
1

Real-Time Search for Real-World Entities: A Survey
Kay Römer, Benedikt Ostermaier, Friedemann Mattern, Michael Fahrmair, Wolfgang Kellerer

Abstract—We are observing an increasing trend of connecting
embedded sensors and sensor networks to the Internet and
publishing their output on the Web. We believe that this de-
velopment is a precursor of a Web of Things, which gives real-
world objects and places a Web presence that not only contains
a static description of these entities, but also their real-time
state. Just as document searches have become one of the most
popular services on the Web, we argue that the search for real-
world entities (i.e., people, places, and things) will become equally
important. However, in contrast to the mostly static documents
on the current Web, the state of real-world entities as captured
by sensors is highly dynamic. Thus, searching for real-world
entities with a certain state is a challenging problem. In this
paper we define the underlying problem, outline the design space
of possible solutions, and survey relevant existing approaches by
classifying them according to their design space. We also present
a case study of a real-world search engine called Dyser designed
by the authors.

I. INTRODUCTION

Today, increasing numbers of sensors and sensor networks

are being connected to the Internet and the World Wide Web,

making it possible to observe an ever-increasing proportion

of the real world with minimal delay using a standard Web

browser. While webcams may currently be the most popular

sensors on the Web, services like pachube.com and Microsoft

SenseWeb [1] offer APIs for publishing structured sensor

data in real-time, such as energy consumption, for example.

Additionally, real-world services are starting to publish real-

time data relevant to their operation on the Web. One example

of this is Bicing [2], a public bicycle-sharing system in

Barcelona, Spain, where users can see the number of bicycles

available at each rental station in real-time on the Web.

We believe that these trends are precursors of a Web of

Things [3], [4], which will extend the original document-

centric Web, making it a universal interface for the real world

by giving real-world objects and places a Web presence that

can be accessed using lightweight APIs (typically based on the

REST principle). Representing real-world objects – including

attached sensors and actuators – as Web resources gives rise

to a range of novel application scenarios. For example, users

might create private mash-ups, combining novel real-world

services offered by sensor-augmented objects with existing

Web services. An example of this might be indoor plants that

send a message to their owner as soon as attached sensors

report a critical state.

K. Römer is with the Institute of Computer Engineering, University of
Lübeck, Germany and with the Institute for Pervasive Computing, ETH
Zurich, Switzerland. Email: roemer@iti.uni-luebeck.de.

B. Ostermaier and F. Mattern are with the Institute for Pervasive Computing,
ETH Zurich, Switzerland. Email: {ostermaier, mattern}@inf.ethz.ch.

M. Fahrmair and W. Kellerer are with DOCOMO Euro-Labs, Munich,
Germany. Email: {fahrmair, kellerer}@docomolab-euro.com.

Just as the search for documents (Web pages, videos, blog

entries, etc.) on the Web has become one of its most popular

services, we expect the search for real-world entities to become

equally important. The vast number of sensors that will be

connected to the Web, the anticipated frequency of changes

in sensor readings, and the requirement to search for the real-

time state of real-world entities would all place huge demands

on a real-world search engine. In this paper we explore the

design space of real-world search engines and survey existing

approaches. Most of the systems surveyed do not use Web

protocols and standards, but their concepts could easily be

translated into a Web language.

Because existing approaches do not support searching for

entities by their current state in a way that could be scaled

up to a global Web of Things, we conclude this paper with

a description of our own recently developed system called

Dyser [5], [6]. In Dyser, real-world entities (persons, places, or

things) are represented by virtual counterparts in the Web that

can be accessed using their unique URL – similar to the well-

known Cooltown project [7]. Entities have dynamic properties

that are gathered by associated sensors or deduced from their

readings. For example, a public place may have a property

that reflects how busy it is, which is deduced from Bluetooth

readings of pedestrians’ mobile phones [8]. Users can search

the Web for entities not only by using keywords referring to

their static descriptions, but also (and more importantly) by

specifying dynamic properties that entities have to fulfill at

the time of the query. For example, users could search for

nearby bicycle rental stations that had enough bikes available,

or for picnic places by the lake that were currently quiet.

II. THE PROBLEM AND ITS DESIGN SPACE

We consider the problem of entity discovery, i.e., the process

of finding real-world entities with a given dynamic state. The

problem refers to four architectural elements: (1) real-world

entities, (2) sensors associated with them which perceive their

state, (3) users posing queries to search for real-world entities

with a certain state, and (4) a search engine that accepts

queries and returns references to entities matching the query.

In practice, it is often sufficient to return a subset of (the most

relevant) entities matching the query.

Note that this problem is related to, but different from,

data stream query processing as implemented in TinyDB [9],

for example. With data stream query processing, queries are

posed to process sensory data streams generated by a given

set of sensors monitoring the state of an entity. Our problem,

in contrast, is concerned with the discovery of entities and

their sensors. Data stream processing queries require commu-

nication with all sensors (to send them queries or to retrieve

their output data streams), while discovery typically requires

2

communication with only a small subset of all discoverable

sensors and hence could potentially be scaled up to function in

a global network of sensors. A small set of discovered entities

or sensors might then form the input for a data stream query

processing task.

Systems addressing the entity discovery problem vary across

a number of different dimensions, which form the design space

of our problem. In the context of this paper we consider

a subset of important design space dimensions, which are

detailed below. In the remainder of the paper we will refer to

these dimensions to characterize existing systems that address

our problem.

a) Query Type: We distinguish between two query types:

ad hoc queries, which are one-time queries where a result

is returned immediately and the query is then completed. In

contrast, continuous queries are active for a period of time and

matches are returned while the query is active.

b) Query Language: We distinguish between keyword-

based query languages where the user provides a list of key-

words to be matched and complex languages, which support

more general predicates regarding the state of sought entities.

c) Query Scope: Some search engines are designed for

small local domains, whereas other systems scale up to a

global Web of Things.

d) Query Time: Queries can refer to the real-time state

of sought entities and/or the historical state of entities.

e) Query Accuracy: The algorithms used to match

queries with entities may be exact in the sense that entities

returned in response to a query are guaranteed to match the

query, whereas for heuristic algorithms returned entities may

not actually match the query perfectly.

f) Query Content: This dimension of the design space

defines the rate of change of the sought data. We identify

three relevant intervals on this scale. Queries can either refer to

static meta data concerning the entity (such as the entity type),

to slowly-changing pseudo-static meta data such the entity’s

owner, and/or the dynamic content (i.e., output) of sensors

describing an entity’s state. It might be appropriate to identify

further sub-intervals on this scale such as slowly changing

dynamic content, but no systems have yet been explicitly

designed for these points in the design space.

g) Entity Mobility: Some systems assume that entities

are static (i.e., don’t change their location), whereas other

systems also support mobile entities.

h) Entity State: The state of an entity can be described

either by a finite, discrete set of categorial states (e.g., “hot”,

“cold”), or by a value on a continuous scale (e.g., degrees

Celsius).

i) Target Users: A discovery system may be either

designed for domain experts (who could use the system to

construct an application such that the end user does not directly

interact with the discovery service) or for direct use by end

users, similar to Web search engines.

Note that the above-mentioned dimensions are not all com-

pletely independent of each other, and that further dimensions

may be defined that are not considered relevant to the focus

of this paper.

A practical real-world search engine for end users would, of

course, be a major breakthrough. Such a search engine would

have to support global-scale systems, allow queries across both

static meta data and dynamic content, and support mobile

entities.

III. FUNDAMENTAL STRATEGIES

Despite the large design space, many existing systems rely

on a small set of fundamental techniques and strategies to

implement entity discovery. In this section we outline these

mechanisms. The descriptions of actual systems in the subse-

quent section reference these mechanisms.

a) Push and Pull: Entities produce data describing their

state, while users produce queries describing sought entities

and the data produced by them. Discovery in a distributed

setting requires that data and queries meet somewhere. This

may be achieved by entities pushing data proactively towards

the users, such that the data meets the queries in the user’s

system, where queries can be executed locally. Entities may

also store data locally, which means that queries have to be

sent to the entities to pull the data. With hybrid approaches, the

data is pushed part of the way towards the users and has to be

pulled from there by queries (cf. mediators below). Also, some

data (e.g., that which is frequently queried) may be pushed

to users, while other data (e.g., that which is rarely queried)

remains at the entity and has to be pulled from there. In a

global Web of Things, pulling might make more sense given

that there will probably be far more entities than human users,

and entities typically change their state more frequently than

users produce queries.

b) Publish/Subscribe: For continuous queries, it is ben-

eficial to establish explicit relations between entities and

users such that data from entities has to be pushed only to

users with potentially matching queries, or queries have to

pull potentially matching entities only. Publish/subscribe is a

common technique where users issue subscriptions to certain

entities or data, such that only data matching the subscription

is delivered to the user.

c) Mediators: A mediator is a conceptual element that

sits logically between entities and users. Mediators typically

maintain an aggregate view of entities, such that a query sent

to the mediator can be answered without pulling data from all

the entities. Mediators may be implemented in a centralized

or distributed fashion (e.g., as a hierarchy of mediators, where

a super-mediator has an aggregate view of its sub-mediators).

d) Inverted Index: Mediators maintaining an aggregate

view of a set of entities need to be able to efficiently look up

entities that might be in a certain state specified by a query. An

inverted index is a data structure that allows such an efficient

lookup of entities producing certain data.

e) Compression: Compression may be used to reduce

the amount of storage or communication required for data

and queries. For example, mediators often store a compressed

aggregate view of the data from many entities. In the case

of lossless compression, the system’s basic operation is un-

affected. However, the use of lossy compression results in an

approximate view only. In this case, the query results are either

3

heuristic, or the approximate view may be used to identify

a subset of entities or users that have to be considered by

subsequent push or pull operations to obtain exact results.

An extreme case for lossy compression, for example, is to

communicate or store just one bit of information indicating

whether the data produced by an entity has changed, such that

pull operations have to consider changed entities only.

f) Models: A model makes it possible to infer informa-

tion about a user or entity without actually communicating

with it. Entities may use a model of a user to decide whether

the user might be interested in an entity and then push data

to interested users only. Users may apply a model of an entity

to decide whether they might be interested in the entity and

then pull data from interesting entities only. A model is often

constructed from past information, e.g., a statistical model

of an entity’s state may be constructed from that entity’s

previous states. As with compression, model-based techniques

may either lead to heuristic query resolution or the models may

be used to identify a subset of entities or users that have to

be considered by subsequent push or pull operations to obtain

exact results.

g) Scoring and Ranking: Scoring is concerned with

giving entities a scalar value proportional to their relevance to

a query. Ranking is concerned with sorting entities according

to their score. Scoring and ranking are used for two purposes.

Firstly, to present users with those entities that seem to be

most relevant first. Secondly, scoring and ranking may be

used internally to increase efficiency by expending effort (e.g.,

pushing or pulling) on top-ranked entities first. Normalizing

scores is an important issue for enabling a direct comparison

of entities. In keyword-based searches, for example, the overall

frequency of keywords could be taken into account such that

frequent keywords are given a lower weighting than rare

keywords.

h) Top-k Query: It is often sufficient to return a subset

of the k (most relevant) entities matching a query rather

than the complete set of matching entities. It is sometimes

possible to find these top k entities without considering all

entities, resulting in increased efficiency compared to brute-

force approaches that first find all matches and then return

only a subset of them.

IV. SURVEY

In this section we survey prominent systems that support

the discovery of real-world entities. While some of them

have been explicitly designed with entity discovery in mind,

others support the discovery of sensors with certain properties,

but their underlying mechanisms would also apply to entity

discovery. Yet another class of systems is concerned with real-

time searches for dynamic documents in the current Web – a

problem closely related to discovering entities based on their

current state. We classify the systems according to their design

space in Table I. For each system, we first describe the specific

problems they solve, then review the technical approach, and

finally discuss their strengths and weaknesses.

A. Snoogle/Microsearch

The basic idea behind this system [10], [11] is that sensor

nodes attached to real-world objects carry a textual description

of that object in the form of keywords. For example, a node

attached to a book would contain the keyword “book”. Users

then have the opportunity to find real-world objects matching

an ad-hoc query consisting of a list of keywords. The system

would return a ranked list of the top k (a parameter that can

be specified as part of the query) entities matching this query.

The system is based on a two-tiered hierarchy of mediators.

Mediators in the lower tier are called Index Points (IP) and

each IP maintains an aggregate view of all sensors in a certain

geographical area such as a room (that is, every sensor is

assigned to a unique IP). The single mediator in the top tier is

called the Key Index Point (KeyIP) and maintains an aggregate

view of the whole network. Sensors push changed textual

descriptions to their IP, and IPs push these on to the KeyIP.

Users send queries either to an IP to query entities in the

geographical area of this IP, or to the KeyIP to perform a

global search. Both IPs and the KeyIP maintain an inverted

index that allows efficient lookups to be performed of sensors

that contain a certain keyword. Much of the research effort

is devoted to maintaining this index in slow, page-structured

flash storage on typical sensor nodes.

Mobile sensors are supported by implementing a hand-over

protocol between IPs. Basically, IPs detect the presence of

sensors by means of periodic beacon messages, update their

index if a sensor (dis)appears, and inform the KeyIP. There is

also support for changing object descriptions by pushing these

changes to the IP and KeyIP. To compress communication, a

Bloom filter is used to represent a set of keywords. Essentially,

this is a bit vector representation where a keyword is entered

by setting n bits in the vector to “1”. A set of n hash functions

is used to compute the indices of these n bits from the

keyword. To check if a keyword is contained, all these n bits

are examined to see whether they are set to “1”. Note that this

may result in false positives, where a keyword appears to be

contained but is actually not. False negatives are impossible.

When resolving a query, sensors are ranked according to

how many of the sought keywords they contain. To normalize

the ranking across different IPs, the total frequency of a

keyword in all sensors belonging to an IP is incorporated into

the ranking. When performing a local query, a query message

is sent directly to an IP. Based on the inverted index, the IP

computes a ranked list of matching sensors and returns the top

k ones. For a global query, a message is sent to the KeyIP. To

compute the global top k matching sensors without obtaining

complete ranked lists of matching sensors from all IPs, the

KeyIP proceeds in an incremental fashion. First, it sends a

query to all IPs asking for the local top-ranked sensors. By

sorting this list, the KeyIP can obtain the global top-ranked

sensor. To obtain the second-ranked sensor, the KeyIP sends

a query to all IPs to return only sensors with a score that is

higher than the score of the second-ranked sensor in the global

sorted list. The results are then inserted into the global sorted

list and the second-ranked sensor in this list is returned to

the user. To obtain the global third-ranked sensor, the KeyIP

4

Dimension Snoogle MAX OCH DIS GSN SenseWeb RT Web Search Dyser

Query type ad hoc ad hoc continuous both ad hoc ad hoc ad hoc ad hoc
Query language keywords keywords keywords image keywords keywords+geo keywords keywords
Query scope local local global local global global global global
Query time real-time real-time real-time both real-time real-time (near) real-time real-time
Query accuracy heuristic heuristic heuristic heuristic exact exact exact exact
Query content pseudo static pseudo static dynamic dynamic static static dynamic dynamic
Entity mobility mobile mobile mobile mobile mobile mobile — mobile
Entity state categorial categorial categorial continuous categorial both text (categorial) categorial
Target users end users end users end users end users experts experts end users end users

TABLE I
CLASSIFICATION OF SYSTEMS SUPPORTING ENTITY DISCOVERY ACCORDING TO THEIR DESIGN SPACE DIMENSIONS.

queries all IPs for sensors with a score higher than the third-

ranked sensor in the global sorted list and so on, until k sensors

have been returned to the user.

Key limitations of this approach are as follows. Firstly, it

only supports searches for pseudo-static meta data. Although

there is a mechanism to deal with changing meta data, every

change requires an immediate push to the IP and KeyIP, an

approach that is not scalable. Secondly, the basic approach is

not suitable for global searches due to the centralized nature

of the KeyIP that maintains a complete view of the whole

network, where the KeyIP pulls all IPs for every global query.

While the distributed top-k algorithm may result in a reduction

in the total payload data transmitted, it results in a high number

of (smaller) messages. Thirdly, query results are approximate

(i.e., may contain sensors that do not actually match the query)

due to the use of Bloom filters.

B. MAX

MAX [12] follows a similar model to Snoogle. Tags are

attached to real-world objects storing a textual description

of these objects. Users can pose queries containing a list of

keywords to search for tags holding one or more of these

keywords. MAX then returns a ranked list of the top k

matching tags.

One of the goals of MAX is that users can easily locate ob-

jects. For that, a three-tiered hierarchy of mediators is used. At

the lowest level, substations represent immobile objects such

as tables or shelves, on which mobile tagged objects can be

placed. On a middle tier, basestations represent a geographical

space such as a room containing multiple substations. At a top

level, the MAX server represents the entire space covered by

the system. Knowing to which substation and basestation an

object belongs, it is easy to locate where an object has been

left. In a prototype implementation, RFID tags are used to tag

objects with a short communication range, whereas substations

and basestations are sensor nodes and the MAX server is a

workstation computer.

Query resolution is pull-based. The MAX server contains a

directory of basestations and associated spaces, so users can

select which spaces/basestations to query. The query contain-

ing a list of keywords is then sent to all selected basestations.

The basestations broadcast the query to all substations within

communication range, and the substations broadcast the query

to all tags within communication range. The tags then count

how many keywords in the query match, and the substations

pull this information from the tags and forward a list of

tags along with their match count to the basestation. The

basestations sort the tags according to their counts. They then

pull the complete tag descriptions for the top k tags from the

substations. Finally, the basestation returns the descriptions of

the top k tags to the MAX server and the user.

This pull-based approach is very good at dealing with

tag mobility and changes to tag contents as no indexes are

maintained that would require updating. Although the system

was designed for pseudo-static meta descriptions, it would

be possible to extend it to include content-based searches.

However, the downside is that queries are very costly as

they have to be sent to every single substation and tag. The

resulting limited scalability makes MAX inappropriate for

global networks.

C. Objects Calling Home (OCH)

This system [13] allows users to query the current location

of lost real-world objects (such as umbrellas or keys). For this

purpose, objects are tagged with a device holding the identity

of the object (i.e., not a description of the object as in other

systems). Mobile object sensors are used to detect the presence

and identity of such objects. In a prototype, mobile phones

equipped with Bluetooth are used as object sensors and objects

are tagged with small Bluetooth modules. A user can query

an object with a certain identity. As a result, the system will

return the approximate location of the lost object if it can be

found. Along with the query, the user can specify a timeout

t and a budget q. As it may take some time before a mobile

object sensor approaches the lost object, a continuous query

is installed that is terminated after t time units. The budget q

constrains the total number of messages the system may send

while searching for the object.

At first sight, this may look like a very different problem

from those tackled by the other systems as we are searching

for the location of objects with a given identity, whereas the

other systems allow us to find the identity of objects matching

a given description. However, we can treat the above scenario

as a content-based search problem as follows. We can consider

an object sensor as a sensor that outputs the identifier of the

tag that last entered its vicinity. That is, the co-domain of an

object sensor is the set of all possible object identifiers. Our

problem then consists of finding a sensor that currently outputs

5

a given object identifier. While this is certainly a specific form

of content-based sensor search, it cannot be generalized to

cover arbitrary sensors.

The key issue addressed by OCH is that queries should

not be sent to all object sensors for scalability reasons and

also to save phone batteries. This is achieved by using a

model of the sought object. This model associates a probability

with locations, meaning that the object currently has a certain

probability of being at a certain location. This model is

constructed using a number of heuristics. For example: (1)

The object is probably at a location that is close to the location

where it was last seen. (2) The object is probably at a location

that has been recently visited by its owner. (3) The object is

probably at a location where the owner spends a large part of

his or her time.

A user performing a query can associate priorities with the

above heuristics. A query containing the identity of the sought

object, the above priorities, timeout t, and budget q is sent to

a centralized mediator. The mediator uses the model of the

sought object to create a ranked list of locations at which the

object has a high probability of being located. Note that this

step does not involve any communication with object sensors.

Now the mediator selects object sensors in the proximity of

locations in the ranked list. Then, the mediator subscribes to

these object sensors from top to bottom in the ranked list until

either one of the subscribers reports to the mediator that the

sought object has been detected or until the communication

budget q is exhausted. The subscriptions remain active until

either the sought object has been found or the timeout t

expires.

A key advantage of the above approach is that it can be

scaled up for very large networks, as typically only a small

proportion of all object sensors are contacted to resolve a

query. However, unless the budget is set to infinity (in which

case all mediators will eventually be pulled), there is no

guarantee that the sought object will be found even if it

is actually detected by an object sensor. While the system

implements a form of content-based sensor search, the models

it uses are very specific to the problem of finding objects

belonging to a user and cannot be extended to other types

of sensors. Furthermore, computing the models involves an

overhead. For example, an object sensor carried by the object

owner has to detect where objects were last seen, and the

locations of object sensors have to be tracked. Fortunately,

operators know the cell IDs of mobile phones anyway, so that

in principle the approximate route taken by mobile phones

can be obtained at a low cost. Finally, the system supports

and in fact benefits from having mobile sensors, since mobility

increases spatial coverage and hence the probability of finding

a sought object.

D. Distributed Image Search (DIS)

This system [14] involves camera sensors. Users can pose

queries by specifying an image and the system returns details

of sensors that have captured similar images. Results are

ranked and the top k most relevant matching sensors/images

are returned to the user. The system supports both continuous

real-time queries and historical ad-hoc queries, for which

purpose sensor nodes store historical images. DIS could be

used to search for places with a certain visual state.

To avoid transmitting images, the system uses a feature

extraction mechanism (i.e., an extreme form of lossy com-

pression) that maps an image to a set of visterms (similar to

keywords) describing the image. This mapping is a two-stage

process, which first maps an image to several hundred contin-

uous 128-dimensional vectors using the SIFT algorithm. Note

that SIFT vectors are mostly invariant to viewpoint changes,

some occlusions, and lighting effects such as specularities. As

the set of SIFT vectors is still large, a second stage maps SIFT

vectors to descriptions of image features. For this purpose, the

SIFT algorithm is run on a large pre-recorded image database,

and the resulting SIFT vectors are clustered. Each resulting

cluster is then represented by an average SIFT vector and a

visterm. The resulting dictionary is stored in the flash memory

of sensor nodes as a read-only data structure and used to map

SIFT vectors to visterms.

When a sensor node captures a new image, it is converted

into a set of visterms by running the SIFT algorithm and using

the dictionary. The resulting visterms are then stored in an

inverted index (also in flash memory) for efficiently looking

up images that match certain visterms. Much effort is spent in

devising efficient data structures to work around the constraints

of flash memory.

To perform a query, the user sends the reference image to a

centralized mediator. The mediator maps the image to a set of

visterms and sends the visterms to all sensors. The sensors use

their inverted index to look up images containing at least one

of the query visterms. For these images, a normalized score

is computed quantifying how well the query visterms match

the image visterms, taking into account the overall frequency

of visterms. From the ranked list, the identifiers of the top k

ranked images are returned to the mediator. The mediator then

computes a global ranked list, pulls thumbnails of the global

top k images from the sensors and displays them to the user.

A key limitation of the above approach is that it is not

scalable for large networks as every query has to be sent

to all sensors. Also, the search is approximate as image

matching is based on feature vectors. Although the system

has been designed for image searches, the problem is mapped

to keyword searches, so some of the mechanisms may be

applicable to other types of sensors that can also be mapped

to keywords. Content-based search and mobility are supported

as sensor data is not pushed to the mediator, but instead local

computations are performed when a new image is captured.

E. Global Sensor Networks (GSN)

GSN [15] is a system for the Internet-based interconnection

of heterogeneous sensors and sensor networks, supporting

homogeneous data-stream query processing on the resulting

global set of sensor data streams. In the context of this survey,

we are not interested in the actual data stream processing, but

in the discovery of sensors that form the input to a data-stream

processing task.

A key abstraction in GSN is a virtual sensor that represents

either a physical sensor or a virtual entity that takes as input

6

one or more data streams from other virtual sensors and

processes them to produce a single output data stream. GSN

supports the discovery of virtual sensors and their intercon-

nection to form new virtual sensors.

Each virtual sensor in GSN has a unique identifier and can

be annotated with meta data to describe the sensor. Such meta

data may be used, for example, to specify the location or the

type of sensor. To discover a virtual sensor, one can either

specify the identifier of the virtual sensor being sought, or

provide meta data describing the sensor. In the latter case, a

keyword search is performed to find matching sensors.

The actual discovery is performed using a peer-to-peer

approach. The meta data (i.e., key-value pairs) for the vir-

tual sensors is stored in a peer-to-peer directory, supporting

scalable discovery in large networks [16]. Virtual sensors

themselves are hosted in a so-called GSN container, which

is essentially a process executing on a computer connected to

the Internet. These GSN containers also form a peer-to-peer

overlay.

GSN also supports mobile sensors, provided they implement

a self-description mechanism known as Transducer Electronic

Data Sheet (TEDS) as specified by the IEEE 1451 standard.

When such a sensor enters the communication range of a

GSN base station, the TEDS is downloaded and an appropriate

virtual sensor is instantiated using the information in the

TEDS. Likewise, if the sensor leaves, the virtual sensor is

deleted.

A key limitation of the sensor discovery mechanism in GSN

is that it does not support content-based discovery. While data

stream processing could be used to find sensors with a given

current output value, this would require communication with

all discoverable sensors, which would certainly not scale up

for use with large numbers of sensors.

F. SenseWeb

SenseWeb [1] also provides for sensor discovery based on

static meta data relating to sensors, including the geograph-

ical locations of the sensors. In addition to keyword-based

searches of the meta data, geospatial queries are supported for

discovering sensors in a certain geographical region typically

described by a polygon. Sensor readings are streamed to

sensor gateways, which register with the SenseWeb core and

provide a SOAP-based API for retrieving sensor information

and readings. SenseWeb maintains a central repository of

sensor meta data. However, sensor readings are not streamed

from the sensor gateways to a central sink. For this reason,

SenseWeb presently only supports searches of static meta

data, not of current sensor readings. SenseWeb also includes

an application that provides a geographical representation of

registered sensors on a map called SenseMap.

Due to the fact that sensors and their locations are registered

in a central repository, sensor mobility would result in a

significant overhead when updating the repository. Instead,

SenseWeb introduces the concept of a mobile proxy repre-

senting a virtual sensor that is positioned at a fixed location.

The proxy dynamically binds to a real sensor that happens to

move to the location covered by the proxy. In this way, the

central repository does not need to support mobility directly.

G. Real-Time Web Search Engines

Real-time search engines for the Web support searches

for dynamically changing content and have recently gained

momentum, also for established search engines and social

networks [17]. Although they do not directly support entity

discovery, the underlying mechanisms could be adopted to

search for entities with a given dynamic state. In this section,

we introduce three examples and outline the concepts involved.

Twitter is a company that provides a real-time, web-based,

public messaging system (a so-called micro-blogging service),

which is currently very popular on the Web. The idea is

to provide people with the possibility of saying what they

are currently doing by using textual messages limited to 140

characters. Twitter has recently introduced its own search

engine, Twitter Search (search.twitter.com). Users can search

a vast number of Twitter messages using keywords and get the

latest results in real-time. Messages are pushed to the Twitter

service, where they are archived. Twitter also provides a feed

of all public Twitter messages, updated in real-time, using the

XMPP protocol [18]. Selected partners can build applications

on top of this data stream.

OneRiot (www.oneriot.com) is a real-time search engine

that focuses on links shared by users of social community

sites such as Digg and Twitter. It restricts its index to these

shared sites, thus focusing on search results that are currently

considered relevant by users of these communities.

Technorati.com is a search engine for blogs. According to

the site, Technorati “indexes millions of blog posts in real time

and surfaces them in seconds”. Until recently, users were able

to provide a hint to the search engine when they updated their

blogs, using a dedicated API call – a so-called RPC ping.

However, the site notes that it is no longer using these hints,

claiming that “more than 90% of the pings we received were

spam and non-blogs”.

One approach used in all of the outlined examples is that of

limiting the search space. Twitter has strict limits not only for

the permitted size of messages but also for the permitted rate

of publishing messages. OneRiot focuses on a small subset

of the Web that is currently popular among users of social

networks. Technorati only considers blogs, which are a subset

of the Web. A second approach is to utilize user-specified

hints, which may affect the order and frequency in which

sites are re-indexed. This is performed by OneRiot and was

utilized in a simpler variant by Technorati. Finally, Twitter

uses a centralized approach – all data is stored on Twitter’s

servers, so the service has a real-time view of all published

messages.

While the concept of Twitter and its search engine could

also be utilized for publishing sensor readings and searching

for them in real-time, we would question whether this con-

cept, which requires a central instance aware of all current

Twitter messages, could be scaled up to the dimensions of

an anticipated Web of Things. When compared to human-

generated messages, the volume of sensor-generated content

is expected to be magnitudes higher, both in the number

of sensors and in the frequency of updates. For the same

reason, we doubt whether the concepts utilized by OneRiot

7

and Technorati are appropriate for enabling real-time searches

in the upcoming Web of Things.

V. DYSER – A CASE STUDY

In this section, we introduce Dyser, our prototype of a

search engine for the real world. After discussing the concepts

involved, we present an evaluation based on the results of

a simulation using real-world data. Finally, we outline the

prototypical implementation.

A. Overview

Dyser is a prototypical search engine for the Web of Things,

developed by the authors of this article. It allows real-world

entities (i.e., people, places, and objects) to be searched by

their current state. As the expected audience of our search

engine consists of average Web surfers rather than domain

experts, we argue that users will most likely not be interested

in searching for sensors with a specific reading, but for entities

in the real world with a specific current state. So rather than

searching for loudness sensors with a current reading below

30 dB, we assume that users will instead be interested in

searching for places that are currently quiet. The state of an

entity is determined by the current states monitored by its

associated sensors. The state a sensor outputs is inferred from

its readings.

In our model, there are two key elements: sensors and

entities. Each sensor and each entity has a virtual counterpart, a

Web resource, identified by a URL and accessible using HTTP.

For all of these Web resources, there is always an HTML

representation, which we call the sensor page and the entity

page respectively. In addition to unstructured text they also

contain structured information, for example, the type of sensor

or its possible readings. The relationship between sensors and

entities is many-to-many, i.e., one sensor can be associated

with multiple entities, and one entity can be associated with

multiple sensors.

The proposed search language is quite simple and based

on that of popular Web search engines. The user specifies a

list of keywords and properties that have to be fulfilled by

possible results. For example, when looking for quiet Italian

restaurants, we could search for “italian restaurant

loudness:quiet”. The first two elements of the query

are static keywords, which have to appear on the entity page.

The last element of the query specifies a (dynamic) property

that is determined automatically by an associated loudness

sensor. Dyser will return a ranked list of entities that currently

match the search term. From there, the user may browse to

the corresponding entity pages and in turn to the associated

sensor pages, for further information. A classification of Dyser

according to our design space dimensions is depicted in

Table I.

An overview of the architecture is shown in Fig. 1, in

the context of a user searching for free rooms in the IFW

building. Dyser consists of a resolver, which handles user

queries according to the process outlined in Section V-B, an

index, in which indexed meta data on sensors and entities is

stored, and an indexer, which crawls sensor and entity pages.

Internet

Resolver

Indexer
Sensor

Gateway Sensors

Entity Page

http://.../rooms/IFW/D44

Sensor Page

http://.../sensors/IFW/D44

Index

Entity Page

Sensor Page

room IFW

occupancy:free

Occupancy Sensor

This is a PIR sensor

which senses room

occupancy for IFW D44.

•  Current state: occupied

•  Possible states:

 free, occupied

•  ...

Room IFW D44

This seminar room in the

IFW building is currently

occupied.

Fig. 1. Architecture of Dyser

As the index contains only pseudo static meta data, it could

be mirrored to enable scalability.

B. Approach

Although we have built a central index consisting of static

meta data for sensors and entities, we do not rely on a central

sink to which the readings of all the participating sensors are

streamed in real-time. This means there is no global view of

the world and thus to answer a query, the search engine needs

to contact relevant sensors (i.e., sensors that could possibly

read the searched state) at the time a query is posed, in order

to determine whether they currently match the query. Entities

whose associated sensors do not read the searched state are

excluded from the result set, which Dyser returns to the user as

soon as enough matches have been found. Note that indexing

current sensor readings is not an option, as the index would

be outdated as soon as it was built due to the anticipated

frequency of changes in sensor readings.

Even though this query resolution process can be optimized

by contacting multiple sensors in parallel, it is not scalable

with respect to network traffic – given that the number of

possible results is significantly larger than the number of actual

results, many sensors would be contacted unnecessarily by

the search engine when processing a single query. However,

instead of contacting the sensors in an arbitrary sequence, we

could contact them in an order that reflected the probability

that they currently matched the query. We call this approach

sensor ranking and argue that it enables scalability, provided

we can order the list of relevant sensors sufficiently well. For

this, we need to be able to estimate the probability of a sensor

matching a query with sufficient accuracy.

We used prediction models for this purpose, which return

the probability of a sensor reading a specific value at a given

point in time. For a given search term, the relevant sensors

are contacted in descending order of their prediction model

outcomes. Provided that the prediction models map reality

sufficiently accurately, it should be possible to significantly

reduce the number of sensors contacted per query. Predic-

tion models are created by sensors or by sensor gateways

8

and are published on the corresponding sensor page. Dyser

periodically indexes sensor and entity pages, including their

relations, much like current Web search engines do. The

published prediction models are then copied to Dyser’s index,

making their evaluation a local operation. Although this index

is centralized in our current prototype, it could easily be

distributed, for example by allocating sensors of the same type

to the same sub-index. As queries contain the sensor type being

searched for, we can easily find the sub-index that holds the

models relevant for a query.

The integral assumption in our approach is that there are

enough sensors that offer a sufficient level of predictability.

While this may not be the case for arbitrary sensors, many

phenomena in the real world feature periodic characteristics,

especially those related to people. For example, daily, weekly

and yearly cycles in people’s lives can usually be identified.

Recent research [19], [20] has shown promising results regard-

ing the predictability of human behavior.

To sum up, Dyser performs the following steps at query

time in order to process a search request for k results:

1) All entities that do not match the given keywords or

sensor types are filtered out. The remaining entities are

ranked according to their expected relevance to the user.

The process starts with the first x entities.

2) For the entities currently considered, the probability

that the entity currently matches the searched state is

computed. For each entity, the prediction models of its

associated sensors are evaluated, using the requested

states. The probability of an entity is then computed

as a function of these outcomes.

3) The considered entities are re-sequenced (in descending

order of probability).

4) Beginning with the top-ranked entity, the search engine

contacts the entity sensors to check whether their values

actually match the searched state. Only entities that

fulfill the search request are added to the result set.

5) If enough (i.e., k) matching entities have been found,

the list of results is re-sorted according to the relevance

criterion in 1) and returned to the user. If not, the process

continues from step 2) with the next x entities.

Note that we are using two different ranking approaches:

sensor ranking, which affects the order in which sensors are

contacted in order to test whether they are actually reading

the searched state; and relevance ranking, which adjusts the

order in which elements are displayed to the user. We need to

combine both these approaches – sensor ranking for efficiency

and relevance ranking to fulfill the expectations of the user.

However, this combination is admittedly a trade-off between

efficiency and relevance.

C. Prediction Models

In this section we give three examples of concrete prediction

models for use in the search engine. For this, we first state the

required definitions.

A sensor s is a function

s : T 7→ V (1)

where T denotes real time and V the set of possible sensor

values. V is assumed to be a finite set of discrete states that an

entity can be in (e.g., a room entity could include an occupancy

sensor that can yield one of two values “occupied” or “free”).

We do not assume that elements of V follow some order, as we

also want to support sensors that sense inherently unordered

phenomena, e.g., sensors that return the current activity of a

user.

Each sensor is associated with a type and optionally further

meta-information such as a location. A prediction model for

a sensor s is a function

Ps,t0,t1 : T × V 7→ [0, 1] (2)

The parameter t0 ∈ T refers to the time at which the first

sensor reading was considered, t1 ∈ T refers to the time

at which the model was constructed, meaning that all sensor

values s(t0 ≤ ti ≤ t1) were available for the construction of

the model. The idea behind constraining the construction of

the prediction model to the time window [t0, t1] is that sensor

values from the distant past are typically poor indicators of

a sensor’s future output. Also, using a time window instead

of all past data typically reduces the resources (i.e., execution

time and memory footprint) required to construct the model.

Given a point in time t > t1 and a sensor value v ∈ V ,

Ps,t0,t1(t, v) is an estimate of the probability that s(t) = v

holds. We call t − t1 the forecasting horizon.

Probably the most simple prediction model computes the

fraction of the time during which the sensor output equals v

within the time window [t0, t1], that is:

Ps,t0,t1(t, v) =
1

t1 − t0

∫ t1

t0
χ(s, q, v)dq (3)

where χ(s, t, v) is an indicator function that returns 1 if the

sensor s reads v at time t, and 0 otherwise:

χ(s, t, v) =

{

1 : s(t) = v

0 : else
(4)

For example, if the sensor output was v during the whole

time window [t0, t1], then the probability computed by the

above prediction model equals 1. Note that the output of the

prediction model is independent of the actual point in time

t of the search. Hence, we call this model the aggregated

prediction model (APM).

A more elaborate model would take into account the time

t of the search. For this, we exploit our assumption that there

is a dominant period length L after which the sensor output is

likely to repeat. For example, it is reasonable to assume that

the occupancy pattern of a room is likely to repeat every week,

that is, L equals one week. Assuming1 that the time window

size t1− t0 is an integral multiple of L, i.e., NL = t1− t0 for

integral N , and that the forecasting horizon t − t1 is smaller

than L, we can perform a prediction as follows:

Ps,t0,t1(t, v) =
1

N

∑

1≤i≤N

χ(s, t − iL, v) (5)

1Note that these limitations can be easily removed, but result in a somewhat
less obvious formula.

9

Here, we consider all points in time t′ contained in the time

window that have the same phase as t with respect to period

length L, i.e. t′ ≡ t mod L such that t′ ∈ [t0, t1]. Under the

assumptions stated above, this is the case for t′ = t − iL for

all 1 ≤ i ≤ N . The output of the prediction model equals the

fraction of the instances of t′ for which s(t′) = v among all t′.

As this model assumes a periodic process with a single period,

we call this model the single period prediction model (SPPM).

Note that a spectral analysis of the sensor data or a periodicity

indicator as given in [21] can be used to automatically derive

the dominant period length L for a given data set s([t0, t1]).
Alternatively, L could be derived from domain knowledge.

The previous model ignores the fact that sensor output is

often the result of many periodic processes with different

period lengths. For example, a meeting room may host a group

meeting every Monday and a general assembly on the first

Tuesday of each month. Here, we have two periodic processes

with period lengths of one week and one month respectively.

To support such multi-period processes, we use the following

approach. In a first step, we discover periodic patterns in the

time window using a variant of an existing algorithm [22].

As a result, we obtain a list of periodic patterns of the form

(l, o, w, p), where l is the period length of the pattern, and o

is an offset in the period such that the sensor output s(kl + o)
equals w for integer values k with probability p. For example,

the pattern (one week, 2, occupied, 0.5) means that every

second day of the week (i.e., Tuesday) the probability of a

room being occupied is 0.5.

To make a prediction, we first filter all patterns that match

the search time t, that is, we retain a pattern (l, o, w, p) if and

only if there exists some integer k such that kl + o = t and

w = v, where v is the sought sensor value. Assuming N such

patterns exist, we perform a prediction as follows:

Ps,t0,t1(t, v) = max
1≤i≤N

pi (6)

where pi is the probability of periodic pattern i. In order to

mitigate the effects of sudden changes in periodic patterns

in the data set, we could specify a lower and upper bound

(ωmin and ωmax respectively) for the number of instances of

periodic symbols considered. We call this model the multi-

period prediction model (MPPM).

D. Adjustment Process

During experiments with our system using realistic data sets

we observed that sudden changes in the periodic processes

underlying the data (e.g., the end of a semester where room

occupancy patterns in a university change drastically) typically

cause sensors to be consistently misranked until the old data

is shifted out of the time window, resulting in the decreased

performance of the search process. Outdated, erroneous or

malicious prediction models may also have the same effect.

Using the prediction models introduced in the previous

section, a search engine would compute a rank list SQ

containing m sensors si sorted by decreasing probability of

matching a query for sensor value vQ at time tQ. In the best

case, all sensors actually matching the query would be at the

top of the rank list, while all non-matching sensors would

be at the bottom. Imperfect rankings result if a sensor si is

misranked for one of the following reasons. Firstly, si matches

the query but is ranked lower than other sensors that do not

match the query. Secondly, si does not match the query but

is ranked higher than other sensors that do match the query.

Formally, we can measure this ranking error for sensor si by

counting the number of non-matching sensors ranked higher

than a matching sensor si, or by counting the matching sensors

ranked lower than a non-matching sensor si. The sign of the

following metric indicates whether si should have been ranked

lower (< 0) or higher (> 0).

re(si, vQ, tQ) = (7)
{

−|{sj ∈ S
Q
k |j > i ∧ sj(tQ) = vQ}| : si(tQ) 6= vQ

|{sj ∈ S
Q
k |j < i ∧ sj(tQ) 6= vQ}| : si(tQ) = vQ

where S
Q
k represents the ranked list of sensors that were

contacted for a given query Q in order to provide k results:

S
Q
k =

{

SQ : Mk = 0
s1s2s3...sMk

: else
(8)

The rank Mk of the kth matching sensor is defined as

Mk =

arg min
1≤i≤m

(χ(si, tQ, vQ) ∗ i) : k = 1

arg min
Mk−1<i≤m

(χ(si, tQ, vQ) ∗ i) : else
(9)

The adjustment process modifies the probabilities computed

by the prediction models using the above ranking error re()
such that systematic misranking is corrected. Essentially, we

introduce a control loop where the ranking error of si controls

the ranking of si in future queries such that the future ranking

error is reduced. For this, we compute an adjustment term AT
for each sensor si and sought value vQ at query time tQj

:

AT (si, vQ, tQj
) = AT (si, vQ, tQj−1

)+
re(si, vQ, tQj

)

|SQ
k |

(10)

where the number of sensors contacted |SQ
k | is used to

normalize the ranking error. The probability estimate for a

sensor si holding a state vQ at the time tQj+1
of the subsequent

query is then modified using the above adjustment term:

P̂si
(tQj+1

, vQ) = Psi
(tQj+1

, vQ) + AT (si, vQ, tQj
) (11)

The rank list resulting from these adjusted probabilities is then

in turn used to update the adjustment terms according to (10).

To avoid the use of outdated adjustment values, AT is reset

to zero when a sensor has not been queried for some time or

when a sensor’s prediction model is updated.

The adjustment process is most effective if the query is

executed frequently. However, if the query is executed infre-

quently, then its contribution to the overall performance of the

search engine will be small anyway. Note that this approach

can be used with any prediction model.

E. Evaluation

To assess the effects of sensor ranking and the adjustment

process, we performed various simulations on a real-world

data set. The evaluation presented here was conducted in

10

Matlab and addresses the effects of sensor ranking and the

adjustment process, without considering the integration of

these approaches into Dyser. This means that the simulations

ignore the influence of a relevance ranking of results and do

not consider multiple sensors per entity.

1) Data Set: In the simulations outlined below, we utilized

a data set gathered from Bicing, a public bicycle-sharing

service located in Barcelona, Spain [2], as it contains many

geographically distributed sensors whose output is related to

people’s behavior. Bicing was started in March 2007 and

currently operates about 6000 bicycles, which are distributed

across 400 stations throughout the city. Bicycles can be

rented from and returned to any of the existing stations

using an automated process. Unlike commercial bicycle rental

services, Bicing aims to expand the public transport service in

Barcelona. This is not only reflected by the large number of

bicycles and rental stations, but also by a maximum permitted

rental time of 2 hours. Bicycles provided by Bicing have no

locks and can therefore be stored safely only at Bicing stations.

For each rental station, Bicing publishes on its homepage the

current number of bicycles available and the current number of

free return slots. We retrieved this data every 5 minutes, using

a simple script. The readings we gathered were then cropped to

include only data from January to May 2009, and processed

in order to generate a single log file. Stations that entered

into service during this period were excluded from the data

set, so only stations that were in service for the total 5 month

period of time were considered. This resulted in a total number

of 385 stations. For our simulations, we considered virtual

sensors that reflected the number of bicycles available at each

rental station. For that we transformed the data into discrete

states using a simple mapping scheme: 0 available bicycles

were mapped to the state none; 1-5, 6-10 and 11-15 available

bicycles were mapped to the states 1to5, 6to10 and 11to15

respectively; more than 15 available bicycles were mapped

to the state many; and erroneous readings were mapped to

the state unknown. To limit the amount of sensor data, three

consecutive time slots of 5 minutes each were mapped to a

single time slot of 15 minutes for the resulting log file.

Fig. 2 visualizes the number of sensors reading a certain

state during the course of the week, averaged out over the

total data set. For example, it shows that there were on

average about 50 sensors that read the state “none” at noon on

Tuesdays. One can clearly identify typical daily and weekly

patterns, e.g., for the state “none”.

2) Error Metric: In order to be able to assess the per-

formance of our approach, we measured the communication

overhead in our simulations, which is the number of contacted

sensors Mk divided by the number of requested results k

for a given query. A communication overhead of 1 is an

optimal result, indicating that no non-matching sensors were

contacted. When the number of requested matches cannot be

provided, the communication overhead is undefined and will

not be considered when computing the average communication

overhead. We formalized the communication overhead as

o(t, v, k) =

{

undefined :
∑m

i=1
χ(si, t, v) < k

Mk

k
: else.

(12)

0

50

100

n
o
n
e

50

100

150

1
to

5

50

100

150

6
to

1
0

0

50

100

1
1
to

1
5

0

50

100

m
a
n
y

Mon Tue Wed Thu Fri Sat Sun
0

50

100

u
n
k
n
o
w

n

Weekday

N
u
m

b
e
r

o
f
s
e
n
s
o
rs

 f
o
r

a
 g

iv
e
n
 s

ta
te

Fig. 2. Average number of sensors reading a given state vs. weekday

where t represents the query time, v the sought state, m

the total number of relevant sensors, and k the number of

requested results.

3) Simulation Setup: The simulations we conducted con-

sidered queries in a time frame from March 1st to May 31st

2009. The first two months (January and February) of the data

set were used to construct the initial prediction models. The

forecasting horizon was set to one week, and the size of the

time window for the prediction models was set to 8 weeks.

All prediction models were periodically re-created when their

forecasting horizons were reached. Thus, prediction models

“aged” during the course of a simulated week. Search requests

for all possible sensor states were placed every 15 minutes

throughout the simulation period. The number of required

results k was set to 20. All simulations were conducted both

with and without the adjustment process.

The period length for the single-period prediction model

(SPPM) was set to one week, as this turned out to be the

dominant period length. For the multi-period prediction model

(MPPM), ωmin was set to 4 and ωmax was set to 8. As

a baseline, we included the results from a prediction model

that outputs random values, resulting in a randomized sensor

ranking that changes per time slot and sensor state.

4) Simulation Results: The average communication over-

head determined in the simulation runs is depicted in Figs. 3

and 4. Note that the state “unknown” is omitted from the

discussion, since it always results in an optimal overhead of

1 for all considered prediction models. This is because either

all sensors sense the state “unknown” or none of them do.

As we only computed the overhead for situations where there

were enough results, we only considered the former situation,

which always resulted in an optimal ranking.

For both graphs, we can see that the average communication

overhead for the individual states varies across all considered

prediction models. One factor that affects this variance is

the average number of sensors reading the searched state. A

larger percentage of matching sensors usually results in fewer

sensors needing to be contacted in order to find the required

11

Fig. 3. Average communication overhead without adjustment process Fig. 4. Average communication overhead with adjustment process

number of results. As we can see from Fig. 2, on average the

state “1to5” is read by the sensors most frequently. This is

also the state with the smallest communication overhead. The

correlation between the average communication overhead and

the average number of matching sensors can be seen best when

comparing the data from Fig. 2 with the results of the random

prediction model in Fig. 3. However, when considering an

actual prediction model, the “predictability” of a certain state

naturally influences the communication overhead. For exam-

ple, although the state “none” has a low average number of

matching sensors, its communication overhead is quite low

compared to the other states when the adjustment process is

not taken into account. This can be attributed to its periodic

nature, which can be identified in Fig. 2.

a) No Adjustment Process: When the adjustment process

is not taken into account, we see that for each state there

is a considerable difference in the overhead caused by the

random prediction model and the other prediction models.

This is as expected and shows that sensor ranking is better

than the naive approach of contacting sensors in an arbitrary

sequence until enough results are found. Note that the random

prediction model produces random but different rankings per

time slot and searched state, so we can rule out the effects

of poorly selected random numbers. Compared to the other

prediction models, the aggregated prediction model yields

good results despite the fact that it does not take the time

factor into account. This can be explained by two reasons.

First, an analysis of the simulation data reveals that there are

a significant number of sensors that read the searched state

40% to 50% of the time, for example, considering the state

“1to5”. In this case, this should result in an expected average

communication overhead of 2 to 2.5, which is confirmed by

our simulations. The second reason is irregularities in the

simulation data: although we can identify periodic patterns in

the simulation data, these are often disrupted by outliers, which

makes the patterns imperfect. This could partly be attributed

to the data set, which was mapped to a small number of

relatively coarse states for the simulation. A small change in

the underlying raw sensor data (e.g., a change in the number

of free bicycles from 10 to 11) may thus provoke a change

in the deduced, coarser state. Prediction models that rely on

periodicities in data are susceptible to these discretization

effects. Additionally, in our model, we do not look at ordered

states, which further reduces the information content of the

data set.

b) With Adjustment Process: When looking at the sim-

ulation that utilized the adjustment process (AP), we see that

all the results benefit from this approach (Fig. 4). While the

largest average communication overhead without considering

the AP is about 7, this falls to about 3 when utilizing the AP.

This can be explained by the feedback loop we introduced,

which decreases the prediction results of sensors ranked too

high and increases the prediction results of sensors ranked

too low. We also included a static “prediction model” that

produces an arbitrary but constant ranking of the sensors, in

order to better assess the effects of the adjustment process.

Comparing the different prediction models reveals that the

average prediction overhead of the static and random pre-

diction model is only slightly worse than that of the other

prediction models. This finding (prediction models that do

not predict meaningful values result in good rankings) may

appear counter-intuitive. To understand it, remember that the

adjustment process works best if executed frequently. Since

we executed it for every query in our simulation, we updated

it every 15 minutes per state, and reset it when re-creating the

prediction models. For the static prediction model, this resulted

in behavior comparable to caching – sensor predictions are

adjusted to reflect the recent state. If the states sensed by

the sensors are not changing too frequently, the adjustment

process is able to model a ranking and therefore compensate

for the lack of an actual prediction model. However, this does

not explain why the random prediction model with adjustment

process performs even slightly better than a static ordering of

the sensors. An analysis of the simulation results revealed that,

with the adjustment process, there were some sensors that were

not considered at all when using a static ranking. However,

when using a ranking that varies over time (for example, like

the random prediction model does) then all sensors will be

considered by the adjustment process, which increases the

probability that sensors which continuously read the searched

state over a longer period of time will be found and adjusted

“upwards”. Thus, in this case, the random permutations ac-

tually help the adjustment process. The adjustment process

generally seems to increase the stability of the top k sensors

12

of a ranking, which results in a lower ranking error, provided

that the sensor states do not change too rapidly.

5) Summary: Based on our simulation results, we identified

two major findings. First, that the greater effort introduced

by more sophisticated prediction models does not necessarily

lead to improved sensor rankings. Second, that the adjustment

process not only significantly improves the sensor ranking, but

also alleviates the influence of the prediction models on the

sensor ranking. The best results are obtained by combining the

single-period prediction model with the adjustment process.

However, we should point out that these findings are based

on the simulation data considered and might not be directly

generalizable to other scenarios.

F. Prototype

We carried out a two-part prototypical implementation of the

concepts outlined in this case study. First, a sensor gateway

that connects sensors to the Web, computes prediction models,

and publishes automatically generated sensor and entity pages.

Second, our search engine Dyser, which indexes sensor and

entity pages, and which provides a web-based frontend and an

API for searching entities by their current state in real-time.

In order to be able to publish structured data, we used so-

called microformats [23] on the sensor pages. These are a way

of publishing structured data using plain HTML, such that the

content can be displayed in a standard Web browser and can

be easily parsed by the search engine to extract the structured

data. The association between an entity and its sensors is

created by utilizing specially crafted hyperlinks, placed on the

entity page, which link to the corresponding sensor pages. To

save query time, we materialized crawled prediction models,

i.e., we evaluated them at indexing time for all possible states

and all possible time slots within their prediction horizons and

stored the results in our index. A ranking of the results based

on expected relevance was provided by utilizing Google’s

ranking of results. The sensor and entity pages therefore

contained a special keyword (“magic string”), which enabled

us to find all sensor and entity pages on the Web. When

Dyser processes a query, it will first craft a search term for

Google by using only the keyword-based parts of the query,

plus the magic string. The returned list of results is then used

as described in Section V-B. Since we cannot expect users to

remember sensor types and their possible readings, we also

included in our real-world search engine a recommendation

mechanism that suggests possible sensor types after typing the

first few letters of the sensor name and also lists all possible

states for a selected sensor.

VI. CONCLUSION

The emerging trend of publishing real-time sensor data

on the Web opens up a wide variety of novel application

scenarios. One application, which we detailed in our paper,

is a search engine for the real world which allows users to

search for real-world entities with a given state. We provided

a survey of existing approaches to this problem, including a

classification of the systems in the design space for real-world

search engines. The paper concluded with a detailed case

study of Dyser, which utilizes a novel approach for searching

the real world in real time. Evaluation results presented in

this context indicate that periodic patterns in sensor readings

may be exploited to significantly decrease the communication

overhead of a real-world search engine.

REFERENCES

[1] A. Kansal, S. Nath, J. Liu, and F. Zhao, “SenseWeb: An Infrastructure
for Shared Sensing,” IEEE MultiMedia, vol. 14, no. 4, pp. 8–13, 2007.

[2] “Bicing,” http://www.bicing.com.
[3] E. Wilde, “Putting Things to REST,” UC Berkeley School of Informa-

tion, Tech. Rep. 2007-015, November 2007.
[4] D. Guinard, V. Trifa, and E. Wilde, “Architecting a Mashable Open

World Wide Web of Things,” ETH Zurich, Tech. Rep. CS-663, 2010.
[Online]. Available: http://www.vs.inf.ethz.ch/publ/papers/WoT.pdf,

[5] B. Ostermaier, B. M. Elahi, K. Römer, M. Fahrmair, and W. Kellerer,
“Poster Abstract: Dyser – Towards a Real-Time Search Engine for the
Web of Things,” in SenSys ’08: Proc. 6th Conference on Embedded

Networked Sensor Systems. ACM, 2008, pp. 429–430.
[6] B. M. Elahi, K. Römer, B. Ostermaier, M. Fahrmair, and W. Kellerer,

“Sensor Ranking: A Primitive for Efficient Content-Based Sensor
Search,” in Proc. 8th ACM/IEEE International Conference on Informa-

tion Processing in Sensor Networks (IPSN), 2009, pp. 217–228.
[7] T. Kindberg, J. Barton, J. Morgan, G. Becker, D. Caswell, P. Debaty,

G. Gopal, M. Frid, V. Krishnan, H. Morris, J. Schettino, B. Serra, and
M. Spasojevic, “People, Places, Things: Web Presence for the Real
World,” Mobile Networks and Applications, vol. 7, no. 5, pp. 365–376,
2002.

[8] “Reality Mining.” [Online]. Available: http://reality.media.mit.edu
[9] S. Madden, M. J. Franklin, J. M. Hellerstein, and W. Hong, “TinyDB:

An Acquisitional Query Processing System for Sensor Networks,” ACM

Trans. Database Syst., vol. 30, no. 1, pp. 122–173, 2005.
[10] H. Wang, C. C. Tan, and Q. Li, “Snoogle: A Search Engine for Pervasive

Environments,” IEEE Transactions on Parallel and Distributed Systems,
2009, http://doi.ieeecomputersociety.org/10.1109/TPDS.2009.145.

[11] C. C. Tan, B. Sheng, H. Wang, and Q. Li, “Microsearch: When Search
Engines Meet Small Devices,” in Pervasive ’08: Proc. 6th International

Conference on Pervasive Computing. Springer, 2008, pp. 93–110.
[12] K.-K. Yap, V. Srinivasan, and M. Motani, “MAX: Human-Centric

Search of the Physical World,” in SenSys ’05: Proc. 3rd Conference

on Embedded Networked Sensor Systems. ACM, 2005, pp. 166–179.
[13] C. Frank, P. Bolliger, F. Mattern, and W. Kellerer, “The Sensor Internet

at Work: Locating Everyday Items Using Mobile Phones,” Pervasive

and Mobile Computing, vol. 4, no. 3, pp. 421–447, 2008.
[14] T. Yan, D. Ganesan, and R. Manmatha, “Distributed Image Search in

Camera Sensor Networks,” in SenSys ’08: Proc. 6th Conference on

Embedded Networked Sensor Systems. ACM, 2008, pp. 155–168.
[15] K. Aberer, M. Hauswirth, and A. Salehi, “Infrastructure for data pro-

cessing in large-scale interconnected sensor networks,” in Mobile Data

Management (MDM’07), Mannheim, Germany, May 2007.
[16] ——, “Middleware Support for the “Internet of Things”,” in Fachge-

spräch Sensornetze, Stuttgart, Germany, 2006.
[17] A.-M. Corley, “Real-Time Search Stumbles Out of the

Gate,” IEEE Spectrum, February 2010. [Online]. Avail-
able: http://spectrum.ieee.org/telecom/internet/realtime-search-stumbles-
out-of-the-gate

[18] B. Stone, “Twitter and XMPP: Drinking from The Fire Hose,”
http://blog.twitter.com/2008/07/twitter-and-xmpp-drinking-from-
fire.html, July 2008.

[19] N. Eagle and A. Pentland, “Eigenbehaviors: identifying structure in
routine,” Behavioral Ecology and Sociobiology, vol. 63, no. 7, pp. 1057–
1066, May 2009.

[20] J. Reades, F. Calabrese, A. Sevtsuk, and C. Ratti, “Cellular Census:
Explorations in Urban Data Collection,” IEEE Pervasive Computing,
vol. 6, no. 3, pp. 30–38, 2007.

[21] A. Raveh and C. S. Tapiero, “Periodicity, Constancy, Heterogeneity and
the Categories of Qualitative Time Series,” Ecology, vol. 61, no. 3, pp.
715–719, 1980.

[22] M. G. Elfeky, W. G. Aref, and A. K. Elmagarmid, “Using Convolution to
Mine Obscure Periodic Patterns in One Pass,” in Proc. 9th International

Conference on Extending Database Technology (EDBT). Springer,
2004, pp. 605–620.

[23] “Microformats,” http://microformats.org.

13

Kay Römer is currently an associate professor of
computer science at the Institute for Computer En-
gineering of University of Lübeck, Germany. After
completing his studies in computer science at the
University of Frankfurt/Main, Germany in 1999, he
joined ETH Zurich as a research assistant, where
he obtained his Ph.D. in 2005 with a thesis on
wireless sensor networks. From 2005 to 2009 he
led the research activities related to wireless sensor
networks in the Distributed Systems Group at ETH
Zurich. Kay Römer’s current research interests en-

compass networked embedded systems, in particular wireless sensor networks,
pervasive computing, and the Internet of Things.

Benedikt Ostermaier was awarded a master’s de-
gree (Diplom-Informatiker) in computer science by
the Technische Universität München (TUM), Ger-
many in 2005. His master’s thesis addressed security
in vehicular ad-hoc networks and was conducted
in cooperation with BMW Group Research and
Technology. Benedikt Ostermaier joined Prof. Mat-
tern’s research group at ETH Zurich in 2006 and
is currently working towards his Ph.D. His research
interests include search engines for the real world,
mobile phones, and the Web of Things.

Friedemann Mattern is a Professor of Computer
Science at the Institute for Pervasive Computing of
ETH Zurich, Switzerland. He received a Masters
Diploma from the University of Bonn, and a Ph.D.
from the University of Kaiserslautern, Germany.
Before joining ETH Zurich in 1999, he was a faculty
member of Saarland University in Saarbrucken and
of TU Darmstadt, Germany. Prof. Mattern is a
member of the editorial board of several scientific
journals and book series, has initiated and chaired
a number of international conferences, published

more than 150 research articles and books, and is involved in various
research projects, typically in cooperation with industrial partners. He is a
member of the National Academy of Sciences Leopoldina and of acatech, the
German Academy of Science and Engineering. His main research interests
are distributed systems, ubiquitous computing, and the Internet of Things.

Michael Fahrmair was awarded Dipl.-Ing. (M.S.)
and Dr. (Ph.D.) degrees in computer science by the
Technische Universität München (TUM), Germany,
in 1999 and 2005 respectively. He joined DOCOMO
Communications Laboratories Europe in 2006 to
work in the Ubiquitous Networking group. He is
currently working as a Senior Researcher in both
the Smart and Secure Services and the Research
Planning and Promotion group. His main interests
are ubiquitous mobile service platforms and Rich
Communication Suite (RCS).

Wolfgang Kellerer (Member, IEEE) was awarded
Dipl.-Ing. (M.S.E.E.) and Dr.-Ing. (Ph.D.) degrees
by the Technische Universität München (TUM),
Germany, in 1995 and 2002 respectively. He is
currently Director and Head of the network research
department at NTT DOCOMO’s European research
laboratories in Munich, Germany. His research inter-
ests include mobile networking, QoE-based resource
management, service platforms, peer-to-peer and
sensor networks. Before joining DOCOMO Euro-
Labs, he was a member of the research and teaching

staff at the Institute of Communication Networks at TUM, Germany. In
2001 he was a visiting researcher at the Information Systems Laboratory of
Stanford University, California, US. For his outstanding scientific publications
he received the German ITG Award in 2008.

