling is optimal for independent periodic tasks with deadlines equal
to their periods (Liu and Layland, 1973, p.178) (Giering III and Baker,
1994, p.55) and deadline monotonic scheduling is optimal for periodic
tasks with deadlines less than their period (Leung and Whitehead, 1982,
§2) (Audsley et al., 1993, p.284) (Tindell and Clark, 1994, p.134) (Burns
and Wellings, 1995, p.708). Among dynamic-priority policies earliest
deadline first is optimal for independent periodic tasks with deadlines
equal periods (Liu and Layland, 1973, p.186) (Giering III and Baker,
1994, p.55).

Period transformation (Sha and Goodenough, 1990, p.56) (Audsley and
Burns, 1990, §3.3.1) Since the period of a task is not necessarily a measure
of its relative importance, period transformation techniques seek to make
a task set suitable for rate monotonic scheduling by breaking highly
important tasks with long worst-case computation times into smaller,
more frequently scheduled pieces.

Periodic task (Audsley and Burns, 1990, §2.1) Some job that arrives at
fixed intervals (c.f. aperiodic task). A periodic task is usually charac-
terised by its period, computation time, deadline and shared variable
access (Audsley et al., 1993, §2) requirements.

Preemption (Audsley et al., 1993, §2) A task is preempted if it is ready to run
but cannot because a task of higher priority is running (c.f. blocking).

Priority (Burns and Wellings, 1991, p.19) An allocation of (usually unique)
numbers to tasks, used by a scheduler to determine which ready task
should run. Tasks with higher priorities run in preference to those with
lower priorities.

Priority ceiling protocol (Sha and Goodenough, 1990, p.57) (Sha et al.,
1990, §IV) (Audsley and Burns, 1990, §4.4) A method of preventing pri-
ority inversion and bounding blocking times, suitable for use with
static-priority scheduling policies. It extends priority inheritance by
(a) statically allocating each shared variable a ceiling value defined as
the maximum base priority of all tasks that may use it, and (b) allow-
ing a task to lock a variable only if its active priority is higher than
the ceiling value of any variable currently locked by any other task (Sha

35



et al., 1990, p.1178). In the worst case with this protocol each task in-
vocation is blocked at most once (c.f. priority inheritance protocol),
although it can be ‘blocked’ even if it does not access any shared vari-
ables (Sha and Goodenough, 1990, p.58)! A high-priority task may start
running even when some of the resources it will need are locked by lower-
priority tasks (Sha and Goodenough, 1990, pp.56–7) (c.f. ceiling locking
protocol). The protocol also has the beneficial side-effect of preventing
deadlocks. A dynamic version of the priority ceiling protocol is available
for use with earliest deadline first scheduling, where the ceiling value
for each variable changes according to upcoming deadlines (Chen and
Lin, 1990, pp.332–3) (c.f. stack resource protocol). Also see ceiling
locking protocol.

Priority exchange algorithm (Sprunt et al., 1989, §2.2) A method of ser-
vicing aperiodic tasks when using rate monotonic scheduling. It
(a) uses a periodic server task to handle aperiodic requests, (b) allows the
server to suspend itself if there are no outstanding aperiodic requests by
swapping its priority with the highest-priority periodic task, and (c) re-
plenishes the available computation time (and priority) of the server at the
start of its period. The algorithm has greater responsiveness than a simple
periodic polling server but makes the periodic task set unstable (Audsley
and Burns, 1990, p.11) (c.f. deferrable server algorithm).

Priority inheritance protocol (Sha et al., 1990, §III) (Chen and Lin, 1990,
p.328) A method of preventing priority inversion. This is done by
temporarily raising the active priority of a task locking a shared variable
to the maximum base priority of any task blocked on that variable. In
the worst case with this protocol a task is blocked at most once for each
shared variable it attempts to access (c.f. priority ceiling protocol).

Priority inversion (Sha and Goodenough, 1990, p.57) (Sha et al., 1990, §II)
(Audsley and Burns, 1990, §4.1) The situation where (a) a task of low pri-
ority is blocking one of higher priority and (b) a task of medium priority
then preempts the low-priority one, thus further blocking the high pri-
ority task and ‘inverting’ the desired relationship about which task runs
next. Priority inversion can be prevented by guaranteeing that tasks never
attempt to access the same variable simultaneously (Audsley and Burns,
1990, §4.2) or by using a priority inheritance protocol. More gener-
ally, ‘priority inversion’ can also refer to situations where the scheduler
is undertaking actions on behalf of low-priority tasks while preempting a
high-priority task (Burns et al., 1995, §II).

Processor utilisation (Chen and Lin, 1990, p.327) (Manabe and Aoyagi,
1995, p.213) The overall percentage of time that a task (or task set) may

36



require access to the processor. It is defined as the ratio of computation
time divided by interarrival time.

Rate monotonic scheduling (Liu and Layland, 1973, p.178) (Sha et al.,
1991) A static-priority preemptive scheduling policy in which tasks with
shorter periods have higher priorities. Also see period transformation.

Ready (or run or dispatch) queue (Burns et al., 1995, p.476) (Audsley
et al., 1993, §2) (ISO, 1994, §D.2.1) A notional queue of task invocations
that are ready to run given sufficient resources, usually ordered by their
priorities.

Release jitter (Audsley et al., 1993, §4) (Tindell et al., 1994, p.134) The
difference between the arrival time of a task invocation and its release
time. This gap may be due to the scheduler taking some time to recognise
task arrival (Audsley et al., 1993, p.287) or due to a task awaiting input
from the environment before it can start (Audsley et al., 1993, §4.1).

Release time (Audsley et al., 1993, §2) The time at which the scheduler
acknowledges that a task invocation that has arrived is ready to run,
typically by placing it in the ready queue. (The task does not necessarily
begin running at this time, however.)

(Worst case) response time (Tindell et al., 1994, p.150) The time at which
a task invocation completes all activity, measured relative to its arrival
time. For a task to be schedulable its worst case response time must not
exceed its deadline. (A relaxation of this constraint is to require only
that the task completes all observable activity by the deadline (Burns
et al., 1994).)

Shared resources (ISO, 1994, §D.2.1) (Audsley and Burns, 1990, p.6) Any
resource needed by more than one task. Typically this includes all shared
variables and the processor. The processor is a preemptible resource be-
cause, once allocated to a task, it may temporarily be allocated to an-
other. Access to shared variables is made non-preemptible in uniprocessor
scheduling by protecting them with semaphores or monitors: once allo-
cated to a task a variable cannot be allocated to another until unlocked
(although the task accessing the variable may itself be preempted by a
higher-priority task that does not use the variable).

Sporadic server algorithm (Sprunt et al., 1989, §3.1) (Sha and Goode-
nough, 1990, pp.56,60) A method of handling sporadic tasks using a
preemptive server. For rate monotonic scheduling with sporadic task
deadlines at least as great as their interarrival time it is the same as
the deferrable server algorithm except that the available computa-
tion time is replenished after the interarrival time has elapsed from the
last time a request was serviced, rather than periodically (Sprunt et al.,

37



1989, p.37). When sporadic task deadlines are less than their interarrival
time the algorithm allows the base priorities for sporadic servers to be
greater than their rate monotonic value (Sprunt et al., 1989, §4).

Sporadic task (Sprunt et al., 1989, p.28) (Audsley and Burns, 1990, §2.1) A
special case of aperiodic tasks where arrivals have a known minimum
separation. This makes it possible to enforce hard deadlines. A sporadic
task is characterised by this minimum separation and its computation
time, deadline and shared variable access (Audsley et al., 1993, §2)
requirements. For the purposes of worst case analysis sporadic tasks are
usually treated like periodic tasks with a period equal to the minimum
separation (Gomaa, 1993, §11.4.6).

Sporadically periodic task (Tindell et al., 1994, p.134) (Audsley et al.,
1993, §5) A combination of both periodic and sporadic task behaviour
in which the task initially arrives sporadically but then rearrives period-
ically a fixed number of times. A sporadically periodic task is charac-
terised by its computation time, ‘outer’ minimum arrival separation,
‘inner’ period, deadline and shared variable access requirements.

Stability (Sha and Goodenough, 1990, p.56) (Gomaa, 1993, p.124) A schedul-
ing policy is stable if, under conditions of transient overload, it is the
lowest priority tasks that miss their deadlines. Rate monotonic schedul-
ing is stable (Gomaa, 1993, p.124) whereas earliest deadline first is
not (Audsley and Burns, 1990, p.11).

Stack resource protocol (Baker, 1990, §3.2) (Baker, 1991) A shared vari-
able access protocol, suitable for both dynamic and static scheduling poli-
cies. It (a) associates a static preemption level with each task, (b) main-
tains a dynamic current ceiling for each shared variable, (c) whenever a
variable is accessed, raises the ceiling of the variable to be at least as great
as the preemption level of any task that may use the variable, and (d)
allows a task invocation to start running only when its preemption level
exceeds the current ceiling of every shared variable. This guarantees that
tasks begin only when all the resources they may need are available.

Sufficient test (Audsley et al., 1993, p.284) A schedulability test that passes
only feasible task sets (c.f. necessary test). It may fail some schedu-
lable task sets, however.

Suspension (Audsley and Burns, 1990, p.6) A suspended task is one that
has made itself temporarily inactive by executing a ‘delay’ statement.
Suspended tasks reside in the delay queue.

Task set (Audsley et al., 1993, p.284) A set of scheduling requirements typi-
cally consisting of several periodic and/or sporadic task requirements.

Tick (or timer-driven) scheduling (Burns et al., 1995, §II) (Tindell et al.,

38



1994, §6) A polling method of implementing ‘delay’ statements. A tick
scheduler executes periodically, controlled by a regular clock interrupt.
When activated it moves tasks from the delay queue to the ready queue
if their delay interval has passed.

Transient overload (Audsley and Burns, 1990, §3.3) (Sha and Goodenough,
1990, p.56) The situation where one or more task invocations miss their
deadlines. This may be due either to the programmer underestimating
the worst-case computation time requirement for a task or sporadic
task arrivals occurring at greater than their specified frequency.

39


