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Abstract—This paper investigates the implementation and the

use of the sparse fast Fourier transform algorithm in the converter

control of a variable speed drive. The algorithm is proposed due

to the reduction in computational complexity compared to the

conventional fast Fourier transform for the special case of sparse

signals.  After  discussing  the  theory  and  a  simulation  model,

experimental results obtained using a field programmable gate

array (FPGA) implementation are presented, showing the
effectiveness of the proposed solution.

Keywords—Signal frequency analysis; FPGA; FFT

I. INTRODUCTION

Variable speed drives (VSDs) are commonly used in a wide
range of applications. In addition to offering dynamics and
efficiency improvements to electrical machines, VSDs can offer
other features, through the compensation of disturbances such as
torque oscillations [1] or mechanical vibrations [2].

Compensation algorithms require the knowledge of the
harmonic content in the signal which is being compensated. This
information can be obtained through any frequency analysis
algorithm. The mainstream algorithm is the fast Fourier
transform (FFT) [3]. In the case of real-time signal frequency
analysis, the FFT has to be computed in parallel to the other
operations being conducted by the VSD control. It is known that
the FFT requires a minimum of O(N log N) operations to
complete, where N is the number of samples in the analysed
signal. The higher the value of N, the more difficult it is to
execute the FFT in addition to the usual control functions of a
VSD.

The sparse FFT (sFFT) [4, 5] was introduced as an extension
of the FFT which can be applied to sparse signals. A sparse
signal is defined as one with a small number of peaks in its
magnitude spectrum. This definition holds for a vast group of
signals and variables in a VSD system, and in general for any
power electronics related signal. It was demonstrated [4,5] that
the sFFT required less operations than a FFT when dealing with
sparse signals. This property has been utilised to enhance
performances of spectrum sensing [6], magnetic resonance
imaging [7], light field photography [8] and GPS [9].

This paper demonstrates how the sFFT algorithm can be
exploited in a VSD system, adding the electrical machine control
as a possible application area of the sFFT. The proposed
implementation makes use of a field programmable gate array
(FPGA) to perform the sFFT calculations in parallel with the
operations required for a conventional field-oriented control of
a synchronous electrical machine.

The paper is organised as follows. Sect. II recalls the
fundamentals of FFTs, while Sect. III concentrates on the sFFT
with the perspective of a real-time implementation in VSDs.
Sect.  IV  discusses  the  simulation  model.  Sect.  V  shows  some
experimental results, followed by some conclusive remarks.

II. CONVENTIONAL FOURIER TRANSFORM METHODS

The discrete Fourier transform (DFT) uses discrete-time
signals which have a finite time duration, and linearly combines
their samples to obtain the frequency spectrum. Since the DFT
needs N2 multiplications, each DFT requires O(N2) operations to
be completed. The FFT is an evolution of the DFT that reduces
its computational complexity by eliminating redundant
operations. A known FFT implementation is the one by Cooley
and Tukey in 1965 [3], which requires O(N log N) operations if
N is equal to a power of 2. More recent implementations such as
the Fastest FFT in the West (FFTW [10]) are able to achieve the
same computational complexity for signals of any length.

III. MATHEMATICAL OPERATIONS IN THE SFFT

A sparse signal is a signal where the majority of the Fourier
coefficients in its DFT (or FFT) have values which are close or
equal to zero. The spectrum of such a signal will therefore
contain a small number of k peaks. The aim of the sFFT is to
provide the same k peaks as the output of the frequency analysis,
further reducing the required computational effort by exploiting
the assumption of sparse signals.

The sFFT algorithm investigated in this paper is so-called
version 1 [4], which has a computational complexity of	(log 	 ). The four core mathematical operations of

the sFFT are discussed below, although the Reader is redirected
to [4] for a more detailed analysis.

A. The pseudorandom signal permutation

Spectral peaks which occur at frequencies close to each other
can be difficult to detect by the sFFT. A pseudorandom spectral
permutation is a technique which can separate these close peaks.

According to [11], if N is a power of two the numbers which
are relatively prime to N are the odd numbers in the range [0, …
, N-1]. The modular multiplicative inverse of an integer σ
modulo N is defined as an integer σ-1 which results in ⋅ =
1	( 	 ).  The modular multiplicative inverse of σ modulo N
exists if and only if σ and N are relatively prime. As a result, we
can conclude that σ is an odd number in the range [0, … , N-1].

The random odd number σ is used to dilate the signal to be
permutated in the time domain. This action will result in a



translation in the frequency domain by σ-1. This process is
described by the equation shown below, where  is  the  time
domain signal and  is the frequency domain signal, with
representing the general angular frequency [11]:

( ) = [ ] ⟺ [ ] = [ ] (1)

From an implementation point of view, (1) is performed by
first storing x(t) in a buffer. When the buffer is full, the value of
σ is generated by using a uniform pseudorandom number
generator, as the one used in [12], which is a very simple and
effective solution for real-time implementations. The number σ
must be odd, which means that in case of a generated even
number, σ is taken as the even number plus one. Then, the new
vector ( ) is calculated by sweeping the buffer ( ) using  as
the base counter. At the same time, the modular multiplicative
inverse  is calculated and stored for later use.

B. The windowing function

Two window functions are required by the sFFT algorithm:
the first is used during the location of a signal’s peaks while the
second is used for the estimation of the amplitudes. The window
used for frequency location ideally has a narrow bandwidth. For
this purpose, a conventional Hanning window was used due to
its good frequency resolution characteristics [13].

The window function used to estimate magnitude is shown
in Figure 1. A key requirement for this windowing function is
that it should have a flat passband with minimal ripple [4]. A
simple method of constructing such a window was detailed in
[5]. This method involved taking the convolution of a
rectangular window and a Gaussian function in the frequency
domain. Due to the duality of the convolution in the frequency
domain and the multiplication in the time domain, this procedure
could be implemented by multiplying a Gaussian with a sinc
function in the time domain.

Both the Hanning window and the window for the magnitude
estimation can be pre-calculated offline and their coefficients
stored in the FPGA, as long as the number of acquired samples
of the signal under analysis does not change in real-time. Of
course, it could be possible to recalculate the window

Figure 1: Window function used for estimation loops in the time
domain (left) and frequency domain (right).

coefficients even in the case of variable buffer length, at the cost
of a slightly higher computational effort.

C. The subsampled FFT

The reduction of the number of operations in a sFFT is
mainly achieved by running a conventional FFT over a
subsampled version of the input signal, after its pseudorandom
permutation and windowing. If the length of the subsampled
data is B, and the original set of data is x, the expected number
of operations of a FFT on a subsampled signal is
O(supp(x)+BlogB).

Naturally, the decrease of samples leads to a less accurate
FFT. Figure 2 shows a comparison of a full-length and a
subsampled FFT taken on a signal consisting of the summation
of a sinewave with amplitude 1 at 500 Hz and amplitude 0.5 at
1 kHz, with some additional noise added. The number of
samples in the signal is 4096, which is also the length of the full-
length spectrum. It is apparent that the full-length spectrum has
peaks of 0.5 at 500 Hz and 0.25 at 1 kHz, as expected. The
subsampled spectrum has a length B of 256, and is spread
compared to the full-length spectrum.

The effects of a less precise detection of the spectral lines
are evident, although the subsampling process leads to faster
calculations. However, if the subsampled FFT is performed a
certain number of times over different pseudorandom
permutated and windowed versions of the same input signal,
and their results are analysed as later explained, the sFFT can
provide as precise results as the FFT with an overall decrease
of computational effort. This is the core of the sFFT algorithm
as described in [4,5].

Figure 2: Comparison of magnitude spectrum obtained from a time
domain signal using a FFT with length 4096 and a subsampled FFT
with length 256.

D. Inverse hash function

The mathematical operations described by the permutation,
windowing and subsampled FFT correspond to a hash function,
which hashes the N frequencies of the original signal into B bins
of  a  subsampled  spectrum.  Once  the  peaks  within  the  B  bins
have been estimated, the coordinates of the original frequencies
corresponding to these peaks should be determined.

Firstly, assume that a peak at a normalised frequency Bp has
been found in the subsampled spectrum. Since the width of the
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bin Bp is larger than the width of the bin N (meaning that the
frequency resolution of the subsampled spectrum is worse than
the original signal spectrum), we form upper and lower limits for
mapping the width of Bp to the original frequency spectrum of
length N. These upper and lower limits are called Low and High,
which are calculated according to the following equations.

= [ − 0.5 + ] ( ) (2)ℎ = [ + 0.5 + ] ( ) (3)

After defining Low and High,  the  inverse  hash  function  is
achieved by using the modular multiplicative inverse σ-1 of the
number σ used to perform the pseudorandom signal permutation,
as described in the equation below. The variable index is ranging
from Low to High.

= ( ) ( ) (4)

It should be noted that the values of loc are spread throughout
the complete range of N due to the presence of the mod function,
and are not bounded by Low and High. Moreover, the equations
(2)-(4) do not present any complication from an implementation
point of view, since standard operators are used. A graphical
description of the inverse hashing process is given in Figure 3.

Figure 3: Graphical description of the inverse hash function process.

IV. THE COMPLETE SFFT SIMULATION MODEL

The four core operations described above were used in a
simulation model to verify the complete algorithm before
implementation. The model is divided into two main sections:
the location loop, which searches for the frequencies at which
peaks occur, and the estimation loop, which finds the
magnitudes at these frequencies. The location and estimation

Figure 4: Simulation model of the sFFT.

loops are repeated for a number of iterations to obtain a

statistically reliable estimation of the frequencies and

magnitudes [4]. Figure 4 shows a sketch of the model.

A. Location loop

At the beginning, an input signal is sampled at a frequency fs

and used to fill a buffer of length N. The buffered data is then
fed to the location loop which performs the pseudorandom
signal permutation, the windowing using the Location Filter
(Hanning window) and a subsampled FFT using a predefined
value of B. The peaks above a limit Threshold in the subsampled
spectrum are found, then subjected to an inverse hash function
which calculates the corresponding indices in the full spectrum
N. The location loop is iterated for a number of times given by
No. Loc Loops, and the indices in N which correspond to a peak
in more than No. Loc Loops/2 are counted as indices where a
peak occurs in reality. The left-hand side of Figure 5 shows a
block diagram of the location loop model.

Figure 5: Block diagram of the location loop (left) and estimation loop
(right).

B. Estimation Loop

The estimation loop makes use of the frequency indices
where a peak is found in the location loop. The process of
permutation, windowing and subsampled FFTs is repeated, with
the difference that the flat estimation filter is used for the
windowing. A hash function is used by the estimation loop to
map the found indices in the original spectrum into the
subsampled spectrum:ℎ ( ) = (5)

The magnitude of the subsampled spectrum at hσ(i) is taken
as the magnitude of the original spectrum at the located index i.
The estimation loop is iterated in a similar fashion to the location
loop, in order to obtain a number of magnitude estimation for
the same located indices. The final magnitude value is taken as
the median of the different estimation magnitudes. The right-
hand side of Figure 5 shows the block diagram of the estimation
loop.
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C. Simulation results

Figure 6 shows an example of a signal which is treated by
the sFFT algorithm in the time domain (left) and frequency
domain (right). The signal consists of the summation of a
sinusoid with frequency of 20 Hz and amplitude of 0.8, a
sinusoid with frequency of 1 kHz and magnitude of 1, and a
sinusoid with a frequency of 1.8 kHz and a magnitude of 0.5.
The signal is sampled at a frequency fs = 4096 Hz, and routed to
a buffer of N = 16384 cells. The time required to fill the buffer
in this case is equal to N/fs, and is equal to 4 s.

The  simulation  was  run  for  a  time  of  1200  s,  which  was
equivalent to 300 operations of the sFFT. The length of the
subsampled spectrum B was set to 128, the number of location
loops was set to 20, the number of estimation loops 10 and the
threshold to 0.15. Note that a full-length FFT would require
(16384	 16384) = (229376) operations, while the

sFFT asks for 	 log 16384 16384 ⋅ 3 log 16384 =

(11613) operations, a reduction by a factor of almost 20.

A 100% accuracy rate was observed in the 300 runs when
determining the frequencies where spectral peaks were located.
Some error was noted in the estimation of the magnitudes of

Figure 6: Time domain (left) and frequency domain (right)
representations of the signal used to test the sFFT simulation model.

Figure 7: Simulated error percentage between magnitudes calculated
by the sFFT and actual values for the 20 Hz peak (top), 1 kHz peak
(center) and 1.8 kHz peak (bottom).

each peak. Figure 7 shows the error percentage between the
magnitude obtained by the sFFT simulation and the actual
magnitude of the 20 Hz, 1 kHz and 1.8 kHz peaks. It is clear that
signal-to-noise ratio plays a large role in the error percentage,
since the 1 kHz peak (unity magnitude) has the lowest error, and
the 1.8 kHz peak (magnitude of 0.5) has the largest error.

V. EXPERIMENTAL RESULTS

A. Experimental setup

A picture of the experimental setup is shown in Figure 8. The
load machine (an 11 kW interior permanent magnet machine) is
visible on the left hand side of the image, and is used as a wind
turbine load emulator [12]. The machine under test, used as a
generator, is an 11 kW synchronous reluctance machine
(SynRM) visible on the right hand side of the image.

The load machine is controlled by an ABB ACS850
converter. The test machine is connected to an ACS850, but is
supplied with control signals from an OPAL-RT Technologies
OP5600 system. The OP5600 is equipped with a quad-core Intel
DSP processor at 2.4 GHz and a Virtex 6 FPGA, and the selected
PWM switching frequency is 2 kHz. The phase currents and the
DC-bus voltage are measured with a custom measurement box
and connected to the A/D board of the OP5600. The digital I/Os
of the OP5600 are used to communicate with the ACS850 power
unit through a custom interface.

The load machine was used to inject different artificial
torque disturbances. The magnitude of these harmonic
components could either be constant, or randomly generated
based on the wind turbine load model in [12].

Figure 8: Experimental setup for the sFFT algorithm verification.

B. FPGA implementation of the SFFT

The sFFT was conducted on a mechanical speed signal
which had the DC component filtered away. The structure of the
sFFT implementation is shown in Figure 9. The filtered speed
signal is first buffered into two RAM blocks. The time required
to fill up these buffers is given by N/fs. The number of samples
N in the buffer was set to 4096. Since the sampling of the speed
signal was synchronized to the PWM frequency (2 kHz), the
time required to fill the buffers was equal to 8.192 s. This means
that the minimum time required for new sFFT results to be
available was 8.192 s.

As in the simulated case, the sFFT algorithm was split into
location and estimation loops. One of the key advantages of
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FPGAs is the ability to have parallel paths which are executed
simultaneously. This feature is utilized in the location loops,
where two parallel execution paths are used to compute the
frequencies at which peaks are detected. Such an
implementation reduces the execution time of the sFFT
algorithm compared to the case with a single execution path.

Once the frequencies at which peaks occur have been found
by the location loops, the estimation loops are executed. Only
one execution path was used for the estimation loop, as shown
in Figure 9. The measured input signal was sampled at a
frequency fs then stored in two buffers of length L. A time of
(1/fs)L seconds was required to fill these buffers. Once both
buffers were filled, the location loops were executed in parallel.
The peaks found by the location loops are used in the estimation
loop, finding the corresponding magnitudes.

The sections of the FPGA used to implement the
pseudorandom permutation, the windowing and the subsampled
FFT operations were reused from the location loops in the
estimation loops. For the purposes of device area comparison, it
was found that the FPGA implementation of the sFFT took
approximately 10% of the available slice logic on a Xilinx
Virtex 6 FPGA. In contrast, a full-length (4096 point) FFT took
approximately 15% of the available slice logic.

Figure 9: FPGA implementation of the sFFT.

C. Experimental Results

The performance of the FPGA implementation of the sFFT
were compared with an off-line FFT analysis of a test waveform.
Tests were conducted at rotational speeds of 10 and 20 rad/s. In
both  cases,  the  load  machine  torque  was  set  to  1  Nm,  with
second and third harmonic torque components of 1 Nm added.

The filtered rotational speed signal without the DC
component is shown in Figure 10 for the 10 rad/s case. With a
rotational speed of 10 rad/s, the mechanical frequency of the
fundamental is equal to 1.592 Hz, meaning that the second and
third harmonics are located at 3.183 Hz and 4.775 Hz.

The magnitude spectrum obtained from the off-line full-
length  FFT  is  shown  in  Figure  11  as  a  solid  line.  Peaks  were
noted at frequencies of 3.174 Hz and 4.761 Hz, which correctly
correspond to the 2nd and 3rd harmonic injected disturbances.

The on-line sFFT was conducted on the same signal, with

N=4096. In this test, 10 location loops were used, along with 8

estimation loops and a threshold of 0.1. An example of one run

of the subsampled FFT obtained in the location loops with a σ

of 17 is shown in Figure 11 as a dashed line. The shifted and

larger peaks are a result of the permutation and subsampling

process described in Sect. III, and they correspond to the

original FFT higher harmonics for σ = 17.

After multiple iterations of the location loop, the sFFT noted

peaks at 3.174 Hz, 4.761 Hz, 1995 Hz and 1997 Hz. The

Figure 10: Rotational speed obtained with a load torque of 1 Nm, and
second and third harmonics of 1 Nm injected at a speed of 10 rad/s.

magnitudes of these peaks were calculated as 0.3145, 0.25, 0.25
and 0.3145 respectively by the estimation loop. The first two
peak frequencies are the very same 2nd and  3rd harmonic
components found with the off-line FFT, while the second and
the third ones are simply their aliased values in the complete
spectrum - as it happens with a conventional FFT. Note also that
the peaks of the subsampled spectrum in Figure 11 are quite
wide, as a result of the subsampling process. Without the
spectrum permutation, it would have been impossible to find the
original signal harmonics since they are very close to each other.

The filtered rotational speed signal without the DC
component for the 20 rad/s case with 2nd and  3rd harmonics
injected is shown in Figure 12.

In this case, the fundamental rotational frequency is at 3.183 Hz,
meaning that the 2nd harmonic is located at 6.366 Hz and the 3rd

is located at 9.549 Hz. The magnitude spectrum obtained with
an off-line FFT is shown in Figure 13 as a solid line. There are
peaks measured at 6.348 Hz and 9.522 Hz, which correspond to
the harmonic content injected into the load torque.

 The on-line sFFT with N=4096, 10 location loops, 8
estimation loops and a threshold of 0.1 was then conducted. An

Figure 11: Magnitude spectrum obtained for the 10 rad/s case, using
an  offline  FFT.  The  threshold  used  for  the  sFFT  is  shown  as  a
horizontal line. The subsampled spectrum obtained during one run of
the location loop with σ = 17 is also shown.
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Figure 12: Rotational speed obtained with a load torque of 1 Nm, and
second and third harmonics of 1 Nm injected at a speed of 20 rad/s.

example of one run of the subsampled FFT obtained in the
location loops with a σ of 11 is shown in Figure 13 as a dashed
line.  Once again, the peaks in the subsampled spectrum were
located at different frequencies than their actual values due to
signal permutation with this value of σ. Again, the permutation
process was fundamental to separate close harmonics.

Figure 13: Magnitude spectrum obtained for the 20 rad/s case, using
an offline FFT. The threshold used for sFFTs is shown as a horizontal
line. The subsampled spectrum obtained during one run of the location
loop with σ = 11 is also shown.

Peaks were found at 6.348 Hz, 9.521 Hz, 1990 Hz and 1994
Hz by the sFFT (after iterations of the location loop). The
magnitudes of these peaks were 0.2432, 0.1504, 0.1504 and
0.2432 respectively. These values correspond to the 2nd and 3rd

harmonic components and their aliased values, as expected. A
summary of the results obtained from the off-line FFTs and on-
line sFFTs is given below in Table 1.

Table 1: Comparison of off-line FFT and on-line sFFT results.

Harmonic
number

Off-line FFT On-line sFFT Error
freq
(Hz)

mag
freq
(Hz)

mag
mag
(%)

2nd (10 rad/s) 3.174 0.3087 3.174 0.3145 1.88

3rd (10 rad/s) 4.761 0.2458 4.761 0.25 1.71

2nd (20 rad/s) 6.348 0.2319 6.348 0.2432 4.87
3rd (20 rad/s) 9.522 0.1387 9.521 0.1504 7.78

The tests showed that the sFFT can be used to implement a
real-time frequency analysis algorithm in VSD control boards
with results that match those of an off-line full-length FFT.

VI. CONCLUSIONS AND FUTURE WORK

This paper applies the sparse fast Fourier transform (sFFT) as a

real-time signal frequency analysis tool in variable speed

drives. A theoretical background with an implementation

perspective is given. Simulation results are presented, along

with the description of the FPGA implementation. The sFFT

algorithm is able to run in parallel with the field-oriented

control of an 11 kW synchronous reluctance machine.

Experimental results prove that the sFFT correctly estimates the

frequency and magnitude of harmonic components which are

injected into the load torque. The experimental evidence proves

that at least some aspects of machine diagnostics and prognosis

could be a natural part of the converter control of a drive,
instead of confining them to external equipment solutions. This

could be an interesting path for future works.
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