—

Journal of Intelligent and Robotic Systems 13: 247-262, 1995.
© 1995 Kluwer Academic Publishers. Printed in the Netherlands.

Real-time Shared Control System for Space
Telerobotics

ALEXANDER DOUGLAS and YANGSHENG XU
The Robotics Institute, Carnegie Mellon University, Pittsburgh, PA 15213, U.S.A.

(Received: 14 June 1993; in final form: 10 December 1993)

B /SSN 0921-0296
lf OFFPRINT FROM

Remember the Library!
they need your

suggestions to service
your needs

Kluwer
academic
publishers

0

L‘ﬂ‘ . J I et &:?&'S" oot IR

Journal of Intelligent and Robotic Systems

Theory and Applications
(Incorporating Mechatronic Systems Engineering)

Editor-In-Chief:
Spyros G. Tzafestas
Dept. of Electrical Engineering, National Technical University of Athens, Greece

Editorial Board:

p. Borne, /DN, Villeneuve; N.G. Bourbakis, T.J. Watson School of Applied Science, Binghampton, NY; J.R.
Bourne, Vanderbilt University, D. Bradley, University of Lancaster, A. Bradshaw, University of Lancaster, P.
Chen, Louisiana State University, P. Coiffet, Paris, France, J.-M. David, Renault-DSCIT, H.A. Nour Eldin,
University of Wuppertal, T. Fukuda, Nagoya University, N. Gaimbiasi, EERIE-LERI, Nimes, R. Hanus, Free
University of Brussels, M. Jamshidi, University of New Mexico, R.L. Kashyap, Purdue University, M.A.
Kramer, MIT, Cambridge, MA; C.S.G. Lee, Purdue University, N.K. Loh, Oakland University, A. Meystel,
Drexel University, R. Milne, Intelligent Applications Ltd, J.M. Nightingale, University of Southampton; A.
Oosterlinck, University of Leuven, L.F. Pau, European Technical Center, Valbonne; Yoh-Han Pao, Case
Western Reserve University, Cleveland, U. Rembold, University of Karlsruhe; P.D. Roberts, City University,
London; A.P. Sage, George Mason University, G.N. Saridis, Rensselaer Polytechnic Institute; G. Schmidt,
Technical University, Munich; M.G. Singh, UMIST, Manchester, H.E. Stephanou, George Mason University,
Y. Sunahara, Kyoto Institute of Technology, A. Titli, CNRS, Toulouse, V. Tourassis, University of Rochester,
R. Tomovié University of Belgrade; I. Troch, Technical University, Vienna, G. Vachtsevanos, Georgia
Institute of Technology, G.C. Vansteenkiste, University of Ghent, A.N. Venetsanopoulos, University of
Toronto: N. Viswanadham, Indian Institute of Science; M. Vukobratovit, Mihailo Pupin Institute, Belgrade; K.
Watanabe, Saga University, B.P. Zeigler, University of Arizona

The theory and practice of intelligent and robotic systems is currently one of the most intensely studied and
promising areas in computer and systems science and engineering, and one that will certainly ptay a primary
role in future life. The Journal of Intefligent and Robotic Systems: Theory and Applications provides a source
linking all fields in which the system intelligence and/or intelligent control plays a dominant role, and stimulates
interaction between workers performing both theoretical and applied research.

The papers published are all highly ariginal, novel, of acute interest and, above all, clearly presented. A
particutar feature of the journal is the number of papers that suggest new avenues of research and new
developments in the field.

Topics of particular relevance to the Journal of Intelligent and Robotic Systems are: computer integrated
manufacturing systems, computer vision, diagnostic systems, expert systems, intelligent systems, learning

“ Kluwer Academic Publishers, P.O. Box 17,3000 » Dordrecht, The Netherlands

247

irnal of Intelligent and Robotic Systems 13: 247-262, 1995.
tmer wre . 4--doin Duhlichore Printed in the Netherlands.

eal-time Shared Control Systerm for Space
elerobotics

LEXANDER DOUGLAS and YANGSHENG XU

he Robotics Institute, Carnegie Mellon Unive/Sit: Pittsburgh, PA 15213, US.A.

leceived: 14 June 1993; in final form: 10 pecember 1993)

bstract. The shared control system is a m‘odular real-time system designed to execute
omplex tasks through the intelligent coordinarion Of task modules. A state machine is used
omatic switching, the accuracy and reliability

y control task sequencing, and due to the aut .)
d & 2™ roved. Tasks consist of sets of independent,

/ith which tasks are executed, is greatly imp . -
sodular, and reusable subtasks whose outputs Jre combined to create the control. This system
y t of reliable high level multiple sensor based

as proved itself useful for rapid developmen X

nanipulation and control tasks. Additionally’ we have integrated a neural network based

isual servoing system, a semi-compliant Cattesian trajectory following heuqsucs, and a

eal-time graphical user interface in the system)’ The shared control system was implemented

or the Self-Mobile Space Manipulator (SM') to handle a range of tasks associated with
ortation on Space-Station Freedom.

ocomotion, manipulation, and matetial transp

Key words. Telerobotics, Space robotics, gebot control, Shared control, Mobile

manipulator, Robot programming.

1. Telerobotic System: SM?

In future space exploration, robotic technology will be vital in helping or replac-
ing astronauts for various tedious and dangerous extra-vehicle-activities (EVA).
For a space-robot system, because of the complexity of tasks and uncertainly of
environment, the control system must incorporate both model-based autonomy
and human-supervised teleoperation. The software architecture of such a control
system is the so-called shared control of teleoperation and autonomy. Consid-
erable research and development efforts have been directed to this area, such as
[5-8].

Since 1989, we have been developing the Self-Mobile Manipulator (SM 2y
which is a walking robot to assist astronauts on the Space-Station Freedom and
other space structures in performing construction, maintenance and inspection
tasks. It has end-effectors for attachment, and can step from point to point
to move freely around the exterior of space structures. SM? can replace EVA
astronauts in performing tedious or dangerous tasks, and can be deployed quickly
to investigate emergency situations. It is simple and modular in construction to
maximize reliability, simplify repairs and minimize development time. SM 2

248 A. DOUGLAS AND Y. XU

is lightweight, so it can operate with minimum energy and disturbance to the
structures.

Over the past four years, SM? has progressed from concept, through hardware
design and construction, to software development and experiments with several
versions of the robot, During the first year, we developed a concept for robot
mobility on the space-station trusswork, and experimentally tested a variety of
control algorithms for simple one-, two- and three-joint rabots. During the second
year, we developed a simple, five-joint robot that walked on the tubular-strut-
and-node structure of the original Space Station Freedom design, and a gravity
compensation system that allowed realistic testing in a simulated zero-gravity
environment. The third-year work focused on development of the manipulation
function; we added a part-gripper and extra joint at each end of the robot, and
developed control software [1-3]. Photographs of SM? and its configuration in
carring a long strut on the tubular-strut-and-node structure are shown in Figures |
and 2.

During the fourth year of the project, in response to the changing design
and needs of the Space Station, our focus has shifted to adapting SM* to new
Space-Station trusswork and specializing it as a mobile inspection robot to aug-
ment the fixed video cameras planned for the Space-Station Freedom, System
changes, to enable this function on the new I-beam-truss Space-Station Free-
dom design, encompass the truss mockup; robot configuration and end-effectors;
gravity compensation system; and control software, including shared-control,
neural-network-based vision and graphics simulation.

The robot’s size and configuration have been adjusted to a accommodate the
new truss structure. SM?2 now has seven joints (Figure 3) one at the elbow and
three at each end (Figure 4) to allow out-of-plane motions needed for stepping
from one truss face to another, while preserving the robot’s symmetry to simplify
control. Joints are self-contained and modular, so a minimum inventory of parts
is needed for joint repair or replacement. The robot links are long enough to
permit stepping between adjacent longerons. At each end of the robot is a
three-fingered gripper for grasping the truss I-beam flanges. Finger separation
is measured by a linear potentiometer, while motor current is sensed to indicate
grasp force. Contact switches on the three fingers verify the grasp. Capacitive
proximity sensors at the base of the fingers are used to sense beam proximity,
and can be used for aligning the gripper with the beam.

To facilitate a variety of tasks that SM? is designed to perform, we developed a
real-time shared control system. The shared control system shares the capabilities
of teleoperation and autonomous control, From the real-time control point of
view, the shared control function needs an architecture that allows multiple tasks
to be executed simultaneously. By combining task model-based control with
Sensor-based control, the system enables the robot to perform dynamic sequences
of tasks that range from teleoperational to semi-autonomous to fully autonomous
such as trajectory tracking, ORU placement, beam grasping, beam follawino

Nead _1 1

SHARED CONTROL SYSTEM FOR SPACE TELEROBOTICS

249

Fig. 2. Photograph of SM? carrying 3.1-meter-long strut on the tubular-strut-and-node

structure.

A. DOWGLAS AND ", XU

< upul

Fig. . Photograph of the SM? testbed with wood/aluminum I-beam preio egrmU0 .russ
moch

Fig. 4. Photograph of SM? standing on the I-beam integrated truss mockup.

SHARED CONTROL SYSTEM FOR & & CE TELEROBOTICS 2.51

2. Shared Control Sys ¢m
2.1. SYSTEM OVERVIEW

The shared control system is designed to achieve robust task execution and
error handling while still being easily extensible. Because tasks are defined as
a group of subtasks—modules-which run concurrently, it is possible to execute
several tasks at once. Upon task execution, a module can generate two types
of output; for example, a module could give robot control information, i.e., a
differential motion in base-relative Cartesian coordinates, and could also send
status messages to the state machine.

To elaborate on this example: in order to enable the robot to grab a beam,
the operator could run the trajectory task module simultaneously with the contact
sensor module. The trajectory module would take into account the robot’s current
position and designed trajectory; then, rather than returning an actual goal point,
the module would return the difference between the goal point and the current
position as the robot control motion. Upon completion of this task, the module
would send a done message to the state machine. Meanwhile, the contact-
sensor module, also taking into account the robot’s current position and designed
trajectory, would initiate gripper contact with the beam. If the contact sensor
module would, indeed, sense contact with the beam, the module would return
a contact message to the state machine. If, and only if, both the trajectory and
the contact sensor modules return the messages done and contact, respectively,
the state machine would then perform a transition to a new state such as closing
the gripper on the beam. Should this attempt fail, the state machine would try
again, this time using the visual servo to aid in the approach.

The state machine is parsed at runtime, i.., no re-compilation is needed to
change the task execution. Consequently, much less time is needed for designing
and testing tasks. Also, since these task modules can be used within any task,
little code needs to be written. In the state machine, tasks are represented as
states; transitions occur based on the messages sent from the task modules. In
order to make the system more useful and flexible, task modules are also designed
to receive commands from the state machine. For example, a trajectory task
module might have several preloaded trajectories to choose from; it is the state
machine that sends a message telling the module which trajectory to execute.

The shared control system comprises four types of modules: task modules,
remote task modules, coordination modules, and combination modules. The
task modules generate differential movements based on inputs from the remote
task modules, hardware devices, and robot position information. The remote
task modules run on high speed processors or workstations and perform heavy
computation or user interface tasks. They then send their results to task modules
running on the realtime system via UNIX sockets, VME bus or serial line. The
coordination module contains the state machine and handles all of the actions
involved with the state machine. including switching tasks and sending messages

252 A. DOUGLAS AND Y. XU

Remose Remote
Task Module 1 | | Task Module 2
HP>TTak Moduule T
9| Tk Module 2 Coordinati Reposition:
Module Modul
A\ Task Module N
Hardware PID Controller,
Device Dynamnic Model,

and Robot

Fig. 5. Shared control concept model.

to the task modules. The combination module intelligently combines the control
outputs from the running task modules into one coherent control command and

then determines that the command is a reasonable motion for the manipulator to
perform (see Fig. 5).

2.2. TASK MODULES

We have developed several reusable task modules for the SM? control software.
In each control cycle, the task modules perform four basic functions:
o:‘_Rcad messages from the state machine and respond in appropriate fashion.
¢ Read sensor devices, global variables, or receive input from remote tasks.
o Generate desirable control motion based on local inputs.
¢ Send appropriate messages to the state machine.
Such a (liata-processing structure facilitates the design of task modules that can
operate independently of each other, thus increasing real-time concurrency. Ide-
ally, each sensor group would constitute its own module which would not only

gen.erate useful messages about the state of the sensors but would also provide
various types of control based on these sensors. For example, on the SM 2 each

SHARED CONTROL SYSTEM FOR SPACE TELEROBOTICS 253

gripper has three proximity sensors which are used by one task module. The
task module receives commands telling it from which gripper to read sensors
and also what type of control output to produce. If at least one sensor senses
something in close proximity, the module sends the message partial contact to
the state machine; if all three senses something in close proximity the module
sends the contact message to the state machine; if none senses an object in close
proximity, the module sends the no contact message. These messages provide
useful information about the completion of a task or a state of error.

In our shared control system, the task module also provides compliant control
to aid in grasping operations. Based on the values of the proximity sensors, it is
easy to compensate for orientation errors for the tip. Since this module can run
simultaneously with many other modules, it can aid in the grasping of beams for
either autonomous motion or teleoperation.

Each module can produce only a desired motion which is combined with the
desired motions from other task modules, thus, there is no guarantee that this
motion will be what the robot executes. Therefore, task modules must be robust.
For example, consider a Cartesian trajectory task module. During each cycle,
the module must find the closest via point to the robot position and generate
a desired motion based on this difference. To address this problem, we have
designed a trajectory-tracking algorithm which can be robust in light disturbances
or compliant to the control from other modules which are running simultaneously.

The task module serves two purposes: to generate a desired movement for
the robot and to notify the task coordination modules of interesting events. A
desired movement for the robot is generated based on real-time information such
as global variables, e.g., position, hardware devices, and remote task modules.
Interesting events include completion of a goal or recognizing that an important
change has occurred somewhere; for example, a task module whose job is to
follow a trajectory generates a desired direction for movement based on the

"HALT®

Fig. £ Task

254 A. QOWGLAS AND Y. Xw

current position of the robot every cycle until the goal is reached. The module
then notifies the task-control module that execution is complete. All task modules
can have multiple instances running in the shared control system. Each instance
gets its parameters from a different configuration file at startup and, based on
messages sent to the module, may be changed dynamically while running. Thus,
through reparameterization, very different and dynamic effects can be achieved
within a relatively small piece of code.

2.3, REMOTE TASK MODULES

In a complex robot-control system, many tasks are CPU-intensive, require special
hardware or have user interfaces. These types of tasks are not suitable for slow
real-time processing boards, but usually run well on workstations or specialized
processors. For this reason, the shared control system includes the concept of a
remote task. A remote task running as a process on a remote workstation func-
tions in exactly the same way as a task module running on the real-time system.
The remote task module receives the same inputs, robot position information and
control messages as task modules receive and can also give the same outputs,
desired motion and messages to the state machine. The SM 2 system uses one
workstation equipped with digitizer boards to run neural network-based image
processing as a remote task. In addition, the system includes several graphic
interfaces that interact with the state machine and display real-time information.
For example, a graphic interface can allow a dynamic change in scaling param-
eters for the teleoperation input device or can provide a real-time CAD model
display of the robot’s position.

Through the use of UNIX sockets, remote task modules open up a communi-
cation line with a server process running on the host workstation for the real-time

SPARC Workstation

Realtime Host Workstlon
(Sua 360)

2x Ironics 68020
realime CPU

Fig. 7. Remote ask communications.

SHAR(D CONTROL SYSTEM FOR SPACE TELEROBOTICS 255

system. Using the VME bus, the server process handles sending messages to
and from the state machine as well as passing the control information to the
combination module. The server also provides data from the realtime system
and synchronization signals for the remote task modules (see Fig. 7).

2.4. COMBINATION MOQUILE

The combination module serves two purposes: combining the movements of the
task modules into one movement, and ensuring that the movement is not too
drastic for the robot. There are many ways to combine the output vectors from
the task modules. We have tested several methods, both in simulation and real-
time experiments: a simple summation; a simple average; weighted sum and
average; voting on angle and velocity; and some unusual variations. In practice,
the weighted average performs well since it is not computationally expensive and
its performance is predictable. The weighted average used in the coordination
module is as follows:

X, ask
Y -1
Xeef, =n" (w1 .. W)

t 3k

chf. = Xreft_, + Xref.

The reference position does not just accumulate the optout of the ask modules,
but rather is bounded by the robot’s position;

|Xref - Xmez' <= XErrm,x
eref - Xmezl <= XEn'ma,
|Oref - 6mez| <= G)Errm.,(
|eref - G.')mczl <= GEn'm.,(

This ensures that the robot never lags too far behind the reference position, and
thus implies several things: the information for each cycle is still relative to the
robot’s actual position; and the reduction in position errors may cause an increase
in controller gains. This also gives the robot a natural compliance, which is very
important in space manipulation tasks. Once a new X, and X are computed
by the inverse kinematics, the joint angles, Oy, are thresholded to stay in the
robot’s workspace.

Qer = inVKin(Xref» Xrefv Omezs Gm<:z)
Orer = Frequency (O — Orefg)

256 A. DOUGLAS AND Y. Xy

Fig. 8. Data flow and cycle times. Lower left box is controller loop running at 50 Hz and

the larger box is the shared control system running at 25 Hz. The transitions are labeled with
the variables that pass along them.

such that

Omin <= invKin (Xref' Xref» Omez, emez)
inVKin(Xref, Xref’ Omez, Gmcz) <= Omax

The combination module is the key to linking the shared control system to the
manipulator, as illustrated in Figure 8. Because the reference position is never
allowed to get too far away from the robot, the slow manipulator is always able
to keep up with the reference point. If the robot is bumped, the reference point

moves with it. This forms a natural compliance and avoids large position errors
in the control loop.

2.5. COORDINATION MODULE AND STATE MACHINE

One of the major concepts behind this shared control system is that the task
modules have no knowledge of what other task modules they are interacting
with. They simply operate in whatever mode they are told to, and send out
messages whenever an event that might be important occurs. It is the coordina-
tion module’s responsibility to make the task modules perform in an intelligent
manner. Currently, we are using a state machine to coordinate the task mod-
ules and sequencing of tasks; however, the machine could easily be replaced by
some intelligent decision-making system. Based on messages returned from the
task modules, the state machine determines the end of an event, or the need to
change states. Each state in the state machine knows what task modules should
be running during that state. When a new state is entered, the correct set of task

SHARED CONTROL SYSTEM FOR SPACE TELEROBOTICS 257

modules is started up and all others are turned off. In addition, these modules
receive a set of initialization commands which tell the modules how to perform
in this new state.

The state machine is programmed via a simple language in which the pro-
grammer describes: the commands and outputs of the task modules; the states,
including the initial state and what task modules should be running; the initial-
ization command sequence; and transitions. Since all of this data is in a file that
is parsed and checked for accuracy at runtime, development of new high level
tasks is quick. No recompilation and source code are required. To enable our
system to perform elegantly, we have found it necessary to modify the concept
of the state machine. Some of the additions we have made include: pattern
matching to transitions and task module commands, counter-type variables, and
the ability to reparameterize task modules during transitions.

When we first implemented the state machine, it was obvious that there was
a need to somehow compress the seemingly endless, geometric, enumeration of
states. This problem has to do with the fact that, while there are many aspects of
a task and a sequence of tasks that can be logically generalized, this is not so in a
state machine. Our solution was the inclusion of wildcards in the description of
task module commands and transitions. For example, a trajectory task module
might have any number of preloaded trajectories and the state machine must
be able to tell the module what trajectory to execute, i.e. the machine sends a
message such as traj3. To avoid enumerating a possible trajectory as a command,
trajl...trajn, the operator can use a wildcard, traj?. Any string that matches this
pattern is then considered an appropriate command.

A similar idea is applied to the concept of state transitions, which is described
in the following way. When a message is received from a task module, move
from Source-State to Destination-State. Through the use of wildcards, these
transitions become more rules for changing states rather than transitions from
one state to another. The first use of wildcards appears in the description of the
message that actually creates the transition. For example, once a trajectory has
been executed, the state machine recetves a message, traj.done, which means
that the trajectory module has completed the trajectory. Rather than making a
separate transition for each trajectory that could have been executed, we can
simplify the description by stating that if the state machine receives a message
matching done? from task traj, then the machine should the perform a transition
to another state.

Often we have found that many states are simply variations on a theme, e.g.,
where the only difference between states is parameterization of the task modules,
as in the state machine for teleoperation where the group of states differs only in
the scaling of the teleoperation input and the use of position or velocity control.
Command sequences performed during a transition can be eliminated since this
allows reparameterization during a transition which might lead back to the same
state. The measure for dealing with this is the use of generalized transitions.

258 A. DOUGLAS AND Y. XU

Through the use of wildcards, transitions from one type of state to another
may be performed upon the receipt of a specific message in the source state.
The characters of the completed wildcard are used to describe the destination
state. An example of this would be switching from position mode, TelePos?, to
velocity mode, TeleVel? in teleoperation, while maintaining the same scaling. If
the current state were TelePos3, the result of receiving the message to switch to
velocity mode would be a transition to state TeleVel3.

The addition of counter variables was necessary to allow different branches
from same state to be based on seemingly identical situations. Since state ma-
chines can not elegantly express temporal knowledge without maintaining a sep-
arate state for each possibility, we have added a task module that can manage a
set of counter variables which can be set, incremented, decremented and read.
This allows transitions to be based on data such as how many times an event has
occurred or how many times sequences of high-level tasks have been executed,
starting from the same initial state.

3. System Implementation

In this section we will present the actual system we have developed, based on
the shared control concept in the previous section, for the SM? manipulator.
As described in the first section, locomotion and inspection tasks need a robot
with the capability to align the gripper with the beam so as to allow the robot to
approach and grab the beam. Slightly modification of this function will enable
the robot to keep a certain height and orientation with respect to the beam while
following it. This capability will be needed for trusswork inspection tasks.

In our development of the shared control system, we have found it necessary to
develop some secondary concepts to make the system useful yet flexible. Among
these developments, are two that might be of particular interest: a retrainable
generic, neural network-based visual servoing system and a semi-compliant tra-
jectory algorithm,

3.1. TRAJECTORY CONTROL

In the shared control environment, conventional trajectory following does not
work particularly well, since one can not make any assumptions about the po-
sition or speed of the robot from one cycle to the next. This means that it is
impractical to ramp velocities using precomputed values. Also in the shared
control environment, it is impossible to tell how far off course one may be. To
remedy this problem, we have designed a trajectory-following task which handles
this problem in an elegant manner. Using a graphic software simulation, we have
developed a control strategy that generates a more desirable motion. Supposing
one considers a trajectory as a curve in 3-dimensional Cartesian space, and on
this curve there is some closest via-point. At this point, there is a vector tangent

SHARED CONTROL SYSTEM FOR SPACE TELEROBOTICS 259

Robot Initial

Position Cnd

Trajectory

Fig. 9. Trajectories with different attraction constants.

to the curve and a normal vector which passes through the current reference
point of the robot. Movement along the tangent vector is movement in along the
trajectory path, while movement along the normal vector is movement along the
recovery path. The desired motion constructed is a linear combination of these
two vectors. Every trajectory has an attraction variable, G, which determines the
degree of attraction of the reference point to the trajectory. As G approaches 1,
the recovery path becomes dominant, i.e., there is a strict traversal of the path
through the via points. As G approaches 0, the shape of the path becomes more
important (see Fig. 9).

Xak =g*N+(1-g)*T

3.2. NEURAL NETWORK BASED VISUAL SERVOING

Neural networks have demonstrated their ability to track and recognize objects. In
Carnegie Mellon, we designed a generic neural network-based vision system [4].
This system is composed of three parts: data collection, network training and
network execution. We have automated all three parts in order to facilitate rapid
development of visual servoing tasks. By plotting the scene in a known position,
it is possible to execute random trajectories, or to move the robot manually,
and to collect training data. Then, using a neural network description language,
we can create and train a network on this data. Once a network is trained, its
configuration and weights are stored. Using a generic remote task module, any
of these neural networks can be used to control the robot. The remote module
sends robot control values just as a task module does, and also sends a message
signifying the stabilization of the network, i.e., the completion of the servo task.

260 A. DOUGLAS AND Y. XU

Rather than modifying the control software to compute the desired output
during the data collection process, the system tags each collected image with the
measured tip and camera position. Either a simple post-processing program or
the UNIX program awk, enables computation of the desired outputs. This ability
is quite useful in that several networks can be trained to behave differently, based
on the same collected data; e.g., with regard to the task of centering over a beam,
one network can be trained to center itself directly over the beam; another can
be trained to center the manipulator with a constant offset; yet another can be
trained to approximate the distance of the beam from the camera.

The actual architecture of the network, including number of layers, number of
nodes, connections, transfer functions, etc., is described in a file which is fed
along with the exemplar file to the training system. The training system uses
an adaptive training supervisor algorithm to perform pruning and avoid local
minima. A backpropagation network is trained to reliably generate the desired
response. Once adequate performance is achieved, the network is saved and is
ready to run with the shared control system.

A generic visual servoing task runs on a remote SPARC workstation equipped
with two digitizer boards. This program continually digitizes images on both
boards. While its images on one board are digitized, the images on the other
board are being read into main memory. This procedure provides the fastest
possible update of the images. Since the idea behind shared control is to allow
multiple tasks to control the robot simultaneously, several visual servoing tasks
are able to run simultaneously. Due to the relatively simple computation pet-
formed by the neural network, the main problem is with acquiring the images.
After the images are acquired, several networks then perform their computations
and have their control values sent to the real-time system at approximately 10 Hz.

3.3. REAL-TIME GRAPHICAL USER INTERFACE

The real-time graphical user interface (RGUI) is a PHIGS- and XView-based
application that acts as a remote task module. This GUI was designed to provide
‘he following capabilities:

o Real-time 3D display of the robot position and configuration in a model
of its environment.

» Interface manually controlled task sequencing, i.e., interaction with the
state machine.

o Teleoperation input device for directly contepling Ule cobo< moton.
o Programming and testing trajectories.

e Collision detection and obstacle avoidance using CAQ modsl

SHARED CONTROL SYSTEM FOR SPACE TELEROBOTICS 2=1

Data Collection

Realtime
[Besired Dutput)
System

-
Board 0w Yes Tmage)

Network Design and Training

Training Pile

=
3

R
File Trained Network
- File

Fig. 10. Overview of general neural network vision system.

o Simulation: graphic display to preview the robot motion with respect to
Space Station Freedom before execution.

This graphical interface demonstrates that the modular structure of the shared
control system does not limit the functionality of a control system, but rather
simplifies it. The GUI has two different 3D views of the robot in its environment.
In teleoperation mode, the GUI transforms mouse movements and button clicks
into robot movement relative to the view in which the action is happening. The
movement is then converted to be relative to the robot’s base and sent to the
combination module on the real-time system. The real-time display draws the
robot’s configuration according the location of the base in world coordinates and
joint angles which are passed to it from the real-time system. Collision detection
is done by checking for intersections of the robot with the CAD model. If a
collision is detected. a message is sent to the state machine.

4. Conclusion

The shared control system is a modular system designed to execute complex
tasks through the intelligent coordination of task modules. The system has
been implemented in the Self-Mobile Space Manipulator for execution of various
tasks associated with locomotion, manipulation, and material transportation on
Space-Station Freedom. The unique aspect of this system lies in the design and
combination of the task modules. The state machine is a valuable method for

262

A. DOUGLAS AND Y. XU

controlling the flow of tasks, and, due to the automatic switching, the machine
greatly improves the accuracy of task execution. In addition, the inclusion of the
generalized visual servoing and other control techniques contributes to making
this system truly reusable, modular and efficient. The shared control system has
proven itself to be useful for rapid development of high level tasks. Furthermore,

this system seems to reliably solve many manipulation problems we have faced
in the past.

References

1.

2.

Xu, Y., Brown, B., Friedman, M. and Kanade, T.: Control System of Self-Mobile Space
Manipulator, Proc. IEEE Int. Conf. Robotics and Automation, 1991.

Ueno, M., Ross, W. and Friedman, M.: TORCS: a teleoperated robot control system
for the Self-Mobile Space Manipulator, Technical Report CMU-RI-TR-91-07, Camnegie
Mellon University, Pittsburgh, PA, 1991.

Xu, Y., Brown, B., Aoki, S. and Kanade, T.: Mobility and Manipulation of a Light-
Weight Space Robot, Proc. Int. Workshop on Intelligence Robots and Systems, 1992.
Pomerleau, D.: Neural Network-Based Road Navigation, PhD Thesis, Carnegie Mellon
University, Dept. of Computer Science, 1992,

Kim, W. S.: Graphical Operator Interface for Space Telerobotics, Proc. IEEE Int. Conf,
Robotics and Automation, 1993.

Lawn, C. A. and Hannaford, B.: Performance Testing of a Passive Communication
and Control in Teleoperation with Time Delay, Proc. IEEE Int. Conf. Robotics and
Automation, 1993.

Desrochers, A.: Intelligent Robotic Systems for Space Exploration, Kluwer Academic
Publishers, Dordrecht, 1992.

Brunner, B., Hirzinger, G., Landzette!, K. and Heind], J.: Multisensory Shared Auton-
omy and Tele-sensor-programming-Key Issues in the Space Robot Technology Experi-
ment ROTEX, Proc. Int. Workshop on Intelligence Robots and Systems, 1993,

]
)
1
1
1
1
[l
[l
1
1
1
]
1
]
1
]
[l
'
]
]
]
1
]
]
'
]
'
]
'
'
]
1
]
1
]
]
'
1
1
)
1
1
1
]
]
1
1
1
1
1
r
1
1
]
]
1
1
1
1
]
]
'
[
'
)
)
)
]
[
)
]
)
]
)
)
'
)
)
1
1
[]
)
)
)
]
1
]
]
)
]
[
v
t
1
]
]
]
1
1
[
1
r
]
1
1
'
]
'
]
1
1
1
]
'
]
]
]
'
1
'
'
1
1
]
[l
'
]
]
[
[l
'
[l

g

For information about current subscription rates and prices for back volumes for

Journal of Intelligent and Robotic Systems, ISSN 0921-0296

please contact one of the customer service departments of Kluwer Academic Publishers or
return the form overleat to:

Kluwer Academic Publishers, Customer Service, P.O. Box 322, 3300 AH Dordrecht, the
Netherlands, Telephone (+31) 78 524 400, Fax (+31) 78 183 273, Email: services@wkap.nl
or

Kluwer Academic Publishers, Customer Service, P.Q. Box 358, Accord Station, Hingham MA
02018-0358, USA, Telephone (1) 617 871 6600, Fax (1) 617 871 6528, Email:
kluwer @world.std.com

\ el

Call for papers
Authors wishing to submit papers related to any of the themes or topics covered by Journal of

Intelligent and Robotic Systems are cordially invited to prepare their manuscript following the
‘Instructions for Authors’. Please request these instructions using the card below.

Author response card
Journal of Intelligent and Robotic Systems

tintend to submit an article on the following topic:

Please send me dptsiled ‘Instructions for Authors’.
NAME : e e _.
INSTITUTE : e R
DEPARTMENT o
ADDRESS : [

Telephone P
Telefax P . . S

Library Recommendation Form

Route via Interdepartmental Mail

To the Serials Librarian at: . S
From: . Dept/Facultyof: ... ___ . e
Dear Librarian,

! would like to recommend our library to carry a subscription to
Journal of Intelligent and Robotic Systems, ISSN 0921-0296
published by Kluwer Academic Publishers.

Signed: Date:

