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Abstract

In this work, we present a system for recognizing let-

ters and finger-spelled words of the American sign lan-

guage (ASL) in real-time. To this end, the system segments

the hand and estimates the hand orientation from captured

depth data. The letter classification is based on average

neighborhood margin maximization and relies on the seg-

mented depth data of the hands. For word recognition, the

letter confidences are aggregated. Furthermore, the word

recognition is used to improve the letter recognition by up-

dating the training examples of the letter classifiers on-line.

1. Introduction

The American sign language (ASL) is a visual-gestural

language used by deaf people in North America and in other

countries around the globe. Over half a million people use

ASL to communicate with each other as their primary lan-

guage. ASL recognition systems can be used for education

of children or newly hearing impaired, as well as for live

interpretation applications to facilitate the communication

between hearing and deaf people.

In this work, we present a system which translates ges-

tures signed in front of a time-of-flight (TOF) camera into

the corresponding letters of the ASL finger alphabet. Ad-

ditionally, the system is able to guess the most likely word

currently spelled with the individual letters in real-time. Ex-

ploiting the advantages of depth data, a hand segmentation

algorithm is introduced that relies on the single assumption

that the hand performing the gestures is the object closest to

the camera. Using this premise, no further information like

the skin color, markers for the hand, or a special recording

setup are needed.

For letter classification, we have evaluated three meth-

ods. The first method relies on a codebook of hand ges-

tures where each codebook entry contains only one single

training example. The similarity of an extracted hand and

a codebook entry is computed by the difference of normal-

ized depth values. This method works only in a single-user

setup where training data is provided by the user. The sec-

ond method is based on average neighborhood margin max-

imization (ANMM) [26] that is more suited for classifica-

tion of hand gestures in a multi-user environment, where the

user does not provide any training data. The third method

estimates the hand orientation and uses the orientation as

additional cue for letter recognition. Based on the letter

recognition system, we further propose a word recognition

system. To this end, we combine the three letter classifica-

tion methods and aggregate the letter confidences to recog-

nize words out of a pre-defined lexicon. As an additional

feature, we demonstrate that the word recognition can be

used to improve the letter classifiers by updating the train-

ing samples when a word has been recognized with high

confidence. To the best of our knowledge, this has not been

previously investigated within this context.

While there exists previous work on gesture recogni-

tion systems operating in real-time and using depth data

[7, 19, 20, 9, 25] with high recognition rates, the considered

datasets are small and consist of well distinguishable ges-

tures. Systems that consider larger datasets and especially

finger alphabets [12, 1, 15, 22] still require special environ-

ments or markers to achieve high recognition rates. Recog-

nition of spelled words with the use of finger alphabets has

so far received very little attention. In [11], histograms of

oriented gradients and a hidden Markov model are used to

classify words in a single-user setup for the British sign lan-

guage finger alphabet.

2. Related work

Our approach for recognizing letters of the sign alpha-

bet is related to gesture recognition from depth data and op-

tional color data [10, 14, 2, 20, 7, 19, 9, 22, 8, 25]. In partic-

ular, the ANMM classifier has been previously proposed for

gesture recognition in [25]. However, gesture recognition is

a simpler task since usually only a small set of distinctive

gestures are used. In the case of sign languages, the signs

for the letters are pre-defined and not very distinctive due to

the noise and low resolution of current depth sensors.



Recognizing signs of visual-gestural languages like ASL

is a very active field [21, 3, 16, 18, 27, 23, 28]. For instance,

the SignSpeak project [4] aims at developing vision-based

technology for translating continuous sign language to text.

However, many of these systems try to recognize an arbi-

trarily selected subset of a sign language, be it by motion

analysis of image sequences or recognition of manually ex-

tracted static gestures. In the following, we structure com-

parable methods into single-user systems, i.e., the systems

are trained for a single user, and multi-user systems, i.e., the

user does not provide any training data:

Single-user systems. Polish finger alphabet symbols

have been classified in [13] in an off-line setup. The in-

put for each of the considered 23 gestures consisted of a

gray-scale image at a relatively high resolution and depth

data acquired by a stereo setup. In [5], a real-time recogni-

tion system has been developed for Spanish sign language

letters where a colored glove was used. The real-time sys-

tem [12] recognizes 46 gestures including symbols of the

ASL. It assumes constant lighting conditions for training

and testing and uses a wristband and special background

for accurate hand segmentation. More recently, British sign

language finger spelling has been investigated in [11] where

the specialty is that both hands are involved in the 26 static

gestures. Working on skin color, it is assumed that the

signer wears suitable clothing and the background is of a

single uniform color. The system recognizes also spelled

words contained in a pre-defined lexicon, similar to the

word recognition approach in this work.

Multi-user systems. Using a stereo camera to acquire

3D and color data, Takimoto et al. [22] proposed a method

for recognizing 41 Japanese sign language characters. Data

was acquired from 20 test subjects and the achieved classi-

fier runtime is about 3fps. Although the approach does not

require special background or lighting conditions, segment-

ing the hand, which is a challenging task by itself, is greatly

simplified by the use of a black wristband. Colored gloves

have been used in [6] for recognizing 23 symbols of the

Irish sign language in real-time. A method for recognizing

the ASL finger alphabet off-line has been proposed in [1].

Input data was acquired in front of a white background and

the hand bounding box was defined for each image manu-

ally. A similar setup has been used in [15]. While these

works rely on markers like wristbands or gloves to avoid

the most challenging task for hand segmentation, namely

the detection of the wrist, our approach relies only on raw

depth data acquired with a low-resolution depth sensor.

3. ASL word recognition

An overview of the system is given in Fig. 1. The depth

data is used for hand localization and segmentation. After

rotating and scaling the segmented hand image, the letter is

recognized using classifiers based on average neighborhood

Figure 1. (a) ASL word recognition system setup.

(a) (b) (c)

Figure 2. (a-c) During hand segmentation, the center of the hand

(black circle), the palm size (red semicircle), and hand orienta-

tion (black line) are iteratively estimated. Starting with a rough

segmentation based on thresholding depth data (a), the heuristic

iterates and converges in most cases to the correct solution (c).

The segmented hand is then normalized and used for classifying

the shown letter.

margin maximization (ANMM), depth difference (DD), and

hand rotation (ROT). The confidences of the letters are then

combined to compute a word score. The most likely word is

accepted if the ratio of its score and the score of the second

most likely word surpasses a predefined threshold.

3.1. Letter Recognition

After normalizing and thresholding the depth data where

we assume that the closest connected object is the hand of

interest, we iteratively estimate the size and position of the

palm and the orientation of the hand as shown in Fig. 2(a-c).

The depth values are normalized to be in the range of 0 to

1.



(a) (b) (c)

Figure 3. (a) Star model to approximate radius of the palm. (b) The red colored area is the palm. The hand center is computed only for the

palm to stabilize the hand segmentation. (c) Illustration of the segmentation refinement step.

3.1.1 Palm detection

After normalization of the hand image I, the gravity

~c = 1
|I|

∑

~p∈I ~p is computed where ~p are the pixels belong-

ing to the hand. Having the center, we use a star-like profile

around the hand center to estimate the radius of the palm,

rpalm. The profile is rotated with the hand’s orientation,

leading to seven directions as shown in Fig. 3(a). In each

direction, the largest distance from the center to a contour

point is measured. As radius, we take the median of the

distances scaled by α = 1.065 to compensate for a small

bias of the median towards smaller hand sizes. Having the

radius and previous center of the hand, we re-compute the

center ~c by taking only the pixels of the palm into account

as shown in Fig. 3(b). Estimating the center of the palm and

not of the full hand with fingers is necessary since otherwise

the center migrates to the direction of the extended fingers.

After the estimation of the palm, depth values that do not

belong to the palm or the fingers are removed. A point ~p is

discarded if:

(γ~p > γ1 ∧ ‖~p − ~c‖ > rpalm) ∨

(γ~p > γ2 ∧ ‖~p − ~c‖ > η · rpalm) (1)

where η = 1.75. This is illustrated in Figure 3(c). While

the region γ~p > γ1 is assumed to contain no fingers and

thus all pixels that do not belong to the palm are removed,

γ~p > γ2 describes the regions left and right of the hand. In

this regions, only pixels that are far away from the center

are assumed not to be part of fingers.

3.1.2 Orientation estimation

The first estimate of the hand orientation ~d is obtained by

principal component analysis (PCA). However, PCA is not

always very accurate and we detect finger tips to refine the

orientation. Similar to the segmentation refinement step, we

define a region of interest based on the current estimated

center ~c of the palm:

F=
{

~p ∈ I:‖(~p − ~c) − ~d‖2<β
(

‖(~p − ~c)‖2 + ‖~d‖2
)}

,

(2)

where β ≥ 1 is a scale factor to widen the region of

interest over 90◦ on both sides of the orientation vector
~d. In our experiments, we use β = 1.1025, which cor-

responds to an angle of 130◦. Within this region, we

greedily search for up to three finger tips. The first fin-

ger tip is the pixel ~p0 ∈ F with the largest distance to

the center ~c and ‖(~p0 − ~c)‖ > ξ0 · rpalm. If a finger tip has

been detected, we continue with the second one ~p1 ∈ F
with ‖(~p1 − ~c)‖ > ξ1 · rpalm and the angles of the vectors

~p0 − ~c and ~p1 − ~c being larger than 18◦. The thresh-

old for the three finger tips have been set to ξ0 = 1.5,

ξ1 = 1.275, and ξ2 = 1.02. In case that at least one

finger tip has been detected, the direction vector ~d is re-

defined by the average position of the finger tips ~pfinger:
~d = (~pfinger − ~c)/‖~pfinger − ~c‖.

3.1.3 Classification

Having the hand image I segmented and normalized, we

can classify the letter signed by the hand. To this end, we

use three classifiers. The first is based on a codebook con-

taining one example for each of the N letters. It simply

compares the pixel-wise depth distance between the code-

book entries Ci and the observed hand I, i.e.,

argmin
i∈{1,...,N}

∆
(i)
DD where ∆

(i)
DD =

∑

~p

|C̃i(~p)−Ĩ(~p)|. (3)

C̃i and Ĩ are the depth images of Ci and I normalized such

that the average is 0. The second classifier relies on the hand

orientations ~di stored for each letter:

argmin
i∈{1,...,N}

∆
(i)
ROT where ∆

(i)
ROT = |~di − ~d|. (4)

The third classifier is more powerful and is based on av-

erage neighborhood margin maximization (ANMM) [26].

The idea is to find a linear projection W to maximize the

distance to local neighbors xk of a data point xi with differ-

ent class labels N e
i and minimize the distance to neighbors

with the same class label N o
i :

argmax
W

tr[WT (S − C)W], (5)



where

S =
∑

i,k:~xk∈N e

i

(~xi − ~xk)(~xi − ~xk)T

|N e
i |

, (6)

C =
∑

i,k:~xk∈No

i

(~xi − ~xk)(~xi − ~xk)T

|N o
i |

. (7)

The ANMM features are computed as the eigenvectors of

the l largest eigenvalues of S−C, and stored in vector form

in a matrix W. In order to keep the system real-time, these

ANMM features are approximated with Haarlets [17, 24].

These Haarlets are stored in vector form in a matrix F. Dur-

ing classification, we extract the feature coefficients ~f for

the segmented hand and compute the ANMM coefficients

by ~y = C~f where

C = W ·
(

(

F
T
F
)−1

F
T
)T

, (8)

which is computed during training. In our experiments, we

set the number of ANMM feature vectors to l = 13. Af-

ter mapping the feature coefficients ~f to the ANMM coef-

ficients ~y, classification is performed by nearest neighbor

search, i.e., I is assigned to the letter with the nearest mean

ANMM coefficients.

For combining the classifiers, we compute the confi-

dence for letter i by the weighted sum of the normalized

confidences:

c
(i)
letter = λANMM ·c

(i)
ANMM+λROT ·c

(i)
ROT+λDD ·c

(i)
DD, (9)

where

c
(i)
class =

max
j

∆
(j)
class − ∆

(i)
class

∑N
j=1 ∆

(j)
class

. (10)

For letter recognition, the letter with the highest confidence

c
(i)
letter is taken.

Note that the DD and ANMM classifiers only take the

shape of the hand but not the global hand orientation into ac-

count due to the normalization. Since some letters like ‘H’

and ‘U’ are similar in shape but differ mainly in hand ori-

entation, the additional ROT classifier helps to distinguish

these gestures and improves the recognition accuracy as our

experiments show.

3.2. Word Recognition

For word recognition, we can use the letter confidences

for recognizing finger spelled words. To this end, a lexi-

con containing all known words is used to correct possible

errors of the letter classifiers and to determine word bound-

aries as well. The straight forward structure of the presented

approach allows for very easy addition of new words by

simply adding them to the lexicon. The proposed approach

aggregates the letter confidences c
(i)
letter and computes a con-

fidence value for each word w by:

c(k)
w =

1

k

(

k−1
∑

l=1

c(l)
w + c

(ik)
letter

)

, (11)

where ik is the letter at the kth position of the word w. As

soon as the confidence ratio of the word with the highest

and the second highest confidence is larger than 1.04, the

word is accepted. When the ratio is even larger than 1.2,

i.e., the confidence of the word is 20% higher than the confi-

dence of any other word of the lexicon, we update the code-

book for the DD and ROT classifiers by replacing Cik
and

~dik
for each letter ik of the word. The transitions between

signed letters are detected by a movement of the segmented

hand, i.e., a letter is only recognized when the observed

hand movement over the last 10 frames is small.

4. Experiments

Test data was collected from 7 test subjects at a distance

of approximately 80cm from the MESA SR4000 TOF cam-

era. Except of subject 7, the users were not experienced

with ASL. For the unexperienced users, a brief introduc-

tion to ASL was given before the recordings and the sym-

bols were shown on a display during the recordings. For

each user, at least 50 samples are available per letter. In the

single-user setup, one hand example per letter is used for

building the codebook of the DD and ROT classifiers. In the

multi-user setup, we used the data of subject 7 as training

data for the DD and ROT classifiers and tested on subjects

1-6. For testing on subject 7, we used the training data from

subject 6. The ANMM classifier is trained on the remaining

dataset by leaving out the individual test subject’s data in

each case. The parameters of the system that are specified

in Section 3 and not evaluated in Section 4 were empirically

determined on a small validation set.

4.1. Hand segmentation and orientation accuracy

The accuracy of the hand segmentation and estimation

of the hand orientation for all letters is given in Fig. 4. To

this end, we have manually annotated 7 hand gestures for

each letter. The segmentation quality is measured by the in-

tersection over union (IOU) ratio of the annotated bounding

box and the bounding box estimated by our approach. The

hand orientation error is measured as error angle between

the annotated and the estimated orientation vector where

the results of the first iteration are obtained by PCA. The

accuracy of the hand segmentation and hand orientation es-

timation increases with the number of iterations. After 50

iterations, the method has converged to a reasonable accu-

rate solution, considering the small resolution of the depth

sensor.



(a) (b)

(c) (d)

Figure 4. (a) Segmentation accuracy (IOU) after 10 iterations. (b)

Segmentation accuracy (IOU) after 50 iterations. (c) Hand ori-

entation error after 10 iterations. (d) Hand orientation after 50

iterations.

(a) (b)

Figure 5. (a) Single-user: Average gesture recognition rates for

different combinations of the DD and ROT classifiers, achieved

by varying λDD and λROT = 1 − λDD. (b) Multi-user: Average

gesture recognition rates for different combinations of the ANMM

and ROT classifiers.

(a) (b)

Figure 6. Letter recognition rates showing differences between the

individual letters (λANMM = λROT = λDD = 0.33). (a) In the

multi-user setup, some letters like ‘S’ are often not correctly rec-

ognized. (b) In the mixed setup, the recognition rates of the letters

that were difficult to classify in the multi-user setup are signifi-

cantly improved.

4.2. Letter recognition

The impact of the parameters λANMM, λROT, λDD (9)

for letter recognition is evaluated in Fig. 5(a-b). Fig. 5(a)

shows the error for the single-user case, i.e., training and

testing is performed for the same subject. The plot shows

that the ROT classifier alone (λDD = 0) is not very use-

ful, but it improves slightly the DD classifier (λDD = 1)

for 0.2 ≤ λDD < 1. The multi-user case shown Fig. 5(b)

is more challenging since none of the testing subjects is

part of the training data. While the ROT classifier alone

(λANMM = 0) fails again, it improves the ANMM classifier

(λANMM = 1) up to 9%. Note that λANMM = 1 is coma-

parable to the recognition method [25]. We have also evalu-

ated a mixed setup where the ANMM classifier is in multi-

user mode, i.e., it is not trained on the test subject, while the

DD and ROT classifiers are initialized by a single training

example for each letter provided by the test subject. Ta-

ble 1 lists the recognition performance for different setups

and shows that the DD classifier does not work well when

it is not trained on the testing subject. However, if the DD

and ROT classifiers are trained on the same subjects (mixed

setup), the recognition accuracy can be increased to outper-

form the single-user system. This is very practical since DD

and ROT use only one example for each gesture and can be

updated on-line without additional supervision by replac-

ing the example based on the output of the word recognizer

as explained in Section 3.2, whereas ANMM needs to be

trained off-line for optimal performance. The impact of the

classifier updates is discussed in Section 4.3. For the multi-

user and mixed setups, the average letter recognition rates

for individual letters are shown in Fig. 6.

Although a direct comparison to related work is difficult

since the methods are evaluated on different sets of gestures

and datasets, we give an overview in Table 3. If we used a

similar amount of gestures as in [19, 20] or [7], namely 6

or 12, we would get comparable recognition rates, namely

0.99 or 0.95. Methods that achieve a higher recognition rate

on a large set of gestures [22, 6, 1, 15] do not run in real-

time and use markers for a clean segmentation.

4.3. Word recognition

For word recognition, 56 words were selected randomly

out of a lexicon of 900 words. The results for different

setups are reported in Table 2. Although some letters are

difficult to classify (Fig. 6), the word recognition is very

reliable. The system has some problems with words like

‘us’ that are short and contain letters with low recognition

rates. In order to overcome this problem, we have proposed

in Section 3.2 to update the codebooks for the DD and ROT

classifiers based on the output of the word recognizer. Fig. 7

illustrates the improvement that one obtains by this proce-

dure. When comparing the increase of the average letter

recognition rate from 0.8 to about 0.9 (Fig. 7(c)) with the



(a) (b)
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Figure 7. Due to the codebook updates, the letter and the word

recognition improves over time. (a) Recognition rates for letter

‘A’. (b) Recognition rates for letter ‘C’. (c) Average letter recogni-

tion rates per word. The linear trend line increases over time.

results given in Table 1, one observes that for the setting

λANMM = 0.33, λDD = 0.33, λROT = 0.33 the letter

recognition accuracy tends towards the ideal performance

of the mixed setup. Hence, the update procedure combines

the generalizability of a multi-user system with the accuracy

of a single-user system.

4.4. Computation time

On a notebook with an Intel Core Duo T2400 1.83 GHz

CPU, hand segmentation and letter recognition for a sin-

gle frame require in average 62.2ms (16fps) where 70% of

the computation time are required for the hand segmenta-

tion. While the ANMM and DD classifier require around

10% each, the computation for the ROT classifier can be

neglected. The remaining 10% are needed for capturing the

images and storing the output of the system. We tested our

system with two depth sensors. While the MESA SR4000

camera has been used for the evaluation, a video that shows

a real-time demonstration with the Kinect camera is part of

the supplemental material.

5. Conclusion

In this work, a real-time sign language letter and finger-

spelled word recognition system has been presented. In

contrast to previous work on gesture recognition from depth

data, the system has been evaluated on a very challenging

data set, namely the ASL finger alphabet. Although ac-

curate detection results have been previously reported for

sign language recognition, the hand segmentation task has

been often simplified by the use of markers like a wristband

and/or for human-computer interaction impractical record-

ing setups. In this work, we have focused on a practical

setup where the segmentation and recognition relies only

on depth data acquired with a low-resolution depth sensor

positioned in front of the user close to the monitor. During

the development of the system, we observed that the hand

segmentation is the most critical and most time consuming

step for recognition. While the developed heuristic for these

tasks performs well for different sensors (Kinect/SR4000),

a more efficient non-iterative approach could improve the

overall system performance. The evaluation of the classi-

fiers has shown that average neighborhood margin maxi-

mization is very efficient and accurate for recognizing sign

language letters and that the recognition accuracy can be

further improved at negligible cost by taking the orientation

into account for classification.

For the word recognition, we have used a lexicon where

new words can be added or removed without requiring an

additional off-line training step. The results have shown

that an accurate recognition of all letters is not necessary

for reliable word recognition. Finally, we conclude that the

output of the word recognizer can be used as feedback to

improve the letter recognition system on-line. In contrast to

an on-line update procedure that is performed for each let-

ter classifier independently, this strategy makes use of the

dependencies of letters within words, i.e., a letter with low

confidence can be updated based on the high confidences

of the other letters within the same word. Our experiments

have shown that this strategy combines the generalizabil-

ity of a multi-user system, where the user is unknown, with

the accuracy of a single-user system, where the system is

trained on the user. We believe that this type of feedback

loop is also useful for other human-computer interaction

systems.
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Method # of Gest. Setup Depth Resolution Markers Real-time ARR

[7] 12 multi-user yes 160x120 yes 0.95

[19] 6 multi-user yes 176x144 yes 0.94

[20] 5 multi-user yes 176x144 yes 0.93

[22] 41 multi-user yes 320x240, 1280x960(rgb) wristband no 0.97

[6] 23 multi-user no color glove yes 0.97

[1] 26 multi-user no bounding box given no 0.93

[15] 26 multi-user no bounding box given no 0.92

Proposed 26 multi-user yes 176x144 yes 0.76

[12] 46 single-user no 320x240 wristband yes 0.99

[9] 11 single-user yes 160x120 yes 0.98

[13] 23 single-user yes 320x240, 768x576(gray) black long sleeve no 0.81

[5] 19 single-user no colored glove yes 0.91

[25] 6 single-user yes 176x144, 640x480(rgb) yes 0.99

Proposed 26 single-user yes 176x144 yes 0.88
Table 3. Overview of related methods and comparison of average gesture recognition rates.

Setup λANMM λDD λROT ARR

single-user 0.0 0.4 0.6 0.883 ± 0.212

multi-user 0.5 0.0 0.5 0.761 ± 0.344

multi-user 0.0 0.4 0.6 0.567 ± 0.405

multi-user 0.333 0.333 0.333 0.731 ± 0.377

mixed1 0.333 0.333 0.333 0.896 ± 0.214
Table 1. Overview of letter recognition rates for different classi-

fier combinations and setups (ARR: average recognition rate and

standard deviation). The error per letter for two setups is given in

Fig. 6.

Setup λANMM λDD λROT ARR

single-user 0.0 0.4 0.6 0.936 ± 0.245

multi-user 0.5 0.0 0.5 0.878 ± 0.328

mixed1 0.333 0.333 0.333 0.964 ± 0.187
Table 2. Overview of word recognition rates for different classi-

fier combinations and setups (ARR: average recognition rate and

standard deviation).
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