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Real-time simulation of surgery by reduced-order modeling and
X-FEM techniques

S. Niroomandi 1, I . A l f a r o 1, D. González 1, E . C u e t o 1

and F. Chinesta 2
1Aragon Institute of Engineering Research, Universidad de Zaragoza, Zaragoza, Spain

2EADS Corporate International Chair, Ecole Centrale de Nantes, Nantes, France

This paper describes a novel approach for the simulation of surgery by a combined technique of model order 
reduction and extended finite element method (X-FEM) methods. Whereas model order reduction techniques 
employ globally supported (Ritz) shape functions, a combination with X-FEM methods on a locally super-
imposed patch is developed for cutting simulation without remeshing. This enables to obtain models with 
very few degrees of freedom that run under real-time constrains even for highly non-linear tissue constitutive 
equations. To show the performance of the technique, we studied an application to refractive surgery in the 
cornea.
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1. INTRODUCTION

Development of surgery simulators for the risk-free training of surgeons has been a very active field

of research in the last decades. Of course, this development is a very challenging task because of

the very different complexities arising in this kind of simulators [1]. One of the sources of com-

plexity is due to the highly non-linear behavior of soft living tissues, which are frequently modeled

under the fiber-reinforced hyperelasticity framework [2]. Other source of complexity comes from

the highly restrictive feedback rates imposed by the simulators (25 Hz for visual feedback and

some 500 Hz if we want to add haptic feedback to the system). The third source of complexity

comes from the multi-physic nature of the phenomena occurring in the actual surgery procedure:

non-linear elasticity, contact, cutting, temperature, and so on.

Such simulators should provide a physically more or less accurate response such that, with the

use of haptic devices, a realistic feedback is transmitted to the surgeon in terms of both visual

feedback and force feedback. By ‘accurate response’, we mean that an advanced user should not

encounter ‘unphysical’ sensations when handling the simulator. We definitely do not pursue an

accurate solution in engineering terms. Following [3], ‘. . . the model may be physically correct if it

looks right’.

Ayache and co-workers [1] defined the three generations of surgical simulators as those able

to, respectively, reproduce accurately the anatomy (geometry), the physics (constitutive equations

of soft tissue, temperature), and finally, physiology (blood flow, breathing, etc.). Undoubtedly, no

third-generation simulation has ever been developed, and only some rigorous attempts have been

made at the second-generation level (see [4, 5], among others). Most of the existing simulators
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can be classified into the first-generation category, even if they provide haptic feedback, because

they only consider linear elastic response, for instance [3, 6–8]. Other are based upon spring and

mass systems, which do not even reproduce the equations of linear elasticity (see [9] and references

therein).

Incorporating non-linear tissue constitutive equations into real-time frameworks is challenging in

itself. Among the various techniques developed to reach this objective, we can distinguish tech-

niques on the basis of the use of explicit finite elements and GPUs (see, for instance [4, 5]).

Limitations of explicit finite elements with respect to stability of the result for large time steps

are well known, however. Others have preferred to employ reduced-order modeling through proper

orthogonal decomposition (POD), also known as principal component analysis (PCA) [10]. In either

of these approaches, non-linear must be understood as ‘geometrically non-linear’, as the aforemen-

tioned approaches include simple co-rotational formulations or Saint Venant–Kirchhoff constitutive

equations. References [11–13] seem to be among the earliest works that incorporate material (not

only geometrical) non-linearity into the real-time framework.

The third source of difficulties, as mentioned earlier, comes from the multi-physic nature of the

problem. Although the thermal dependence of the problem is often—if not always—neglected, con-

tact detection and cutting simulation are of utmost importance for a convincing result in terms of

both visual and haptic perception.

Numerical simulation of contact mechanics is a well-known field in the computational mechanics

community (see, for instance the recent book of Wriggers [14] to acquire an overall impression

of the difficulty of the topic). An accurate simulation of the process of contact between surgi-

cal tools and organs, and between organs themselves, seems to be at this moment out of reach

under real-time requirements. Some simplified algorithms, however, provide very realistic results

at high feedback rates (see for instance [15]). This algorithm supports distributed contact detection

between a complex object (the surgical tool, for instance) and a deformable body reduced model, at

1 kHz rates.

As mentioned before, cutting simulation is another important source of troubles for real-time

modeling of surgery. This is so as it is necessary to modify the geometry and/or the topology of the

domain and its associated mesh, and this needs to be carried out without penalizing the computation

times of the integration of the equations of motion. A vast corps of literature has been devoted to this

end. See, for instance, [5, 16–18], to name a few. All these approaches share the same spirit. All of

these works propose more or less sophisticated algorithms that allow to remove finite elements from

an existing mesh to create a cut or even to remove a whole part of the organ, if it is being ablated.

None of them seem to be aware of the existence of extended finite element method (X-FEM) (see

for instance [19] and the subsequent enormous list of papers derived from the seminal work of Moës

and colleagues).

Therefore, after a more or less exhaustive review of the existing literature, a conclusion can be

drawn. Techniques based upon model order reduction constitute nowadays an appealing choice for

an efficient, real-time, integration of the equations of motion [20]. They seem to be unique to effi-

ciently handle material non-linearities such as those arising from state-of-the-art models for living

soft tissues [12,13]. And, finally, they seem to be specially well suited for efficient contact detection

algorithms in real time [15].

Reduced-order modeling employs global (Ritz) shape functions to construct the approximation

spaces in a Galerkin framework. These shape functions are usually constructed to be optimal under

certain requirements. For instance, in POD techniques, these functions are extracted after a statis-

tical treatment of the results of problems similar to the one at hand [21–24]. These techniques are

known in many branches of science and technology under a wide variety of names, including the

aforementioned POD, PCA, or Karhunen–Loève decomposition. Other techniques are even able to

construct these shape functions without any prior knowledge on the results of similar problems (see

[25–29]).

However, the use of global, Ritz, shape functions imposes additional limitations. For instance, the

use of X-FEM techniques is not straightforward in this context. In this paper, a new method is pre-

sented, which combines the features of existing methods based upon model order reduction [12,13]

and the ease of creating cuts and discontinuities without remeshing of the X-FEM technique. As
2



will be noticed, the proposed technique has its origins in the s-FEM techniques by Fish [30] and the

multiscale FEM by Rank [31].

The paper is organized as follows. In Section 2, the basics of POD techniques is reviewed in

order to show how it can deal with non-linear constitutive equations under real-time requirements.

Then, in Section 3, a new technique is developed, which can efficiently create cuts and discon-

tinuities in the reduced model without remeshing and with minor modifications in the problem’s

stiffness matrix. Finally, in Section 4, an analysis of its performance is performed in an application

to refractive surgery of the cornea.

2. MODEL ORDER REDUCTION BY PROPER ORTHOGONAL

DECOMPOSITION METHODS

2.1. The Karhunen–Loève decomposition

The technique here considered can be seen as a particular instance of a posteriori model order

reduction techniques. This means that the process to achieve real-time performance is composed

by a sequence of off-line simulation, storage of the results, and subsequent analysis, followed by

an on-line process of real-time simulation that employs the Ritz functions obtained in the off-line

phase of the method. Following Cotin and Bro-Nielsen, ‘. . . We do not care about the time taken for

one-time pre-calculation such as setting up equations, inverting matrices, etc.’ [3].

Therefore, we assume that the evolution of a certain (scalar or vectorial) field u.x, t /, gov-

erned by a PDE, is known, typically from existing previous simulations on problems similar to

that we are interested in. In practical applications, this field is expressed in a discrete form, that

is, it is known at the nodes of a spatial finite element mesh and for some time steps of exist-

ing simulations u.xi , tn/ � un
i . The same can be written by introducing a time discretization

un.x/ � u.x, t D n�t/I 8n 2 Œ1, � � � , P �. The main idea of the Karhunen–Loève (K-L) decom-

position is how to obtain the most typical or characteristic structure �.x/ among these un.x/ 8n.

This is equivalent to obtaining a function �.x/ that maximizes ˛ defined by

˛ D

PnDP
nD1

h

PiDN
iD1 �.xi /u

n.xi /
i2

PiDN
iD1 .�.xi //2
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Defining the vector � such that its i th component is �.xi /, Equation (3) takes the following

matrix form

Q�
T

c � D ˛ Q�
T

�I 8 Q� ) c � D ˛� (4)

where the two-point correlation matrix is given by

cij D

nDP
X

nD1

un.xi /u
n.xj / , c D

nDP
X

nD1

un.un/T (5)
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which is symmetric and positive definite. If we define the matrix Q containing the discrete field

history

Q D

0

B

B

B

@

u1
1 u2

1 � � � uP
1

u1
2 u2

2 � � � uP
2

...
...

. . .
...

u1
N u2

N � � � uP
N

1

C

C

C

A

(6)

it is straightforward to verify that the matrix c in Equation (4) results

c D Q QT (7)

where the diagonal components are given by

ci i D .Q QT /i i D

j DP
X

j D1

.u
j
i /2. (8)

Thus, the functions defining the most characteristic structure of un.x/ are the eigenfunctions

�k.x/ � �k associated with the highest eigenvalues.

2.2. A posteriori reduced-order modeling

As mentioned before, the main ingredient of the POD method is to perform off-line some initial

simulations on the complete model(s) that allow to obtain u.xi , tn/ � un
i , 8i 2 Œ1, � � � , N �, 8n 2

Œ1, � � � , P �, and from these, the r eigenvectors related to the r-highest eigenvalues �k D �k.xi /,

8i 2 Œ1, � � � , N �, 8k 2 Œ1, � � � , r� (with r � N ). From these simulations, the r eigenfunctions can

be successfully employed for approximating the solution of a problem slightly different than the one

that has served to define u.xi , tn/. For this purpose, it is necessary to define the matrix A

A D

0

B

B

B

@

�1.x1/ �2.x1/ � � � �r.x1/

�1.x2/ �2.x2/ � � � �r.x2/
...

...
. . .

...

�1.xN / �2.xN / � � � �r.xN /

1

C

C

C

A

. (9)

The typical structure of the discretized form of the (non-linear) equations of elasticity is of the

type

K U D F . (10)

Obviously, in the case of time-dependent problems, F contains the contribution of the solution at

the previous converged time step.

Assuming that the unknown vector contains the nodal (usually, displacement) degrees of freedom,

it can be expressed as

U D

iDr
X

iD1

�i �i D A �, (11)

which gives, for the complete system of equations,

K U D F ) K A � D F . (12)

Multiplying both terms by AT gives

AT K A � D AT F , (13)

which proves that the final system of equations is of low order, that is, the dimensions of AT K A

are r � r , with r � N , and the dimensions of both � and AT F are r � 1.
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From the paragraphs above, we recover the initial idea exposed in Section 1. The main idea of

model order reduction techniques is to employ, in a Ritz framework, a set of global basis that are, in

a statistical sense, the best suited to reproduce the just computed, complete models. This is in sharp

contrast with the FEM, which employs general purpose, piecewise polynomial shape functions to

approximate the solution in a Galerkin framework.

2.3. Limitations of classical model reduction techniques

Although the model order reduction technique reviewed before gives excellent results in some,

very useful, situations (see, for instance, [11, 20]) and has given very promising results at real-time

feedback rates (see [10]), it still has some limitations. The main limitation deals with the severe

limitations imposed by real-time constraints in haptic environments (set to some 0.5–1 kHz). This

means that in practical situations, it is not possible to update the stiffness matrix K of Equation (13)

in the course of the simulation. For strongly non-linear tissue constitutive equations, this can give

errors below the 20% of the solution obtained by classical non-linear finite elements [11], still valid

in some situations.

In some previous works of the authors, see [12, 13], a method has been developed and vali-

dated that allows for a fully non-linear simulation (in some neighborhood of previous, equilibrated,

solutions) without the need of tangent stiffness matrix updating. The method is based on the combi-

nation of model order reduction techniques and asymptotic expansions of the solution (the so-called

asymptotic numerical method [32–35]).

The second, very important, limitation of classical model reduction techniques (also of more

recent versions such as those in [11, 12]) is that the employ of Ritz functions very much compli-

cates the issue of simulating surgical cutting. The appearance of a cut implies a change of topology

in the geometry of the domain and also an important change in the stiffness matrix, element con-

nectivities, and so on. X-FEM techniques [19] very much limit these inconveniences for standard

finite element simulations, with only minimal changes in the number of degrees of freedom and

element connectivity, but these are not readily applicable to reduced-order models employing Ritz

basis functions.

In the next section, we briefly review the X-FEM in the framework of standard finite elements,

prior to its introduction in conjunction with reduced basis.

3. INTRODUCING CUTS IN THE REDUCED MODEL BY X-FEM TECHNIQUES

3.1. A brief review of the X-FEM

In order to make this work self-contained, a brief review of the well-known X-FEM is included here.

The interested reader is referred to [19], for instance, among other classical references in the field.

The basic ingredient of X-FEM methods is to consider a cut or crack �d as a discontinuity in

the displacement field. Therefore, by simply enriching those nodes whose shape function’s support

intersects, the crack with a discontinuous functions will suffice to obtain a conforming discretiza-

tion without the need of remeshing. Thus, the new approximation of the displacement will be, in the

context of X-FEM, for a single crack or cut,

uh.x/ D
X

i2I

uiNi .x/ C
X

j 2J

bj Nj .x/H.x/, (14)

where J D fj 2 I W !j \D ¤ ;g, I represents the set of all nodes in the FE mesh, Ni .x/ represents

the i th node shape function, whose support is !i , evaluated at x, ui represents node i ’s displace-

ment vector, and H.x/ is discontinuous across the crack �d , whose geometry is represented by D.

Finally, bj represents a new set of enriched degrees of freedom that control the magnitude of the

displacement discontinuity across the crack.

Classical works of X-FEM in the context of fracture mechanics such as in [19] still add some more

degrees of freedom in order to reproduce the linear elastic fracture mechanics asymptotic solution at

the crack front. These are not considered here for several reasons. Firstly, for living soft tissues, the
5



form of the asymptotic solution (if any) at the crack front is in general not known. In any case, the

gain in accuracy would be, in general, negligible, if compared with all the simplifying assumptions

taken up to now in order to reach a real-time performance.

3.2. Coupling reduced models and X-FEM descriptions of surgical cuts

The approach here suggested is composed by the coupling between the (Ritz) reduced basis and a

superimposed patch of finite elements where the force exerted by the scalpel exceeds some limit

value, thus appearing a cut in the organ. This approach can be seen as a generalization of some

existing techniques in the field of finite elements, notably the so-called s-version of the FEM by

Fish [30] and the multiscale FEM by Rank [31], among others [36, 37]. The basic of the method is

easily understood from Figure 1.

The domain � is discretized by finite elements, and a reduced-order model is constructed on top

of it that employs Ritz basis functions, as explained before. Once the force exerted by the scalpel

reaches a prescribed threshold (see the sections that follow), a cut is supposed to appear at the con-

tact location. Around that region, a superimposed patch �L of finite elements is placed around the

scalpel tip. In �L, the displacement field is approximated as

u D u0 C uL in �L (15)

where, to guarantee the compatibility of the displacement field, we enforce

uL D 0 on �0L. (16)

The reduced-order model approximates the displacement everywhere, in the spirit of Equation (11),

u0.x/ D

iDr
X

iD1

�i�i .x/, (17)

whereas in �L a traditional FEM mesh, including discontinuous enrichment, is added:

uL.x/ D
X

j 2�L

dj Nj .x/ C
X

k2J

bkNk.x/H.x/. (18)

Figure 1. Basics of the method for reduced basis–X-FEM coupling.
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The discrete equilibrium equations can be obtained after the weak form of the problem, namely,

find u 2 U D fu W u 2 H1, u D u on �ug such that

Z

�

"� W �d� D

Z

�t

u�td� C

Z

�

u�bd�, 8u� 2 U 0 D fu� W u� 2 H
1
0, u D 0 on �ug, (19)

where, as usual, �u represents the Dirichlet (essential) part of the boundary of the domain, u repre-

sents the value of the prescribed displacement at that location, t is the prescribed vector of traction at

the boundary, and finally, �t is the Neumann (natural) part of the boundary � . Admissible variations

of the displacement are calculated as

u� D
�

u0
��

C
�

uL
��

. (20)

By substituting the displacement field approximations (17) and (18) into the weak form (19), and

after invoking the arbitrariness of admissible displacements u�, we arrive at a discrete system of

equations of the type

0

@

K �� K �d K �b

K d� K dd K db

K b� K bd K bb

1

A

0

@

�

d

b

1

AD

0

@

f �

f d

f b

1

A , (21)

where the stiffness matrices K ˛ˇ are given by

K
˛ˇ
IJ D

Z

�i

.B˛
I /T DB

ˇ
J d� (22)

where matrix B˛
I , ˛ D �, d , b represent the standard shape function derivative matrix for any of

the three types of approximation functions here considered, namely, the Ritz functions �.x/, the

standard finite element shape functions N.x/, or the discontinuous enrichment shape functions,

N.x/H.x/. �i represents the domain of integration, either � or �L, respectively. Finally, D rep-

resents the consistently linearized constitutive tensor. As mentioned before, because of the severe

restrictions placed by real-time requirements in haptic environments, it is not possible, in general,

to update this tangent stiffness tensor. In this work, for the sake of simplicity in the exposition of

the method, an approach similar to that in [11] is employed, in which no updating is accounted for.

This leads, of course, to higher errors in the results, still acceptable in virtual surgery environments.

If more accurate results are needed, an alternative formulation can be used [13], which employs

asymptotic expansions of the displacement field and, without any updating, allows to closely follow

complex non-linear force-displacement paths. The extension of the technique developed in some of

our former works [13] to this framework is a work in progress.

In order to evaluate the previous integrals leading to the stiffness matrix of the problem, no spe-

cial integration procedure is employed, in sharp contrast with the original works of Fish [30], as

we assume that the superimposed mesh conforms with the existing one. It is necessary, however, to

perform some form of tailored numerical integration in those elements enriched by discontinuous

displacements, following the standard procedures of X-FEM.

3.3. Simplified physics of the cutting procedure

The last ingredient in the method is related to the placement of the patch �L during the surgery.

Once contact between the scalpel and the organ has been detected by a suitable contact algorithm

(see [15] for instance, for a valid contact criterion in reduced model settings), a criterion must be

set in order to determine if cutting appears, thus generating a new boundary in the domain, or not.

We follow closely the criteria set in [38]. Although greatly simplified, these criteria have demon-

strated to provide realistic enough results in haptic environments. A scalpel cuts along its blade, so

a decomposition of the acting force as in Figure 2 is employed:

F ext D F ? C F k D F ? C F a C F n (23)
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Figure 2. Force decomposition at the scalpel point of contact.

A threshold value of the force Fcut is considered such that lower modulus of the force F k pro-

duces static friction, but no cut. Once kF kk exceeds Fcut, the finite element patch �L is added to

the scalpel tip. In this work, a value Fcut D 3N has been considered.

In order to simplify the process and to make it simpler and (notably) faster, once the threshold

value Fcut is reached, a whole finite element is then cut. No cut of length smaller than the typical

element size h is considered. If the finite element mesh is dense enough, this limitation does not

very much affect the results. Remember that the size of the global finite element mesh, N , does not

affect the size of the reduced model, r (see Equation (13).

3.4. Speeding up the X-FEM

The standard X-FEM technique, as presented before, provides excellent results but is, in general,

somewhat heavy for real-time simulation. In this section, several assumptions are taken into account

in order to alleviate these limitations.

The first one is related to the support of enriched degrees of freedom. The so-called shifted

enrichment functions [39] allow to minimize the support of enriched approximation functions and

therefore the width of the superimposed finite element mesh. These functions have the simple form

�i .x/ D
H.x/ � Hi

2
(24)

where Hi represents the value of H.x/ at the i th node.

The second big problem of the use of X-FEM for real-time simulation is that of the integration

of the resulting weak form. The discontinuity forces to explicitly take into account the two resulting

elements from a cut element and to apply standard Gauss integration on each volume. Location of

the integration points in these resulting volumes is often a very heavy task. For that purpose, in

this work, an alternative approach has been employed. It is based on the use of linear tetrahedra (in

spite of their well-known numerical stiffness), for which exact, closed-form expressions exist for

the stiffness matrix. Hexahedral meshes in the vicinity of the cut are then split into tetrahedra. Thus,

the resulting stiffness matrix of an element traversed by the cut will be

K D

�

K uu K ua

K au K aa

�

(25)

where Kuu corresponds to the standard, unenriched element stiffness matrix, and K ua, K au, and

K aa correspond to the enriched degrees of freedom. As the linear tetrahedra have constant strain

(and therefore constant derivatives matrix B), we arrive at [40]
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K uu
ij D K ij (26)

K ua
ij D

�

Va

V
‰aj C

Vb

V
‰bj

�

K ij (27)

K au
ij D

�

Va

V
‰ai C

Vb

V
‰bi

�

K ij (28)

K aa
ij D

�

Va

V
‰ai‰aj C

Vb

V
‰bi‰bj

�

K ij (29)

where K uu is identical to that of the non-enriched tetrahedron, and ‰a.b/ represents the enrichment

functions above (respectively, below) the cut plane. In the same spirit, V , Va, and Vb represent the

volume of the tetrahedron, or the volume above or below the cut, respectively.

The formulation presented before is apt for linear FEM. In the case of large displacements or

strains, more sophisticate approaches should be used. This would be imperative in the case of

resections, with large displacements of the resected part, for instance. However, for the applica-

tion pursued in this paper, and for the sake of speed of simulation, it is maintained as presented

before. As will be shown, the results are good in spite of this formal contradiction.

4. APPLICATION TO THE SIMULATION OF CORNEAL REFRACTIVE SURGERY

It must be highlighted at this point that the purpose of this work is not to validate the use of reduced-

order models in the context of real-time applications. This has been performed in many previous

works (see for instance [10–13], among others). Another purpose of this work is also not to validate

X-FEM technique to accurately simulate moving discontinuities in solid mechanics problems (for

instance, see, among others, [19, 41–44]). However, the combination of both provides a unique set

of features that makes the resulting technique an appealing choice. Among these features, the feasi-

bility of real-time simulation of complex non-linear tissues (including, for instance, fiber-reinforced

hyperelastic tissue, see [11]) combined with the possibility of simulating surgical cutting without

remeshing (at haptic feedback rates, it is obvious that for realistic rendering, the cut must be repre-

sented accurately, but only at some 30-Hz feedback rates and not at 500 Hz). To this end, the case

of corneal refractive surgery is analyzed here under the framework of the proposed method.

Astigmatism is a refractive error due to the non-spherical shape of the cornea, that is, the refractive

power is not uniform in all meridians. Refractive surgery techniques are used to modify the curva-

ture in order to repair the refractive error of the eye [2]. This defect may be corrected by making the

cornea as spherical as possible, through the application of cuts.

In addition, properties of the cornea can be quite different between patients with the same level

of pathology; therefore, the technique presented before can be seen as an efficient means to plan

a patient-specific surgery that minimizes uncertainty in the results, providing the surgeon with the

sensations and results he will obtain later in the true surgery.

4.1. Finite element model of the cornea

The model of the cornea employed here is based upon that presented in [2]. The cornea was meshed

using trilinear hexahedral elements. It consisted of 8514 nodes and 7182 elements. The mesh is

shown in Figure 3 in two views. The cornea is clamped at its base, giving a dome-like problem that

showed buckling under some types of loads.

The cornea was assumed to be, without loss of generality, hyperelastic, with a Kirchhoff–Saint

Venant behavior. More sophisticated material behaviors can also be efficiently tackled with this tech-

nique, as in [11], where a two-families of fibers reinforced hyperelasticity model was successfully

employed.

The Kirchhoff–Saint Venant model is characterized by the energy function given by

‰ D
�

2
.tr.E//2 C �E W E (30)
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Figure 3. Geometry of the finite element model for the human cornea.
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Figure 4. Five most important eigenmodes for the simulation of the cornea. The corresponding eigenvalues

are 10.77 (a), 0.014 (b), 2.58 � 10�4 (c), 6.53 � 10�7 (d), and 4.43 � 10�11 (e).
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where � and � are Lame’s constants. The Green–Lagrange strain tensor, E , has the form

E D
1

2
.F T F � 1/ D 
l.u/ C 
nl.u, u/ (31)

where F D ru C I is the gradient of deformation tensor. The second Piola–Kirchhoff stress tensor

can be obtained by

S D
@‰.E/

@E
D C W E (32)

in which C is the fourth-order constitutive (elastic) tensor.

The Kirchhoff–Saint Venant hyperelastic model possesses well-known limitations, particularly

some instabilities when subjected to pure compression. Nevertheless, it remains to be interesting

for some applications. Noteworthy, in real-time simulation environments (see [10] and references

therein, for instance) it is among the state-of-the-art models that can be computed under the severe

limitations that real-time frameworks impose. The material properties of the cornea were assumed

to be E D 2 MPa and � D 0.48 [2].

For a punctual load of increasing value, the complete model gave the five modes that capture 99%

of the energy of the model. These modes are shown in Figure 4. Therefore, the reduced-order model

has a stiffness matrix of 15 � 15 (five modes for each component of the displacement vector).

With these five modes, standard reduced-order models provide an error under 20% for loads

placed at different positions to the one considered in the evaluation of the modes in Figure 4 and

with no updating of the stiffness matrix. This level of error is considered valid in many real-time

applications [11]. If more accurate simulations are needed, the method proposed in [13] provides a

nearly exact simulation for displacement under the scalpel tip up to 1 mm (possibly much more than

that, but at the scale of the cornea, 1-mm displacement involves very large strains and no reference

finite elements results could be obtained to compare with).

4.2. Simulating limbal relaxing incisions

Limbal relaxing incisions are one of the three main types of cuts made in corneal refractive surgery.

These incisions are made near the outer edge of the iris and are used to correct minor astigmatism

(typically less than 2 diopters). In this case, a cut is made roughly at this position. In Figure 5, a

X

Y

Z

X

Y

Z

Figure 5. Superimposed X-FEM mesh at the position of limbal relaxing incision.
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detailed view of the deformed cornea, together with the superimposed X-FEM mesh, is presented.

For post-processing purposes, those elements cut by the scalpel are represented as two different

finite elements in the figure, although no such elements exist in the simulation, as explained before.

The obtained displacement field is shown in Figure 6. A detailed view of the x-direction displace-

ment field is shown in Figure 7, where the appearance of the cut can be noticed, in spite of the low

magnitude of the displacement between crack lips.

In order to see the difference that a practitioner would see when dealing with the simulator, in

Figure 8, a comparison is made between the solutions obtained by employing the complete model,

explicitly meshing the cut by separate hexahedral finite elements, and that obtained by the combined

POD-X-FEM model. The practically indistinguishable displacement field that is obtained (both are

superimposed in Figure 8, in practice no difference can be noticed visually) is noticeable.

4.3. Timings

The results presented in this chapter have been obtained with a MacBook Pro laptop, running

Matlab 2010a with an Intel Core 2 duo processor at 2.80 GHz and 4 Gb of DDR3 RAM memory

X

Y

Z

Uy

0.11
0.09
0.07
0.05
0.03
0.01

-0.01

Figure 6. Displacement field (y-direction) in the cutting procedure.

Figure 7. Cutting procedure. Displacement field (x-direction). Enrichment degrees of freedom are magnified
10 times to highlight the magnitude of the cut.
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Figure 8. Cutting procedure. Comparison among the complete (red) and reduced (blue) models. Both results
are superimposed, highlighting the good correspondence between each other.

(The MathWorks, Inc. Natick, Massachusetts, U.S.A.). Despite the use of rude Matlab code pro-

totypes, the examples of the cornea ran at some 25 Hz, which is enough for visual real-time

requirements.

The use of more powerful computers, possibly running in parallel, because many of the proce-

dures here described can easily be programmed to run in that way, or the use of GPUs seem to be

a feasible alternative to improve these promising results, is still compatible with the state-of-the-art

techniques in the field (see for instance [40]).

5. CONCLUSIONS

In this paper, a novel method for the real-time simulation of surgery in haptic environments has

been presented. The method is based on the use of reduced-order modeling. Reduced models are,

to the author’s knowledge, the only technique able to simulate at real-time feedback rates, highly

complex constitutive models for living tissues (fiber-reinforced hyperelastic models, for instance).

The problem with such an approach lies in the introduction of surgical cuts. The global charac-

ter of the approximation functions (Ritz) precludes the possibility of employing standard methods

in the literature that use very efficient algorithms for partitioning or eliminating the mesh in the

neighboring of the cut. The approach here developed is based on the use of X-FEM techniques, cou-

pled with the existing reduced model through a multi-scale-like method. Thus, the superimposed

finite element mesh is capable of reproducing the displacement discontinuities produced by the

scalpel, whereas the underlying reduced model is able to accurately reproduce the global behavior of

the organ.

The proposed method runs at feedback rate, thus allowing to take part in a surgery simulator,

together with some specialized contact detection algorithm. This opens the possibility to incorpo-

rate complex, state-of-the-art soft tissue constitutive laws into real-time simulation of surgery, thus

leading the possibility of making a true second-generation simulator at hand.
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