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Abstract

This paper extends the work presented in Maia et al. (Semi-partitioned scheduling of fork-join tasks using

work-stealing, 2015) where we address the semi-partitioned scheduling of real-time fork-join tasks on multicore

platforms. The proposed approach consists of two phases: an offline phase where we adopt a multi-frame task model

to perform the task-to-core mapping so as to improve the schedulability and the performance of the system and an

online phase where we use the work-stealing algorithm to exploit tasks’ parallelism among cores with the aim of

improving the system responsiveness. The objective of this work is twofold: (1) to provide an alternative scheduling

technique that takes advantage of the semi-partitioned properties to accommodate fork-join tasks that cannot be

scheduled in any pure partitioned environment and (2) to reduce the migration overheads which has been shown to

be a traditional major source of non-determinism for global scheduling approaches. In this paper, we consider

different allocation heuristics and we evaluate the behavior of two of them when they are integrated within our

approach. The simulation results show an improvement up to 15% of the proposed heuristic over the state-of-the-art

in terms of the average response time per task set.
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1 Introduction
Multicore platforms are now very common in the embed-

ded systems domain as they provide more computing

power for the execution of complex applications with

stringent timing constraints. This boost in performance

increases substantially the complexity of the scheduling

problem of real-time tasks that execute upon these plat-

forms. While a uniprocessor scheduling problem reduces

to deciding when to schedule each task, a new dimen-

sion adds to this one when shifting to multicores: it must

also be decided where to execute each task. In order

to solve this rather challenging issue, several scheduling

algorithms have been proposed in the literature (see [1]

for a comprehensive and up-to-date survey).

Another important feature of these platforms is that

they make intra-task parallelism possible by taking advan-

tage of the task structure. At compile time, intra-task

parallelism can be extracted from application loops by

using programming frameworks such as OpenMP [2].

These frameworks resort to dynamic scheduling strategies
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in order to schedule application tasks. One of the most

common strategies in use is work-stealing [3]. In sum-

mary, work-stealing is a load-balancing algorithm which

allows an idle core to randomly steal some workload from

a busy core, referred to as the “victim”, with the objective

of reducing the average response time of a task executing

on a target platform1. While randomness in the selection

of a victim is traditionally acceptable in several computing

domains, no guarantee can actually be provided regarding

the timing behavior of the tasks as there is a possibility of

priority inversion among them. A solution to circumvent

this limitation consists of using multiple per-core priority

double-ended queues (known as deques2) [4].

In this paper, we consider fork-join real-time tasks

(i.e., a special case of parallel real-time tasks) in a semi-

partitioned scheduling context so that we can explore

the potential parallelism of migrating tasks at runtime by

resorting to the load balancing property provided by a

variant of the work-stealing algorithm [4]. The goal is to

reduce the average response time of the tasks and create

additional room in the schedule for less-critical tasks (e.g.,

aperiodic and best-effort tasks).
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We recall that semi-partitioned scheduling [5–7] con-

siders two steps: (step 1) a task-to-core mapping is per-

formed at design time where a subset of tasks (the subset

of non-migrating tasks) is assigned to specific cores and is

not allowed to migrate at runtime; (step 2) if a task can-

not be assigned to any of the cores without jeopardizing

its schedulability, then this task is referred to as a migrat-

ing task and is scheduled by using a global scheduling

approach to seek for a valid schedule.

In the proposed approach, the behavior of each migrat-

ing task is further restricted. At runtime, each job acti-

vation of a migrating task follows a job-to-core execution

pattern elaborated at design time in order to improve both

the schedulability of the system and its utilization factor.

In addition, we consider a task-level migration strategy,

i.e., various jobs of a migrating task are allowed to be

assigned to different cores, but once a job is assigned to a

core, migrations of this job prior to its completion are for-

bidden. In contrast, job-level migration approaches allow

each job assigned to a core tomigrate to another core prior

to its completion. By design, the proposed model limits

the number of migrations, which has been recognized as

one of the main sources of non-determinism on multi-

cores, by limiting work-stealing to occur between cores

that share a copy of a task3.

Contributions The contribution of this work is four-

fold: (1) we present a complete framework that supports

the scheduling of fork-join real-time tasks onto a multi-

core platform together with the associated schedulability

analysis. (2) As we assume that cores that share jobs

of a migrating task have a local copy of this task, we

reduce both the overhead concerning task fetching and

the number of task migrations due to the offline job-to-

core mapping. (3) As the parallel regions of each fork-join

task can execute simultaneously on different cores, we

take advantage of the work-stealing mechanism to reduce

the average response time of the tasks without jeopardiz-

ing the schedulability of the whole system. To the best of

our knowledge, we are the first using work-stealing in the

context of a semi-partitioned scheduling scheme. (4) We

extend the work presented in [8] by comparing different

allocation heuristics in terms of their allocation behavior.

For two of these heuristics, we evaluate the improve-

ment given by using work-stealing in terms of task average

response times. Moreover, we explain how to integrate

tasks with a density greater than one into our framework.

Paper organization The rest of this paper is organized

as follows. Section 2 presents the related work. Section 3

describes the model of computation used throughout

the paper. Section 4 details our proposed approach.

Section 5 provides an example of how the framework

works. Section 6 explains how decomposition-basedmod-

els can be used to accommodate tasks with density greater

than one. Section 7 presents the schedulability analysis of

the proposed approach. Section 8 reports on simulation

results from experiments on synthetic task sets. Finally,

Section 9 concludes the paper.

2 Related work
Three task models supporting intra-task parallelism exist

in the real-time systems domain: (1) the fork-join task

model, (2) the synchronous task model, and (3) the

directed acyclic graph (DAG) task model. From these

models, the fork-join task model (see Fig. 1) is the sim-

plest in terms of parallel structure. Specifically, the initial

sequential sub-task may fork into several independent

sub-tasks which can execute simultaneously in parallel.

Upon completion, these parallel sub-tasks join into a

sequential sub-task and this behavior may repeat again

up until the completion of the task. This model is a spe-

cial case of the synchronous task model. Indeed, in the

fork-join task model as presented in [9], parallel segments

Fig. 1 Fork-join task. In this figure, it is possible to observe the task structure of a fork-join task (left side), its timing properties (upper right side), and

its serialized representation (lower right side)
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must have the same number of sub-tasks, with a restric-

tion on the number of sub-tasks that each task can fork

into (not greater than the number of cores on the plat-

form). This restriction does not apply to the synchronous

model [10] nor does it apply to the model proposed in

this paper. The DAG task model [11] is the most gen-

eral one. In this model, each sub-task is represented as

a node4 and an edge connecting two nodes represents

a data/precedence dependency between the connected

nodes.

Both decomposition-based techniques [9, 10, 12] and

non-decomposition-based techniques [11, 13] have been

proposed to analyze the schedulability of these three task

models. Specifically, resource and capacity augmentation

bounds can be used to evaluate the schedulability of all

task models while response-time analysis [14, 15] can be

used to analyze synchronous parallel tasks.

Unfortunately, very few techniques exist in the liter-

ature for the analysis of semi-partitioned scheduling of

parallel tasks. Bado et al. [16] proposed a semi-partitioned

approach with job-level migration for fork-join tasks,

which is similar to the one in [9], but due to the assign-

ment methods proposed in their paper for the offsets

and local deadlines, they did not provide any guaran-

tee on the fact that sub-tasks actually execute in parallel.

While their work is similar to ours w.r.t. the adopted

class of schedulers (semi-partitioned), we differ in that

we relax the constraint of restricting the task parallelism

and we use task-level migration instead of job-level migra-

tion, thus further reducing the number of migrations at

runtime.

3 Systemmodel

Task specifications We consider a set τ
def
= {τ1, . . . , τn}

composed of n sporadic fork-join tasks. Each sporadic

fork-join task τi
def
= 〈Si,Di,Ti〉, 1 ≤ i ≤ n, is character-

ized by a finite sequence of segments Si
def
=

[

s1i , s
2
i , . . . , s

ni
i

]

,

with ni ∈ N, a relative deadline Di and a period Ti. These

parameters are given with the following interpretation: at

runtime, each task τi generates a potentially infinite num-

ber of successive jobs τi,j. Each job τi,j has a finite sequence

of segments Si, arrives at time ai,j such that ai,j+1 − ai,j ≥

Ti, and must be completed within [ ai,j, di,j) where di,j
def
=

ai,j + Di is its absolute deadline. Each segment ski ∈ Si
(with 1 ≤ k ≤ ni) is composed of a set of independent sub-

tasks5 tski
def
=

{

t1
ski
, . . . , t

vk
ski

}

, where vk denotes the number

of sub-tasks belonging to segment ski , and the sequence Si
represents dependencies between segments. That is, for

all sℓi , s
r
i ∈ Si such that ℓ < r, the sub-tasks belonging to sri

cannot start executing unless those of sℓi have completed.

The execution requirement of sub-tasks t
q

ski
(with 1 ≤ q ≤

vk) is denoted by e
q

ski
. The total execution requirement of

task τi, denoted by Ci, is the sum of the execution require-

ments of all the sub-tasks in Si, i.e., Ci
def
=

∑ni
k=1

∑vk
q=1 e

q

ski
.

Every sub-task is assumed to execute on at most one core

at any time instant and can be interrupted prior to its

completion by another sub-task with a higher priority. A

preempted sub-task is assumed to resume its execution

on the same core as the one on which it was executing

prior to preemption. We assume that each preemption is

performed at no cost or penalty. The minimum execution

requirement of task τi, denoted as Pi, is defined as the time

that τi takes to execute when it is assigned to an infinite

number of cores6, i.e., Pi =
∑ni

k=1 cski
, where cski

denotes

the worst-case execution time among the sub-tasks of seg-

ment k. The utilization factor of τi is Ui =
Ci
Ti

and its

density is λi =
Ci

min(Di,Ti)
. The total utilization factor of τ

is Uτ
def
=

∑n
i=1Ui and its total density is λτ

def
=

∑n
i=1 λi.

For each task τi, we assume Di ≤ Ti, which is commonly

referred to as the constrained-deadline task model. The

task set τ is said to be A-schedulable if algorithm A can

schedule τ such that all the jobs of every task τi ∈ τ meet

their deadline Di.

The left side of Fig. 1 illustrates a fork-join task τi
with ni = 5 segments, three are sequential segments

(s1, s3and s5) with one sub-task each and two are parallel

segments: s2 containing three sub-tasks and s4 containing

two sub-tasks. All the sub-tasks in the parallel segments

are independent from each other and therefore can exe-

cute in parallel. On the upper right side of the figure, it is

possible to observe the task structure framed according to

the timing properties of the task (P,D,T), and on the bot-

tom right side, it is possible to observe the task’s serialized

representation (i.e., task execution without parallelism).

Each migrating task is modeled as a multiframe task.

The multiframe task model (as presented by Mok and

Chen [17] and later generalized by Baruah et al. [18])

allows system designers to model a task by using a static

and finite list of execution requirements, corresponding

to successive jobs (or frames as they are named in this

model). Specifically, by repeating this list (possibly ad

infinitum), a periodic sequence of execution requirements

is generated such that the execution time of each frame

is bounded from above by the corresponding value in the

periodic sequence.

Platform and scheduler specifications We consider a

platform π
def
= {π1,π2, . . . ,πm} comprising m homoge-

neous cores, i.e., all the cores have the same computing

capabilities and are interchangeable. Each core runs a fully

preemptive Earliest Deadline First (EDF) scheduler. EDF

scheduling policy dictates that the smaller the absolute
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deadline of a job, the higher its priority. The schedu-

lability of a task set scheduled by following the EDF

scheduler upon a uniprocessor platform can be evaluated

by using the Demand Bound Function (DBF) [19]. The

DBF of task τi at any time instant t ≥ 0 is defined as

DBF(τi, t)
def
=

(⌊

t−Di
Ti

⌋

+ 1
)

· Ci and the DBF of task set τ

is derived as DBF(τ , t)
def
=

∑

τi∈τ DBF(τi, t). The notations

used throughout the paper are summarized in Appendix:

Table 1.

We allow work-stealing only among the cores that exe-

cute a migrating task. Jobs of migrating tasks execute on

selected cores according to an execution pattern that is

determined offline. By allowing work-stealing only among

these cores, a reduction of the average response-time of

each migrating task is possible, thus contributing to the

reduction of the overall system responsiveness.

Our framework assumes a shared-memory model with

similar properties (multi-threaded, shared address space,

etc.) than the parallel frameworks that integrate work-

stealing (such as OpenMP).

4 Proposed approach
We propose a semi-partitioned model of execution with

work-stealing for fork-join tasks. The proposed approach

consists of three phases referred to as (i) task assignment,

(ii) offline scheduling, and (iii) online scheduling.

4.1 Task assignment phase

In [8], a variant of the first-fit decreasing (FFD) heuristic,

hereafter referred to as FFDO7, was selected. FFDO first

divides the tasks into two classes: (1) tasks with λi ≤ 0.5

(light tasks) and (2) tasks with λi > 0.5 (heavy tasks)8. The

next step is to apply the classical FFD to light sequential

tasks first and then to heavy sequential tasks. After this

step completes, FFDO selects the light parallel tasks and

then the heavy parallel tasks, again using FFD as the pack-

ing heuristic. Intuitively, by assigning sequential tasks first

followed by the parallel tasks, the probability of having

parallel tasks unallocated after the first phase increases.

All the tasks successfully assigned to the cores are

referred to as non-migrating tasks, and the remaining

tasks, i.e., those that cannot be assigned by the heuris-

tic to any core without jeopardizing its schedulability, are

referred to as candidate migrating tasks.

At the end of the assignment phase, if all tasks are

assigned to cores, then there is no candidate migrating

task and therefore no migrating task in the system. In this

case, there is no need for parallelization and work-stealing

as a fully partitioned assignment of the tasks to the cores

has been found. Using work-stealing in this situation

would just help in load-balancing the execution work-

load at the cost of allowing for unnecessary migrations.

Due to this observation, work-stealing is forbidden for

non-migrating parallel tasks. In the other case, if a task

cannot be assigned to any core without jeopardizing its

schedulability, then this task is deemed as a candidate

migrating task and is treated as a multiframe task. The

system is deemed schedulable if and only if an execution

pattern is found for each candidate migrating task such

that all the timing requirements of the system are met.

The goal of this assignment behavior is to increase

the possibility of benefiting from parallelism in the third

phase of the approach as a way to reduce the response-

time of the tasks. For instance, some parallel tasks may not

fit into the cores in this first phase, and if this is the case,

such tasks can be re-checked in the second phase of the

approach by treating them as multiframe tasks. If an exe-

cution pattern is found for the multiframe task, then these

tasks can benefit from work-stealing in the third phase.

4.2 Offline scheduling phase

After the task assignment phase, let τπj denote the set of

tasks assigned to core πj (with 1 ≤ j ≤ m). It follows that

τπj = τ
πj

NM ∪ τ
πj

M where τ
πj

NM denotes the subset of non-

migrating tasks and τ
πj

M denotes the subset of migrating

tasks assigned to πj.

We remind the reader that each core runs an EDF sched-

uler, so the schedulability of the non-migrating tasks on

each core is guaranteed as long as its load is less than 1.

Concerning the migrating tasks, their jobs are distributed

among the cores by following an execution pattern that

does not jeopardize the schedulability of each individual

core. To compute this pattern, the number of frames of

each migrating task is computed as follows.

Definition 1 (Number of frames (taken from [7])) The

number of frames ki to consider for each migrating task τi
is computed as:

ki
def
=

H

Ti
, where H

def
= lcmτj∈τ {Tj} (1)

In Eq. 1, lcmτj∈τ {Tj} denotes the least common multiple

of the periods of all the tasks in τ . Goossens et al. [20]

proved that this number of frames per migrating task is

conservative and safe.

Definition 2 (Execution pattern (taken from [7]))

The job-to-core assignment sequence σ of each migrat-

ing task τi is defined through ki sub-sequences as σ
def
=

(σ1, σ2, . . . , σki) where the sub-sequence σs (with 1 ≤ s ≤

ki) is given in turn by the m-tuple σs =
(

σ 1
s , . . . , σ

m
s

)

. By

following a uniform job-to-core assignment, the sth job of

task τi is assigned to core πj if and only if:

σ
j
s =

⌈ s + 1

ki
· M[ i, j]

⌉

−

⌈ s

ki
· M[ i, j]

⌉

= 1 (2)
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In Eq. 2,M[ i, j] is a matrix of integersM[ 1 . . . n, 1 . . .m]

that tracks the current job-to-core assignment where

M[ i, j]= x means that x jobs of task τi out of ki will

execute on core πj (1 ≤ i ≤ n and 1 ≤ j ≤ m).

To the best of our knowledge, the uniform assignment

given by Eq. 2 is the best result found in the litera-

ture for finding execution patterns for migrating tasks.

An alternative approach is the generation of patterns via

enumeration. Equation 2 is part of a set of algorithms

that were proposed in [7] for the finding of patterns for

multiframe tasks. The intuitive idea of these algorithms

is to find the largest number of frames (jobs) that can

be assigned to each core such that the migrating task is

deemed schedulable. The result in [7] was integrated into

our approach.

4.3 Online scheduling phase

This phase takes advantage of the multicore platform and

the execution pattern of migrating parallel tasks in order

to reduce their average response-time at runtime and con-

sequently that of other tasks assigned to the intervening

cores. This is achieved by allowing work-stealing to occur

among cores that share a copy of a migrating task during

the execution of their parallel regions9. Below, we recall

the four necessary rules (R1 to R4) for an efficient usage of

the work-stealing algorithm:

R1: At least one selected core must be idle when there

are parallel sub-tasks awaiting for execution.

R2: Idle selected cores are allowed to steal sub-tasks from

the deque of another selected core.

R3: When stealing workload, the idle core must always

steal the highest priority parallel sub-task from the

list of deques (as proposed in [4]) in order to avoid

priority inversions (this situation occurs when the

number of migrating tasks is greater than 1 and the

tasks have different priorities).

R4: After selecting a parallel sub-task to steal, say from

core A to core B, an admission test must be

performed on core B to guarantee that its

schedulability is not jeopardized by this additional

workload.

We recall that we avoid the overhead of fetching the

code of the task from the main memory as the code of the

migrating task is already loaded on the selected cores after

the execution of the first job in a selected core. Whenever

a core performs a steal, data is fetched from the memory

of another core, which is to a certain extent equivalent to a

migration. However, only input data is fetched in this case.

Moreover, the number of migrations is limited by the task-

to-core mapping (performed offline), which forces a job

to execute in the pre-assigned cores instead of migrating

between an arbitrary number of cores as it would happen

in a global approach.

5 Example of the approach
This section illustrates the proposed approach. We con-

sider the task set τ = {τ1, τ2, τ3, τ4} with the follow-

ing parameters (τi = {Ci,Di,Ti}): τ1 = {3, 5, 6}, τ2 =

{3, 5, 8}, τ3 = {2, 3, 4}, τ4 = {1, 8, 8}. We assume that all

the tasks have a sequential behavior except τ1 for which

the execution consists of three regions: (i) a sequential

region of one time unit, then (ii) a parallel region of two

sub-tasks of 0.5 time units each, and finally, (iii) a sequen-

tial region of one time unit. We assume that tasks in τ

are released synchronously and scheduled on the homo-

geneous platform π = {π1,π2}. Finally, we assume that an

EDF scheduler is running on each core.

During the assignment phase, let us assume that tasks

τ3 and τ4 are assigned to π1 and τ2 is assigned to π2 as

they cannot benefit from any parallelism. Then, task τ1
can neither be assigned to π1 nor to π2 without jeopardiz-

ing the schedulability of the corresponding core. Figure 2

(left side) illustrates the schedules in which τ1 is tentatively

assigned to π1 (there is a deadline miss at time t = 11) and

to π2 (there is a deadline miss at time t = 5).

Now, let us apply our proposedmethodology to this task

set. There is a single parallel task in the system:

Fig. 2 Illustrative example of the proposed approach. On the left side of this figure, it is possible to observe a schedule under fully partitioned EDF

(with deadline miss) and on the right side a schedule with the proposed approach
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(1) Task assignment phase: during this phase, τ3 and τ4
are assigned to π1 and τ2 is assigned to π2. For the same

reasons as in the previous case, task τ1 can neither be

assigned to π1 nor to π2, so it is considered as a candidate

migrating task.

(2)Offline scheduling phase: during this phase, an execu-

tion pattern which does not jeopardize the schedulability

of the cores for the migrating task τ1 is found. Task τ1
is then treated as a multiframe task on each core with

the following characteristics as ki = 24/6 = 4: τ 11 =

((3, 0, 0, 0), 5, 6) and τ 21 = ((0, 3, 3, 3), 5, 6). This is given

with the interpretation that the first job of τ1 executes in

core 1 and the remaining 3 jobs execute in core 2.

(3) Online scheduling phase: during this phase, task τ1
takes advantage of the work-stealing mechanism in order

to reduce its average response time. Indeed, at time instant

t = 3, core π1 is executing the parallel region of task τ1 and

core π2 is idle with sufficient resources, so it can steal one

parallel sub-task from the deque of π1. The same situation

occurs again at time t = 7.5. Figure 2 (right side) illustrates

the resulting schedule; the system is schedulable.

6 Tasks with density greater than 1
In [8], we considered a model that only supports

tasks with density no greater than one (λi ≤ 1).

Nevertheless, it is possible to overcome this limita-

tion by recurring to decomposition-based techniques.

This section provides an example of task decomposi-

tion using the technique proposed in [9] and discusses

the implications of combining such an approach with

work-stealing.

Decomposition-based techniques ( [9, 10, 12]) tradition-

ally convert tasks with density greater than one into a

set of constrained-deadline sequential sub-tasks, each of

which with density no greater than one. These approaches

try to avoid parallel structures by serializing parallel tasks

as much as possible so that they can take advantage of

schedulability techniques developed for sequential tasks.

In [9], the authors propose the task stretch transform

algorithm, which uses the available slack10 of the task to

proportionally stretch (i.e., serialize) parallel sub-tasks or

parts of them in what is called a master string. The mas-

ter string is assigned to a core and has an execution time

length equal to Di = Ti. The remaining parallel sub-tasks

that cannot be combined in themaster string are assigned

intermediate releases and deadlines so that they become

constrained-deadline tasks.

Figure 3 illustrates an example of such a task decompo-

sition. In this example, the task consists of two sequential

sub-tasks and three parallel sub-tasks, Ci = 11, Di = 10,

and therefore λi = 1.1. In order to stretch the task, we

compute its slack (assuming an infinite number of cores

and no interference from other tasks), which in the exam-

ple equals Di − Pi = 10 − 5 = 5 time units. The slack

is then proportionally assigned to the parallel sub-tasks

so that they execute sequentially in the master string. The

sub-tasks that cannot be completely assigned to the mas-

ter string have to be either parallelized or partly executed

in two cores. In our example, one of the sub-tasks executes

partly in core π2 for one time unit and partly in core π1

for two time units. Note that the parallel sub-tasks must

have intermediate release offsets and deadlines in order

to guarantee execution consistency, for instance the sub-

task that executes partially in π2 must complete before it is

migrated to π1. Therefore, it has an intermediate deadline

of 6 time units after being released.

By treating a parallel task as a set of constrained-

deadline sub-tasks, each of the sub-tasks can be used as

input to an allocation heuristic to test the schedulability of

a task set. Figure 4 illustrates an example where the above

task, let us name it τ0, is integrated into a task set of three

tasks: τ1, τ2, and τ3, all with implicit deadlines and τ1 is

sequential and τ2 and τ3 are parallel. By applying the pre-

sented decomposition approach, task τ0 has a “stretched”

task and a parallel sub-task. The stretched task is assigned

to a core and the parallel sub-task can execute in any other

core. Then, τ1 is selected next and is allocated to core π2.

As for the remaining parallel tasks, τ3 is assigned next and

τ2 is deemed a migrating task and a pattern is computed

so that it is possible to schedule it upon the platform.

Some important aspects should be highlighted consid-

ering the application of decomposition-based approaches,

Fig. 3 Example of task decomposition. This figure depicts a task with a density of λi = 1.1 composed of two sequential sub-tasks and three parallel

sub-tasks and its respective decomposition according to the approach proposed in [9]
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Fig. 4 Example of a task set that uses task decomposition. This figure provides an example of how one can integrate task decomposition with the

proposed framework. A task set with four tasks is used where one of the tasks is decomposed into a set of constrained-deadline sub-tasks

specially regarding work-stealing. Decomposition is use-

ful as it allows one to know if a certain task set is schedu-

lable offline. If a task with density greater than one is

identified as a migrating task, then it may be subject to

stealing. When stealing a sub-task from such a task and

its release offset and intermediate deadline are kept, then

this task will not benefit from the stealing operation as

its response time will not decrease due to the precedence

constraints imposed by the master string. However, the

offered idle time can be used to execute lower priority

tasks or even steal work from other cores. Another option

is to handle the offset constraints carefully during run-

time so that intermediate deadlines are guaranteed while

ensuring that no deadlines are shifted.

7 Schedulability analysis
This section derives the schedulability analysis of a set

of constrained-deadline fork-join tasks onto a homoge-

neous multicore platform. A modification of the semi-

partitioned model is adopted (see Section 4), and we

assume that each core runs an EDF scheduler, while allow-

ing work-stealing among the “selected cores”, i.e., cores

that share a copy of a migrating task. A schedulabil-

ity analysis is performed in each phase of the proposed

approach and works as follows.

(1) Task assignment phase: during this phase, the

schedulability of the system is performed by applying

the traditional DBF-based analysis [19] to non-migrating

tasks, as explained in Section 3.

(2) Offline scheduling phase: during this phase, we make

sure that the additional workload added to each core

concerning the assignment of the migrating tasks does

not jeopardize the schedulability of the core. Specifi-

cally, for each migrating task, say τi, we use a modified

DBF-based schedulability test as presented in [7]. In this

test, the execution pattern of each migrating task τi is

taken into account. More precisely, the number of inter-

vals of length (ki · Ti) occurring in any interval of length

t ≥ 0 is computed as s
def
=

⌊

t
ki·Ti

⌋

; since [ 0, t) =[ 0, s ·

ki · Ti)∪[ s · ki · Ti, t), then the number of frames that

contribute to the additional workload on core πj con-

sists of two terms: (i) the number of non-zero frames

in the interval [ 0, s · ki · Ti] denoted as s · ℓ
j
i (where ℓ

j
i

is the number of frames out of ki that were successfully

assigned to πj). The corresponding workload is s · ℓ
j
i ·

Ci, and (ii) an upper-bound on the number of non-zero

frames in the interval [ s · ki · Ti, t) denoted as nbi(t) =
⌊

(t mod(ki·Ti))−Di
Ti

⌋

+ 1. The corresponding workload is

w
j
i = max

ki−1
c=0

(

∑c+nbi(t)−1
η=c Ci,η mod ki

)

. It follows that an

upper-bound on the total workload associated to task τi

on core πj is computed as DBFj(τi, t)
def
= si · ℓ

j
i · Ci + w

j
i.

Consequently, DBF
(

τ
πj

M , t
)

def
=

∑

τi∈τ
πj
M

DBFj(τi, t).

Finally, the schedulability at the end of this phase is

guaranteed if:

load(πj)
def
= supt≥0

⎧

⎨

⎩

DBF
(

τ
πj

NM, t
)

+ DBF
(

τ
πj

M , t
)

t

⎫

⎬

⎭

≤ 1, ∀πj ∈ π (3)

In Eq. 3, DBF
(

τ
πj

NM, t
)

represents the demand for the

non-migrating tasks assigned to πj in the task assignment

phase.

(3) Online scheduling phase: In this phase the schedula-

bility analysis obtained in phase 2 is extended to consider

the potential extra workload related to work-stealing.

Figure 5 illustrates an example of the schedule of a job of

a task, say τi, on a core, say πj, after the offline schedul-

ing phase. In this figure, we can see a fork-join task with

its fork points (φ1 and φ2), synchronization points (μ1 and

μ2), and its slack time. In this phase, we exploit the steal-

ing windows (ω1 and ω2 in the example) and the available

slack of each job to accommodate the stolen workload.

A work-stealing operation is feasible from one core, say

core A, to another core, say core B, if core B can exe-

cute the stolen workload (i.e., a parallel sub-task from
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Fig. 5 Result after the offline analysis. This figure depicts a fork-join task with its fork points (φ1 and φ2), synchronization points (μ1 and μ2), and its

slack time

the deque of core A) before the end of each stealing

window (μ1 and μ2 in the example). Such time instants

are denoted as the intermediate deadlines for the stolen

sub-task. To compute the intermediate deadline for each

stealing window, we can take advantage of the slack avail-

able for each job. Thus, the intermediate deadline of the

nth parallel segment can be computed as: d
(n)
s

def
= φn +

ms ∗ c
s
(n)
i

+ slack(φn). In this equation, φn denotes the

time instant at which the nth parallel segment spawns the

sub-tasks, ms denotes the number of sub-tasks spawned

in segment n, c
s
(n)
i

denotes the worst-case execution time

among the tasks in segment n, and slack(φn) represents

the slack of the job at time φn.

Figure 6 illustrates the computation of the intermedi-

ate deadlines for the stealing windows using this equation.

In this figure, core π2 can steal sub-tasks from core π1 in

stealing windows ω1 and ω2. The intermediate deadline

for the sub-tasks that may be stolen in ω1 is computed and

the result is d
(1)
s . As the sub-task execution is less than the

intermediate deadline, the stealing operation is successful.

Similarly, the intermediate deadline for the sub-tasks inω2

Fig. 6 Example of work-stealing and intermediate deadline

computation. This figure illustrates the computation of the

intermediate deadlines in the stealing windows ω1 and ω2

is computed and the result is d
(2)
s . For the same reasons,

the stealing operation is also successful in ω2.

Before core B can steal a sub-task from coreA, an admis-

sion control test has to be performed on core B. Two

possible scenarios can occur when stealing a sub-task in

the nth parallel region of task τi: (1) no release occurs in

core B between φn and d
(n)
s . In this case, core B can safely

steal a sub-task from core A provided that the execu-

tion of the stolen sub-task meets its intermediate deadline

(case 1 in Fig. 7); or (2) at least a release occurs in core B

in this stealing window. In this case, we can distinguish

between two sub-cases. (2.1) Some releases have their

deadline before d
(n)
s : in this sub-case, we should update

the idle time interval in the stealing window by subtract-

ing the interference related to the corresponding new job

releases from the size of the stealing window (case 2.1

in Fig. 7. In the figure, task τi and τj have releases and

deadlines within ω1). (2.2) Some releases have their dead-

line after d
(n)
s : in this case, no guarantees can be provided

on the schedulability of the system as the stolen job may

modify the scheduling decisions initially taken on core B.

Therefore, no stealing occurs (case 2.2 in Fig. 7. In the

figure, task τk has a release in ω1 but deadline outside of

the window).

Fig. 7 Possible cases for the admission control test. This figure

illustrates the possible cases for the admission control test
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8 Simulation results
This section presents the results of simulating our

approach on a set of synthetic and randomly generated

task sets. The simulation environment is described next.

Considered platform We consider a platform consisting

of two or four homogeneous cores.

Task generation Each task τi can be sequential or par-

allel. The number of each type of tasks depends on the

generation itself and is not controlled beforehand. Tasks

are created until the total utilization of the task set does

not exceed the total platform capacity (i.e., Uτ ≤ m).

Tasks are created by randomly selecting a number of

segments k ∈ [ 1, 3, 5, 7]. When k = 1, the task is sequen-

tial; otherwise, it is parallel. In case of a parallel task, the

number of sub-tasks is nsubtsk ∈ [ k, 10]. The worst-case

execution time per sub-task (Ci,subtsk) in each task varies

in the range [ 1,max_Ci_subtsk] where max_Ci_subtsk =

2 for performance reasons. We compute the worst-case

execution time of each task as Ci =
∑

∀ subtsk∈τi
Ci,subtsk

11.

Then, we derive the remaining parameters: the period Ti

and utilizationUi. The period Ti is uniformly generated in

the interval [Ci, nsubtsk ∗max_Ci_subtsk∗2]. This interval

allows us to have a task utilization
(

recall that Ui =
Ci
Ti

)

that falls in the interval [ 0.50, 1] if all nodes are assigned

max_Ci_subtsk or [ 0.25, 1] if all nodes are assigned the

minimum value for Ci,subtsk
12. To generate execution pat-

terns for the migrating tasks, we use Eq. 2 first and if no

pattern is found we follow an enumeration approach. In

our experiments, Di = Ti. This procedure is repeated

until 1000 task sets with migrating tasks are generated for

two and four cores.

Selected heuristics In order to evaluate the performance

of FFDO, we have conducted benchmarks against other

well-known bin-packing heuristics, namely the standard

first-fit decreasing (FFD), best-fit decreasing (BFD), and

worst-fit decreasing (WFD). FFD assigns each task to the

first core from the set of cores with sufficient idle time

to accommodate it; BFD assigns each task into the core

which after the assignmentminimizes the idle time among

all cores; and WFD assigns the task to the core which

after the assignment maximizes the idle time among all

cores. All the heuristics, except FFDO, group the tasks

into sequential and parallel tasks and sort each group in a

decreasing order of task utilization.

In order to compare the heuristics, we measured the

percentage of unallocated tasks over a large number of

task sets (to this end, we generated one million task

sets in this experiment) to decide which heuristics have

a higher number of candidate migrating tasks. Figure 8

depicts the results. We clearly observe that FFDO and

Fig. 8 Percentage of unallocated tasks per heuristic. This figure

presents the percentage of unallocated tasks per heuristic over one

million task sets

WFD are the heuristics that present a higher num-

ber of unallocated tasks, while BFD and FFD allocate

nearly the same amount of tasks and present a lower

value of unallocated tasks when compared to FFDO

and WFD. These results indicate that our initial heuris-

tic is a good candidate for our approach as it allows

the approach to try to re-allocate a high number of

tasks in the second phase as migrating tasks. Due to

this result, we selected both FFDO and WFD for a

direct comparison in terms of the number of schedulable

task sets.

To compare these two heuristics, we followed a proce-

dure where a number of task sets are randomly generated

in order to obtain 100 schedulable task sets with FFDO,

and then, for all the generated task sets, we evaluate

how many of them are schedulable using WFD. Figure 9

depicts the results of this comparison.

The task sets schedulable by using WFD can be divided

into four groups: 26.85% of these task sets are schedula-

ble by using both heuristics; 24.51% are not schedulable

by using FFDO due to ki
13; 43.19% are not schedula-

ble by using FFDO with a ki value in the range of valid

values; and finally, 5.45% of the task sets are deemed

not schedulable with FDDO after applying the heuristic.

Overall, in a two-core setting, the total number of task

sets that are schedulable by using WFD is 257, which

represents an increase of 157% over FFDO for the same

input. From the diagram, the majority of the task sets that

are schedulable by using WFD fit in a potential feasible

region for FFDO heuristic (43.19%) — here, all task sets

have migrating tasks and ki values that fit in the range

of valid values but no feasible pattern is found. These

results still hold for four cores but to a less extent as only

17.9% more task sets were schedulable by using WFD

over FFDO.
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Fig. 9 Comparison between FFDO and WFD. This figure presents how

the data is categorized for WFD when a fixed number of task sets is

used as input. For the same number of input task sets used to obtain

100 schedulable task sets for FFDO, we have obtained 257 for WFD

We conjecture that WFD behaves better than FFDO

(even though FFDO has a higher percentage of unassigned

tasks as shown in Fig. 8) for smaller number of cores

because of the task-to-core assignment. Depending on the

granularity of the utilization of the task sets, more empty

space may be available globally in the cores when per-

forming the task allocation for a small number of cores.

These idle slots make it possible for our pattern-finding

procedure to find enough room to fit a job of a task when

computing the execution pattern for a migrating task.

However, as the number of cores increases, WFD natu-

rally balances the workload through the cores, whereas

FFDO assigns the workload in the initial cores leaving

more room in later cores. For this reason, we envision that

WFD will have the tendency to behave either equally to or

even worse than FFDO with the increase in the number of

cores.

Considered metrics In order to evaluate the proposed

approach, we measure the gain obtained in terms of

the average worst-case response time for each schedu-

lable task set. Specifically, for each task set, we gener-

ate the complete schedule for the two approaches: the

approach that schedules migrating tasks without applying

the work-stealing mechanism among the selected cores,

denoted as Approach-NS; and the approach that applies

the work-stealing mechanism among the selected cores,

denoted as Approach-S. After generating both schedules

for each task set, we compute the average response-

time of the jobs of each task throughout the hyper-

period by adding the response time of each individual

job and by dividing the obtained result by the num-

ber of jobs in one hyperperiod. This process is applied

to both approaches. The improvement, i.e., the gain of

Approach-S over Approach-NS is computed by applying

the following formula for each task τi: AVτi =
AVNS

τi
−AV S

τi

AVNS
τi

·

100, where AVNS
τi

denotes the average response-time for

task τi in Approach-NS and AV S
τi

denotes its average

response-time in Approach-S. It follows that the aver-

age gain for each task in the task set is computed by

dividing AVτ : AVτ = 1
|τ |

·
∑

τi∈τ AVτi .

Figure 10 illustrates the average gain for two and four

cores, respectively, for the selected heuristics, namely

FFDO andWFD.

Interpretation of the results The improvement in terms

of average response time per task (in %) is grouped by

utilization—see Fig. 10—when using Approach-S over

Approach-NS. For each sub-figure, the distribution of

data is depicted in the form of box plot. In the plot, for

each utilization value, it is possible to see the minimum

and maximum values of gain per task, the median and

the mean (in the form of a diamond shape), the first and

third quartiles, and finally, the outliers in the shape of a

cross. The line in red depicts a linear regression on the

data (the mean value was used to compute the regression)

in order to depict the pattern of prediction of the gain

per task.

Considering two cores: for task sets with a high utiliza-

tion (over 1.55), there is a clear illustration of the gain of

the proposed approach. In the best case, this gain reaches

nearly 15% for FFDO and nearly 12% of the average

response time per task for WFD, which is non negligi-

ble. As the utilization of the task sets increases, the gain

per task decreases. This is expected due to the increasing

lack of idle time available for stealing. The trend shows

that above 1.95 of utilization, the work-stealing mecha-

nism becomes of little interest. This is explained by the

fact that the total workload on each core is very high,

thus leaving very small room for improvement on the

average response time of each migrating task through

work-stealing. It is important to note that task sets with

utilizations below 1.55 using FFDO and 1.45 using WFD

are not included in the plot as they do not contain any

migrating task.
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Fig. 10 Simulation results for FFDO and WFD. This figure presents the improvement in the average worst-case response-time when using an

approach with work-stealing and an approach without work-stealing. On the top, one can see the results for two cores and on the bottom one can

see the results for four cores. On the left side, the results show the improvement for FFDO and on the right the improvement for WFD

Considering four cores: the trend is similar to the one

depicted for two cores. This trend is also shown by the

linear regression line where it is possible to predict the

average gain per task as a function of the utilization of

the task set. The regression shows that for lower uti-

lizations in two cores, the expected improvement starts

at 2.3% for FFDO and 3.3% for WFD. For four cores, it

starts at 1.4% for both heuristics. We can also observe that

the expected improvement decreases with an increase in

the tasks’ utilization. This behavior suggests that work-

stealing is useful for task sets with migrating tasks with

a utilization that span from the lowest possible utiliza-

tion for task sets with migrating tasks up to the platform

capacity. Closer to this upper limit, the benefits of using

work-stealing are limited. From the observed behavior

in two and four cores, we conjecture that the proposed

approach will behave similarly when the number of cores

increases.

Overheads of the approach This work shows that it is

possible to decrease the average response time of tasks

and use this newly generated free time slots to execute

less critical tasks (e.g., aperiodic or best-effort tasks).

While such a decrease involves overhead costs, such as

the number and cost of migrations or even the impact of

online admission control on the overall approach, we did

not explicitly measure them. Still, we provide an overview

of the existing costs and their possible impact on system

performance.

We assume that cores that share a migrating task have

a local copy of this task. However, keeping task copies is

platform dependent as for some platforms it might not

be possible to have copies due to memory constraints. In

our approach, local copies are used for migrating tasks

which might be subject to stealing, and having a local

copy prevents fetching the task code from the main mem-

ory. Whenever a stealing operation occurs, a core fetches

data from another core’s memory in order to help in the

execution of the task. While this is not a task migration

per se, it has some commonalities as data needs to be

moved from one core to another. This may cause inter-

ference in the execution of other tasks in the system (for

instance due to the existence of shared resources). In

our approach, this overhead only occurs when stealing

occurs and is performed by a core that is idle, so part

of the cost is supported by the idle core (which is neg-

ligible due to the idleness of the core). Considering the

number of data transfers, this number can be bounded in

our framework as in the worst-case the number of data
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fetches when stealing depends on the number of sub-tasks

in each segment and the number of cores that share the

task.

Considering the online admission control, our test

requires the current time instant and the available slack

at a specific time instant. Both of these variables can be

easily computed in any given platform either by using the

platform timing functions and a cumulative function that

computes the slack for the current job. Therefore, we con-

sider that this does not pose any significant overhead in

our approach.

9 Conclusions
In this paper, we combined techniques that allow us to

schedule fine-grained parallel fork-join tasks onto mul-

ticore platforms. By using the proposed technique, we

can schedule systems with high utilizations. Moreover,

the proposed technique takes advantage of the semi-

partitioned scheduling properties by offering the pos-

sibility to accommodate parallel tasks that cannot be

scheduled in any pure partitioned environment, while

reducing the migration overhead which has been shown

to be a traditional major source of non-determinism

in global approaches. Parallel tasks are heavy in their

nature, and therefore, a natural candidate for this model

if execution time constraints is present. Our results show

that by using work-stealing, it is possible to achieve

an average gain on the response times of the paral-

lel tasks between 0 and nearly 15% per task, which

may leave extra idle time in the schedule to exe-

cute less critical tasks in the platform (i.e., aperiodic,

best-effort).

Endnotes
1Note that the balance of the platform workload at run-

time also allows for a better control of the platform energy

consumption [21, 22].
2A deque is a special type of queue which also works as

a stack.
3Two or more cores executing a migrating task share a

copy of this task.
4There is no restriction on the execution requirement

of each node, and the execution time of each node may

vary from one node to another.
5There is no communication, no precedence con-

straints and no shared resources (except for the cores)

between sub-tasks.
6A task which consists of a single sub-task in each of its

segments is considered a sequential task.
7Wehave explored alternative heuristics (see Section 8).

8The threshold for classifying tasks varies in the litera-

ture, nevertheless a density of 0.5 is usually regarded as a

good threshold for classifying tasks.
9These cores are also referred to as “selected cores”.
10Slack is the maximum amount of time that the

remaining computation time of a job can be delayed at a

time instant t (with ai,j ≤ t ≤ di,j) in order to complete

within its deadline.
11By considering the worst-case execution time for each

sub-task in the experiments we are evaluating the benefits

of using work-stealing in the worst possible scenario.
12As we evaluate the behavior of each task set in the

interval [ 0,H], where H denotes the least common mul-

tiple of the periods of all the tasks in the task set, and as

Ti in our generation depends on Ci, the higher the Ci, the

higher the Ti and consequently, the higher the hyperpe-

riod of the task set. By limiting Ci,subtsk we are also limiting

the amount of time we need to generate the schedule.
13As explained in [8], we reject task sets that have a

number of frames over 10 for performance considera-

tions. In summary, the complexity of the computation of

the migrating patterns increases for large ki, which leads

to higher computation times.

Appendix

Table 1 Notation table

Symbols Description

τ Set of n tasks

Di Relative deadline of task τi

Ti Period of task τi

ai,j Arrival time of job j of task τi

di,j Absolute deadline of job j of task τi

Si =
[

s1i , s
2
i , . . . , s

ni
i

]

Sequence of ni segments, ni ∈ N

ski Segment k ∈ Si

t
q

ski
Sub-task q belonging to segment ski

vk Number of sub-tasks belonging to segment ski

e
q

ski
Execution time of sub-task t

q

ski

Ci Total execution requirement of task τi

Pi Minimum execution requirement of task τi

Cski
Worst-case execution time among the sub-tasks
of segment ski

Ui Utilization factor of task τi

λi Density factor of task τi

Uτ Total utilization factor of the task set τ

λτ Total density of the task set τ
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Table 1 Notation table (Continued)

π Set ofm homogeneous cores

τπj Set of tasks assigned to core πj

τ
πj

NM Subset of non-migrating tasks assigned to πj

τMπj Subset of migrating tasks assigned to πj

ki Number of frames of a migrating task τi

H Least common multiple of the periods of all the
tasks in τ

σ Job-to-core assignment sequence

M[ i, j] Matrix of integers of the current job-to-core
assignment

s Number fo intervals of length ki · Ti

ℓ
j
i Number of frames out of ki that were successfully

assigned to πj

nbi(t) Upper-bound on the number of non-zero frames
in the interval [ s · ki · Ti, t]

w
j
i Workload in the interval [ s · ki · Ti, t]

dbfj(τi , t) Demand-bound function for task τi in πj in the
interval [ 0, t]

φn Fork point for segment n

μn Synchronization point segment n

ωn Stealing window n

slack (φn) Slack of the job at time instant φn

d
(n)
s Intermediate deadline of the nth parallel segment

ms Number of sub-tasks spawned in segment n

c
s
(n)
i

Worst-case execution time among the tasks that
belong to segment n

AVτi Gain per task of Approach-S over Approach-NS

AVτ Average gain per task in the task set
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