
FACULDADE DE ENGENHARIA DA UNIVERSIDADE DO PORTO

Real-Time Software Transactional

Memory

António Manuel de Sousa Barros

Programa Doutoral em Engenharia Electrotécnica e de Computadores

Supervisor: Luís Miguel Rosário da Silva Pinho

May 29, 2018

c© António Manuel de Sousa Barros, 2018

Real-Time Software Transactional Memory

António Manuel de Sousa Barros

Programa Doutoral em Engenharia Electrotécnica e de Computadores

Approved by:

President: Doutor José Alfredo Ribeiro da Silva Matos

External Referee: Doutor Mario Aldea Rivas

External Referee: Doutora Audrey Queudet

External Referee: Doutor Paulo Bacelar Reis Pedreiras

Internal Referee: Doutor Luís Miguel Pinho de Almeida

Internal Referee: Doutor Pedro Alexandre Guimarães Lobo Ferreira Souto

Supervisor: Doutor Luís Miguel Rosário da Silva Pinho

May 29, 2018

Abstract

The current trend in the development of recent real-time embedded systems is driven by (i) a

shift from single-core to multi-core platform architectures at the hardware level; (ii) a shift from

sequential to parallel programming paradigms at the software level; and finally (iii) the ever in-

creasing demand of new functionalities (e.g. additional tasks with specific timing requirements).

These trends taken together increase the complexity of the system as a whole, and have a signifi-

cant impact on the type of mechanisms that are adopted in order to guarantee both the functional

and non-functional correctness of the system. This holds true especially in the case where these

mechanisms have to maintain the correctness of data shared between different tasks executing

concurrently in parallel.

The access to shared resources (e.g. main memory) on single-core systems has traditionally

relied on lock-based mechanisms. At any time instant, a single task is granted an exclusive access

to each shared resource. However, assuming the new settings, i.e. multi-core architectures exe-

cuting a set of potentially parallel tasks sharing data, the big picture changes. Tasks executing in

parallel on different cores and sharing the same data may have to compete before completing the

execution. It has been proven that lock-based synchronisation approaches, which were sound in

single-core context, do not to scale to multi-cores and, furthermore, they hinder the composability

of the system, unfortunately.

On the path to solving these issues, Software Transactional Memory (STM) based approaches

have been proposed as promising candidates. By using these alternative techniques, the underlying

STM service would solve the conflicts between contending tasks while maintaining data consis-

tency, and critical sections would be executed speculatively – i.e. they are executed but if the result

of the computation harms the system correctness, then changes made by the computation are re-

verted and the results are ignored. This way, the details on how to synchronise shared data would

be hidden from the programmer, thus representing a significant advantage as compared to lock-

based synchronisation techniques regarding the functional correctness of the system. Regarding

the non-functional correctness instead, the use of STM based approaches in real-time systems also

requires the tasks timing constraints to be met. This is due to the fact that each transaction aborting

and repeating multiple times before its eventual commit incurs a timing overhead that might not

be negligible and, therefore, must be taken into account to prevent deadline misses at runtime.

This work considers a set of potentially parallel real-time tasks sharing data and executed on

a multi-core platform. Assuming this setting, first it proposes a complete framework where an

STM service is associated to a set of fully partitioned scheduling algorithms in order to improve

the predictability of the system as well as guaranteeing that the timing constraints are met for

all the tasks. Then, it proposes the corresponding schedulability analysis for each pair of STM

and scheduling algorithms. Finally, it proposes a lightweight syntax to enrich the original Ada

programming language in order to support STM for concurrent real-time applications.

i

ii

Sumário

A tendência actual no desenvolvimento de sistemas de tempo-real embutidos é caracterizada por

(i) ao nível do hardware, a transição de arquitecturas baseadas em um único processador para

múltiplos processadores num circuito integrado; (ii) ao nível do software pela transição de paradig-

mas de programação sequenciais para paralelos; e, finalmente, (iii) pela sempre crescente necessi-

dade de novas funcionalidades (por exemplo, tarefas adicionais com requisitos temporais). Estes

factores tomados em conjunto aumentam a complexidade do sistema de um ponto de vista geral,

tendo um impacto significativo nos mecanismos que são adoptados para garantir a correcção fun-

cional e não-funcional do sistema. Isto é especialmente verdadeiro no caso em que tais mecan-

ismos têm que manter a correcção dos dados partilhados entre diferentes tarefas concorrentes

executadas em paralelo.

O acesso a recursos partilhados (por exemplo, a memória principal) em sistemas com um

único processador tem sido tradicionalmente gerido por mecanismos de bloqueio (habitualmente

denominados de locks), i.e. estruturas que permitem bloquear temporariamente o acesso a esses

recursos a pedido das tarefas. Em qualquer instante, o acesso a um recurso partilhado é apenas

permitido em exclusivo a uma única tarefa. No entanto, assumindo o novo cenário de arquitecturas

baseadas em múltiplos processadores num circuito integrado a executar um conjunto de tarefas

potencialmente em paralelo, acedendo a dados partilhados em memória modifica o panorama em

que assenta o desenvolvimento de sistemas. A execução de tarefas em paralelo em diferentes

processadores que acedem aos mesmos dados poderão ter que competir entre elas até finalmente

terminarem a sua execução. Infelizmente, a sincronização de tarefas baseada em mecanismos de

bloqueio que são eficazes em sistemas mono-processador não são eficientes em arquitecturas com

múltiplos processadores e, além do mais, têm um impacto negativo na composição do sistema.

As abordagens baseadas no conceito da Software Transactional Memory (STM) foram pro-

postas como possíveis candidatos para resolver os problemas previamente mencionados. A uti-

lização destas técnicas alternativas implicam um serviço que resolve conflitos entre tarefas con-

correntes de forma a manter a consistência dos dados, enquanto as secções críticas das tarefas são

executadas especulativamente – i.e. o resultado da execução da secção crítica pode ser descartado

se comprometer a consistência dos dados. Desta forma, os detalhes sobre como sincronizar dados

partilhados tornam-se transparentes para o programador, representando uma vantagem significa-

tiva sobre os mecanismos de bloqueio, do ponto de vista da correcção funcional do sistema. Mas

no que toca à correcção não-funcional, é necessário que a utilização de abordagens baseadas em

STM garantam que as restrições temporais das tarefas sejam respeitadas. Isto deve-se ao facto de

que abortar e repetir uma transação múltiplas vezes até finalmente concluir com sucesso implica

custos adicionais em tempo de execução que poderão ser significativos, que poderão traduzir-se

em tarefas a ultrapassar os seus prazos em tempo de execução.

Esta tese considera um conjunto de tarefas com características de tempo-real, potencialmente

paralelas, que partilham dados em memória, executadas numa plataforma com múltiplos proces-

sadores num circuito integrado. Assumindo este cenário, em primeiro lugar propõe uma estrutura

iii

iv

completa em que um serviço de STM é associado a um conjunto de algoritmos de escalonamento

particionado, de forma a incrementar a previsibilidade do sistema e garantir que as restrições tem-

porais de todas as tarefas são respeitadas. Depois, propõe a respectiva análise de escalonabilidade

para cada associação de STM vs. algoritmo de escalonamento. Por fim, propõe uma sintaxe para

aumentar a linguagem de programação Ada, de forma a suportar STM no desenvolvimento de

aplicações concorrentes de tempo-real.

Acknowledgements

First, I would like to express my deepest gratitude to my supervisor, Prof. Luís Miguel Pinho,

for giving me the opportunity to work with him and undertake this research work. His guidance,

support, motivation and care were crucial to overcome the many obstacles that we faced along the

way, and complete this personal endeavour. I always felt comfortable to discuss any topics and

issues with Miguel, and I am aware and grateful for all I have learned due to this kind openness. I

must stress that Miguel demands no less than high standards, which occasionally made me quite

nervous, thinking on how to properly handle the task in hand. But I must stress even more how he

always encouraged me and pushed me to carry on when work seemed overwhelming.

I am immensely grateful to Patrick Meumeu Yomsi, who is in fact acting as a co-supervisor.

We started working together only in 2015 but yet, much of him is in this thesis, as he helped me in

so many, many ways. Always with a smile, he seriously motivated me to do things the right way

– "Keep pushing, man!" – and this is reflected in this manuscript. I learned a lot from Patrick, and

I certainly improved myself a lot with him.

I am very lucky to have these two great men as friends.

Thanks to my colleagues and friends at CISTER. I would like to acknowledge Eduardo Tovar

for creating such a dynamic and challenging and yet, friendly and cosy environment. I would

like to thank my colleagues for all the great ideas we discussed, but also for all the coffee break

chit-chats that so many times help us to resume work with a much better state of mind, especially

Ricardo Severino, Gurulingesh Raravi, Dakshina Dasari, Hossein Fotouhi, Maryam Vahabi, Ri-

cardo Garibay-Martínez, Muhammad Ali Awan, Hazem Ali and Cláudio Maia. A special thanks

for Paulo Baltarejo Sousa for all the help dealing with the linux kernel: I can’t pay you all those

days we spent programming, debugging, recompiling the kernel.

I also want to express my deepest gratitude to ISEP for all the institutional support to this

PhD work, and to the Department of Informatics Engineering for doing everything to alleviate me

as much as it was possible from my teaching-related labour, so I could pursue this endeavour. I

deeply acknowledge my colleagues for their support and comprehension.

Finally I want express my infinite gratitude to my family. To my parents for their unconditional

love, and who have always encouraged me to put my best on all the things I do. To my parents

and parents-in-law for loving my daughters Núria and Alícia so much, and helping me with al

those "small" daily tasks that represent so much. And specially to my wife, Dulce, who always

believed in me, even when I was not so sure I could complete this thesis. I am aware of all the

sacrifices she endured these last years. There are no words to thank for all the encouragement and

companionship I received from Dulce.

António Barros

v

vi

List of publications

Journal papers included in this thesis

António Barros, Luis Miguel Pinho, Patrick Meumeu Yomsi. Non-preemptive and SRP-based

fully-preemptive scheduling of real-time Software Transactional Memory. Journal of

Systems Architecture (JSA), 61(10):553–566, Nov 2015.

Conference or Workshop papers included in this thesis

António Barros, Patrick Meumeu Yomsi, Luis Miguel Pinho. Response time analysis of hard

real-time tasks sharing software transactional memory data under fully partitioned

scheduling. In Proceedings of the 11th IEEE International Symposium on Industrial

Embedded Systems (SIES 2016), Krakow, Poland, May 2016.

António Barros, Luis Miguel Pinho. Non-preemptive scheduling of Real-Time Software

Transactional Memory. In Proceedings of the Conference on Architecture of Computing

Systems (ARCS 2014), Lübeck, Germany, February 2014.

António Barros, Luis Miguel Pinho. Revisiting Transactions in Ada. In Proceedings of the 15th

International Real-Time Ada Workshop (IRTAW-15), pages 84-92, Fuente Dé, Spain,

September 2011.

António Barros, Luis Miguel Pinho. Software transactional memory as a building block for

parallel embedded real-time systems. In Proceedings of the 37th EUROMICRO

Conference on Software Engineering and Advanced Applications (SEAA 2011), pages

251–255, Oulu, Finland, September 2011.

António Barros, Luis Miguel Pinho. Managing contention of software transactional memory in

real-time systems. In Proceedings of the 31st IEEE Real-Time Systems Symposium (RTSS

2010), Work-In-Progress Session, San Diego, U.S.A., December 2010.

vii

viii

To Núria and Alícia.

ix

x

Contents

1 Introduction 1

1.1 Problem definition . 3

1.2 Relevance of the subject . 5

1.3 Main thesis preposition . 7

1.4 Thesis contributions . 7

1.5 Outline . 8

2 Background on real-time embedded systems 11

2.1 Modelling real-time systems . 12

2.2 Modelling the computing platform . 15

2.3 Real-time scheduling paradigms . 17

2.4 Relevant works in the real-time scheduling theory 23

2.5 Summary . 27

3 Background on synchronisation mechanisms 29

3.1 Lock-based synchronisation . 30

3.2 Non-blocking data structures . 36

3.3 Transactional memory . 38

3.4 Relevant works on software transactional memory 41

3.5 Summary . 44

4 System model 45

4.1 Task specifications . 45

4.2 Platform and Scheduler specifications . 46

4.3 STM specifications . 46

5 FIFO-CRT: a predictable STM contention management 49

5.1 Requirements . 49

5.2 Classical contention management policies . 50

5.3 Discussion of criteria . 52

5.4 FIFO-CRT: a predictable contention manager for real-time systems 56

5.5 Summary . 59

6 Scheduling tasks and transactions under FIFO-CRT 61

6.1 Impact of the scheduling policy on the contention manager 61

6.2 Non-preemptive approaches . 62

6.2.1 Non preemptible until commit (NPUC) 63

6.2.2 Non preemptible during attempt (NPDA) 65

6.3 Preemptive approach (SRPTM) . 65

xi

xii CONTENTS

6.3.1 Assigning preemption levels to tasks and to transactions 67

6.3.2 Scheduling policy . 69

6.4 Summary . 70

7 Schedulability analysis of tasks under NPDA, NPUC and SRPTM 73

7.1 WCRT analysis for NPDA . 73

7.2 WCRT analysis for NPUC . 74

7.2.1 WCRT of transaction ωi . 75

7.2.2 WCRT of task τi . 78

7.3 WCRT analysis for SRPTM . 81

7.3.1 WCRT of transaction ωi . 81

7.3.2 WCRT of task τi . 82

7.4 Summary . 86

8 Evaluation 87

8.1 Quantitative evaluation . 88

8.1.1 Simulation set up . 88

8.1.2 Simulation results . 89

8.2 Qualitative evaluation . 95

8.2.1 Deadlock . 96

8.2.2 Livelock . 97

8.2.3 Access to multiple objects per atomic section 97

8.2.4 Composability . 98

8.2.5 Transparency . 99

8.2.6 Priority inversion . 100

8.2.7 Convoy effect . 103

8.2.8 Impact of the synchronisation mechanism on a multi-core architecture . . 104

8.2.9 Platform dependency . 106

8.3 Summary . 107

9 Implementation 111

9.1 Experimental setup . 111

9.1.1 Platform specification . 111

9.1.2 Task set generation . 112

9.1.3 STM specification . 113

9.1.4 Schedulers specification . 114

9.2 Results . 115

9.2.1 STM performance . 116

9.2.2 System performance . 121

9.2.3 Response Time Analysis (RTA) accuracy 144

9.3 Summary . 154

10 Conclusions 159

10.1 Summary of results . 160

10.1.1 Fair and predictable contention management algorithm 160

10.1.2 Modifications performed on the original scheduler 161

10.1.3 Response time analysis . 162

10.2 Future directions . 162

CONTENTS xiii

References 165

A Ada language support for transactions 175

A.1 State of the art . 175

A.2 Ada language support for transactions . 177

A.2.1 Transactional object . 177

A.2.2 Transaction identifier . 178

B Bounded-memory multi-version STM for real-time systems 181

xiv CONTENTS

List of Figures

2.1 Typical embedded system building blocks. 12

2.2 Two multi-core processors for embedded applications. 16

a Tilera TILE-Gx8072. 16

b Kalray MPPA-256. 16

2.3 Dhall’s effect. Job τ3 misses the deadline because it cannot use the available ca-

pacity of the two processors when they overlap in time. 21

3.1 Race condition. 31

3.2 Priority inversion. 33

a Unbounded priority inversion. 33

b Bounded priority inversion. 33

4.1 Transaction dependencies by object concurrency. 47

4.2 State diagram of a transaction. 48

5.1 Contention management based on number of aborts. 52

5.2 Live-lock due to laxity criteria. 54

5.3 Contention management based on transaction release times. 55

5.4 Contention between transactions on the same core resulting in deadlock. 56

5.5 Contention management based on job absolute deadlines. 58

6.1 A preempted transaction with earlier release time being aborted. 62

6.2 Long transaction is excessively aborted because of preemptions. 63

6.3 Transactions scheduled under NPUC. 64

6.4 Contention cascades. 65

6.5 Transactions scheduled under NPDA. 66

6.6 Transaction dependencies by object concurrency. 68

7.1 Preempted jobs executing ω2 and ω4 are rescheduled in times to abort transaction

ω1. 74

7.2 Sequence of transactions until ω1 commits. 76

7.3 ω1, the first transaction in the sequence aborts once before commits. 77

8.1 Feasibility rates: varying number of cores. 91

8.2 Feasibility rates: varying number of cores with smaller atomic sections. 92

8.3 Total number of deadline misses (50 simulations). 93

a Atomic sections with unrestricted size. 93

b Smaller atomic sections. 93

8.4 Maximum number of aborts per job (average). 93

xv

xvi LIST OF FIGURES

a Atomic sections with unrestricted size. 93

b Smaller atomic sections. 93

8.5 Time overhead per atomic section (average). 93

a Atomic sections with unrestricted size. 93

b Smaller atomic sections. 93

8.6 Feasibility rates: varying number of cores with smaller atomic sections. 94

8.7 Total deadlines missed (50 simulations). 95

a Atomic sections with unrestricted size. 95

b Smaller atomic sections. 95

8.8 Maximum number of aborts per job (average). 95

a Atomic sections with unrestricted size. 95

b Smaller atomic sections. 95

8.9 Execution time overhead per atomic section (average). 96

a STM and lock-based results. 96

b Detailed view, excluding FMLP. 96

9.1 STM transactional object descriptors. 114

9.2 Maximum number of aborts of a transaction per job (m = 2). 117

9.3 Maximum number of aborts of a transaction per job (m = 4). 118

9.4 Maximum number of aborts of a transaction per job (m = 8). 119

9.5 Maximum number of aborts of a transaction per job (m = 16). 120

9.6 Average number of aborts per task (m = 2). 122

9.7 Average number of aborts per task (m = 4). 123

9.8 Average number of aborts per task (m = 8). 124

9.9 Average number of aborts per task (m = 16). 125

9.10 Maximum number of preemptions per job (m = 2). 126

9.11 Maximum number of preemptions per job (m = 4). 127

9.12 Maximum number of preemptions per job (m = 8). 128

9.13 Maximum number of preemptions per job (m = 16). 129

9.14 Execution time overheads (m = 2). 131

9.15 Execution time overheads (m = 4). 132

9.16 Execution time overheads (m = 8). 133

9.17 Execution time overheads (m = 16). 134

9.18 Workload (normalised by the number of tasks) (m = 2). 136

9.19 Workload (normalised by the number of tasks) (m = 4). 137

9.20 Workload (normalised by the number of tasks) (m = 8). 138

9.21 Workload (normalised by the number of tasks) (m = 16). 139

9.22 Responsiveness RT
T

(m = 2). 140

9.23 Responsiveness RT
T

(m = 4). 141

9.24 Responsiveness RT
T

(m = 8). 142

9.25 Responsiveness RT
T

(m = 16). 143

9.26 Observed pessimism for transaction RT analysis (m = 2). 145

9.27 Observed pessimism for transaction RT analysis (m = 4). 146

9.28 Observed pessimism for transaction RT analysis (m = 8). 147

9.29 Observed pessimism for transaction RT analysis (m = 16). 148

9.30 Ratio of tasks that were RT analysed (m = 2). 150

9.31 Ratio of tasks that were RT analysed (m = 4). 151

9.32 Ratio of tasks that were RT analysed (m = 8). 152

9.33 Ratio of tasks that were RT analysed (m = 16). 153

LIST OF FIGURES xvii

9.34 Observed pessimism for task RT analysis (m = 2). 155

9.35 Observed pessimism for task RT analysis (m = 4). 156

9.36 Observed pessimism for task RT analysis (m = 8). 157

9.37 Observed pessimism for task RT analysis (m = 16). 158

B.1 Conflict between a read-only (ω1) and an update (ω2) transactions. 182

B.2 Conflict between a read-only (ω1) and an update (ω2) transactions. 182

xviii LIST OF FIGURES

List of Tables

6.1 Task parameters and transaction dependencies. 69

6.2 Example of calculation of preemption levels. 69

8.1 Quantitative simulation results for 64 cores, 32 contention groups. 109

8.2 Summary of the qualitative evaluation of STM (opposed to locking) for real-time

embedded systems. 109

xix

xx LIST OF TABLES

Acronyms and Symbols

List of acronyms

ASTM Adaptive STM

BF Best Fit

BFD Best Fit Decreasing

BHP Bounded direct blocking with High Parallelism

CAS Compare-And-Swap

CM Contention Manager

DDR Double Data Rate synchronous dynamic random-access memory

DP Dynamic Priority scheduler

DS Data set

DSTM Dynamic STM

ECM EDF Contention Manager

EDF Earliest Deadline First

FBLT First Bounded, Last Timestamp contention manager

FIFO First In, First Out

FIFO-CRT First In First Out Contention manager for Real-Time systems

FF First Fit

FFD First Fit Decreasing

FP Fixed Priorities

FJP Fixed-Job Priority scheduler

FMLP Flexible Multiprocessor Locking Protocol

FTP Fixed-Task Priority scheduler

G-EDF Global Earliest Deadline First

L1 Level-1 cache

L2 Level-2 cache

L3 Level-3 cache

LCM Length-based Contention Manager

LLF Least Laxity First

McRT-STM Multi-core RunTime STM

MIC Many Integrated Core architecture

MPB Message Passing Buffer

M-PCP Multiprocessor Priority Ceiling Protocol

M-SRP Multiprocessor Stack Resource Protocol

MWCAS Multi-Word Compare-And-Swap

NoC Network on a Chip

NPDA Non-Preemptive During Attempt

NPUC Non-Preemptive Until Commit

xxi

xxii ACRONYMS AND SYMBOLS

NUMA Non-Uniform Memory Access

OMLP O(m) Locking Protocol

OSTM Object-based STM

PCP Priority Ceiling Protocol

PD Pseudo-Deadline Pfair algorithm

PD2 PD algorithm with simplified tie-breaking mechanism

P-EDF Partitioned Earliest Deadline First

PF Proportionate Fair

Pfair Proportionate fair scheduling

P-FP Partitioned Fixed Priority

PIP Priority Inheritance Protocol

PNF Priority contention manager with Negative values and First access

P-PCP Parallel Priority Ceiling Protocol

QPA Quick convergence Processor-demand Analysis

RCM RMA Contention Manager

RM Rate Monotonic

RNLP Real-time Nested Locking Protocol

RR Round-Robin

RS Read set

R/W RNLP Multiple reads and mutually exclusive write Real-time Nested Locking Proto-

col

SCC Single-chip Cloud Computer

SRP Stack Resource Protocol

SRPTM SRP for Transactional Memory

STM Software Transactional Memory

TL2 Transactional Locking 2

U-EDF Unfair but Optimal Multiprocessor Scheduling Algorithm for Sporadic Tasks

UMA Uniform Memory Access

WCET Worst Case Execution Time

WCRT Worst Case Response Time

WF Worst Fit

WFD Worst Fit Decreasing

WFI Worst Fit Increasing

WS Write set

ACRONYMS AND SYMBOLS xxiii

List of symbols

Task set parameters.

τ A task set.

n The number of tasks of τ .

τi The ith task of τ .

Ci The worst-case execution time of τi.

Ti The minimum inter-arrival time of τi.

Di The relative deadline of τi.

Ri The worst-case response time of τi.

Ui Task utilisation of τi.

Uτ Task set utilisation of τ .

P Hyper-period of the task set.

Job parameters.

τi, j The jth job of τi.

ri, j The release time of τi, j.

di, j The absolute deadline of τi, j.

fi, j The time instant at which τi, j finishes executing.

rti, j The response time of τi, j.

Wi, j Transaction overhead of job τi, j.

Ai, j Number of aborts of transaction ωi executed by job τi, j.

Hardware platform parameters.

π The set of cores.

m The number of cores of π .

πk The kth core of π .

σ (τi) Function that returns the core to which τi is assigned.

Transaction parameters.

ωi Transaction executed by task τi.

Cωi
The maximum execution time required to execute the sequential code of trans-

action ωi.

Ca−ωi
Execution time required by the non-transactional section of τi executed before

transaction ωi.

Cp−ωi
Execution time required by the non-transactional section of τi executed after

transaction ωi.

DSi Data set of ωi, i.e. the collection of transactional objects accessed by ωi.

RSi Read set of ωi, i.e. the collection of transactional objects accessed exclusively

for reading by ωi.

WSi Write set of ωi, i.e. the collection of transactional objects accessed modified

by ωi.

|DSi| Size of the data set of ωi.

|RSi| Size of the read set of ωi.

|WSi| Size of the write set of ωi.

xxiv ACRONYMS AND SYMBOLS

STM parameters.

O Set of STM objects.

o j The jth object of O.

p The number of objects of O.

|o j| The number of transactions that access o j.

Contention group parameters.

G A contention graph, in which transactions are represented as vertices. Any two

transactions that have intersecting data sets are connected by an edge.

Ωa A contention group, i.e. a group of transactions that share intersecting data

sets.

Πa Subset of cores allocated to contention group Ωa

ma The number of cores in Πa.

SRPTM.

λi Preemption level of task τi.

λωi
Preemption level of transaction ωi.

Λk Ceiling of core πk.

ceil(ok) Ceiling of transactional object ok.

ceil(Ωg) Ceiling of contention group Ωg.

NPUC analysis.

υ(k) Transaction ωi on the kth position in a given sequence of transactions ordered

by their release times.

R(k) WCRT of a transaction ωi on the kth position in a given sequence of transac-

tions ordered by their release times.

Si Set of all possible simple paths that converge to transaction ωi.

Si,k Subset of all simple paths on length k that converge to transaction ωi.

Rωi
Worst-case response time of transaction ωi.

CΩg,πℓ
Longest execution time of all the transactions in contention group Ωg that are

assigned to core πℓ.

IΩg,πk
Maximum inter-core interference that any transaction in contention group Ωg

assigned to core πk can experience.

La−ωi
Longest busy-period that occurs until transaction ωi is released.

Bi Blocking term associated to lower priority tasks.

SRPTM analysis.

Ra−ωi
Worst-case response time of the non-transactional section of code executed

before transaction ωi.

R∗ωi
Worst-case response time of the last two attempts of transaction ωi.

DBi The longest direct blocking term that task τi can experience.

IBi The longest indirect blocking term that task τi can experience.

Chapter 1

Introduction

Real-time systems are defined as those for which the correctness depends not only on the logical

result of the computation, but also the time at which it is produced (Stankovic, 1988). When

embedded in some form to control its environment, such a system consists of a set of tasks that

interact and must process inputs from the environment in order to provide the adequate outputs

within a pre-defined time window. This pre-defined time window is dictated by the requirements

of the controlled system – i.e. the system’s timing constraints. Examples of real-time systems

include industrial computer-controlled systems, avionics applications such as airplane control,

train braking systems, or real-time video processing such as the detection of people in front of a

moving vehicle.

The timing constraints of a real-time system can be classified based on the consequences of

meeting or not the timing requirements of each task (Burns, 1991). For a given system, when a task

deadline miss may lead to a total failure of the entire system, then this task is referred to as a hard

real-time task. When the integrity of the system is not at stake, that is the system can occasionally

accommodate a few task deadline misses, but the benefit of this flexibility is drawn to zero after

the deadline, i.e., the result produced is not useful, then the task is referred to as a firm real-time

task. In the case the consequence of a task deadline miss is limited to a potential degradation of

the Quality of Service (QoS) of the system, then the task is referred to as a soft real-time task.

Obviously, a system may consist of a combination of all these three types of tasks. However, as

soon as a single task has hard real-time requirements, then the whole system is stamped as hard

real-time.

Traditional design of embedded real-time systems relies on the following assumptions about

the external closed environment: (1) only a limited set of input sources is admissible, (2) only a

limited set of functionalities is allowed and (3) only a limited set of output actions can be taken.

With these assumptions, the design techniques often adopted for the allocation and management

of the system resources in order to supply the pre-defined service requirements tend to be based

on static rather than dynamic approaches (Klein et al., 1993). Following the trend described by

1

2 Introduction

Hansen et al. (2001), contemporary embedded real-time systems increasingly combine the require-

ments of traditional closed systems and the challenges of an open, heterogeneous, and dynamic

environment. These systems have to cope with increasingly complex environments while main-

taining a predefined quality of service.

Embedded architectures are following a major evolution. We have witnessed a paradigm shift

from single core to multi-core platforms, due to thermal and capacitive limitations in Moore’s

Law prediction. The use of multi-core architectures in the embedded domain offers the ability to

execute various tasks in parallel. However, the number of available cores significantly impacts

the way these systems are implemented. Supporting the concurrency and the parallel interaction

between tasks and the inherent use of data sharing mechanisms are tremendous challenges to ac-

count for in this case. These challenges exacerbate even more when it is necessary to guarantee the

non-functional requirements of the application (Anderson et al., 2006). Therefore, it is essential

to provide innovative and efficient mechanisms that allow developing dynamic applications while

guaranteeing their reliability.

Instead of developing sequential code functions that are then made concurrent through op-

erating system calls, it is well accepted that there are several advantages in writing concurrent

programs with the semantics of concurrency in the programming language (Burns and Wellings,

2009). Real-time embedded applications interact with the external world (people, cars, robots,

conveyor belts, planes, etc.) in situations that are inherently parallel and distributed. Their pro-

grams have to deal with various components like interrupt handlers (which react to internal/ex-

ternal events), clock handlers (which react to clock ticks) and managers (which monitors system

state, task states and modes of operation). They also have to execute tasks corresponding to spe-

cific functionalities while taking into account real-world properties. If the concurrent nature of

the system is explicitly supported by the semantics of the programming language, then the pro-

gram becomes more readable, maintainable and reliable (Sutter and Larus, 2005). However, this

feature comes along with a number of new problems, the language models and mechanisms for

concurrent programming must be assessed in the same manner as the application functional and

non-functional requirements are scrutinized.

In summary, the actual context for real-time embedded applications is characterised by the

growing demands on functional requirements that results in an increase in the number of software

components; and the shift from single-core to multi-core platforms which increases the complex-

ity of the interactions between those components. Current approaches try to ease the development

process by providing means to build correct applications through the selection and integration of

correct components (composability) while ensuring the timing requirements. This approach hides

from the programmer the interactions between components by applying mechanisms that maintain

the consistency of shared data in a deterministic way. This can be achieved through programming

languages and operating systems that expose the appropriate mechanisms for concurrent interac-

tion and data sharing.

1.1 Problem definition 3

1.1 Problem definition

On single-core platforms, task interaction and access to shared resources traditionally rely on

locking mechanisms (Anderson et al., 1997) such as semaphores (Dijkstra, 1965) and monitors

(Hoare, 1974). These mechanisms became commonplace as means to provide sections of code,

also referred to as a critical section, an exclusive access to shared resources. However, locking

mechanisms come along with at least two challenges. The first challenge is the lack of composabil-

ity (Sutter and Larus, 2005), i.e. correct components can be selected and when they are assembled

together, they form a non-correct application; and the second challenge is the exposure to priority

inversion in priority-based preemptive scheduling (Sha et al., 1990; Baker, 1991).

On multiprocessor systems, although additional computing resources are available on the plat-

form, further issues arise. Locks can be classified according to their granularity. As such, we

distinguish between: (1) the coarse-grained locks where a single lock controls the access to a

large fraction of the available shared resources, and (2) the fine-grained locks where a single lock

controls the access to a single or a small fraction of the available resources. Coarse-grained locks

impede the progress of non-conflicting tasks that request access to the same lock, thus degrading

the system throughput. On the other hand, fine-grained locks increase the complexity of system

design because the same rule for acquiring locks must be applied across the whole system, thus

hindering composability. Another issue is the convoy effect (Bershad, 1993). Here, a task that

is holding a lock may have its execution paused or even halted (e.g. due to a preemption by a

higher-priority task, an interruption by a event handler, or a core shut-down), thus delaying the

completion time of all blocked tasks.

Currently, two directions are considered in order to tackle these issues. The first direction

consists in adapting previous and/or devise new locking mechanisms for parallel systems, as pro-

posed by Gai et al. (2001), Block et al. (2007), Easwaran and Andersson (2009a,b). The second

direction consists in devising non-blocking mechanisms, as proposed by Tsigas and Zhang (1999),

Anderson and Holman (2000), Brandenburg et al. (2008), Sarni et al. (2009), Cotard (2013) and

El-Shambakey and Ravindran (2013b).

Adapting and/or devising new locking mechanisms is not a safe path to follow as they do not

allow us to fully circumvent the hurdles previously discussed. In contrast, non-blocking mech-

anisms appear to be a suitable alternative as long as it is possible to include them in real-time

systems. They are already used in distributed and highly-parallel systems with satisfactory results.

They rely on the concept of non-blocking data object. Here, conflicting accesses are managed

by an underlying mechanism that is responsible of maintaining the consistency of the shared data

object. Every piece of code is written without critical sections, and as such a task will not block

when it needs to access a resource.

On multiprocessor systems, non-blocking objects present strong conceptual advantages (Tsi-

gas and Zhang, 1999). They have proven to perform better than lock-based solutions in several

scenarios (Brandenburg et al., 2008). Priority inversion and deadlock are eliminated because ac-

cesses to the object proceed in parallel and concurrent accesses can always be resolved in favour of

4 Introduction

the higher-priority tasks. The convoy effect is also eliminated because no task will block, waiting

for another task that is failing or prevented from executing. These advantages provided by non-

blocking objects are somehow balanced by the complexity of the mechanisms that are required

to maintain the consistency of each shared object. This complexity depends on the guarantee of

progress provided by the non-blocking data object. This guarantee of progress can be classified in

the following three categories: wait-free, lock-free or obstruction-free (Herlihy and Shavit, 2008),

given with the following interpretation. A wait-free object ensures that every call will finish in

a finite number of steps independently of the pace of execution of the other tasks. In this cate-

gory, all tasks are ensured to progress. A lock-free object relaxes the progress condition, so that

the system is broadly able to progress, although some tasks may suffer from starvation. In this

category, any update of a data object will only take effect if no conflict occurs; otherwise, only

one access is granted to complete, while the remaining contenders will fail and will be deemed to

retry. An obstruction-free object ensures that one task will eventually progress if it executes in iso-

lation relative to other contending tasks. Thus, this category provides the most relaxed guarantee

of progress.

Despite the interesting features of non-blocking objects, critical sections usually provide atom-

icity to a composition of operations. A section of code that operates shared memory space in an

atomic manner and with no explicit locks is referred to as a transaction. Herlihy and Moss (1993)

described how to add extensions in the cache-coherence protocol of a multiprocessor architec-

ture to implement the concept of transactional memory. In contrast to the approach proposed by

Herlihy and Moss (1993) at the hardware level, Shavit and Touitou (1995) adapted the concept

of transactional memory in order to implement all the synchronisation operations at the software

level. They named it Software Transactional Memory (STM). The STM presents a huge advantage

over the hardware-based approach: it is portable in the sense that it can be implemented seamlessly

to multiple architectures; and it is hardware agnostic in the sense that there is no need to modify

the circuitry of the chip. For this reason, to manage the access to shared memory regions we opted

for STM-based techniques in this work.

The very first STM-based approach was proposed by Shavit and Touitou (1995) and only sup-

ported static transactions, i.e. transactions and memory locations are predefined before runtime.

Later, other researchers proposed implementations of STM that support dynamical memory usage

and dynamical transactions, i.e. each transaction can decide which addresses to access based on

values read at runtime. However, the underlying synchronisation mechanisms are diverse. For ex-

ample, Fraser’s STM (Fraser, 2003) applies lock-free mechanisms. The Dynamic STM (DSTM)

(Herlihy et al., 2003) uses obstruction-free mechanisms. Ennals’ STM (Ennals, 2005) applies an

optimistic concurrency control for reads, but uses locks to protect objects that will be written by

a transaction. This STM approach is implemented along with a mechanism that avoids deadlock

when deciding in favour of a determined transaction.

In general, a transaction is executed in isolation and must complete either by committing (i.e.

when it succeeds) or by aborting (i.e. when it failed). This holds true irrespective of other transac-

tions executing in parallel. In case of an abort, the transaction is deemed to retry. Data consistency

1.2 Relevance of the subject 5

is maintained because transactions operate on private copies of shared data, so conflicting transac-

tions will not race over the same data. Before completion, all accessed locations are checked for

conflicting updates that may have occurred during the execution of the transaction. If no conflict

is detected, then data is consistent and updates become effective. Otherwise, when a conflict has

been detected, a contention policy is applied in order to allow, at least, one transaction to commit.

In order to achieve the intended guarantee of progress, every contention policy dictates how to

solve conflicts among transactions. Typically, the contention policy must select the transaction to

commit based on a criteria that meets the expected behaviour of the STM (Herlihy et al., 2003).

It is also important that the contention policy avoids livelock, i.e. when two transactions are in

conflict, they should not be able to abort each other indefinitely.

From the previous discussion, Software Transactional Memory is an interesting approach to

solve the scalability and composability problems of lock-based approaches. Nevertheless, its use

in real-time systems entails the support of appropriate mechanisms that would guarantee that all

the timing requirements are met. The adopted contention policy must not only be functionally

correct, but also its timing behaviour must be analysable. Furthermore, it should be possible to

couple the programming model with the underlying implementation of these algorithms.

This thesis focuses on the problem of sharing data and synchronisation in concurrent

real-time software executing on multi-core platforms.

1.2 Relevance of the subject

Because the traditional solution to increase the computing power of processors (i.e. reducing

the size of components and increasing the clock frequency) reached physical limits (thermal and

capacitive), chip manufacturers opted for packing multiple cores on a single chip. The current

trend to push further in this direction is leading to massive multi-core or many-core processors.

That is chips including tens to hundreds of cores, interconnected with switched networks. A few

examples include the Tilera Tile64Pro which features 64 cores and the Tilera TILE-Gx8072 which

features 72 cores (Tilera, 2012, 2015); the Intel SCC which features 48 cores (Intel, 2010); the Intel

Xeon Phi which features 60 cores (Intel, 2012); the Kalray MPPA featuring 256 cores (Kalray,

2015); and the Adapteva Epiphany featuring 1024 cores (Adapteva, 2012). These many-core

architectures allow multiple applications to be deployed on the same chip, thus maximizing the

hardware utilisation, and reducing the cost, size, weight, and power requirements. They also allow

the designers to improve the performance of the applications through parallelism. Nevertheless,

all this computing power raises a number of challenges, including the core-to-core and the core-

to-memory communications. In addition, cache coherency becomes a cornerstone especially for

platforms encompassing a large number cores (Choi et al., 2011). Furthermore, platforms can

either be homogeneous, with symmetric or asymmetric multiprocessing; or heterogeneous, with

different core types. This also substantially impacts in the way applications share data.

6 Introduction

Focusing on multi-core platforms, multiple solutions have been proposed exposing or not co-

herency between caches. One of the first examples of non-cache coherent approaches was provided

by the experimental Intel Single-chip Cloud Computer (SCC) (Intel, 2010). This chip contained

24 tiles with two Pentium cores each, connected with a 4x6 2D-mesh, and a shared message pass-

ing buffer (MPB). Another platform exhibiting non-cache coherency between cores is the Kalray

MPPA (Kalray, 2015). This platform consists of 16 clusters of 16 computing cores each, plus 32

cores that are dedicated to the management of the computing clusters, the I/O and the intercon-

nect. Another architecture proposed by Intel is the Many Integrated Core architecture (MIC) (Intel,

2012). In this family, the Xeon Phi integrates 60 (Pentium-based) cores, but connected through

a dual ring-bus. It features software-based coherency between caches. The Tilera (Tilera, 2012)

architecture offers a different cache coherency solution. Each tile consists of a single core, with its

own private cache and it is connected to the other tiles through several parallel NoCs (iMesh). On

this platform, the tiles can be aggregated and form separate domains, with separate cache-coherent

areas. The Epiphany platform (Adapteva, 2012) presents a similar organisation.

Recent architectures influence the way applications should be implemented in order to fully

exploit the parallel computing power provided by these platforms. A promising candidate to this

implementation paradigm is the thread-level parallel programming approach. By using this imple-

mentation methodology, the concurrency model of the tasks is prone to simultaneous requests of

tasks running on different cores to shared resources, such as the main memory. Hence, the adopted

synchronisation mechanism to manage the access to the shared resources and thus solve conflicts

among transactions must be sharp, precise and well thought.

In the arena of admissible solutions, we adopt an STM-based approach as STM provides all

the features to help us benefiting from the advantages of a concurrent programming paradigm,

while limiting their potential disadvantages. More precisely, STM has proven to scale well with

an increase of the number of cores available on a single processor chip (Dragojević et al., 2011).

It delivers a higher throughput in comparison to coarse-grained locks and does not increase design

complexity as compared to fine-grained locks (Rossbach et al., 2010). Last but not least, it is worth

noticing that STM-based approaches present very good performances in terms of transaction abort

ratio for systems with a low ratio of context switching during the execution of the transactions

and with a predominance of (1) read-only transactions; and (2) transactions with a short execution

time (Maldonado et al., 2010).

In this context, i.e., opting for an STM-based approach, the programmer writes sequential

code as usual, but he has to specify through annotations the portions of the code that are to be

executed as transactions. Although many optimisation techniques can be applied at the moment

of breaking the ties between multiple transactions in conflicts (either a read-write or a write-write

conflict), the role of the contention policy is to guarantee a meaningful and efficient serialisation

of the access of the contending transactions to the shared resource. In this process, one transaction

will always be granted the access, and thus the right to execute and commit, while the other

contending transactions will be fated to abort, and consequently, will be deemed to repeat. The

synchronisation details are seamlessly handled by an underlying mechanism that maintains the

1.3 Main thesis preposition 7

consistency of the shared data objects located at the transactional memory.

In the parallel computing domain, the focus of STM-based approaches is limited to the system

throughput, i.e., the number of commit per time unit. Here, the contention management policy is

designed in such a manner that livelocks are avoided and starvation (i.e., any transaction constantly

being aborted by the contenders) is minimized.

In the real-time systems domain, in addition to ensure that every transaction will eventually

commit as this is the case in the parallel computing domain, the timing requirements of every

task must also be satisfied. This means that we must also pay a special attention to the time by

which every commit occurs. Consequently, when designing an STM-based approach for real-time

systems, we must have two objectives in mind: (1) guarantee that the number of aborts of every

transaction is upper-bounded and (2) make sure that the deadline of every task is met. To this

end, a sound and convincing schedulability analysis must be conducted. This is one of the main

contributions of this work.

1.3 Main thesis preposition

Considering the context presented in Section 1.2, the main objective of this thesis is to support the

use of Software Transactional Memory in real-time embedded systems. The central preposition of

this dissertation is:

The use of software transactional memory improves the composability of applica-

tions for multi-core embedded systems with real-time requirements.

This can be accomplished by designing a contention management policy for the execution

and management of the transactions, associated to a scheduling algorithm for the execution of

the tasks. These two components carefully developed and put together will result in a very limited

number of aborts for every transaction as a guarantee of the timing requirements of every task. The

adopted programming model to go along with these components will also need to be augmented

with the required mechanisms to enable the correct use of this type of data sharing approach.

1.4 Thesis contributions

Considering the previous main thesis preposition, the main contributions of this work are as fol-

lows:

C1: Design and implementation of a fair and predictable contention management algorithm.

The contention management policy for real-time applications (FIFO-CRT) proposed in this

thesis serialises the transactions in such a manner that their timing attributes are consid-

ered. Unlike in lock-based synchronisation where a job suspends its execution while the

desired resource is not free (thus yielding the processor to other ready tasks), here, a job

holds the processor during the time it attempts to commit the transaction in execution. The

8 Introduction

designed policy provides a fair opportunity to commit to every transaction and is agnostic

to the underlying task scheduling policy. In addition, it avoids deadlocks by making it pos-

sible for a later released transaction to abort an older released and preempted transaction.

Along this line, we propose a set of rules on the scheduler associated to FIFO-CRT so as

to prevent multiple simultaneous active transactions on each core, as this would result in an

improvement of the responsiveness for each task.

C2: Design, implementation and analysis of three scheduling algorithms.

Associated to the FIFO-CRT policy, we designed and analysed three fully-partitioned schedul-

ing algorithms, denoted as Non-Preemptive Until Commit (NPUC), Non-Preemtive During

Attempt (NPDA) and Stack Resource Protocol for Transactional Memory (SRPTM). These

three scheduling algorithms are based on the classical Partitioned EDF (P-EDF) scheduler.

Specifically, they take the same scheduling decisions as P-EDF when there is no transaction

in progress; otherwise the scheduling decisions are adjusted accordingly by following prede-

fined sets of metrics. This results in at most one active transaction per core, thus improving

the predictability of the FIFO-CRT policy.

In addition, we implemented these three scheduling algorithms together with FIFO-CRT

on a multi-core based computer hosting a PREEMPT-RT-patched Linux kernel version and

tested with a large group of synthetic task sets.

C3: Specification of the language support in Ada.

The use of transactional code must be as transparent as possible for the programmer. Based

on previous work on transactions for fault-tolerant systems, we propose in this thesis a

syntax for the Ada programming language to support software transactional memory for

concurrent real-time applications.

1.5 Outline

This thesis is structured as follows.

Chapter 2 (Background on real-time embedded systems) provides an insight on the state-of-

the-art on real-time embedded systems and real-time scheduling. Chapter 3 (Background on syn-

chronisation mechanisms) presents an overview of synchronisation mechanisms for architectures

based on multi-processor systems. Chapter 4 (System model) sets the system model and the as-

sumptions adopted in this manuscript. It introduces all the parameters that will be used throughout

this research work by distinguishing between three levels of abstraction, namely: the task specifi-

cations, the platform and scheduler specifications, and finally the STM specifications.

Chapter 5 (FIFO-CRT: a predictable STM contention management) formalises the FIFO-based

contention management algorithm, referred to as First-In-First-Out Contention manager for Real-

Time systems (FIFO-CRT), designed to provide predictability and prevent transaction starvation.

1.5 Outline 9

Chapter 6 (Scheduling tasks and transactions under FIFO-CRT) presents three scheduling poli-

cies – named (1) Non-Preemptive Until Commit (NPUC); (2) Non-Preemptive During Attempt

(NPDA); and (3) SRP for Software Transactional Memory (SRPTM) – to address specific issues

that impact on the predictability of FIFO-CRT. Chapter 7 (Schedulability analysis of tasks under

NPDA, NPUC and SRPTM) reports on the schedulability analyses associated to these scheduling

policies.

Chapter 8 (Evaluation) presents the simulation testbed that has been developed to compare the

performance of our STM-based approaches (i.e. the FIFO-CRT contention manager associated to

NPUC, NPDA and SRPTM scheduling policies) against the state-of-the-art lock-based synchro-

nisation mechanism named Flexible Multiprocessor Locking Protocol (FMLP). This performance

comparison is conducted by using the throughput of atomic sections executed by concurrent tasks

and the number of deadline misses as the main metrics and a qualitative evaluation between all

these approaches is also proposed. In order to analyse the performance of our synchronisation ap-

proaches and the precision of the theoretical analyses from a practical viewpoint, we implemented

a minimalistic STM system with the FIFO-CRT contention manager as a Linux user space ser-

vice, and the three scheduling policies in the Linux kernel. The results of these experiments are

presented in Chapter 9 (Implementation).

Chapter 10 (Conclusions) summarises the contributions of this work and provides future re-

search directions that can build upon the results of this thesis.

Appendix A (Ada language support for transactions) elaborates on the specifications of the

programming language mechanisms that we proposed to support the execution of transactions. To

this end, we discuss how the syntax of the Ada programming language can be adapted so as to

support STM transactions.

Finally, Appendix B (Bounded-memory multi-version STM for real-time systems) elaborates

on how to execute read-only transactions free of aborts by tuning a multi-version STM. Unlike for

general-purpose STM systems, the timing characteristics of real-time task sets offer the opportu-

nity to determine the exact number of versions for each data object.

10 Introduction

Chapter 2

Background on real-time embedded

systems

An embedded system is a computer that interacts with its surrounding physical elements and is

implemented for a specific purpose. Figure 2.1 illustrates the general building blocks of such

a system1. An embedded system is meant to control a larger system in which the computer is

inserted. It perceives and receives stimuli from the physical system through sensors, and makes

use of actuators to modify the state of the controlled physical system. Embedded systems have

an innumerable range of applications such as smartphones, vehicle electronic stability control,

industrial process control or rocket guidance systems, to name a few. Unlike a general purpose

computer that performs a wide range of unforeseen tasks, the hardware design of an embedded

system addresses the requested functionality. As such, the hardware components are selected to

fit the requirements in order to reduce the final unit cost, which is very important in large scale

applications or in mass-production commercial products.

Most embedded systems have to deal with real-time constraints and are as such called real-

time embedded systems. These special embedded systems are those in which the correctness of

the system depends not only on the correctness of the logical results of the computations, but also

on the time at which these results are produced (Stankovic, 1988). Traditionally, the functionality

of a real-time system is divided into less complex parts that are referred to as tasks. A task is a

sub-program that is responsible of a particular part of the system. It is characterised by specific

timing requirements and can be invoked recurrently for a potentially infinite number of times.

Every invocation is also known as a job of the task. Each job is triggered either by time or an

event, and must complete within a given time frame, defined by a deadline. The consequences of

a job not being able to finish within the time frame depend on the criticality of the task. In some

cases, violating the temporal constraints can lead to catastrophic consequences. For example,

1An embedded system communicates with other systems via dedicated communication technologies, and with a

human operator via a user interface.

11

12 Background on real-time embedded systems

Sensor

Computer

Actuator

User
Interface

Communications

Figure 2.1: Typical embedded system building blocks.

if the thrust reverser systems accidentally take too long to activate after an aircraft touches the

ground, the aircraft may not decelerate rapidly enough to avoid overrunning the runway. In other

cases, the consequences can be experienced as a degradation in the quality of service, without

posing any catastrophic risk. For example, if a runner’s wrist GPS watch occasionally loses the

fix on satellites, it may be annoying (the runner may temporarily not know his pace) but it will not

have harmful consequences on the runner’s integrity. Therefore, there is a special concern on how

to schedule the set of tasks with sufficient resources to ensure that critical deadlines are met. A

schedulabilty analysis allows to determine before runtime if a given scheduling algorithm will be

able to meet the timing requirements of all the tasks on a target computing platform. This analysis

must be rigorous for (critical) systems, ensuring that no temporal constrains will be violated; and

must ensure that the timing requirements will be observed such that the quality-of-service provided

by the system is within the expected for systems that are not critical.

This chapter presents an overview of the real-time scheduling of tasks for multi-core systems,

and discusses relevant works published on this topic.

2.1 Modelling real-time systems

We recall that a real-time system distinguishes itself by the temporal constraints that augment the

functional requirements of its constituent tasks. This section describes how the functionality and

workload of a real-time application is modelled by the concepts of task and job, according to the

classic periodic/sporadic task model, as formalised by Mok (1983).

Definition 1 (Task). A task is an executable entity of workload that defines one part of the func-

tionality provided by the system. A task is denoted as τi, where i ∈ N
+ is the task index.

Each task τi is usually characterised by three parameters — Ci, Di and Ti — which are given with

the following interpretation:

2.1 Modelling real-time systems 13

• a worst case execution time (WCET) — Ci. This parameter defines the maximum processor

time without interruption required by any job of task τi.

• a relative deadline — Di. This parameter defines the maximum time window required by

each job of task τi to complete its execution.

• an activation interval — Ti. This parameter defines the time span between two consecutive

jobs of task τi. If Ti is constant, i.e., every job is released as soon as it is legally permitted to

do so, then τi is called periodic; else if Ti is a minimum, then τi is called sporadic; otherwise,

τi is called aperiodic.

Each task τi is further characterised by the relationship between its relative deadline Di and its

activation interval (also referred to as period) Ti.

• Implicit deadlines. Task τi is referred to as implicit deadline if Di = Ti.

• Constrained deadlines. Task τi is referred to as constrained deadline if Di ≤ Ti.

• Arbitrary deadlines. Task τi is referred to as arbitrary deadline if Di and Ti are independent.

Definition 2 (Task utilisation). The task utilisation is the maximum ratio of the processor capacity

used by the task. For task τi, it is denoted as Ui and is formally defined as Ui =Ci/Ti.

Definition 3 (Task set). The task set is the collection of all tasks that compose the system under

analysis. A task set which consists of n tasks is denoted as τ and defined as τ = {τ1, . . . ,τn}.

Definition 4 (Task set utilisation). The task set utilisation is the maximum ratio of the processor

capacity used by the whole task set. For the task set τ , it is denoted as Uτ and is formally defined

as the sum of the utilisation of all individual task utilisations, i.e., Uτ = ∑
n
i=1Ui.

This research considers sporadic implicit deadline task sets.

The sporadic implicit deadline task model of execution assumes that every task consists of a

potentially infinite sequence of jobs such that (i) every two consecutive jobs are separated by at

least the task’s period and (ii) the relative deadline of the task is equal to the task’s period, i.e.,

the execution of every job must finish before the following job is released. From now onward, we

refer to the jth job of task τi as τi, j. Each job τi, j is characterised by a set of timing attributes —

ri, j, si, j, di, j, fi, j, rti, j — that are relative to the instant at which the job is released.

• The release time — ri, j. This attribute corresponds to the time at which the job is released

and becomes ready for execution.

• The start time — si, j. This attribute corresponds to the time at which the job actually starts

executing. The job may not be scheduled upon its release, so si, j ≥ ri, j.

• The absolute deadline — di, j. This attribute defines the time by which the job must have

completed its execution. Formally, di, j = ri, j +Di.

14 Background on real-time embedded systems

• The finish time — fi, j. This attribute defines the time at which the job completes its execu-

tion. Ideally, we should have fi, j ≤ di, j, otherwise the job misses its deadline.

• The response time — rti, j. This attribute defines the time elapsed between the job release

time and the job finish time. Formally, rti, j = fi, j− ri, j.

A task set can be categorised according to the time at which jobs of every task are released. Hence,

we can distinguish between synchronous and asynchronous task sets.

• Synchronous task set, when there exists a time instant such that all the tasks release a job at

that time instant, i.e., ∃t ≥ 0 such that ∀i ∈ {1, . . . ,n}, ∃ j ≥ 1 and ri, j = t. Without any loss

of generality, we can always assume that j = 1 (i.e., the first job) and t = 0 in this case.

• Asynchronous task set, when the task set in not synchronous. In contrast to the previous

case, we can always assume that this is when ∃i, j ∈ {1, . . . ,n} such that i 6= j and ri,1 6= r j,1.

This research considers synchronous task sets.

The response time may vary from one job to another for the same task, due to the fluctua-

tions of the system workload at the time each job is released. In a real-time system domain, it

is desirable that the response time of all the jobs of a task meets the deadline constraint. For a

sound schedulabitlity analysis of a system, the maximum response time that all the jobs of a task

may experience is very important. Therefore we define the worst-case response time of a task as

follows.

Definition 5 (Worst-case response time of a task). The worst-case response time of a task, say τi,

denoted as Ri, is defined as the longest response time of all jobs of task τi. Formally speaking,

Ri = max j≥1(rti, j).

The strictness of the deadline of each real-time task allows us to distinguish between two categories

of tasks (Stankovic and Ramamritham, 1990).

• Hard real-time tasks. In this category, all the jobs of every task, say τi, must complete their

execution before their corresponding deadline, otherwise the job is valueless and constitutes

a failure of the system with potentially catastrophic consequences. Consequently, for such

a task it must hold true that Ri ≤ Di.

• Soft real-time tasks. In this category, the execution of some jobs of such a task, say τ j, are

allowed to exceed their corresponding deadline, without posing any risk to the integrity of

the system. In this case, a deadline miss can be seen as a degradation of the quality-of-

service of the system. Consequently, for such a task the following condition is acceptable

within statistical boundaries: ∃k ≥ 1, rt j,k > D j.

The strictness of the deadlines across tasks of a task set allows us to categorise it as hard or soft.

2.2 Modelling the computing platform 15

Definition 6 (Hard real-time system). A hard real-time system is one which consists only of hard

real-time tasks.

Definition 7 (Soft real-time system). A soft real-time system is one which contains at least one

soft real-time task.

From Definition 6 and Definition 7, it follows that hard real-time systems are those that must

be scrutinised in order to guarantee that no deadlines will ever be missed, otherwise the system

will fail. In contrast, soft real-time systems must be analysed to guarantee that the probability of

deadline misses leads to an acceptable quality-of-service.

This research focuses on hard real-time systems.

2.2 Modelling the computing platform

Real-time embedded systems can be built upon a wide range of computer platforms (e.g., archi-

tectures ranging from 4 to 64-bit), depending on the field of applications for which the system is

designed for. Before the advent of multi-core chips, there were two approaches to allocate the

tasks to the computing platform.

• In uniprocessor systems, the task set is entirely executed by one processor which is the only

resource and must be shared among all tasks along time. Thus the challenge reduces to

a scheduling problem. In this case, the processor computing power must be sufficient to

guarantee all the task timing requirements.

• In multiprocessor systems the task set is executed by more than one processor and thus par-

allel executions among processors are possible. Thus, in addition to the scheduling problem

on each core, a task-to-processor mapping problem adds to the challenge. In this case, the

timing requirements must be guaranteed by the processors computing power and by the

reliability of the computing interconnect between the processors.

Due to the increases in the transistor scale integration, multi-core chips allows multiple pro-

cessors on the same die. The miniaturisation process in the semiconductor technology reached the

stage where further processing power enhancements related to uniprocessor systems are no longer

affordable. Nowadays, the computing power required to support the requirements of many em-

bedded applications cannot be provided by uniprocessor chips and, consequently, they are being

replaced by multi-core chips. This paradigm shift has a relevant impact on the design of embedded

software that besides being concurrent, it must now address parallelism as a performance factor,

and specially in scheduling and mapping the tasks.

Multi-core is a platform in which multiple processing cores with the capability of operating

independently share the same chip and the platform resources, e.g., the physical memory space and

the I/O devices. This is generic enough to accommodate some design diversity, including the core

16 Background on real-time embedded systems

(a) The Tilera TILE-Gx8072. Source: EZchip

Semiconductor, Inc.

– –

–(b) The Kalray MPPA-256. Source: KALRAY Cor-

poration.

Figure 2.2: Two multi-core processors for embedded applications.

architectures, the core interconnect, the caches and the memory accesses. Figure 2.2 illustrates

this diversity. Figure 2.2a illustrates the EZchip (former Tilera) TILE-Gx8072 (Tilera, 2015) and

Figure 2.2b illustrates the Kalray MPPA-256 Kalray (2015).

• Core architectures. A multi-core chip can hold a collection of cores with the same or differ-

ent architectures. Taking in account the abundance of multi-core designs, this multiproces-

sors can be classified according to the diversity of computing architectures in the chip.

– Identical multi-cores. These architectures consist of identical cores, with the interpre-

tation that all the cores have the same computing capability and are interchangeable.

– Uniform multi-cores. For these architectures, each core, say πi, is characterised by its

own speed or computing capacity si, with the interpretation that a job that executes on

πi for t time units completes si · t units of execution.

– Unrelated multi-cores. For these architectures, there is an execution rate sk
i, j associated

to each job-core pair, say (τi, j,πk), such that τi, j completes sk
i, j · t units of execution

when it executes on core πk for t time units.

• Core interconnect. Previously, multi-core designs used a shared bus as core interconnect.

Lately, as the number of cores on a single chip has drastically increased for performance rea-

sons, the contention and consequently the core-to-core and core-to-memory latencies have

followed the same trend in terms of data transfer. To mitigate this issue, chip manufacturers

are putting considerable efforts in implementing switched networks on chip (NoC). This

aim aligns neatly with the desired “wish-list” of most embedded systems.

2.3 Real-time scheduling paradigms 17

• Caches. The speed of the memory lags behind the speed of current multi-core platforms.

Cache is a component that replicates the a small portion of the memory allowing faster

data accesses. Caches can be shared between a group of cores, or each core may have

exclusive access to its private cache. A cache hit occurs when the running operation can

be performed by using data available in the cache; otherwise, the outcome is a cache miss,

i.e. when the data or part of the data is not available in the cache. Multi-core platform are

implemented with either cache coherency or non-cache coherence mechanisms. A cache

coherency protocol ensures that all cache line replicas among all the cores are equal. This

cost circuits and time. Thus, non-coherent caches are cheaper (in terms of circuits) and faster

as they produce fewer stalls due to cache synchronisation and especially false sharing, i.e.

an efficient implementation in a core will not be hampered by memory operations initiated

in other cores. However, they require synchronisation support.

• Memory accesses. The access to the main memory differs between various platform designs.

We distinguish between uniform memory access (UMA) and non-uniform memory access

(NUMA). UMA denotes systems in which the time to access data in the main memory is

independent from the memory address and the core that requests the memory operation,

whereas NUMA denotes systems in which the time to access main memory depends on the

memory address and/or on the core that requests the operation.

This research focuses on identical multi-core chips with NoC-based interconnects,

non-coherent caches and is agnostic about the memory access mechanism.

In Figure 2.2, both chips consist of identical processing cores: seventy two 64-bit cores in the

TILE-Gx8072, and 256 32-bit cores in the Kalray MPPA-256. Note that the processing cores in

the Kalray MMPA-256 are organised in 16 clusters of 16 cores, which in turn are interconnected

via a NoC; whereas the cores are directly interconnected through a 2-D mesh on the Tile-Gx8072.

Furthermore, the MPPA-256 is scalable as it uses a NoC external interface that allows to connect

multiple chips on the same board. This is not the case for the TILE-Gx8072. On another front,

each core of the TILE-Gx8072 has private L1 and L2 caches and a shared L3 cache, which are

all coherent across the chip. In contrast, each core in the Kalray MPPA-256 has only a private

L1 cache, and no cache coherency mechanism implemented. The TILE-Gx8072 chip includes

four DDR3 memory controllers for main memory operations, whereas each cluster of the Kalray

MPPA-256 contains a multibank shared memory of 2 MBytes and an additional memory can be

accessed through two DDR3 channels.

2.3 Real-time scheduling paradigms

A very important aspect of hard real-time systems consists of scheduling tasks in such a way

that all the deadlines are met. The scheduling algorithm is responsible for this operation, i.e., to

sequence the tasks onto the processors for execution by the operating system. This operation is

18 Background on real-time embedded systems

performed by allocating the ready jobs so that the processing capacity is used in an efficient man-

ner. In general, operating systems use scheduler(s) to sequence the ready jobs for execution and

each scheduler is characterised by the scheduling algorithm it runs. In this context, a bunch of very

important results, techniques and intuitions on scheduling algorithms have been developed so far,

especially for single core architectures. Hence, it would not be reasonable to discuss them exhaus-

tively. However, it is important to note that a task scheduler does not need to run continuously, it is

activated by the operating system only at the scheduling points2. In summary, real-time embedded

systems employ either clock-driven, event-driven or hybrid schedulers. This classification is given

with the following interpretation.

Definition 8 (Clock-driven scheduler). In a clock-driven scheduler, the scheduling points are de-

fined at the time instants marked by clock interrupts generated by a periodic timer.

Definition 9 (Event-driven scheduler). In an event-driven scheduler, the scheduling points are

defined by the occurrence of certain events which preclude clock interrupts.

Definition 10 (Hybrid scheduler). In an hybrid scheduler, the scheduling points are defined by a

combination of clock interrupts and event occurrences.

⊲ Examples of clock-driven schedulers include “table-driven” and “cyclic” schedulers. These

schedulers are also called “off-line schedulers” as they fix the schelule before runtime, i.e., before

the system starts to run. To this end, a fixed length of time is divided into slots and each slot

is assigned to a task for execution. At runtime, the pre-defined schedule repeats over and over.

These schedulers are simple, efficient and incurs of very small overheads at runtime, which aligns

with the requirements of embedded systems with limited resources and a small number of tasks.

However, they do not handle sporadic and aperiodic tasks per se since the exact time of occurrence

of these tasks cannot be predicted.

⊲ Examples of event-driven schedulers include “priority-driven” schedulers such as Rate Mono-

tonic (RM) and Earliest Deadline First (EDF) (Liu and Layland, 1973). These schedulers are more

adaptive to dynamic solicitations of the tasks. In constrast to table-driven schedulers, the schedul-

ing decisions are taken at runtime based on the priority3 of the ready jobs. Given a task, say τi, the

priority assigned to each job, say τi, j with j ≥ 1, by following RM is inversely proportional to Ti,

the period of τi. This priority in EDF is defined by the absolute deadline of the job (di, j = ri, j +Di,

where ri, j and Di are the release time and the relative deadline of τi, respectively). Priority-driven

schedulers can be classified according to the complexity of the priority policy scheme they use.

As such, we can distinguish between Fixed-Task Priority (FTP), Fixed-Job Priority (FJP) and Dy-

namic Priority (DP) schedulers. These three classes of schedulers are given with the following

interpretation.

2Scheduling points of a scheduler are the points on the time line at which the scheduler makes decisions regarding

which task is to be executed next.
3The priority is a value that is assigned to each job by following a priority assignment strategy.

2.3 Real-time scheduling paradigms 19

• FTP schedulers. Given a task, the priority assigned to each job is constant and equal to the

ones assigned to all other jobs of the task. This priority is based on a parameter which does

not vary with time. RM (Liu and Layland, 1973) is an example of such a scheduler.

• FJP schedulers. Given a task, the priority assigned to each job is constant, but may differ

from one job to another of the task. According to this statement, it follows that FTP sched-

ulers are a special case of FJP schedulers. EDF (Liu and Layland, 1973) is an example of

such a scheduler.

• DP schedulers. Given a task, the priority assigned to each job is allowed to vary with time.

Least Laxity First (LLF) (Mok, 1983) is an example of such a scheduler.

⊲ Examples of hybrid schedulers include Round-Robin (RR). This scheduler handle all the tasks

without priority in a cyclic manner. In short, RR is similar to the “First In First Out” (FIFO)

scheduler, but with pre-defined time quantum maintained for preemption.

This research considers FJP schedulers.

Assuming a single core, FJP schedulers can be categorised according to their ability to pause

the execution of the running job prior to its completion in order to execute another job with a

higher priority. Hence, we distinguish between preemptive, non-preemptive and limited preemp-

tive schedulers, with the following interpretation.

• Preemptive schedulers. These schedulers allow to pause the execution of the running job at

the release of each job with a higher priority for this job to execute.

• Non-preemptive schedulers. These schedulers preclude pausing the execution of the running

job, from its execution start time to its completion time, irrespective of whether there are

pending jobs with a higher priority.

• Limited preemptive schedulers. These schedulers allow pausing the execution of the run-

ning job, but only at pre-defined scheduling points between its execution start time to its

completion time, to execute other jobs.

This research considers preemptive schedulers.

When multiple cores are available on the target platform for the execution of a given task set,

a new dimension, orthogonal to the previous one, adds to the problem: besides deciding when

to schedule each job, it must also be decided where to execute this job. To deal with this new

challenge, schedulers on multi-core platforms are traditionally classified as belonging to one of

the following two categories: global schedulers or partitioned schedulers (Carpenter et al., 2004).

These two categories differ by their ability to allow tasks to migrate among cores during their

execution.

20 Background on real-time embedded systems

• Global schedulers. These schedulers do not perform a task-to-core mapping at design time.

Instead, the scheduler manages a single ready queue and decides at runtime the core on

which the selected ready job will execute. As such, different jobs belonging to the same

task may happen to execute on different cores. Further, assuming such a scheduler, jobs are

allowed to start their execution on a core and to complete on a different core from the one

on which they have started. This allows us to classify global schedulers according to the

granularity of the task migrations, as follows.

– Task-level migration, where various jobs of a task are allowed to be assigned to dif-

ferent cores, but once a job is assigned to a core, migration of this job prior to its

completion is forbidden.

– Job-level migration, where various jobs of a task are allowed to be assigned to different

cores, and migration of each job prior to its completion is also allowed.

Assuming a global scheduling policy and a platform with m cores, the scheduler allocates

the cores to the m highest priority jobs at every time instant in a work conserving man-

ner. That is, the scheduler allows a core to idle only when there is no ready job pending

for execution. As such, this scheduling paradigm allows for load-balancing among cores

at runtime. However, it comes at the cost of job migrations. Although it is possible to

make use of the scheduling algorithm techniques originally designed for single-core plat-

forms as there is a single queue of ready jobs to be managed, specific multi-core algorithms

have been proposed and have proven to achieve more efficient processor utilisation (Baker,

2010). Along this line, the global schedulers have witnessed the development of numer-

ous and sometime sophisticated algorithms over the past 30 years. In this category, the

Pfair (Baruah et al., 1996) family of schedulers has been devised to provide proportionate-

fairness to the progress of each task with respect to its utilisation factor: PF (Baruah et al.,

1996); PD (Baruah et al., 1995); and PD2 (Srinivasan, 2003) are just few examples of such

schedulers. All these schedulers are optimal, with the interpretation that if any other global

scheduler is capable of successfully scheduling a given task set τ , then each of these sched-

ulers is also capable to do so. However, the fairness property results in a high number of

context switches and migrations among cores. This may drastically penalise the system in

terms of runtime overhead costs. An alternative to Pfair schedulers includes U-EDF (Nelis-

sen et al., 2012), which is an unfair but optimal global scheduler. Another limitation of

most global schedulers is recognized in the literature as the Dhall effect (Dhall and Liu,

1978) as the jobs are scheduled in a greedy manner. To illustrate this claim, let us con-

sider a multi-core platform, say π , consisting of m > 1 identical cores and let us consider

either the global-RM or the global-EDF scheduler to manage the queue of jobs ready for

execution. Also, let us consider a hard real-time system consisting of only m+1 tasks, say

τ = {τ1,τ2, . . . ,τm,τm+1}, where the first m tasks, say τi with i ∈ {1, . . . ,m}, have as param-

eters: Ci = 2ε and Ti = 1 for any 0 < ε << 1/2, and task τm+1 has as parameters: Cm+1 = 1

and Tm+1 = 1+ ε . The total system utilisation is given by Uτ = m · 2ε
1
+ 1

1+ε and we have

2.3 Real-time scheduling paradigms 21

!3

!2

!1

10

Executed on processor 1

Executed on processor 2

Figure 2.3: Dhall’s effect. Job τ3 misses the deadline because it cannot use the available capacity

of the two processors when they overlap in time.

Uτ < m. Note that Uτ → 1 when ε → 0. Dhall and Liu (1978) have shown that even though

this system may have a very low utilisation in comparison to the platform capacity, it is not

schedulable on π by following both the global-RM and the global-EDF schedulers. Indeed,

by following any of these schedulers at runtime, the m first tasks, i.e, τ1, . . . ,τm, are selected

for execution at time t0 = 0 and are assigned to the cores in a one-to-one manner, as these

tasks have the highest priorities. Then task τm+1 is selected for execution at time t1 = 2ε .

The cores idle simultaneously at this time. While in this scenario, the first m tasks easily

meet their deadlines, unfortunately the picture changes for task τm+1. As a matter of fact,

this task will not have enough room to meet its deadline on any of the cores (see Figure 2.3

for the special case where m = 2). In this figure, the jobs of tasks τ1 and τ2 are assigned

to cores π1 and π2 at time t0 = 0, respectively, as they have a higher priority than task τ3.

At time t1 = 2ε , the two cores idle simultaneously and τ3 can start executing. However, τ3

can execute for at most ((1+ ε)−2ε) = 1− ε time units prior to its absolute deadline (at

d3 = 1+ε) on any core. Since τ3 cannot execute in parallel on the cores due to its sequential

nature, there will be a deadline miss at time d3 as 1−(1− ε) = ε time units will remain to be

executed. These issues have slow down the investigations on global schedulers for almost

two decades (Davis and Burns, 2011). In addition, experimental results by Bastoni et al.

(2010) have shown that global scheduling approaches do not scale with an increase in the

number of cores.

• Partitioned schedulers. These schedulers perform a task-to-core mapping at design time

and do not allow any migration among cores at runtime. As such, every task is assigned to

a core on which all of its jobs will execute.

Assuming such a scheduler and a platform with m cores, the design time task-to-core map-

ping has been shown to be equivalent to a bin-packing problem, which in turn has been

shown to be NP-hard (Garey and Johnson, 1979). Assuming a special mapping, a local

ready job queue is managed on each core. Each local scheduler determines the job execu-

tion sequence based on the subset of tasks that has been assigned to this core. Despite the

limitations of these schedulers, (e.g.: (1) They are not optimal in the sense that they may

22 Background on real-time embedded systems

not be able to find a valid schedule for a task set for which there actually exists one (Baker,

2010); (2) They are unable to dynamically balance the workload between the cores as mi-

grations are forbidden among cores at runtime; (3) They are not work-conserving as a core

can idle while there are ready jobs pending for execution on other cores, etc.), they present

the huge advantage of transforming a multi-core scheduling problem into a finite number of

single core scheduling problems. This allows for example to take advantage of the precious

scheduling theory and practice developed in this context over the years. Also, the Dhall

effect is avoidable provided that a cautious task-to-core mapping is performed. These facts

contribute in a non negligible manner to the attractiveness of partitioned schedulers to close

the scheduling problem gap between uni-core and multi-core platforms (Davis and Burns,

2011). In addition, partitioned schedulers are the most used in the embedded systems indus-

try as they provide very interesting features as reported below (Baker, 2010; Brandenburg,

2011).

– Isolation of scheduling failures. If a task misses a deadline, the resulting scheduling

effects are contained and tied up only to the subset of tasks assigned to the same core.

– No migration overheads. As migrations are forbidden, there is no overheads related to

preempting a job on one core and migrating its context on another core.

– No global queue overheads. As each core manages its own ready-queue, the overhead

related to manipulating a single global queue, which might be considerable as it grows

with the number of cores, is avoided.

– Extensive knowledge of unicore scheduling. For a given task-to-core mapping, the

extensive knowledge, practice and results developed over the years for single core

platforms can be reused to derive a system-level schedulability test provided that the

tasks are sufficiently independent (Baker, 2010).

In between these two extremes, few alternatives have emerged and have proven to be viable for

scheduling tasks onto multi-core platforms. Semi-partitioned schedulers (Kato et al., 2009; Dorin

et al., 2010) and cluster-based schedulers (Calandrino et al., 2007; Baker and Baruah, 2008) are

few examples. Semi-partitioned schedulers perform a task-to-core mapping at design time. All

tasks that are successfully assigned in this phase are tied up to their corresponding cores and are

not allowed to migrate at runtime. The remaining tasks, i.e., those that could not be successfully

assigned to a core, are allowed to migrates in order to seek for a valid schedule. On the other hand,

cluster-based schedulers partition tasks onto clusters of cores, and a global scheduler is applied

inside each cluster. Note that the clusters may be of different sizes in terms of number of cores

and may allow to align clusters with the underlying hardware topology, especially in order to take

advantage of the cache sharing configuration between cores. This approach has shown to scale

well on large heterogeneous multi-core systems (Bastoni et al., 2010).

This research considers partitioned schedulers.

2.4 Relevant works in the real-time scheduling theory 23

2.4 Relevant works in the real-time scheduling theory

Following the discussion conducted in the previous sections we recall that this research made

assumptions on three fronts, i.e., (f1) the type of systems considered; (f2) the type of target plat-

forms; and finally (f3) the adopted scheduling paradigm.

⊲ Regarding (f1): this research focuses on hard real-time systems which are modelled by using

synchronous, sporadic and implicit deadline tasks (see Section 2.1).

⊲ Regarding (f2): the target platform is assumed to be agnostic about the memory access

mechanism and composed of identical multi-cores with a NoC-based interconnect and non-

coherent caches (see Section 2.2).

⊲ Regarding (f3): this research considers partitioned, preemptive and FJP schedulers (see

Section 2.3).

In this context, preemptive scheduling algorithms have been developed, analysed and used in

systems with real-time requirements since the 1960s. Liu and Layland (1973) developed two

schedulers, referred to as Rate Monotonic (RM) and Earliest Deadline First (EDF), for hard real-

time systems while assuming a single core platform. RM is an FTP scheduler which assigns

a priority to each task according to its period: The smaller the period of a task, the higher its

priority. Here, every job issued from a task inherits the priority of this task. On the other hand,

EDF is an FJP scheduler which assigns a priority to each job according to its absolute deadline:

The closer the absolute deadline of a job, the higher its priority. Assuming this latter scheduling

policy and a single core platform, Liu and Layland proved that EDF is capable of successfully

scheduling any hard real-time system τ , consisting of synchronous, sporadic and implicit deadline

tasks, provided the following two conditions hold:

c1: The total utilisation of τ does not exceed one (i.e., Uτ ≤ 1).

c2: Tasks are independent (i.e., tasks do not share any other resource but the core).

Assuming that these two conditions hold, they proved that EDF is optimal among preemptive FJP

schedulers. In the same vein, they showed that RM is optimal among preemptive FTP schedulers.

As such, RM has become the de facto scheduler for hard real-time systems as it is simple to

implement and it guarantees the schedulability of the jobs of each task independently from their

absolute deadlines. Indeed, the higher the priority of a task, the higher the probability of its

jobs to meeting their timing requirements. Liu and Layland showed that RM is guaranteed to

successfully schedule τ only if Uτ ≤ n×
(

2
1
n −1

)

, where n denotes the number of tasks in τ .

Note that n×
(

2
1
n −1

)

→ ln(2) ≃ 0.69 when n→ +∞. This rather low bound has been revised

and improved so far. For example, Bini et al. (2003) showed that τ is guaranteed to be successfully

schedulable by following the RM policy if
n

∏
i=1

(Ui +1) ≤ 2, where Ui = Ci/Ti is the utilisation

factor of task τi. This second test dominates the test proposed by Liu and Layland.

24 Background on real-time embedded systems

These results that guarantee the schedulability of a task set according to a given scheduler by using

information on the utilisation of the system are referred to as utilisation bound tests. Such a test is

formally defined as follows.

Definition 11 (Utilisation bound test). Let τ be a task set with utilisation Uτ to be scheduled by

following a scheduler A on a platform π . The utilisation bound test of A, denoted as UA, is defined

as the largest value of Uτ that guarantees the schedulability of τ by A upon π . Formally, τ is

guaranteed to be schedulable by A if Uτ ≤UA holds true.

A necessary condition for a sporadic implicit deadline task set τ to be schedulable upon a

single core platform π by following any scheduler A is that the utilisation Uτ does not exceed the

processor capacity, i.e. Uτ ≤ 1. On another front, EDF is an optimal scheduler for such a task set

upon a single core platform. That is, EDF is capable of finding a valid schedule (i.e., a schedule

in which all deadlines are met for all tasks) if one exists and a sufficient condition for this to

hold true is Uτ ≤ 1 (see condition c1). Consequently, the utilisation bound of EDF for a sporadic

implicit deadline task set is UEDF = 1. This bound provides an exact test for EDF since it cannot

be further improved whereas the utilisation bounds derived for RM provide only a sufficient test.

As a matter of fact, it is a trivial exercise to build a sporadic implicit deadline task set, say τ0, such

that URM <Uτ0
≤ 1, but τ0 is schedulable by following RM.

An alternative schedulability test for the EDF scheduler is based on the so-called demand

bound function (dbf) (Baruah et al., 1990). The dbf is an abstraction of the computation require-

ments of tasks which has been observed to correlate very closely with schedulability property of

the task set. This test is valid even for sporadic (non-implicit) deadline task sets on single core

platforms.

Definition 12 (dbf (Baruah et al., 1990)). Let τ be a sporadic constrained deadline task set com-

prising of n tasks. The dbf for any task τi at any positive time instant t, denoted as dbf(τi, t), is

defined as the maximum cumulative execution requirement of jobs of τi in any interval of length t.

Formally, dbf(τi, t) is defined as follows.

dbf(τi, t)
def
= max

{

0,

⌊

t−Di

Ti

⌋

+1

}

·Ci. (2.1)

From Equation 2.1, note that dbf(τi, t) is a step-case function in t with first step occurring at

time t = Di and subsequent steps separated by exactly Ti time units. the dbf of τ is defined as

dbf(τ, t)
def
= ∑

n
i=1 dbf(τi, t).

Definition 13 (dbf-based test). Let τ be a sporadic constrained deadline task set comprising n

tasks to be scheduled by following EDF on a single core platform π . The dbf-based test of τ upon

π is defined as the test that verifies if dbf(τ, t) is always kept below the platform capacity at any

positive time instant t. To this end, this operation is performed for the scenario where all tasks

simultaneously release a job at time t = 0 (i.e., the critical instant), and all subsequent jobs for

every task are released as soon as it is legally permitted to do so (i.e., the worst-case scenario).

2.4 Relevant works in the real-time scheduling theory 25

Formally, τ is guaranteed to be schedulable by EDF if and only if Uτ ≤ 1 and

dbf(τ, t)≤ t, ∀t ≥ 0. (2.2)

As the search-space of Equation 2.2 may be very large, Baruah et al. (1990) showed that the

points in which the test has to be performed can be restricted to those deadlines within the hy-

perperiod H — H
def
= lcm(T1, . . . ,Tn), where Ti is the minimum inter-arrival time (period) between

two consecutive jobs of task τi — not exceeding the value

Lmax
def
= max{D1,D2, . . . ,Dn,L

∗}

In this expression, Di is the relative deadline of task τi and

L∗
def
=

∑
n
i=1(Ti−Di) ·Ui

1−Uτ

Hence, condition 2.2 has to be tested ∀ t ∈ dlSet, where

dlSet
def
= {di,k | di,k ≤min(Lmax,H)}

Zhang and Burns (2009) further improved the efficiency of this analysis by reducing the number

of considered time instants through the so-called Quick convergence Processor-demand Analy-

sis (QPA).

Another popular technique to address the schedulability analysis of a task set τ upon a given

platform π by following a scheduler S is referred to as the worst-case response time analysis. This

approach considers the time span between the release time and the completion time of each job of

every individual task, say τi, when scheduled by following S . Then, it determines the longest time

among these values, i.e., the worst-case response time Ri of τi. Finally, Ri is compared against the

relative deadline Di of task τi to decide its schedulability according to S . Spuri (1996) proposed

a method that allows us to determine the worst-case response time of task τi, which occurs after

a so-called deadline-d busy period — A deadline-d busy period is a time interval in which the

processor continually executes a sequence of jobs until it eventually idles before the deadline d

of a job of τi —. This busy-period starts when all tasks except τi are released synchronously

(e.g., at time t = 0) and all subsequent jobs are released as soon as it is legally permitted to do

so. Assuming this scenario, the job of τi that experiences the longest response time is the last job

released before the end of the busy period. The author describes an algorithm that determines the

longest deadline-d busy period for all tasks in a task set in a finite computation time, such that an

upper bound on the response time of each task can be computed.

The above mentioned schedulers (i.e., RM and EDF) form the basis of a set of scheduling tech-

niques and intuitions that have been developed for multi-core platforms over the passed 30 years.

Although they are optimal upon single core platforms, none of them has shown to remain optimal

while assuming a scheduling paradigm as the one considered in this work, see (f3). There are

26 Background on real-time embedded systems

implicit-deadline sporadic systems for which any of these schedulers would fail to find a valid

schedule (i.e., one in which all the deadlines are met for all the jobs) while one actually exists.

This statement holds true even if the total system utilisation is well below the total platform capac-

ity. As such, the previously mentioned necessary and sufficient condition for an implicit-deadline

sporadic task set to be schedulable by EDF as long as its utilisation does not exceed the platform

capacity (i.e. Uτ ≤ m, being m the number of available cores) no longer holds for partitioned

scheduling on multi-core platforms.

Andersson et al. (2001) proved that the utilisation bound for any partitioned approach on a

platform with m cores is UOPTIMAL = (m+ 1)/2. In other to illustrate this claim, the authors

considered a task set τ of m+ 1 tasks with the following parameters for each task τi: Ci = 1+ ε

where ε is an arbitrarily small positive real number; and Ti = 2. Then, they showed that this task

set cannot be scheduled on a platform with m ≥ 1 cores even when the utilisation of the task set

τ is less than m, i.e. Uτ = (m+ 1)× (1+ ε)/2 < m. This statement holds true because at least

two tasks will necessarily be assigned to the same core (there are m+ 1 tasks and m cores). The

core hosting these tasks has a utilisation greater than 1, and no partitioned approach is able to

schedule such task set. Thus, an upper-bound on the task set utilisation which guarantees that all

deadlines are met is limε→0Uτ = (m+1)/2. Despite this rather low utilisation bound in general,

it is known that there are special case of task sets with utilisation Uτ = m that are schedulable by

using a partitioned algorithm, provided that a specific task-to-core mapping is performed.

Recall that in our setting, a task-to-core mapping is performed at design time and migrations

among cores are forbidden at runtime.

This task-to-core mapping is the one of the most challenging cares of the big picture of our

proposed approach as an optimal local scheduler can be used on each core, say for example EDF.

As solving this mapping problem has been recognized to be NP-hard, we adopt a two-phase al-

location algorithm that: (1) sorts the tasks according to a pre-defined criteria and (2) perform a

task-to-core assignment in a sequential manner so that the subset of tasks assigned to each core

is schedulable. During this process, the second phase is carried by a bin-packing heuristic (i.e., a

sub-optimal algorithm to find approximate solutions), which can produce different results provided

that different sorting criteria are used in the first phase. Hence, the efficiency of the task-to-core

mapping algorithm in terms of capability to produce a valid partition of the task set (i.e., a partition

such that every subset is schedulable on its associated core), when an optimal algorithm is capa-

ble to do so, depends on both the combination of the sorting/mapping methods and the selected

scheduler on each core. The utilisation bounds have been determined as a good metric for this

evaluation.

López et al. (2004) addressed the efficiency problem of well known bin-packing heuristics

for the partitioning of sporadic implicit-deadline task sets upon multi-core platforms assuming a

preemptive EDF scheduler running on each core. For the first phase, the authors considered that

the tasks are sorted by increasing (I) or decreasing (D) order of their utilisations. Then for the

second phase, three allocation heuristics are considered in their evaluation: namely (1) the Worst

Fit (WF), (2) the Best Fit (BF) and (3) the First Fit (FF). The specifics of these heuristics are

2.5 Summary 27

briefly recalled below.

1. WF: In this allocation strategy, each task is assigned to the core with the maximum remain-

ing capacity.

2. BF: In this allocation strategy, each task is assigned to the core with the minimum remain-

ing capacity where the task fits (i.e., the remaining capacity of the core exceed the task

utilization).

3. FF: In this allocation strategy, each task is assigned to the first core that is capable of ac-

commodating it (i.e., the remaining capacity of the core exceeds the task utilisation).

As the task-to-core mapping is performed according to the sorted list of task utilisations obtained in

the first phase, the selected allocation algorithm is suffixed with the adopted sorting method (e.g.,

Worst Fit Decreasing — WFD — when the tasks are sorter in an decreasing order of utilizations).

The utilisation bounds derived by the authors for all the considered heuristics and sorting variants

reached the upper bound (i.e. (m+ 1)/2 when the utilisation of each task can reach 1) except

for WF and WFI (for which the utilisation bounds reached 1 when the utilisation of each task

reaches 1).

Baruah (2013) stated that utilisation bounds do not provide a good intuition on the efficiency of

an allocation algorithm, specifically about resource utilisation, i.e., how the selected algorithm is

capable of making use of the available computing capacity. As an alternative, the author proposed

the speedup factor defined as follows.

Definition 14 (Speedup factor). Let τ be a task set to be scheduled upon a multi-core platform

π and partitioned among the cores according to an algorithm A. Provided that there exists a

schedulable partition of τ generated by an optimal algorithm, say Opt, the speedup factor of A,

denoted as fA ≥ 1, defines how much the speed of the platform π must be increased so that the

partition by A becomes schedulable.

According to Definition 14, the smaller the speedup factor of a partitioning algorithm, the

more efficient it is. To support this claim, the author showed that the partitioning algorithms that

sort tasks according to decreasing utilisations (i.e., WFD, BFD and FFD) have a smaller speedup

factor in comparison to other algorithms that shared the same utilisation bound. Note that this

result matches previous experimental observations.

2.5 Summary

This chapter presented a basic background on real-time embedded systems and scheduling tech-

niques. The functionality of a real-time application is commonly modeled by using a set of recur-

rent tasks, with timing constraints, that are meant to share the computing resources of the target

platform. This paradigm is at the foundation of an entire and extensive body of knowledge that

addresses the problem of scheduling tasks of the target platform, and the problem of formally

28 Background on real-time embedded systems

certifying that the timing requirements of each task are all met so that a failure of the system is

guaranteed never to occur. Multi-core architectures have introduced parallelism capabilities into

real-time embedded computers. Consequently, scheduling real-time tasks has become an exercise

that involves mapping the task executions temporally (i.e., at what time instant) and spatially (i.e.,

in which core) to the computing resource. This newly added dimension represents a dramatic in-

crease to the complexity of the problem. Along with this challenge, lies the fact that tasks often

share other resources on the target platform (e.g., data stored in memory and I/O devices). In these

cases, when tasks must perform a sequence of operations in memory (e.g., an atomic operation)

or an I/O operation in mutual exclusion, then they must be synchronised such that their concurrent

operations do not invalidate data in memory and/or I/O devices. A common approach to address

this issue consists of adopting a synchronisation mechanism that will inform the scheduler that a

task is performing a special operation and requires an exceptional handling. This is the subject of

Chapter 3.

Chapter 3

Background on synchronisation

mechanisms

Most real-time systems are usually modelled by using a set of recurrent tasks as mentioned in the

previous chapter. For such a system, all tasks are concurrent for the computing elements (cores)

at runtime and each task is responsible for a specific aspect of the overall system functionality.

Besides this fact, tasks also share data and/or I/O devices in order to carry out their function.

However, the access to these shared resources may have to follow specific rules in order to ensure

the integrity of the system. The validity of data in memory and the correct operation to name

a few. Operations on these shared resources are typically carried out in mutual exclusion in or-

der to avoid unexpected effects produced by concurrent operations. Therefore, synchronisation

mechanisms are employed. The synchronisation of jobs that operate shared resources affects their

respective response times as concurrent accesses must be serialised in such a way that each job

is granted an exclusive access to the resource. Hence, for a given task set and a target platform,

every synchronisation mechanism works in conjunction with a scheduler in order to guarantee all

temporal constraints.

During the last four decades, the real-time community has specified an entire body of schedul-

ing algorithms that ensures the timing requirements of a set of tasks with assigned priorities in

a deterministic and convincing manner. Also, it has developed a set of resource sharing policies

that limit the impact of the intrinsic resource behaviour on the schedulability of the tasks. Unfortu-

nately, this suite of resource sharing mechanisms was mainly developed for uniprocessor platforms

only. The current multi-core platforms have added a true parallelism flavour to the equation to be

solved as multiple tasks can be executed in parallel. This makes the resource sharing mechanisms

developed so far for real-time systems outdated. In order to circumvent this issue, a tremendous

effort is put into developing multi-core adaptations of the previous mechanisms or reasoning about

new multi-core specific mechanisms.

Regarding the first trend, lock-based synchronisation is a classical mechanism that provides

29

30 Background on synchronisation mechanisms

mutual exclusion to a given system. However, it does not cope with an increase in the number

of cores. We distinguish between two types of locks: the coarse-grained locks and the fined-

grained locks. Coarse-grained locks have a negative impact on parallelism, whereas fined-grained

locks have a negative impact on the system composability. As these are two key desired features

when executing a set of real-time tasks upon a multi-core platform, alternatives need to be found.

Credible candidates for this task are the so-called non-blocking objects. They suit parallel systems:

on a shared non-blocking object, there is no need to explicitly acquire a lock. Unfortunately,

they do not allow compound operations to be built on the same object or on a set of objects,

as is the case for critical sections supported by locks. Other credible candidates are transactional

memories. They allow us to fill this gap and the system designer to define transactions (i.e. atomic

sections) in which the validity of all shared data involved depends on the success of the transaction,

otherwise, the transaction is rolled back and its effect is discarded. Here, any conflicts between

concurrent transactions are transparently solved by the underlying software transactional memory

(STM) mechanism. Unlike in lock-based critical sections, each transaction does not explicitly

request a lock and in contrast to non-blocking objects, a transaction generally allows for multiple

operations on multiple shared data.

This chapter presents an overview of the solutions in the literature to maintain the consistency

and validity of shared resources, i.e., the shared data. In addition, it discusses relevant works

published on lock-based synchronisation, non-blocking data structures and STM.

3.1 Lock-based synchronisation

Locks have been the primary choice among the synchronisation mechanisms to provide exclusive

access to shared resources and to avoid conflicting operations that can void the soundness of a

given resource. Before going into the specifics, let us provide a set of definitions that will help us

understand the basic concepts behind this mechanism.

Definition 15 (Critical section). For a program to be executed on a given platform, a critical

section is defined as a block of sequential instructions that cannot be executed concurrently with

another block of sequential instructions that access the same set of (shared) resources.

Definition 16 (Conflict). Let us consider a set of critical sections and shared resources. A conflict

is defined as the situation where (1) multiple critical sections are allowed to concurrently access a

shared resource and (2) at least one critical section modifies the state of the resource.

Figure 3.1 illustrates a practical case of conflict where Function1 and Function2 are as-

signed to core π1 and core π2, respectively, and are allowed to execute concurrently. In this exam-

ple, Function1 requires to read the values of data objects A and B and computes the next values

of data objects A and C, whereas Function2 modifies the value of A. At runtime, if the value of A

is modified by Function2 between the read and the later write operations on A by Function1,

then the final value of A is invalid as the effects of Function2 are lost. This situation represents

a conflict on A, which has not been detected. In this case, the two concurrent functions are not

3.1 Lock-based synchronisation 31

F
u

n
c

ti
o

n
 2

F
u

n
c

ti
o

n
 1 x = read(A)

y = read(B)

w = compute_C(x, y)

z = compute_A(x, w)

write(C, w)

write(A, z)

write(A, v)

Core !1 Core !2

Figure 3.1: Race condition due to non-atomic execution of operations on multiple data objects.

serialised properly. Although the two functions are executed, the system progresses as if only

Function1 is executed. At this point, it is worth noticing that if Function2 is not allowed

to write to A between the read and write operations of Function1, then the problem is circum-

vented. To this end, a practical implementation consists of using a lock that controls the access

to A. This solution ensures an exclusive access to the function that owns the lock and is viable as

long as all the functions that are accessing a shared resource agree to operate the resource exclu-

sively when they own the lock. As multiple shared resources can be managed by a single lock, it is

important to formalise a qualitative indicator that will allow us to distinguish between the different

types of accesses to one shared resource. Such an indicator is referred to as the locking granularity

and is defined as follows.

Definition 17 (Locking granularity). For a given set of shared resources, the locking granularity

is defined as the number of shared resources covered by a single lock.

According to Definition 17, we distinguish between the coarse-grained locking and the fine-

grained locking, with the following interpretation:

• Coarse-grained locking. Each lock controls the access to a large group of shared resources.

This type of locking mechanism provides a simple mapping between the resources and their

respective locks, which eases the programming of the critical sections. Moreover, if each

lock controls all the resources accessed by the critical sections that request that lock, then

nested critical sections (i.e. additional locks inside a critical section) can be eliminated. This

is sufficient to avoid deadlock. However, this also increases the probability of false conflicts,

in which two or more critical sections access disjoint resources that are covered by the same

32 Background on synchronisation mechanisms

lock. Therefore, coarse-grained locking has a negative impact on concurrency, especially

when jobs can execute in parallel.

• Fine-grained locking. Each lock controls the access to one or a few number shared re-

sources. This type of locking mechanism improves concurrency as each lock controls only

a limited number of resources, which reduces or even eliminates false conflicts. However,

in contrast to coarse-grained locking, the mapping between resources and the locks is more

extensive. In addition, critical sections that compound the access to multiple resources have

to acquire multiple locks (nested critical sections), which requires additional measures to

avoid deadlocks. This can complicate the programming of the critical sections.

It is crystal clear that the execution of a critical section as mediated by the ownership of the

locks has an impact on the scheduling of tasks. Let us illustrate this claim in the unicore context.

To do so, let us consider a task set scheduled by following a priority-driven scheduling policy. Let

us consider two jobs, say τh and τℓ, such that τh is assigned a higher priority than τℓ. Let us assume

that τh preempts τℓ while τℓ was owning a lock ℓ. Later on, let us assume that τh requests lock ℓ.

As ℓ is currently unavailable, τh must suspend and wait for τℓ to complete the critical section and

release ℓ before it can resume its execution. This represents a priority inversion as a lower priority

task is executing while a task with a higher priority is ready and awaiting for execution. Such a

situation allows us to introduce the concepts of priority inversion and blocking in a formal manner

as follows.

Definition 18 (Priority inversion). Let us consider a task set scheduled by following a priority-

driven scheduler. A priority inversion is defined as a situation where a job is executing when there

is at least one ready job, with a higher priority, pending for execution.

Definition 19 (Blocking time). Let us consider a task set scheduled by following a priority-driven

scheduler. The blocking time of a job is defined as the amount of time this job, which is pending

for execution, awaits while another job with a lower priority is running.

Considering the previous example, note that τh is said to be blocked while τℓ holds the lock ℓ.

This represents a priority inversion, which is a violation of the underlying priority-driven sched-

uler. Consequently, the response time of τh is augmented by at least the blocking time. Revoking

the ownership of a lock is a rather complex operation because all the operations carried out so far

in the critical section have to be undone. Hence, the priority inversion is tolerated and accepted,

as long as it is bounded.

Scheduling anomalies during a priority inversion time interval are the reason for potentially

unbounded priority inversions. To illustrate this claim, let us consider the example depicted in

Figure 3.2a where three jobs, τh, τm and τℓ, are involved. We assume that these are assigned

priorities high, medium and low, respectively. In this example, τℓ is released first, then τh, and

finally τm is released. We assume that τℓ acquires a lock, which is shared with τh, and enters its

critical section. Then, τh requests this lock and gets blocked, as it is owned by τℓ. In this case τℓ

resumes the execution of its critical section. Upon the release of job τm, which does not execute

3.1 Lock-based synchronisation 33

!h

!m

!l

Non-critical section

Critical section

(a) Potentially unbounded priority inversion.

!h

!m

!l

Non-critical section

Critical section

(b) Bounded priority inversion.

Figure 3.2: τh is assigned the highest priority and is blocked when it requests the lock that is

owned by τℓ. When priority inversion is not bounded, τm is able to complete before τh.

any critical section, τℓ is preempted (see Figure 3.2a), and then the execution of τh is also delayed

by the execution of τm. Unfortunately, as a consequence, this additional delay causes a deadline

miss of τh. Note that in this special case, we considered a single task with a medium priority.

The situation could clearly get worse if many jobs with a medium priority were released before

τℓ releases the lock. In order to get around this issue, which represents a real hurdle to a tight

and sound analysis of any hard real-time, a solution is to adopt a policy that forbids jobs with

intermediate priority to execute before a blocked higher priority job has completed execution (see

Figure 3.2b). In this figure, τh meets its deadline because the blocking time is bounded to the

critical section of τℓ. Below we report on a number of relevant works in the literature that have

been contributing to this end purpose.

Sha et al. (1990) proposed two protocols, namely the Priority Inheritance Protocol (PIP) and

the Priority Ceiling Protocol (PCP), in order to solve the problem of potentially unbounded priority

inversions in the uniprocessor and FTP scheduler context. To this end, the priority of every job

is raised to a level such that the job avoids any preemption by intermediate priority jobs while

it is executing a critical section. PCP has a higher implementation complexity than PIP, but it

allows avoiding deadlocks per se. Here, each shared resource is assigned a priority ceiling that

corresponds to the highest priority of all jobs/tasks that can access that resource. Under this

assumption, the lock is granted to the newly requesting job if its priority is greater than the priority

ceilings of all the currently owned locks. Once the lock is granted, the job is guaranteed to acquire

all the nested locks in the critical section.

Baker (1991) proposed the Stack Resource Policy (SRP) in order to address the priority inver-

sion problem for uniprocessor and FJP schedulers. This protocol assigns a (constant) preemption

level λi to every task τi according to an increasing order of the relative deadlines, i.e., λh > λℓ

iff Dh < Dℓ. For this protocol and likewise for PCP, each resource is assigned a priority ceiling

that corresponds to the highest priority level of all jobs/tasks that can access that resource and the

system maintains a ceiling that is the maximum ceiling of all currently owned locks. A released

34 Background on synchronisation mechanisms

job is immediately scheduled if the following two claim hold true: (1) it holds the earliest deadline

of all ready jobs and (2) its preemption level is higher than the current system ceiling. If this is

not the case, the newly released job will suspend. In summary, SRP ensures that once the job

is scheduled all the resources that it may request are available, so a deadlock can never occurs.

Assuming a uniprocessor platform, both PCP and SRP guarantee that a job can be blocked at most

by one concurrent job executing a critical section. However, the picture changes completely upon

multiprocessors: all these protocols are less effective (Easwaran and Andersson, 2009b). In order

to illustrate this claim, let us consider the following example. Let us assume the PCP protocol

and a multi-core platform. Let us assume that a job, say τh, acquires lock ℓa. Now, by assuming

that a lower-priority job τℓ requests for some other lock, say ℓb 6= ℓa, it follows that τℓ is forced

to suspend, even if there are cores available and both τh and τℓ do not compete for the same re-

source. Hence, a multi-core resource sharing protocol should not only bound the blocking times

from lower priority jobs but it should also improve the number of jobs that can execute in parallel

at any time instant.

Rajkumar et al. (1988) proposed the Multiprocessor PCP (M-PCP) for partitioned FTP sched-

ulers. This protocol is an extension to multiprocessors of the PCP in order to synchronise global

shared resources, i.e. resources that are shared between tasks assigned to different processors,

while local shared resources (i.e. resources that are shared exclusively between tasks assigned to

the same processor) are synchronised by using the classical uniprocessor PCP. In this approach,

the access to a global resource is controlled by a global semaphore such that a task suspends until

it acquires the lock. Once a task holds a global lock, its effective priority is raised to the highest

local priority so that the critical section is executed without suffering any preemption. Unfortu-

nately, this protocol is limited in that it does not allow for mixed nesting of local and global critical

sections.

In the same vein, Gai et al. (2001) proposed the Multiprocessor SRP (M-SRP) for partitioned

scheduling by adapting the uniprocessor SRP protocol. In this protocol, a task busy-waits in a

FIFO queue until it acquires the requested lock. This represents a hurdle to the analysis of the

system that needs to be addressed. In order to reduce the time wasted in the busy-waiting state, the

critical sections must complete as soon as it is possible to do so, thus the priority of a job while it

is executing a critical section should be boosted to a non-preemptible level. On another front, M-

SRP allows for nesting local critical sections inside a global resource; however, it does not allow

for nesting global critical sections because of the risk of deadlock. This precludes the possibility

to perform critical sections accessing multiple global resources with fine grained locking.

Block et al. (2007) proposed the Flexible Multiprocessor Locking Protocol (FMLP) for both

global and partitioned schedulers. This protocol distinguishes among them globally shared re-

sources and classifies them as long or short according to the expected duration of the critical

sections that access them. In this regard, the classification criteria is defined by the application

designer. Each lock controls a group of resources that are exclusively short (referred to as short

group) or exclusively long (referred to as long group). This is performed in such a way that every

task is granted immediate access to all short or long resources requested in the critical section once

3.1 Lock-based synchronisation 35

it acquires the lock. This is referred to as group locks. Note that a short request can be contained

within a long request, but the opposite is not allowed. A job blocked on a long lock enters a FIFO

queue and suspends. When it eventually holds the lock, the job executes the long critical section

preemptively, inheriting the maximum priority of any task blocked on this lock. In contrast, a job

blocked on a short lock busy-waits non-preemptively in a FIFO queue, and continues executing

the short critical section non-preemptively. As such, a job blocked on a short critical section has

to wait at most for (m− 1) critical sections (being m the number of cores) while requesting the

same group lock to complete. The strategy of grouping all short/long resources accessed by criti-

cal sections that share at least on resource under a single short/long lock eliminates deadlock but,

unfortunately, it configures a potential coarse-grained locking mechanism.

Brandenburg and Anderson (2010) proposed the O(m) Locking Protocol (OMLP) for three

schedulers: (1) the fully preemptive global EDF (G-EDF) scheduler, (2) the partitioned EDF (P-

EDF) scheduler and (3) the partitioned fixed priority (P-FP) scheduler. This protocol operates in

a similar way as FMLP, i.e., it joins the resources requested by intersecting critical sections under

one group lock. However, OMLP assumes some practical simplifications as compared to FMLP.

The distinction between long and short resources does not exist. This has two consequences:

(1) nesting is not allowed, and (2) every job blocked on a lock can only enter a FIFO queue and

suspend. This approach for partitioned schedulers allows for at most one job requesting a global

resource per core in order to limit the contention on global resources (this means that there is at

most m requests for a group lock, being m the number of cores). Hence, every requesting job may

have to wait for at most (m− 1) other jobs (possibly with a lower priority) in other cores. Once

a job is at the head of the queue and owns the lock, its priority is boosted until it releases the

lock. Unfortunately here, as in FMLP, the use of group locks configures a potential coarse-grained

locking mechanism.

Ward et al. (2012) proposed the Real-time Nested Locking Protocol (RNLP) that allows for

fine-grained nested resource requests for global, semi-partitioned and partitioned fixed-job priority

schedulers. This protocol allows for an arbitrary number, say k > 0, of jobs to concurrently request

resources. In addition, deadlocks are avoided by imposing a total order in which locks can be

requested such that resource la cannot be requested after resource lb if la < lb. Here, each job is

assigned a timestamp when it requests the first resource. Then, each resource has a timestamp-

ordered queue by which concurrent requests are serialised. Finally, it up to the system designer

to select jobs busy-wait or suspend when waiting for a resource. A job eventually acquires a

lock when (i) the job is at the head of the queue for the lock, or (ii) the previous resources in

the defined total order of acquisition do not have jobs with earlier timestamps at the head of their

respective queues. As such, although RNLP is a fine-grained mechanism, if the first locks in

the total order are owned by jobs with earlier timestamps, then all the other locks will not be

immediately available for jobs with later timestamps. Unfortunately, this holds true even if those

locks are never requested by the previous jobs.

The same authors (Ward and Anderson, 2014) further extended RNLP to support multiple con-

current read-only accesses and mutually exclusive write access to shared resources. The modified

36 Background on synchronisation mechanisms

request satisfaction mechanism alternates access to each object between read- and write-phases.

To this end, each shared resource has a read-queue and a write-queue. Every task issuing a read

request inserts an entry in the read-queues of each resource requested. A task issuing a write re-

quest inserts an entry in the write-queues of each resource requested. Additionally, it inserts an

entry in the write-queue of resources that are currently read-shared (requested together) with the

requested dataset by concurrent read accesses, to avoid inconsistent phases. In the beginning of

read-phase, all the requests that are on the queue acquire the read-lock. Later read requests are

enqueued and are not satisfied in this read-phase. Once all read-locks are released, the resource

switches to a write-phase in which the request at the head of the write-queue is satisfied. Finally,

the cycle repeats once the write-lock is released.

Although the presented synchronisation approaches offer practical solutions for multi-cores,

they still incur the same limitations as uniprocessor lock-based solutions, i.e., a decreased concur-

rency with coarse-grained locking and no composability with fine-grained locking. An alternative

to these lock-based synchronisation techniques are referred to as non-blocking data structures.

Such a mechanism takes advantage of the natural characteristics of each data structure in order to

implement operations that can be non-blocking.

3.2 Non-blocking data structures

Non-blocking data objects provide a safe parallel execution of operations on shared data structures

without any explicit manipulation of locks by the programmer. Here, every operation is automati-

cally controlled by a synchronisation mechanism that is part of the data object and is responsible

for the maintenance of the object validity. As such, the parallelism is managed by the data object

itself and the programmer does not need to explicitly request for a lock. This increases safety

as all operations are guaranteed to be performed under concurrency scrutiny. Non-blocking ob-

jects present strong conceptual advantages (Tsigas and Zhang, 1999): (1) Priority inversion and

deadlock are eliminated because accesses to the object proceed in parallel and concurrent accesses

can always be resolved in favour of the most critical tasks; (2) The convoy effect is eliminated

because no task will block-waiting for a task that is failing or prevented from executing; (3) The

consistency of the object is more robust against unexpected task failures. These advantages are di-

minished by the complexity of the mechanisms that maintain the consistency of the shared object

as this consistency depends on the progress guarantees that is provided by the non-blocking object.

Three categories can be distinguished, namely wait-free, lock-free and obstruction-free (Herlihy

and Shavit, 2008).

• Wait-free objects. Such an object ensures that every call finishes in a finite number of

steps, independently from the pace other concurrent calls on the same object execute. This

means that all tasks are ensured to progress. To achieve this goal, contending tasks have

to collaborate in order to complete the on-going concurrent accesses. Although this is the

strongest type of guarantee and the most appealing to multiprocessor systems, it expresses

3.2 Non-blocking data structures 37

higher complexity in the implementation of mechanisms that are, probably, less efficient

than others that offer less strict types of progression.

• Lock-free objects. Such an object relaxes the progress condition, so that the system is able

to progress in general, although some calls may suffer starvation. Any modification to the

state of the data object only take effect if no contention occurs, otherwise at least one call is

guaranteed to complete, while the remaining calls fail and have to retry. Lock-free objects

generally have less complex implementations and may be more efficient if the pattern of

operations on the object does not induce too many fail-retry sequences.

• Obstruction-free objects. Such an object provides the most relaxed guarantee of progress,

ensuring that one call will eventually progress if it executes isolated from other concurrent

calls. This progress condition reflects that some operations may have to execute in mu-

tual exclusion, but the access to the object is not performed by means of any explicit lock.

Obstruction-freedom avoids deadlocks, but in case a group of concurrent calls mutually

abort each others such that none makes progress, livelocks can occur.

Early non-blocking implementations of data structures took advantage of the characteristics of

data structures themselves and their operations. Below we report on a number of relevant works

in the literature on non-bloking synchronisation paradigm.

Lamport (1977) proposed a non-blocking solution for the multi-processor problem of mul-

tiple readers/single writer. Since then, several dedicated implementations of non-blocking data

structures have been developed for systems with multiple processor and shared memory.

Herlihy (1993) and Anderson and Moir (1999) proposed universal methodologies to construct

lock-free and wait-free objects from correct sequential code. Along the same line, Anderson and

Ramamurthy (1996) described the implementation of a lock-free framework for uniprocessor sys-

tems, based on a multi-word compare-and-swap primitive (MWCAS). This implementation allows

for the simultaneous atomic update to multiple data objects. This ability to perform atomic transac-

tions is equivalent to the nested access to critical sections provided by lock-based synchronisation.

Comparative studies on synchronisation mechanisms for multi-core platforms have been con-

ducted in the literature and the outcome indicates that non-blocking approaches represent a better

candidate for real-time systems. However, they do not cover the sequential composition of op-

erations over multiple data as a single, atomic operation, in a convenient manner. Therefore, a

broader solution, referred to as transactional memory, is preferable as it provides the semantics to

express an atomic/critical section.

This research will adopt transactional memory.

38 Background on synchronisation mechanisms

3.3 Transactional memory

We recall that the previous synchronisation approaches — i.e., lock-based and non-blocking data

objects — provide means to maintain the consistency of shared resources. However, some issues

are still pending. On the one hand, locks are not composable and this may represent an hurdle for

the analysis of applications that can take advantage of the parallel capabilities of the underlying

multi-core platform. On the other hand, non-blocking data objects do not provide a semantic that

allows us to aggregate multiple operations on multiple shared objects into a single atomic block,

i.e. an atomic or critical section. In order to illustrate this claim, let us consider once more the

practical case depicted in Figure 3.1. We assume that variables A, B and C are non-blocking data

objects and that concurrent read and write operations on these objects are guaranteed to be safe. In

this example, Function1 executes two correct operations on object A, intermediated by a correct

operation on the same object by Function2. Although the three operations on A are correct, the

final value of A is inconsistent. This is due to the fact that the effects of Function2 are lost and

thus the two concurrent functions were not properly serialised. This shows that there is a direct

correlation between the consistency of the data and the given composition of these operations. The

whole sequence of operations is referred to as a transaction and is formally defined as follows.

Definition 20 (Transaction). A transaction is defined as a sequential block of instructions that

is used to access or modify concurrent data objects, satisfying the serialisability and atomicity

properties.

Each transation must be perceived in shared memory space by concurrent tasks as if it was

performed atomically. As such that the intermediate states are invisible. This concept is referred

to as transactional memory.

Software Transactional Memory (STM) exploits the same basic principles as transactions from

databases or fault-tolerant systems, i.e., transactions can execute speculatively in parallel, but

their effects should appear as if they executed atomically in sequence. However, the field of

application of STM has its own specifics. Unlike databases and fault-tolerant systems, STM does

not store consistent states in a persistent medium, but simply keeps data consistent in memory,

such that STM transactions can be considered lightweight memory transactions (Harris and Fraser,

2003). In order to achieve this, the STM mechanism keeps track of accesses to transactional

objects that are exclusively memory locations (words or structures). Since memory accesses to

transactional objects become indirect accesses, the STM mechanism must be light enough to avoid

performance issues. The concept of transaction is closely related to the lock-based critical section:

a section of the sequential code of a task with atomicity requirements. As such, the multithreaded

transaction concept of fault-tolerant systems does not apply to STM. According to the transactional

memory access pattern, transactions can be divided into read-only and update transactions with

the following interpretations.

Definition 21 (Read-only transaction). A read-only transaction is defined as a transaction that

does not write in any of the accessed transactional objects.

3.3 Transactional memory 39

Definition 22 (Update transaction). An update transaction is defined as a transaction that writes

at least in one of the accessed transactional objects.

In general, a transaction is executed sequentially in isolation, irrespective of the other parallel

transactions. Each transaction must complete its execution such that the transaction commits or

aborts. Before completing, all accessed locations are checked for conflicting updates (see Defini-

tion 16) that may have occurred during the execution of the transaction. If no conflicts are detected

then the accessed data is valid and updates are committed, thus becoming effective. Consequently,

a transaction can execute multiple attempts until it eventually commits.

Definition 23 (Transaction attempt). A transaction attempt is defined as one execution of a trans-

actional section that results in a commit or an abort.

The transactional memory system must solve every conflict upon its detection such that trans-

actions can progress. This is performed by applying a conflict solving policy, that is either by

helping or by consulting a contention manager.

• Helping. Assuming wait-free and lock-free STMs, this policy helps the contender to com-

plete upon the detection of a conflict between two transactions, such that both transaction

can progress. However in lock-free STMs, a transaction is allowed to abort the contender

when the cost of helping is high.

• Contention manager. Assuming obstruction-free STMs, this policy allows a transaction,

which detects a conflict, to ask the STM contention manager1 to solve the conflict. Specifi-

cally, the contention manager solves each conflict by following one of these two approaches:

(i) by aborting one of the contenders such that the other can proceed or (ii) by giving some

time to one of the contenders to have a chance to commit such that the conflict is naturally

solved before aborting one of the contenders.

The combination of an obstruction-free STM with a contention manager has less complex im-

plementations than lock-free and wait-free implementations. Moreover, the contention manager

allows us to implement conflict solving policies that address specific application requirements.

This research considers the combination of an obstruction-free STM with a

contention manager.

Conflicts can always be solved by selecting one transaction that commits and aborting the other

contending transactions. Consequently, the performance of a STM depends on the frequency of

occurrence of the conflicts and the transaction abort ratio. As such, STM behaves very well for

systems that exhibit a predominance of read-only transactions, short-running transactions and a

low ratio of context switches during the execution of a transaction (Maldonado et al., 2010).

1The contention manager is a module of the STM that solves conflicts by considering a pre-determined criteria, i.e.

a set of rules defined by the system designer.

40 Background on synchronisation mechanisms

STM implementations may differ according to the version management or the conflict detec-

tion (Harris et al., 2010). Version management relates to the manner in which tentative writes are

performed. These tentative writes can be categorised as eager or lazy with the following interpre-

tation.

• Eager version management. This version management allows for the object to be modified

immediately, but requires that it is unavailable to concurrent transactions until the updating

transaction commits. If the updating transaction aborts, the value of the object is rolled-back

to the previous version.

• Lazy version management. This version management defers the update of the object until

the transaction commits, thus leaving the object available to other concurrent transactions.

This implies that a transaction must work with an image of the object that will eventually

replace the value of the transactional object. If the transaction aborts, then no roll-back is

required.

Lazy version management requires more memory overhead, as each transaction needs to have

its own set of copies of the accessed objects. However, eager version management requires book-

keeping in order to allow rolling back the modifications in case the transaction aborts.

This research considers lazy version management.

Besides assuming a lazy version management, we adopt a lazy conflict detection policy.

This research considers lazy conflict detection.

This means that each conflict is detected only when the transaction tries to commit. This conflict

detection mechanism allows transactions to execute in total isolation. In addition, lazy conflict

detection can be more efficient with read-write conflicts. This is the case as long as read-only

transactions commit before update transactions (Spear et al., 2006). We distinguish between STM

implementations with visible reads and STM implementations with invisible reads.

For STM implementations with invisible reads, an update transaction that modifies a given

object is not aware of concurrent transactions that are simultaneously reading that object. As such,

update transactions commit regardless of the concurrent reads on their write sets. Furthermore,

this transaction cannot inform the concurrent transactions that they are working with an outdated

value. Hence, transactions with invisible reads have to check the validity of their read sets when

they try to commit. In contrast, for STM with visible reads, every read operation is registered. As

such, update transactions are able to detect write-read conflicts2. Visible reads require to register

all operations. This represents memory overhead, but allows full control in detecting and solving

conflicts. This is a very important feature when a deterministic contention manager is desired.

2A write-read conflict occurs when a transaction that modifies an object tries to commit before a concurrent trans-

action that reads the same object does.

3.4 Relevant works on software transactional memory 41

In addition, transactions are aborted by updates in their read sets such that the verification of the

validity of their read sets becomes redundant.

This work considers STM implementations with visible reads.

Last but not least, the granularity of conflict detection determines the possibility of false con-

flict detection. We can distinguish between finer granularity and coarser granularity. Finer gran-

ularity (on the word or cache-line level) implies less false conflicts detected and lower transaction

abort ratio, but at the expense of higher memory overheads, whereas coarser granularity (at the

object level) presents lower memory overheads but more false positive conflicts.

This research does not focus on any particular level of granularity of conflicts.

3.4 Relevant works on software transactional memory

Herlihy and Moss (1993) proposed the first transactional memory mechanism based on hardware.

In this work, the authors described how adding extensions to the cache-coherence protocol of a

multiprocessor architecture allows us to implement transactions on memory.

Shavit and Touitou (1995, 1997) adapted the concept of transactional memory and imple-

mented all the synchronisation operations at the software level: this resulted in the Software

Transactional Memory (STM). This approach supports static transactions, which requires that

both the transactions and the memory usage are defined in advance. This limitation is overcomed

by following STM implementations that on the one hand provide dynamical transactions, i.e., a

transaction can decide the addresses to access based on the values read at runtime; and on the

other hand provide dynamical memory usage, such as the Dynamic STM (DSTM) (Herlihy et al.,

2003), the object-based STM (OSTM (Fraser, 2003), the Adaptive STM (ASTM) (Marathe et al.,

2005), Transactional Locking 2 (TL2) (Dice et al., 2006), the multi-core runtime STM (McRT-

STM) (Saha et al., 2006) or the SwissTM (Dragojević et al., 2009).

Some of these implementations have been tested against traditional synchronisation mecha-

nisms. Cascaval et al. (2008) analysed the performance of a highly optimised STM and concluded

that the current implementations suffer from overheads that do not make STM appealing in the

situations where less than four parallel transactions are assumed. Dragojević et al. (2011) showed

that STM is capable of outperforming the sequential coding paradigm, especially when the number

of parallel threads increases although the overheads of the compiler instrumentation and transpar-

ent privatization are substantial.

Despite the large body of knowledge developed during the last decades on STM for distributed

and parallel systems, only a few works dealt with dynamical memory usage in the context of real-

time systems. Manson et al. (2005) propose a data access synchronisation mechanism based on

transactions for real-time systems assuming a uniprocessor platform — the Preemptible Atomic

42 Background on synchronisation mechanisms

Regions — and provide a response time analysis that bounds the response time of any job exe-

cuting atomic regions. In this analysis, an atomic region is guaranteed to be free from other tasks

interference because the transaction is immediately aborted and its effects undone if any job that

is executing a transaction is preempted by a higher-priority task. This policy implies that no con-

current transactions are allowed in the system, which is impractical for multiprocessor systems.

Fahmy et al. (2009) describe an algorithm that allows us to compute an upper-bound on the

worst-case response time of every task in a multiprocessor system, assuming STM as the syn-

chronisation mechanism and a Pfair scheduler. This analysis is limited to small atomic regions,

assuming that every transaction will execute in at most two quanta. It is assumed that each task

can have multiple atomic regions and concurrent transactions can interfere with each other. Also,

conflicts are detected and solved during the commit phase.

Sarni et al. (2009) proposed a scheduling policy for concurrent transactions in soft real-time

systems. The authors characterised each transaction by using scheduling parameters, e.g., a rela-

tive deadline which expresses the maximum amount of time desirable for the transaction to com-

mit once it has started. Upon the start of every instance, it is assigned an absolute deadline that

is determined by the sum of its release time and its relative deadline. Conflicting transactions

are serialised based exclusively on their absolute deadlines. Unfortunately, this may have a nega-

tive impact on transactions with larger absolute deadlines. On another front, the authors adapted

a practical STM to run on a real-time kernel and modified the contention manager to apply their

proposed policy. The experimental results showed the benefits of using scheduling data to improve

the number of transactions that meet their deadlines.

Schoeberl et al. (2010) proposed a hardware transactional memory for hard real-time tasks. In

this contribution, the system model assumes that each task contains one single atomic region and

conflicts are detected and solved during the commit phase. They provided a response time analysis,

which demonstrates that every job of a task will meet its deadline as soon as two consecutive

transactions are separated by the so-called resolve time, i.e. the worst-case time a transaction takes

to successfully commit. The analysis provides a method to compute an upper-bound of the resolve

time. Despite the guarantee that deadlines will be met, this work does not describe any method to

solve the transaction conflicts, based on scheduling data.

Cotard (2013) developed a wait-free STM for hard real-time embedded systems on multi-core

platforms, in which transactions help their contenders to commit. Based on the profiles of tasks in

practical automotive applications, this work assumes that transactions are homogeneous, i.e. the

data set of a transaction is exclusively formed either by the read set (read-set transaction) or by the

write set (write-set transaction). Consequently, a task can have multiple transactions of different

nature: e.g. an earlier read-set transaction to acquire data and a later write-set transaction to output

the results of a computation. In this work, the system model does not consider a specific schedul-

ing algorithm, but requires transactions to be executed non-preemptively, until they commit. In

addition, write-set transactions that have intersecting write sets must be allocated to the same core

and since transactions cannot be preempted, it is impossible to have a write-write conflict between

transactions. The devised policy provides two results: (i) a write-set transaction will never abort

3.4 Relevant works on software transactional memory 43

because there are no write-write conflicts, and (ii) a read-set transaction will abort, at most, once

because concurrent updates help beforehand read-set transactions that have previously aborted.

Unfortunately, the restrictions assumed in this work do not allow heterogeneous transactions that

combine read and write operations in one single atomic section, and that may be required in more

complex applications.

El-Shambakey and Ravindran (2012b) provided the response time analysis of two contention

managers that take the scheduling priorities of jobs as the decision criteria: the EDF contention

manager (ECM) for tasks sets scheduled by following the global earliest deadline first (G-EDF)

scheduler and the RMA contention manager (RCM) for tasks sets scheduled by following the

global rate monotonic (G-RMA) scheduler. When a conflict is detected, the ECM selects the

transaction with the earliest deadline and the RCM selects the transaction with the highest priority

to commit. The system model assumes that each transaction accesses one single STM object, but

each task can have multiple transactions. Note that transactions cannot be nested. On one front,

the restriction on the number of accessed objects per task simplifies the response time analysis, it

allows the authors to perform a direct comparison with the lock-free retry loops (Devi et al., 2006)

and determines the conditions under which the STM approach provides lower retry costs than the

lock-free approach. On another front, this same restriction also severely limits the atomic section

where multiple operations on multiple data must be viewed has one atomic operation.

The same authors (El-Shambakey and Ravindran, 2012a) proposed the length-based con-

tention manager (LCM) to be used in conjunction with the G-EDF or G-RMA scheduler. Here,

a transaction that detects a conflict voluntarily aborts under two circumstances: (i) it has a lower

priority than the concurrent transaction, or (ii) the concurrent transaction has executed for a pre-

defined amount of its total execution time. This work assumes the same system model as in (El-

Shambakey and Ravindran, 2012b), i.e. one object accessed per transaction and multiple non-

nested transactions per task. Consequently, it presents the same limitations. To worsen the picture,

the contention manager must keep track of the execution time of all jobs executing in all cores in

order to decide which transaction will commit upon the detection of a transaction conflict. Unfor-

tunately, this may lead to a non-negligible execution time overheads.

They proposed in (El-Shambakey and Ravindran, 2013a) the so-called Priority contention

manager with Negative values and First access (PNF) in order to circumvent the aforementioned

issues. Here, the system model allows transactions to access multiple objects. PNF partitions

transactions in progress into two groups: (1) the m-set (the maximum size of the group is m, the

number of cores) in which transactions execute non-preemptively and will commit immediately,

and (2) the n-set (the maximum size of the group is n, the number of tasks) in which transactions

execute with the lowest priority defined by the scheduler (i.e. -1) and will abort. Unfortunately,

this approach relies heavily on a centralised contention manager and therefore may not scale with

an increase in the number of cores.

They provide in (El-Shambakey and Ravindran, 2013b) a more dynamic and decentralised

approach to circumvent this last limitation, while assuming global-based schedulers. Here, the

contention manager does not require the data set of each transaction to be known beforehand, it

44 Background on synchronisation mechanisms

is referred to as First Bounded, Last Timestamp (FBLT). Each transaction is assigned a maximum

number of aborts and conflicts are solved by following the same principle as in LCM. When a

transaction reaches its maximum number of aborts, FBLT registers the timestamp and rises the

priority of the job to a non-preemptable level. Unlike PNF, conflicts between non-preemptable

transactions are possible. FBLT selects the transaction with the earliest registered timestamp to

commit. The main limitation of this approach is that the maximum number of aborts per trans-

action is assumed to be known beforehand. This may not be the case for complex real-world

applications. Furthermore, although the adopted global schedulers provided interesting features

such as better load-balancing and flexible solutions in terms of schedulability, they presented seri-

ous overheads (in terms of number of migrations and preemptions). These are not desirable in the

context of hard real-time systems, where applications have stringent timing requirements.

The aforementioned works provide interesting perspectives on how to deal with STM in the

context of real-time systems. However, it is clear that there are many pending issues, and further

research is necessary in order to take full advantage of the future parallel architectures.

3.5 Summary

This chapter presented an overview of the relevant works published on lock-based synchronisa-

tion, non-blocking data structures and STM. Synchronisation mechanisms have been developed

for uniprocessor platforms only, but the advent of multi-core platforms add a new dimension to

the problem of data integrity since multiple tasks can be executed in parallel. Lock-based synchro-

nisation mechanisms do not scale with an increase in the number of cores, as they have a negative

impact on parallelism and/or the system composability. Non-blocking objects could have been a

good alternative, but they do not allow compound operations to be built on the same object or on

a set of objects, unfortunately. Because of these drawbacks, we adopted transactional memories

as they allow us to define transactions to transparently solve conflicts by relying on the underlying

software transactional memory (STM) mechanism. Chapter 4 introduces the system model used

throughout this research work.

Chapter 4

System model

In this chapter we introduce all the parameters that will be used throughout this research work. To

this end, we distinguish between three levels of abstraction, namely: the task specifications, the

platform and scheduler specifications, and finally the STM specifications. We assume all timing

characteristics to be non-negative integers, i.e. they are multiples of some elementary time interval.

4.1 Task specifications

We assume that the workload is carried by a set of n periodic tasks τ
def
= {τ1, . . . ,τn}. Each task

τi releases a potentially infinite number of jobs and is characterised by a worst-case execution

time Ci, a relative deadline Di, and a period Ti. These parameters are given with the following

interpretation. The jth job of task τi executing on processor πk, referred to as τk
i, j, is characterised

by its release time ri, j such that ri, j+1
def
= ri, j+Ti, ∀i∈{1, . . . ,n},∀ j≥ 1; and an absolute deadline

di, j
def
= ri, j +Di. We assume the system to be constrained-deadline, so Di ≤ Ti,∀i. This condition

imposes that each job must finish before the following job is released, so no consecutive jobs can

overlap in time. We also assume that the system is synchronous, i.e., all tasks in τ release their first

jobs at the same time instant, say t = 0. Formally, we assume that ri,1 = 0,∀i. For such a system,

interval [0,P), where P is the hyper-period (P = lcm(T1, . . . ,Tn) – the least common multiple of

the periods of all tasks), is a feasibility interval (Cucu-Grosjean and Goossens, 2011). This means

that if all jobs meet their deadline in this finite time window, then we are guaranteed that every job

will always meet its deadline.

Tasks may not be independent, meaning that they may concurrently access common data lo-

cated in shared memory. Accesses to these shared data are performed in the context of a STM

transaction (Shavit and Touitou, 1997) — The specification of each STM transaction is provided

below. In the rest of this document, we will simply mention transaction to refer to a STM trans-

action. The outcome of a transaction must appear as if the operations that constitute it were

performed atomically, isolated from the interference of concurrent jobs, i.e. as if performed in

mutual exclusion. All reads and updates must be performed over a single state of the subset of

STM objects that are accessed by the transaction: non intermediate concurrent updates on this

45

46 System model

subset can occur during the execution of the transaction, otherwise the results would be inconsis-

tent. The mission of an STM system is to maintain the consistency of the share data, validating

the outcome of transactions. If the outcome of a transaction results in an inconsistent state, then

the transaction aborts; otherwise, the transaction commits.

We assume that each task τi performs at most one STM transaction, denoted as ωi. Nev-

ertheless, the results obtained throughout this work are extensible to tasks that execute multiple

non-nested transactions with minor efforts. The transaction of τi is characterised by:

• Cωi
: the maximum time required to execute the sequential code of ωi once, without any

external interference from other tasks or the system itself, and try to commit.

• The data set (DSi): the collection of shared objects that are accessed by ωi. This data set

can be partitioned in two subsets: the read set (RSi) and the write set (WSi) where:

– RSi is the subset of objects that are accessed by ωi solely for reading, and

– WSi is the subset of objects that are modified by ωi during its execution.

The size of the data set, read set and write set are denoted as |DSi|, |RSi| and |WSi|, respec-

tively.

4.2 Platform and Scheduler specifications

We assume that all the jobs are executed on a multi-core platform π
def
= {π1, . . . ,πm} composed of

m homogeneous cores, i.e., all cores have the same computing capabilities and are interchangeable.

The task set τ is scheduled by following a partitioned Earliest Deadline First (P-EDF) scheduler,

i.e., each task is statically assigned to a specific core at design time (and task migrations from one

core to another at runtime are not allowed) and each core schedules its subset of tasks at runtime by

following the classical EDF scheduler, where at each time instant the job with the earliest absolute

deadline is selected for execution. Ties are broken in an arbitrary manner.

We define σ as a function that returns the core to which a task is assigned. Thus, if task τi is

assigned to core πk, then σ(τi) = πk.

4.3 STM specifications

We assume that a collection of p STM objects O
def
= {o1, . . . ,op} are located at the globally shared

memory and are accessible to all tasks executing a transaction, independently from the core on

which they are executing. Multiple simultaneous transactions are supported and for each object

there is a chronologically ordered list that records all transactions currently accessing the object.

The number of transactions that have a specific object, say o j, in their data sets is denoted as |o j|.

Contention occurs when two or more transactions, executing in parallel, have intersecting

data sets and at least one transaction modifies the value of a shared object. Hence, we can map

4.3 STM specifications 47

!1

!2

!5

!4!3

o3

o1 o2

DS1 = DS5 = {o3}

DS2 = {o1}

DS3 = {o1, o2}

DS4 = {o2}

Ω1

Ω2

Figure 4.1: Transaction dependencies by object concurrency.

contentions by using a graph G in which vertices represent transactions and edges represent the

shared objects between a pair of transactions.

Definition 24 (Contention group). Given a contention graph G, a contention group, denoted as

Ωk (with k ≥ 1), is defined as a set of connected vertices of G in which any two transactions are

connected by a path.

Figure 4.1 illustrates a very simple example of contention groups in which a set of five trans-

actions {ω1,ω2,ω3,ω4,ω5} are sharing a set of three STM objects {o1,o2,o3}. In this exam-

ple, the data sets of the transactions form two distinct contention groups: Ω1 = {ω1,ω5} and

Ω2 = {ω2,ω3,ω4}.

Each instance of a transaction has a life cycle that follows the states represented in Figure 4.2.

When a transaction is released, it enters the active state in which the transaction code is executed.

At the end of the code execution, the STM system checks whether the transaction is sound, in terms

of data consistency and current data access conflicts. If the transaction is sound, then it commits

and concludes, otherwise the transaction enters the failed state, in order to restart. During the active

state, the data accessed by a transaction can become inconsistent when (1) another transaction,

referred to as contender commits, and (2) the transaction enters the zombie mode, in which it

continues to execute, but it will inevitably fail the final validation, transiting to the failed state. A

transaction may be aborted multiple times until it successfully commits.

Definition 25 (Cores allocated to a contention group). Given a contention group Ωa, then Πa is

defined as the set of ma≤m cores allocated to the transactions of Ωa. Formally, Πa = {πk |σ(ωi)=

πk, ωi ∈Ωa}.

Definition 26 (Direct contender of a transaction). The direct contender of a transaction ωi is

defined as a transaction ω j that shares at least one STM object with ωi. Formally, ω j is a direct

contender of ωi if DSi∩DS j 6= /0.

Definition 27 (Indirect contender of a transaction). The indirect contender of a transaction ωi is

defined as a transaction ω j that does not share any STM object with ωi, but belongs to the same

contention group as ωi. Formally, ω j is an indirect contender of ωi if the following two conditions

hold: (1) DSi∩DS j = /0 and (2) ∃Ωa such that ωi,ω j ∈Ωa.

48 System model

Start

Validate:

OK to commitKilled by contender

Validate:

already dead

Validate:

loses conflict

Restart

ACTIVE

FAILED

ZOMBIE

Figure 4.2: State diagram of a transaction.

Definition 28 (Independent transactions). Two transactions ωi and ω j are said to be independent

when they belong to different contention groups. Formally, ωi and ω j are independent if the

following two conditions hold: (1) ∃Ωa, ωi ∈Ωa; ∃Ωb, ω j ∈Ωb and (2) Ωa∩Ωb = /0.

Definition 29 (Transaction overhead of a job). The transaction overhead of job τi, j, denoted as

Wi, j, is defined as the time wasted in executing aborted commit attempts of ωi. Formally, Wi, j is

given by:

Wi, j
def
= Ai, j ·Cωi

(4.1)

In Equation 4.1, Ai, j represents the number of failed attempts of ωi before it commits.

Definition 30 (Execution time of a job executing a transaction). Given task τi executing a transac-

tion ωi, the execution time of the jth job, denoted as Ci, j, is defined as the sum of four terms: (1) the

time (Ca-ωi
) required to execute the code of τi before ωi starts, (2) the time (Cp-ωi

) required to exe-

cute the code of τi after ωi has committed, (3) the execution time (Cωi
) of a successful transaction

of ωi, and (4) the transaction overhead (Wi, j) of that job. Formally, Ci, j is given by:

Ci, j
def
= Ca-ωi

+Cωi
+Cp-ωi

+Wi, j (4.2)

Definition 31 (Task utilisation). The utilisation of task τi, denoted as Ui, is defined as the execution

ratio of the jobs of τi within one hyper-period. Formally:

Ui =
1

P/Ti

·
P/Ti

∑
j=1

Ci, j

Ti

(4.3)

Definition 32 (System utilisation). The utilisation of system τ , denoted as Us, is defined as the

sum of the utilisations of all tasks in τ . Formally:

US =
n

∑
i=1

Ui (4.4)

Chapter 5

FIFO-CRT: a predictable STM

contention management

Memory hierarchy represents an important hurdle to the way applications share data upon multi-

core platforms. To address this problem, the software transactional memory (STM) was proposed

as an appealing solution as (i) it allows for transactions to execute in isolation and (ii) conflicts to

be solved by applying a contention policy. This contention policy is responsible for selecting the

transaction that will commit, while the contender(s) will most likely abort and repeat. Therefore, it

is crucial to design control mechanisms for serialising concurrent transactions, while maintaining

the consistency of shared data objects. The time overhead resulting from successive aborts of a

transaction affects the worst-case execution time (WCET) of every task that executes a transac-

tion. This implies that the timing behaviour of a task can only be predictable if the transaction

overhead is bounded. In this chapter, we formalise a FIFO-based contention management algo-

rithm, referred to as FIFO-CRT, that provides predictability and prevents transaction starvation.

FIFO-CRT has proven its efficiency as a fairer way to limit the number of times transactions are

aborted.

5.1 Requirements

The contention manager relies on criteria that express the expected behaviour of the system.

Specifically, it must avoid live-lock situations, i.e. a situation in which a group of transactions

indefinitely abort each other, without ever committing, and it must prevent transaction starvation,

i.e. a situation in which a transaction is excessively aborted as compared with its contenders. An

STM contention management policy oriented for real-time systems must meet the following three

requirements.

⊲ Predictable. When a transaction arrives, it must be guaranteed that its execution does not

exceed a predefined time limit to commit. This requirement imposes an upper bound on the

49

50 FIFO-CRT: a predictable STM contention management

number of aborts that the transaction under analysis can undergo. To this end, read-only

transactions must be visible.

⊲ Avoid starvation. The ability to commit must be distributed in a fair manner among the set

of contending transactions. As such, no task will have an excessive abort overhead.

⊲ Decentralised. The algorithm that implements the contention management policy should be

preferably decentralised and executed by each transaction at the moment it tries to commit,

and not on a dedicated processor. This way, the overall system overhead will be drastically

limited.

5.2 Classical contention management policies

Herlihy et al. (2003) were the first to introduce the concept of contention manager as a mecha-

nism with the objective to avoid live-lock in an obstruction-free STM. Since then, the problem

of managing accesses to transactional data received a lot of attention and became the main focus

of many research work. More precisely, the main question to answer/address is: given a set of

transactions competing for a set of shared data objects, how to select the transaction to commit

and what actions (typically wait and/or abort) should the remaining transactions take in order to

improve the overall throughput (i.e. the number of commits per time unit)? To this end purpose,

various heuristics have been proposed – see the bullet list below for further details.

Although the contention managers proposed for general-purpose systems focus specially on

throughput (i.e. systems without stringent timing requirements), they can provide some good

insights on how to choose the most suitable decision criteria for the contention manager of a system

with stringent timing requirements. Some of the most popular heuristics found in the literature

were originally designed for STM with eager conflict detection and/or lazy conflict detection.

Few examples of such heuristics are described below, assuming the scenario where a transaction,

referred to as the victim transaction, has accessed shared data and another transaction, referred

to as attacking transaction, detects a conflict. The remaining contention management policies

available are not suitable as they do not meet the decentralized requirement (see Section 5.1).

They present a high complexity and/or require a high amount of data exchange between cores.

• Passive (Dice et al., 2006). In this heuristic, the attacking transaction aborts when it detects

a conflict at commit time. It was designed for lazy conflict detection.

• Aggressive (Herlihy et al., 2003). Here, the attacking transaction aborts immediately the

victim transaction once a conflict is detected. It was originally designed for eager conflict

detection but can be tuned and used for lazy.

• Polite (Herlihy et al., 2003). Here, the attacking transaction enters an exponential back-off

cycle after it has detected a conflict in order to allow the victim transaction to commit. At the

end of a predetermined number of wait cycles, the attacking transaction aborts the victim.

It was designed for eager conflict detection.

5.2 Classical contention management policies 51

• Timestamp (Scherer III and Scott, 2004). In this heuristic, each transaction is assigned a

time stamp at the moment it starts. If the attacking transaction has the earliest time stamp,

then the victim transaction is aborted. Otherwise, it waits for a given time before aborting

the victim. Ties are broken in an arbitrary manner. It can be used for eager or lazy conflict

detection.

• Greedy (Guerraoui et al., 2005b). The Greedy contention manager uses time stamps to

assign priorities to transactions. In addition, each transaction has a boolean flag that indi-

cates if the transaction is currently waiting for the outcome of a concurrent transaction, or

not. The decision rule is not straightforward as in Timestamp. Here, when an attacking

transaction detects a conflict, it aborts the victim if the victim has a later time stamp or is

waiting for yet another transaction. Otherwise, if the victim transaction has an earlier time

stamp and is not waiting for another transaction, then it is aborted only if it starts waiting for

another transaction. This policy attempts to increase throughput of the number of commits.

It was originally designed for eager conflict detection.

• Karma (Scherer III and Scott, 2005). In this heuristic, each transaction carries a value that

represents the work it has carried out since it has started referred to as the karma. The

karma of each transaction is calculated by using the current number of transactional objects

accessed by the transaction since it has started and the number of aborts it has suffered. Note

that the karma of each transaction may change over time. When an attacking transaction

detects a conflict, it aborts the victim if it has an higher karma, otherwise it waits for a

predetermined time and aborts itself, thus increasing its karma. It was originally designed

for eager conflict detection.

From this sample of contention managers, Timestamp and Greedy are, in theory, free of live-

lock and starvation. Indeed, for these two contention managers, each transaction is assigned a

finite time stamp that will eventually become the earliest at a given instant. Once this is the case, it

can commit. Guerraoui et al. (2005a) show that alternative contention managers may outperform

those based on time stamps in practice. However, the winning candidates are all exposed to live-

lock and starvation. To illustrate this claim, below are a few examples:

1. The Passive and Polite managers do not provide any guarantee on the time at which a trans-

action will commit.

2. The Aggressive manager may suffer from live-locks if a group of transactions mutually

abort each other without ever committing.

3. The Karma manager may induce starvation on long transactions if short transactions access-

ing many transactional objects abort-and-repeat fast enough to achieve a higher karma.

52 FIFO-CRT: a predictable STM contention management

Core !0

Core !1

Core !2

0 1 2

0 1

0

!1

!3

!2

0

1

2

...

Job release

Job deadline

0

1

Non-transactional section

Transaction commits

Transaction aborts

Number of aborts suffered

Figure 5.1: Contention management based on number of aborts.

5.3 Discussion of criteria

Regarding the requirements in Section 5.1, the contention manager is responsible for deciding,

upon each conflict, which transaction to commit so that the application timing requirements are

not violated. To this end, it must rely on criteria that monitor the progress rate of the transactions

and/or the scheduling parameters of jobs that host a transaction. In this section, we carry out the

discussion about four criteria out of which: (1) two are dynamic job parameters, namely the num-

ber of aborts of a transaction and the current job laxity; and (2) two fixed-job parameters, namely

the transaction release time and the job absolute deadline. These criteria have been selected as

they appear to be the most suitable ones to help us meeting all the timing requirements of the

application.

Number of aborts of a transaction. This parameter can be used in a contention manager that

opted for aborting the transaction with the smallest number of aborts. If two transactions with the

same number of aborts are in conflict, then the first one trying to commit wins the conflict. This

policy seems to provide fairness as the more a transaction suffered from aborts, the higher are its

chances to commit. This is the case if the transactions have similar execution times. However, this

policy may discriminate against long transactions as illustrated in the following example.

Consider three jobs belonging to tasks τ1, τ2, τ3, and executing transactions ω1, ω2, ω3, re-

spectively. We assume that: (1) τ1, τ2, τ3 execute on three different cores; (2) τ2 is the first task to

release its job, followed by τ1 and then τ3; (3) τ1 releases a second job within the first period of τ2;

and finally (4) ω2 is significantly longer than ω1 and ω3. Figure 5.1 illustrates a situation where

all the three transactions try to access the same memory address, thus resulting in a transactional

conflict. In this figure, ω2 fails several times because of the short transactions (here, ω1 and ω3)

that had been released later, but managed to commit before. This situation is due to the number of

5.3 Discussion of criteria 53

aborts (number inside the dashed rectangles) of these short transactions, which grows faster than

that of ω2.

Current job laxity. This parameter can be used in a contention manager that solves conflicts by

committing the transaction belonging to the job with the smallest laxity. The laxity of a job at a

given time instant, say t, after its release time is determined by the amount of time this job can be

delayed, but still meet its deadline. Formally speaking, if we consider a job, say τi, j, which still

needs c′i, j(t) ≤ Ci units of execution at time t to complete prior to its deadline, then its laxity at

time t is defined as follows.

ℓi, j(t) = (di, j− t)− c′i, j(t). (5.1)

Equation 5.1 shows that the laxity of every job in a non-increasing function of time. That is, the

more the laxity of a job, the more this job can be delayed. Therefore, this parameter indicates the

flexibility to schedule every job. The intuitive idea of using a contention manager based on this

logic resides in the fact that by repeating the transaction belonging to the job with the smallest

laxity, we are more inclined to miss its deadline. Nonetheless, this solution is not free from pitfalls

as illustrated below.

1. Runtime overhead. The runtime overhead associated to the computation of each job laxity

can be significant. Indeed, an accurate estimation of the laxity of a job requires monitoring

the execution of this job from its release time up to its finishing time.

2. Live-locks. Every contention manager based on job laxity is unfortunately exposed to live-

locks. Indeed, at every time instant, say t, if a transaction ωi belonging to task τi aborts,

then the execution time Cωi
associated to this transaction adds naturally to the remaining

execution time of τi as this transaction is forced to perform a new attempt to commit. Note

that the more the number of aborts of ωi, the higher the remaining execution of τi at time t.

Now, let us construct a scenario resulting in a live-lock. To this end, we consider two tasks τa

and τb executing transactions ωa and ωb respectively, and executing on two different cores

in parallel (see Figure 5.2). We assume that these transactions access the same memory

location. Also, we assume without any loss of generality that Cωa
=Cωb

=Cω . Furthermore,

we assume that: (1) ωa tries to commit first, say at time instant t1, and the laxities of the two

jobs are such that ℓa(t1)> ℓb(t1) and ℓa(t1)−ℓb(t1)<Cω ; and (2) ωb tries to commit at time

instant t2 > t1 such that t2− t1 <Cω .

• At time t1, ωa will abort (increasing its remaining execution time of τa by Cω) as ℓa(t1)>

ℓb(t1). Then it will perform a new attempt at time t3
def
= t1 +Cω .

• At time t2, there is a conflict between ωa and ωb as t2− t1 < Cω . At this time instant,

ℓa(t2) = ℓa(t1)−Cω and ℓb(t2) = ℓb(t1) as task τb was busy executing in the time interval

[t1, t2]. Consequently, ℓa(t2)− ℓb(t2) = (ℓa(t1)−Cω)− ℓb(t1) = (ℓa(t1)− ℓb(t1))−Cω < 0

as ℓa(t1)− ℓb(t1) < Cω . This means that ℓa(t2) < ℓb(t2), thus ωb will abort (increasing its

remaining execution time of τb by Cω). It will perform a new attempt at time t4
def
= t2 +Cω .

54 FIFO-CRT: a predictable STM contention management

Core !0

Core !1

"b

"a

Job release

Job deadline

Non-transactional section

Transaction commits

Transaction abortsC#

t1

C#

t2 t3 t4 t5 t6 t7 ...

Figure 5.2: Live-lock due to laxity criteria.

•At time t3, there is a conflict between ωa and ωb as t3−t2 =(t1+Cω)−t2 =Cω−(t2−t1)<

Cω as (t2− t1) < Cω . At this time instant, ℓa(t3) = ℓa(t2) as task τa was busy executing in

the time interval [t2, t3] and ℓb(t3) = ℓb(t2)−Cω . Consequently, ℓa(t3)− ℓb(t3) = ℓa(t2)−

(ℓb(t2)−Cω) = (ℓa(t1)−Cω)−(ℓb(t1)−Cω) = ℓa(t1)−ℓb(t1)> 0. This means that ℓa(t3)>

ℓb(t3), thus ωa will abort (increasing the remaining execution time of τa by Cω). It will

perform a new attempt at time t5
def
= t3 +Cω .

• From time instant t4 onwards, the previous reasoning can be carried out at any time instant

tk+1
def
= tk−1 +Cω , with k ≥ 3, thus leading to successive aborts of transactions ωa and ωb;

and ultimately to a live-lock.

3. Size of the laxity. Given two concurrent transactions ωa and ωb belonging to tasks τa and τb,

respectively. If we assume that ℓa(t) and ℓb(t) are the laxities of τa and τb at a given time

instant t ≥ 0, then choosing to abort the transaction with the largest laxity at time t does

not guarantee that its deadline will be met. Indeed, if we assume without lost of generality

that ℓa(t)> ℓb(t), and we assume that there is an abort of ω at time instant t, then an upper

bound on the number of aborts that ωa can undergo and still meet its deadline is given by

max

(

0,

⌊

ℓa(t)

Cωa

⌋

−1

)

. As a matter of fact, when deciding to abort a transaction, the cost

of executing an additional attempt within the job laxity must be considered. Consequently,

any contention manager that decides exclusively based on the value of the job laxity may

select the less appropriate transaction to abort.

Transaction release time. The time instant at which a job τa starts executing its transaction ωa

is called the transaction release time. The contention manager that selects the transaction with the

earliest release time for commit is referred to as the Timestamp contention manager. This criteria

provides fairness as conflicting transactions are serialised by the order at which they are released,

and predictability as once a transaction is released, the concurrent transactions already in progress

5.3 Discussion of criteria 55

Core !0

Core !1

Core !2

0 1 2 3

0

!1

!3

!2 0

0

1

4

Figure 5.3: Contention management based on transaction release times.

will have to commit before, and no transaction arriving in the future will abort it. As illustrated in

Figure 5.3, ω2 executed by task τ2 is the first transaction to commit, because it was the first to be

released. Then, transaction ω1 can only commit after ω2 has committed.

Comparing against the scenario in Figure 5.1, where the number of aborts is the criteria for

selecting the transaction to abort, we observe that the timestamp based manager is more convenient

because all transactions can commit within a bounded amount of time, although this is done at

the cost of a higher number of aborts for short transactions. Unfortunately, such a contention

manager may induce deadlock in the subset of tasks assigned to the same core as a job executing

a transaction can be blocked by another job with a lower-priority and executing a concurrent

transaction with an earlier timestamp. To illustrate this claim, consider the following example.

Let τa and τb be two tasks assigned to the same core and executing transactions ωa and ωb,

and contending for the same shared data object. We assume that τa has a lower priority than τb

and preemption is allowed. We consider a scenario where a job of task τa is released first and

is preempted by τb while it was executing its transaction ωa. During the execution of task τb, a

strict application of the "release time first" criteria would not allow transaction ωb to commit, as

its release time is later than that of ωa. In this case, transaction ωb will then abort indefinitely

and this situation will ultimately result in a deadline miss for both τa and τb (see Figure 5.4). In

order to circumvent this issue, the following solutions can be adopted: (i) allowing a transaction

to commit before any other preempted transaction on the same core does, (ii) not allowing more

than one transaction in progress per core.

Job absolute deadline. Consider tasks τa and τb assigned to two different cores. We assume the

jobs of τa and τb execute transactions ωa and ωb, respectively. Upon detecting a conflict between

these two transactions, a contention manager which relies on the "Job absolute deadline" criteria

will select the transaction that belongs to the job with the earliest absolute deadline to commit.

At first glance, this choice looks appealing, but this criteria does not indicate whether the laxity

of the concurrent job (i.e., the job that has not been selected) allows for an additional abort of its

transaction. Alternatively, if this job has a large absolute deadline and can bear a non negligible

56 FIFO-CRT: a predictable STM contention management

Core !0

!1

!2

Job release

Job preempted

Transaction commitsTransaction aborts

Non-transactional section

Job deadline

Figure 5.4: Contention between transactions on the same core resulting in deadlock.

number of aborts of its transaction, then this criteria may unfortunately induce excessive aborts.

Figure 5.5 illustrates this effect where the same job releases as in figures 5.1 and 5.3 is considered.

This example shows that transaction ω2 is aborted twice, in order to allow its contenders (here,

transactions ω1 and ω3), released later but with earlier deadlines, to commit. In this example, it is

noticing that the large absolute deadline of task τ2 together with the large execution time associ-

ated to transaction ω2 amplify the probability of conflict with upcoming concurrent transactions.

Similar to the "transaction release time" criteria, the job absolute deadline criteria provides us with

the following two desired features:

• for any set of conflicting transactions, the total order of the transactions is established be-

forehand and immutable, thus avoiding live-locks, and

• every transaction will possess the earliest absolute deadline at some point in time and even-

tually commit, thus enforcing liveness.

5.4 FIFO-CRT: a predictable contention manager for real-time sys-

tems

Considering the requirements in Section 5.1, a contention management for real-time systems must

rely on criteria that always produce the same scheduling decisions irrespective of the time instant

and/or the core on which it is executed. The static criteria discussed in Section 5.3 (i.e., the

transaction release time and the job absolute deadline) serve this goal. Additionally, they ensure

that every transaction will eventually commit, because at some time, it will be assigned the highest

priority from the contention manager standpoint. From these two criteria, we opted to design our

contention manager by using the transaction release time as it provides more fairness.

5.4 FIFO-CRT: a predictable contention manager for real-time systems 57

Algorithm 1: The FIFO-CRT contention manager algorithm for real-time systems.

Precondition : Current job of task τi finished executing transaction ωi.

Postcondition: Transaction ωi commits if and only if it wins all conflicts.

1 if ωi status is ACTIVE then

2 forall ok ∈ DSi do

3 if ωi status is ACTIVE then

4 Acquire ownership of ok;

5 if ok ∈WSi then

6 forall ω j contending with ωi on ok do

7 if ω j status is ACTIVE then

8 if τ j status is RUNNING then

9 if release(ωi)> release(ω j) then

10 Set ωi status as FAILED;

11 else if release(ωi) = release(ω j) ∧ σ(τi)> σ(τ j) then

12 Set ωi status as FAILED;

13 end

14 end

15 end

16 end

17 end

18 else

19 Stop checking further objects;

20 end

21 end

22 if ωi status is ACTIVE then

23 forall ok ∈ RSi do

24 Remove ωi entry from list;

25 Release ok;

26 end

27 Commit updates;

28 forall ok ∈WSi do

29 Remove ωi entry from list;

30 forall ω j accessing ok do

31 Set ω j status as ZOMBIE;

32 end

33 Release ok;

34 end

35 else

36 Release all currently owned objects;

37 Abort and repeat ωi;

38 end

39 else

40 Abort and repeat ωi;

41 end

58 FIFO-CRT: a predictable STM contention management

Core !0

Core !1

Core !2

0 1 2 3

0 1

0

!1

!3

!2

0

2

1

4

Figure 5.5: Contention management based on job absolute deadlines.

Algorithm 1 details the operations executed by every transaction when trying to commit. If

the transaction is in the active state, then it will acquire the ownership of the objects in its data set

(see lines 1 to 21). Note that every transaction may have to wait until an object is free before it

acquires its ownership. For every object in its write subset, the transaction checks if it is the oldest

active transaction accessing it amongst the currently running jobs (see line 9). This condition

ensures that the transaction wins against all contenders on that object as they followed a FIFO-

based approach. If the transaction fails on one object (see lines 10 and 12), then it immediately

releases all its currently owned objects, aborts and repeats (see lines 36 and 37). Otherwise, if all

conflicts are won, the transaction immediately releases the objects in the read subset (see lines 23

to 26), commits updates (see line 27), and mark the contenders in the write subset as zombies,

before releasing the objects (see lines 28 to 34).

When checking for potential conflicts in lines 6 to 15, the target transaction just considers the

subset of contending transactions that are active at that moment and the respective job is running

(i.e., the job is executing on some core). A transaction in the zombie state can be overtaken

by newer transactions without affecting its number of aborts since it is going to abort anyway.

Thus, this algorithm increases the chances of commit for each transaction. In addition, active

transactions that are not running (i.e., transactions belonging to a job that has been preempted) are

ignored as a measure to avoid deadlocks.

Unlike locking solutions, the shared objects are owned just during the commit process, and

not during the whole transaction section. This improves the parallelism. Note that the ownership

process is controlled by the STM and should be transparent to the programmer. This feature

improves the system composability. On another front, it is interesting to acquire ownership of the

read subset of a transaction during its commit phase because it provides us with the following two

key advantages:

• It allows to safely operate the data structures that keep track of transactional accesses (see

line 24).

5.5 Summary 59

• It allows to prevent concurrent transactions from aborting. Specifically, consider a situation

where two transactions, say ωa and ωb , are sharing an object, say O. Let us assume that

transaction ωa has the ownership on O for reading and transaction ωb wants to update O.

Then as ωa owns O, transaction ωb will be busy waiting for ωa to commit instead of aborting

and when ωa commits, it will no longer be a contender to ωb. In this case, ωb can thus

update O.

5.5 Summary

In this chapter we discussed the requirements for a contention manager designed for real-time sys-

tems. We elaborate on a selection of classical contention managers proposed for general purpose

systems. Then, we conducted an indepth discussion on criteria that would help us meet all the

timing requirements for an application with stringent timing requirements. Finally we proposed a

contention management algorithm that is based on the transaction release time and which complies

with all the requirements. Since predictability depends on the level of preemptions of every job

while it executes a transaction, it follows that further improvements can only be achieved by man-

aging the number of preemptions while transactions are in progress. This problem is addressed in

Chapter 6.

60 FIFO-CRT: a predictable STM contention management

Chapter 6

Scheduling tasks and transactions

under FIFO-CRT

Chapter 5 presented the FIFO-CRT contention manager that provides predictability and fairness.

However, scheduling decisions such as preempting a job while it is executing a transaction can

have adverse effects on the intended behaviour of the contention manager. This chapter addresses

this issue, proposing three extensions of the partitioned EDF (P-EDF) scheduling policy in order

to further improve predictability. The first two approaches called Non-Preemptive Until Commit

(NPUC) and Non-Preemptive During Attempt (NPDA) disable preemptions during the execution

of the transactional sections. In contrast, the third approach allows preemptions. It builds on the

Stack Resource Protocol (SRP) (Baker, 1991) and is called Stack Resource Protocol for Trans-

actional Memory (SRPTM). This approach introduces the concept of preemption levels that the

scheduler uses to control the number of preemptions of transactions in a wiser manner.

6.1 Impact of the scheduling policy on the contention manager

FIFO-CRT serialises transactions according to their release times, and commits these transactions

by following this order: first arrived, first served. However, by applying this rule blindly, the

scheduling decisions at runtime may lead to situations where the timing requirements of the appli-

cation are violated, i.e. some jobs miss their absolute deadlines. To avoid these situations, it might

be necessary to violate the "transaction release time first" rule in specific cases in order to meet all

the timing requirements. To this end, we recall (see Section 5.3) that the following two solutions

can be adopted: (1) allowing a transaction to commit before any other preempted transaction on

the same core does, (2) not allowing more than one transaction in the active state per core.

⊲ The first solution, where every transaction is allowed to commit before any other preempted

transaction on the same core, has been implemented in the FIFO-CRT contention manager (see

Section 5.4, Algorithm 1, line 8).

61

62 Scheduling tasks and transactions under FIFO-CRT

Core !0

Core !1

!3

!1

!2

Figure 6.1: A preempted transaction with earlier release time being aborted.

Figure 6.1 illustrates a case in which this solution is applied. In this example, tasks τ1 and τ2

are assigned to core π0 and task τ3 is assigned to core π1. Task τ1 does not execute any transaction,

whereas τ2 and τ3 execute transactions ω2 and ω3, respectively, that are contenders on the same

memory object. Each core executes the EDF scheduler. Task τ2 releases its first job before τ3, and

is preempted by τ1 while it was executing its transaction. While τ2 is preempted, transaction ω3

tries to commit updates on the data set of ω2. Although transaction ω3 has a later release time,

the contention manager decides that it should commit because τ2 is not running. This decision

invalidates the transactional data upon which ω2 was working, so its state becomes zombie and it

is doomed to abort.

Although this solution avoids deadlocks, it exposes transactions to starvation. Figure 6.2 il-

lustrates this limitation. In this example, tasks τ1 and τ2 are assigned to core π0 and task τ3 is

assigned to core π1. Task τ1 does not execute any transaction, whereas τ2 and τ3 execute trans-

actions ω2 (which is long) and ω3 (which is short), respectively, that are contenders on the same

memory object. Each core executes the EDF scheduler. Task τ2 releases its first job before τ3, and

every time it is preempted by τ1 while it was executing its transaction, τ3 is released and executes

its transaction ω3. In this scenario, the instances of transaction ω3 abort ω2 and task τ2 ends up

missing its deadline. A way to get over this issue is to leverage on the scheduling decisions on the

scheduler side, as no further improvement can be achieved by tuning the contention manager.

⊲ The second solution advocates for at most one transaction in the active state on each core. If this

restriction applies, then we no longer require a transaction to abort a preempted one with an earlier

release time, in order to avoid deadlocks. In practice, this restriction can be easily implemented in

different ways on the scheduler side (see Sections 6.2 and 6.3 for further details).

6.2 Non-preemptive approaches

The issues of transaction starvation and associated unpredictability as mentioned in Section 6.1

can be solved by prohibiting preemptions during the execution of each transaction. If a transaction

is guaranteed not be preempted, then the success of transaction will depend only on the contention

6.2 Non-preemptive approaches 63

!3

!1

!2

Core "0

Core "1 Deadline miss!

Job release / deadline

Job preempted

Transaction commits

Transaction aborts

Non-transactional section

Figure 6.2: Long transaction is excessively aborted because of preemptions.

management policy. This solution is similar to priority boosting (Rajkumar, 1990): raising the pri-

ority of a job to the highest priority level during the execution of each critical section. The Flexible

Multiprocessor Locking Protocol (FMLP) (Block et al., 2007) also follows a similar approach. It

executes critical sections in a non-preemptive manner, by their order of arrival. In this manuscript,

we consider two non-preemptive approaches to schedule transactions:

• Non-preemptible until commit (NPUC) in which every job is guaranteed to be scheduled

from the moment the transaction is released until it successfully commits.

• Non-preemptible during attempt (NPDA) in which every job is non-preemptible during the

execution of its transaction, but has preemption points between attempts. That is, every job

executing a transaction can be preempted between an abort and the subsequent restart of its

transaction.

6.2.1 Non preemptible until commit (NPUC)

Under NPUC, each transaction will take-over the core in which it is executing (see Algorithm 2),

and will abort until all active direct contenders (transactions whose data accesses will conflict with

the accesses of the transaction in consideration) that arrived earlier have committed and finished.

Only after commit, the transaction releases the core (see Algorithm 3). The verification of the

state of each job executing a transaction (running or preempted) by the contention manager (Al-

gorithm 1: line 8) thus becomes redundant and should be omitted. In Figure 6.3, although task τ2

has an earlier deadline, it is able to preempt τ3 only after its transaction has committed.

NPUC is totally predictable, in the sense that the time required for the transaction to success-

fully commit depends solely on the transactions that are already executing when the transaction is

released. Since direct contenders (transactions that have, at least, one conflict with the write set)

will also wait for their own earlier direct contenders to finish, contention is propagated in chain.

So, in the worst case, a transaction will have to wait for (m−1) transactions to complete, assum-

ing that every other core is already executing one transaction. However, this predictability comes

64 Scheduling tasks and transactions under FIFO-CRT

Core !0

Core !1

Core !2

"4

"3

"1

"2

Figure 6.3: Transactions scheduled under NPUC.

with a cost: higher priority tasks will have their responsiveness degraded due to the blocking time

associated to lower-priority tasks. To illustrate this phenomenon, Figure 6.4, displays three tasks

τ1, τ2 and τ3 executing transactions ω1, ω2 and ω3, respectively. Transactions ω1 and ω2 are direct

contenders on object o1, and the same applies to transactions ω2 and ω3 on object o2. In this

setting, ω1 and ω3 are not contenders. In this example, ω3 aborts on its first attempt, because ω2

is executing. Then, ω3 can commit only after ω2 has committed, which in turn can commit only

after ω1 has committed.

Algorithm 2: STM actions taken when transaction ωi starts under NPUC.

Precondition : Current job of task τi is starting transaction ωi

Postcondition: The scheduler disabled preemptions.

1 Disable preemptions;

2 Register ωi in the STM;

Algorithm 3: STM actions taken when transaction ωi tries to commit under NPUC.

Precondition : Current job of task τi finished executing transaction ωi

Postcondition: The scheduler enables transactions only if the transaction commits.

1 Validate ωi;

2 if ωi aborts then

3 Repeat attempt;

4 else

5 Commit ωi;

6 Enable preemptions;

7 end

6.3 Preemptive approach (SRPTM) 65

Core 0

Core 1

Core 2

!3

!1

!2

DS1 = {o1}

DS2 = {o1, o2}

DS3 = {o2}

free to commit

free to commit

Figure 6.4: Contention cascades.

6.2.2 Non preemptible during attempt (NPDA)

Under NPDA, preemptions are limited during a transaction to preemption points inserted between

consecutive attempts. That is, between a transaction abort and the time instant it tries a new

attempt (see Algorithm 4). During this time period, the transaction is deemed as in the failed

state. In other words, it does not compete with other transactions. This policy ensures that the

success to commit of each attempt depends only on the running transactions at every time instant.

In addition, it reduces the blocking incurred by low-priority tasks, as compared to NPUC, thus

improving responsiveness of higher-priority tasks. Figure 6.5 illustrates the same scenario as in

Figure 6.3, but assuming that tasks are scheduled by following the NPDA policy. Here, in contrast

to NPUC, task τ2 is able to preempt τ3 immediately after its first abort.

In NPDA, since every job can be preempted between two consecutive attempts of its trans-

action, then each core can hold more than one transaction in progress at any time instant. This

means that the number of contenders with earlier release time to a given transaction is not limited

to the number of remaining cores (m−1), as in NPUC. Consequently, although NPDA improves

the responsiveness of tasks, it is less predictable than NPUC. In the depicted example (Figure 6.5),

task τ1 in core π1 aborts its transaction twice because of the transactions executed by tasks τ2 (first

abort) and τ3 (second abort) that execute both in core π2.

6.3 Preemptive approach (SRPTM)

Although the non-preemptive approaches described in Section 6.2 enforce the intended behaviour

of the contention manager, i.e. (1) all transactions are served relative to their release times, and

66 Scheduling tasks and transactions under FIFO-CRT

Core !0

Core !1

Core !2

"4

"3

"1

"2

Figure 6.5: Transactions scheduled under NPDA.

(2) the number of aborts is bounded for each transaction, both approaches have their advantages

and disadvantages.

• Non-preemptive Until Commit (NPUC) provides a fully predictable serialisation of trans-

actions, derived from the fact that there can only be one transaction in progress per core.

However, it has a negative impact on the responsiveness of urgent tasks.

• Non-preemptive During Attempt (NPDA) improves the responsiveness of the more urgent

tasks. However, it is a non trivial exercise to determine a tight upper-bound on the trans-

action overheads. This is because the system allows multiple simultaneous transactions in

progress in the same core.

The approach described in this section tackles the drawbacks of NPUC and NPDA as it already

(1) provides a predicable serialisation of transactions and (2) maintains the responsiveness of jobs

with shorter absolute deadlines. To this end goal, at most one transaction per core is allowed. In

addition, preemption during the execution of every transaction is not disabled.

Before going into the technical details behind our proposed approach, let us summarise the

main idea. This approach is based on the Stack Resource Protocol (SRP) (Baker, 1991). Each

task τi is assigned a preemption level, denoted as λi, by following a non-increasing order of task

relative deadlines, i.e. λi < λ j if and only if Di > D j. Two tasks with the same relative deadline are

assigned the same preemption level. Preemption levels are assigned globally, meaning that tasks

are ordered by relative deadline irrespectively of the core in which they execute.

In addition, each transaction is also assigned a preemption level that can be higher than the

preemption level of the task that executes the transaction. The transaction preemption level ex-

presses the highest preemption level of a task that can be affected by the outcome of the particular

transaction. For example, assume two transactions that are direct contenders (see Chapter 4, Defi-

nition 26), the first transaction being executed in a job with a short relative deadline and the other

6.3 Preemptive approach (SRPTM) 67

Algorithm 4: STM actions taken when transaction ωi tries to commit under NPDA.

Precondition : Current job of task τi finished executing transaction ωi

Postcondition: The scheduler enables jobs with earlier deadlines to execute if transaction

aborts.

1 Validate ωi;

2 if ωi aborts then

3 Enable preemptions;

4 Schedule blocked jobs;

5 Disable preemptions;

6 Repeat attempt;

7 else

8 Commit ωi;

9 Enable preemptions;

10 end

transaction being executed in a job with longer relative deadline. The first transaction may have to

wait for the second one to commit, and so the preemption level of the second transaction should

reflect the preemption level of the first job.

Similar to SRP, a job can be preempted by another job (with earlier absolute deadline) while

executing a transaction only if the latter job has a higher preemption level than the running trans-

action. This way, the scheduler ensures that preempting a transaction will not delay a potential

contender with a shorter relative deadline.

Besides the interference due to direct contenders, each transaction can undergo an additional

delay due to indirect contenders (see Chapter 4, Definition 27), when serialised in FIFO order, as

seen in Figure 6.4. This example illustrates a transaction of task τ3 waiting for a transaction of

task τ2 to commit, which in turn is waiting for a transaction of task τ1 to commit. Transactions

of tasks τ1 and τ3 are indirect contenders in this sequence, because although their data sets do not

intersect, ω3 is delayed by ω1. Therefore, the preemption level set to a particular transaction must

reflect the highest premption level of all contenders (direct and indirect) that could have to wait on

its success, i.e. all transactions in the same contention group (see Chapter 4, Definition 24).

6.3.1 Assigning preemption levels to tasks and to transactions

Main idea. We initially assign sequential preemption levels to tasks by following a non-increasing

order of their relative deadlines so that each task τi has a task preemption level, denoted as λi.

Before going into further details, let us introduce a couple of key definitions.

Definition 33 (Ceiling of a STM object). Given a set of transactions accessing (either reading or

writing) an STM transactional object ok, we define the ceiling of ok, denoted as ceil(ok), as the

maximum preemption level of all tasks executing a transaction accessing ok. Formally, the ceiling

68 Scheduling tasks and transactions under FIFO-CRT

!1

!2

!5

!4!3

o3

o1 o2

DS1 = DS5 = {o3}

DS2 = {o1}

DS3 = {o1, o2}

DS4 = {o2}

Ω1

Ω2

Figure 6.6: Transaction dependencies by object concurrency.

of ok is given by

ceil(ok)
def
= max

i∈[1..n]
{λi | (τi executes ωi) and (ωi uses ok)} (6.1)

Definition 34 (Ceiling of a contention group). Let Ωk be a contention group (see Definition 24),

we define the ceiling Ωk, denoted as ceil(Ωk), as the maximum preemption level of all tasks that

belong to Ωk. Formally, the ceiling of the contention group Ωk is given by

ceil(Ωk)
def
= max

i∈[1..n]
{λi | (τi executes ωi) and (ωi ∈Ωk)} (6.2)

Definition 35 (Preemption level of a transaction). Given a contention group Ωk such that trans-

action ωi belongs to Ωk, we define the preemption level of transaction ωi, denoted as λωi
, as the

ceiling of Ωk. Formally, the preemption level of ωi is given by:

λωi

def
= ceil(Ωk), ωi ∈Ωk (6.3)

Taking into account the definitions 33 to 35, and for practical implementation purposes, we set

the transaction preemption level of any task that does not execute any transaction to zero. Now,

in order to get a better understanding of all the concepts defined above, we provide the example

below.

Example. Consider a task set τ = {τ1, . . . ,τ6} in which tasks τ1 to τ5 execute transactions ω1

to ω5, respectively, and τ6 does not execute any transaction. We assume that transactions ω1 to ω5

are sharing a set of three STM objects O = {o1,o2,o3}, as illustrated in Figure 6.6, forming two

distinct contention groups: Ω1 = {ω1,ω5} and Ω2 = {ω2,ω3,ω4}. Table 6.1 provides the relative

deadline (see Table 6.1: column 2) and the preemption level (see Table 6.1: column 3) for every

task, as well as the dependencies between the transactions, where the STM objects accessed by

each transaction are marked by a dot.

Table 6.2 illustrates the results of assigning preemption levels to transactions. The ceiling of

each transactional object oi (i = 1,2,3) (bottom line of Table 6.2) is set to the maximum preemp-

tion level of all tasks that access it. Specifically, object o1 is accessed by transaction ω2 which

is executed by task τ2 with preemption level 2, and transaction ω3 which is executed by task τ3

6.3 Preemptive approach (SRPTM) 69

Tasks Di λi STM objects

o1 o2 o3

τ1 50 6 •
τ2 100 2 •
τ3 80 3 • •
τ4 70 4 •
τ5 120 1 •
τ6 60 5

Table 6.1: Task parameters and transaction dependencies.

with preemption level 3. Therefore, ceil(o1) = max(2,3) = 3. In the same manner, it follows that

ceil(o2) =max(3,4) = 4 and finally ceil(o3) =max(6,1) = 6. According to Definition 34, the pre-

emption level of each transaction (see Table 6.2: column 7) is the highest preemption level found

in the group to which the transaction belongs. Hence, λω1
= λω5

= ceil(Ω1) = max(λ1,λ5) = 6

and λω2
= λω3

= λω4
= ceil(Ω2) = max(λ2,λ3,λ4) = 4. Note that λω6

= 0 as task τ6 does not

execute any transaction.

At this point, we have introduced all the materials required to specify in details our scheduling

policy.

6.3.2 Scheduling policy

In this section, we specify our scheduling policy, which is based on the P-EDF scheduler i.e.,

each task is statically assigned to a specific core at design time (and task migrations from one

core to another at runtime are not allowed) and each core schedules its subset of tasks at runtime

by following the classical EDF scheduler. To this end, we introduce additional rules to tune the

aforementioned general policy. These rules apply only when a job is executing a transaction.

Rule 1 (Core ceiling). We associate to each core πk a non-negative value Λk, referred to as the

core ceiling, and given by the preemption level of the transaction in progress on that core. That

is, if task τi starts executing its transaction ωi on core πk, then the core ceiling of πk is set to the

Tasks Di λi TM objects λωi

o1 o2 o3

τ1 50 6 • 6

τ2 100 2 • 4

τ3 80 3 • • 4

τ4 70 4 • 4

τ5 120 1 • 6

τ6 60 5 0

ceil(oi) 3 4 6

Table 6.2: Example of calculation of preemption levels.

70 Scheduling tasks and transactions under FIFO-CRT

preemption level of ωi, i.e Λk← λωi
. Λk reflects the urgency to commit the transaction in progress

on core πk. When no transaction is in progress on core πk, then the core ceiling is set to zero, i.e.

Λk = 0.

Rule 2 (Core ceiling reset). Upon a successful commit of a transaction, the core ceiling is set back

to zero (i.e. Λk← 0).

Rule 3 (Unique transaction in progress per core). At any time instant on each core πk, we allow

only one transaction to be in progress and all released jobs executing a transaction are blocked

until the transaction in progress has committed. This rule holds true irrespective of the status of

the job executing the transaction in progress (running or preempted).

Rule 4 (Priority inversion prevention). Assume transaction ωp belonging to job τp is in progress

on core πk. A newly released job, say τa, can preempt τp only if the following three conditions

hold true: (C1) τa has a higher priority (i.e. da < dp); (C2) τa is not executing any transaction (i.e.

λωa
= 0) and (C3) the preemption level of τa is higher than the core ceiling (i.e. λa > Λk). In the

case where job τa is executing a transaction (i.e. λωa
> 0), then the following three actions are

taken: (A1) τa is blocked; (A2) the core ceiling is risen to the preemption level of τa and (A3) the

core πk resumes the execution of ωp.

According to rules 1 to 4, the condition of FIFO-CRT where a transaction in a preempted job

can be aborted by a contender released later (see Algorithm 1: line 7) is no longer necessary, and

must be dropped. Rule 3 improves the predictability of the transactions in progress, since each

transaction will have to wait, at most, for (m− 1) simultaneous transactions in progress before it

can commit. In addition, it also reduces the preemption overhead because every job can be blocked

at most once, at its release time. Algorithm 5 details the decision tree that the scheduler follows

when a job τa is released and a job τr is currently running on core πk.

6.4 Summary

In this chapter, we provided solutions to mitigate the potentially negative effects of enabling pre-

emptions while executing transactions. To this end purpose, we proposed three extensions of the

P-EDF scheduler, referred to as Non-Preemptive Until Commit (NPUC), Non-Preemptive During

Attempt (NPDA) and Stack Resource Protocol for Transactional Memory (SRPTM) to tune the

scheduling decisions when a transaction is in progress on a core. These new policies come up

with interesting features such a substantial reduction of the number of preemptions. Preemptions

are known to be a potential source of indeterminism on multi-core platforms executing a set of

parallel tasks. In addition, these new policies allow us improving both the predictability and the

fairness of the contention manager in comparison to the classical P-EDF. In the next chapter we

provide the schedulability analysis of a task set scheduled by following each of these policies.

6.4 Summary 71

Algorithm 5: Scheduling decisions taken when a job τa is released and job τr is running.

Data: The transaction in progress, if any, belongs to a job, say τp.

1 if da < dr then // Released job τa has an smaller absolute deadline.

2 if Λk > 0 then // Core πk has a transaction in progress.

3 if λa > Λk then

4 if λωa
> 0 then // τa has a transaction.

5 Λk← λa;

6 insert τa in ready-queue;

7 run τp;

8 else // τa is not executing any transaction.

9 preempt τr;

10 run τa;

11 end

12 else

13 insert τa in ready-queue;

14 end

15 else // No transaction in progress exists.

16 preempt τr;

17 run τa;

18 end

19 else // Running job has earlier absolute deadline.

20 insert τa in ready-queue;

21 end

72 Scheduling tasks and transactions under FIFO-CRT

Chapter 7

Schedulability analysis of tasks under

NPDA, NPUC and SRPTM

In this chapter, we report on the schedulability analysis assuming that tasks are scheduled by fol-

lowing NPDA, NPUC and SRPTM policies, respectively. Indeed, the schedulability analysis of a

set of real-time tasks is usually assessed through simulation or by using closed-form mathematical

expressions. We opted for the second alternative and derived a worst case response time (WCRT)

based analysis. Such an approach correlates closely with the behaviour of the system at runtime,

especially when tasks may not be independent and/or may execute transactions.

7.1 WCRT analysis for NPDA

NPDA does not restrict the number of transactions that can simultaneously be in progress on

each core, thus increasing the complexity of determining a tight upper-bound on the number

of times each transaction may be aborted. The worst-case scenario in this context occurs when

each transaction has to wait for all of its direct contenders before it can commit. To support this

claim, Figure 7.1 illustrates a contention group that involves three cores {π0,π1,π2} and six tasks

{τ1,τ2,τ3,τ4,τ5,τ6}. Here, we assume that task τi executes transaction ωi and that transactions

ω2,ω3,ω4 are direct contenders of ω1. Additionally, we assume that in the illustrated time seg-

ment1, the chronological order in which transactions are released is ω2 ≺ ω4 ≺ ω6 ≺ ω3 ≺ ω1,

and that τ2 and τ4 are preempted when we start observing the system. In this figure, thin vertical

lines indicate the time instants at which a transaction is fated to abort, i.e. either (1) by being

invalidated when a contender commits, or (2) by the contention manager decision at the commit

time. The transaction that aborts and the one that causes the abort are displayed on the extremes

of each thin line. Transaction ω1 executes on core π0, and may abort in favour of transactions that

were released earlier on different cores. The sequence of events in this special case shows that ω1

1Note that τ5 is not released in the illustrated time segment.

73

74 Schedulability analysis of tasks under NPDA, NPUC and SRPTM

!1

@ "0

!2

@ "1

!3

@ "1

!5

@ "0

!4

@ "2

!6

@ "2

Core !0

Core !1

Core !2

"4

"3

"1

"2

"6

Job release / deadline

Job preempted

Transaction commits

Transaction aborts

Non-transactional section

Figure 7.1: Preempted jobs executing ω2 and ω4 are rescheduled in times to abort transaction ω1.

commits only when all its direct contenders (i.e. ω2, ω3 and ω4) have committed. Note that this

delay includes waiting for ω6 (an indirect contender) to commit.

Although it is straightforward to identify the direct contenders of a transaction, the exercise

becomes very challenging when it comes to compute the delay they impose on the commit of that

transaction. As a matter of fact, when (1) the number of transactions (i.e., the vertices), (2) the

number of dependencies (i.e., edges) and (3) the number of assigned cores in a contention group

grow, the search-space where to find the sequence of transactions that leads to the longest commit

delay also grows exponentially. Specifically, the computational complexity of completing this

operation is in order of O (nn×m), where n is the total number of tasks and m is the total number

of cores. Therefore, a tight feasibility analysis for NPDA is computationally intractable and not

sound in the context of this thesis.

7.2 WCRT analysis for NPUC

NPUC schedules transactions in a non-preemptive manner until they commit (see Chapter 6, Sec-

tion 6.2.1). This property ensures two essential predicates for the scheduler: (i) at most one trans-

action can be in progress on each core at any time instant, and (ii) the delay experienced by any

transaction prior to its commit depends exclusively on its set of direct contenders, which in turn,

depend on their own set of direct contenders. We can compute an upper-bound on the WCRT of

7.2 WCRT analysis for NPUC 75

a transaction by determining the sequence of transactions that will produce its longest delay. This

longest delay occurs when the transaction under analysis is released at a time instant when the

pending workload associated to its contenders is maximum. This maximum workload is reached

when the remaining execution time for each contender corresponds to its worst case execution

time. Therefore, we assume that the transaction under analysis is released at the same time instant

as all its contenders.

Main idea of the analysis. We consider that task τi executes a transaction ωi and is the task under

analysis. To compute a sound and tight upper-bound on the WCRT of τi, we should compute the

following four expressions:

1. the WCRT of the transaction ωi;

2. the WCRT of the section of non-transactional code a-ωi before the transaction starts execut-

ing;

3. the WCRT of the section of non-transactional code p-ωi after the transaction has committed;

and finally

4. the sum of all these three values2.

7.2.1 WCRT of transaction ωi

This section presents two methods for the computation of an upper bound on the commit delay of

transaction ωi. The first method provides a tight bound, but requires that all possible sequences of

transactions that produce a delay on ωi are known. The second method, in contrast to the previous

one, provides a pessimistic upper bound, but it presents the advantage of being agnostic to this

input. This second method has a linear-time complexity. The selection of one method over the

other will depend on the user needs and the available computational resource and time.

⊲ Method 1: Tight upper bound on the WCRT of transaction ωi. This method is based on the con-

tention graph (see Chapter 4, Definition 24) to determine all the possible transaction sequences

that may delay ωi. From this, the sequence that produces the longest delay on ωi is found by con-

sidering the simple paths3 converging to the vertex ωi with no repetition of cores. This is possible

as the contention graph is finite. For each transaction sequence, an upper-bound on the WCRT of

ωi is computed by upper-bounding the times to commit of all the transactions released prior to ωi.

Figure 7.2 depicts an example in which three transactions — ω6, ω3 and ω1 — are released almost

simultaneously on cores π2, π1 and π0, respectively. Assuming that the transactions are released

in this order, the WCRT of ω1 depends on that of ω3, which in turn depends on the WCRT of ω6.

Note that for each sequence of transactions: (P1) each transaction performs at most two attempts

before success once it becomes eligible to commit; (P2) the very first transaction in the sequence

may abort after ωi is released, due to a contender executing on the same core as ωi. Figure 7.3

2As the WCRT of τi is upper-bounded by the sum of the response times of the non-transactional sections and the

transactional sections, we consider only one transaction per task.
3A simple path is a sequence of connected vertices with no repetition.

76 Schedulability analysis of tasks under NPDA, NPUC and SRPTM

Core !0

Core !1

Core !2

"1

"6

"3

#1

@ $0

#2

@ $1

#3

@ $1

#5

@ $0

#4

@ $2

#6

@ $2

Figure 7.2: Sequence of transactions until ω1 commits.

illustrates a case in which such a phenomenon occurs. Here, three tasks τ1, τ2 and τ3 are assigned

to cores π0, π1 and π2, respectively, and are executing concurrent transactions ω1, ω2 and ω3.

Transaction ω1 is released first and ω2 and ω3 are released at the same time. We assume that

another transaction, say ωx, not belonging to the sequence and executing on core π2 invalidated

the attempt of ω1 just before ω3 is released. In this scenario, ω1 is fated to abort due to the commit

of ωx, thus delaying the commit time of ω3.

Points (P1) and (P2) allow us to formulate an upper bound on the WCRT of transaction ωi in

a given sequence. To this end, we consider a sequence of k > 0 transactions and υ as the function

that returns the transaction at each position in this sequence. We have υ(k) = ωi.

Lemma 7.1. The WCRT of ωi in a given sequence, denoted as R(k), is computed recursively by

using Equation 7.1.

R(1) = 2 ·Cυ(1)

R(q) =
(⌈

R(q−1)

Cυ(q)

⌉

+1
)

·Cυ(q) if 1 < q≤ k.
(7.1)

Proof. The proof follows directly from Point (1) and Point (2). In the worst-case scenario, the

first transaction in the sequence takes at most two attempts to commit (see Point (2)). Then,

transaction at position q≥ 2 has to wait for the transaction at position q−1 to commit plus at most

one additional attempt to successfully commit (see Point (1)).

7.2 WCRT analysis for NPUC 77

ω3

ω2

ω1

Core !0

Core !1

Core !2

Transaction out of

 the sequence

Order of commits

WCRT (ω3)

Figure 7.3: ω1, the first transaction in the sequence aborts once before commits.

Now, let Si denote the set of all simple paths that converge towards ωi and let Si,k denote

the subset of Si, which consists only of simple paths of length k. We assume that ωi belongs to

contention group Ωg.

Lemma 7.2. An upper bound on the WCRT of ωi is given by:

Rωi
=

mg

max
k=1

{

max
Si,k

(

R(k)
)

}

(7.2)

Proof. The length of the simple path to transaction ωi is at most mg as ωi belongs to Ωg. For any

sequence of transactions in Ωg, an upper-bound on the WCRT of the transaction at position q is

given by Equation 7.1. From these two predicates, it follows that the WCRT of ωi cannot exceed

the RHS of Equation 7.2. Now, as Ωg is finite by assumption, this RHS is also an upper-bound on

the WCRT of ωi.

Although this method provides a tight upper bound on the WCRT of transaction ωi, it suffers

from the fact that all the possible simple paths must be considered. This limitation becomes

impractical with an increase of the number of transactions and cores in the system.

⊲ Method 2: Linear-time, but pessimistic, upper bound on the WCRT of transaction ωi. The main

idea behind this method is to avoid the usage of all sequences of transactions leading to ωi. To this

end, we consider a single sequence of transactions in the same contention group as ωi, and with the

longest execution time on each core. In other words, even if the resulting selection of transactions

does not form a possible sequence at runtime, it determines the longest possible delay that the

commit of transaction ωi can undergo. Formally, first we determine the longest execution time

CΩg,πℓ
of all the transactions in Ωg that are assigned to each core πℓ ∈Πg by using Equation 7.3.

CΩg,πℓ
= max

{

Cω j
| ω j ∈Ωg ∧ σ(τ j) = πℓ

}

(7.3)

78 Schedulability analysis of tasks under NPDA, NPUC and SRPTM

Then, from Point (1) and Point (2) in Method 1, we compute an upper-bound IΩg,πk
on the delay

that any transaction in Ωg assigned to core πk may suffer by using Equation 7.4.

IΩg,πk

def
= ∑

πℓ ∈Πg\πk

2 ·CΩg,πℓ
(7.4)

Note that IΩg,πk
is common to all transactions in Ωg assigned to πk, so it is computed only once for

each pair of core and contention group.

Lemma 7.3. An upper-bound on the WCRT of transaction ωi is given by Equation 7.5.

Rωi
= IΩg,πk

+2 ·Cωi
(7.5)

Proof. The WCRT of ωi is upper-bounded by the delay that ωi suffers from all concurrent trans-

actions with an earlier release time (see Equation 7.4), augmented by the time that ωi takes to

commit once it is possible to do so (see Point (1)).

This method is pessimistic as Equations 7.4 and 7.5 consider a sequence of transactions that

may never occur in practice.

7.2.2 WCRT of task τi

We recall that the non-transactional sections of code of task τi (a−ωi and p−ωi) are scheduled

by following the fully preemptive P-EDF scheduler, whereas the transaction ωi is scheduled with

disabled preemption. Therefore, we need to compute the WCRT of a−ωi and p−ωi in order to

derive the WCRT of task τi.

7.2.2.1 WCRT of the section of non-transactional code a−ωi

We compute an upper-bound on the WCRT of a−ωi by tuning the technique described by Spuri

(1996) for the WCRT of a task. In that contribution, a single core platform is assumed and tasks are

scheduled by following the fully-preemptive EDF scheduler. The model of computation assumed

in this manuscript requires the following three adaptations:

1. a computation of the WCET of a task executing a transaction,

2. an extension of the concept of “deadline-d busy period” in order to compute an upper bound

on the WCRT of such a task,

3. an adaptation of the blocking term associated to the tasks with a lower priority than the one

under analysis.

1st adaptation: WCET of a task executing a transaction. The technique presented by Spuri

(1996) requires the WCET of all tasks to be known beforehand. To this end, we use an approxima-

tion of the actual WCET value of each task τi, executing a transaction, by including the overhead

7.2 WCRT analysis for NPUC 79

associated to the aborts of its transaction, which is given by the WCRT of ωi. Hence, the WCET

of task τi is approximated by Equation 7.6.

Ci
def
= Ca−ωi

+Rωi
+Cp−ωi

(7.6)

2nd adaptation: Extension of the deadline-d busy period. In order to determine an upper bound

on the WCRT of a−ωi, the concept of “deadline-d busy period”, as introduced by George et al.

(1996), is relevant until the completion time of this section of non-transactional code. To this

end purpose, the length of the deadline-d busy period is adapted from Spuri (1996) as shown in

Equation 7.7.

L
(0)
a−ωi

(a) = 0

L
(q+1)
a−ωi

(a) = ∑
τ j∈Di

min

{⌈

L
(q)
a−ωi

Tj

⌉

,1+
⌊

a+Di−D j

Tj

⌋

}

·C j +
⌊

a
Ti

⌋

·Ci +Ca−ωi

(7.7)

In Equation 7.7, variable a denotes the release time of the job under analysis, Di
def
= {τ j | D j <

a+Di; j 6= i;σ(τi) = σ(τ j)} and the deadline-d busy period, denoted as La−ωi
, is computed by

using a recursive algorithm, which stops as soon as L
(q+1)
a−ωi

(a) = L
(q)
a−ωi

(a) for some integer q ≥ 0

or when L
(q+1)
a−ωi

(a) exceeds a+Di. In this latter case, the system is not schedulable. Note that the

longest busy period, denoted as La−ωi
, occurs when the last job of τi in the window of interest is

released at instant am such that am = argmax(La−ωi
(a)), see Spuri (1996) for details.

3rd adaptation: blocking term associated to lower priority tasks. If a job is released when

the transaction belonging to a lower priority job is in progress, then the newly released job is

blocked until the transaction in progress commits as preemption is disabled in this time window.

Upon the commit, the newly released job can preempt any lower priority job as the classical EDF

scheduling rules apply again. In this case, the WCRT of the section of non-transactional code

a−ωi must consider a possible blocking occurring at the released time of the job. Specifically,

in the worst-case, this blocking time corresponds to the longest response time of a transaction

executed by a job with a lower priority than τi, and assigned to the same core. This blocking is

formalised in Equation 7.8 below.

Bi
def
= max

{

Rω j
| Di < D j ∧ σ(τi) = σ(τ j)

}

(7.8)

From Equation 7.8, it follows that an upper-bound on the WCRT of section of non-transactional

code a−ωi, denoted as Ra−ωi
, is given by Equation 7.9.

Ra−ωi

def
= Bi +max{Ca−ωi

,La−ωi
−am} (7.9)

The intuition leading to quation 7.9 is related to the fact that an upper-bound on the WCRT of

a−ωi is defined by the longest delay incurred by the last job that completes in the busy-period

80 Schedulability analysis of tasks under NPDA, NPUC and SRPTM

starting at time instant am.

7.2.2.2 WCRT of the section of non-transactional code p−ωi

When a transaction is in progress, any job with a higher priority than the job executing the transac-

tion in progress is blocked as preemption is disabled under the NPUC policy. Only upon commit,

preemption is enabled again. As such, the section of non-transactional code p−ωi may suffer inter-

ference from any concurrent job, say τ j, with the following characteristics: (i) Job τ j has an earlier

deadline than τi and (ii) either this job is released while ωi was in progress; or this job is released

prior to the completion time of τi. Hence, an upper-bound on the WCRT of p−ωi is obtained by

maximizing the interference this section of non-transactional code may suffer. Specifically, this

maximum is reached when ωi is released at the earliest possible time instant of its executing job.

This scenario allows us to accommodate the maximum number of concurrent jobs with an earlier

deadline between the transaction release time and the deadline of the job. It is worth noticing that

any other scenario where ωi is released later would necessarily lead to a smaller number of pend-

ing jobs with a higher priority than τi, to be executed before its deadline. Therefore, the largest

deadline that can be associated to transaction ωi in order to avoid a deadline miss of τi is defined

by Equation 7.10.

Dωi

def
= Di−Ca−ωi

(7.10)

An upper-bound on the WCRT of p−ωi can be computed in an iterative manner by using a

fixed-point algorithm (see Equation 7.11) wherein Dωi

def
= {τ j | D j < Dωi

;σ(τi) = σ(τ j)}.

R
(0)
p−ωi

=Cp−ωi

R
(q+1)
p−ωi

= ∑
τ j∈Dωi

min

{⌈

R
(q)
p−ωi

Tj

⌉

,1+
⌊

Dωi
−D j

Tj

⌋

}

·C j +Cp−ωi

(7.11)

This fixed point algorithm stops as soon as R
(q+1)
p−ωi

= R
(q)
p−ωi

for some integer q ≥ 0 or when

R
(q+1)
p−ωi

(a) exceeds Dωi
.

7.2.2.3 WCRT of task τi

At this stage, we have everything required to derive an upper-bound Ri on the WCRT of task τi

(see the following theorem).

Theorem 1. The WCRT of task τi is obtained by combining the WCRTs of the three sections that

compose τi, as defined in Equation 7.12

Ri = Ra−ωi
+Rωi

+Rp−ωi
(7.12)

Proof. This theorem follows directly from Equation 7.9 (which bounds the execution of a−ωi);

Equation 7.2 or Equation 7.5 (which bounds the execution of ωi); and finally Equation 7.11 (which

bounds the execution of p−ωi).

7.3 WCRT analysis for SRPTM 81

Note: An upper-bound on the WCRT of a task τi that does not execute a transaction is a special

case of the previous theorem where Rωi
= Rp−ωi

= 0 and Ca−ωi
=Ci.

7.3 WCRT analysis for SRPTM

In NPDA and NPUC, preemptions are disabled during the execution of the transaction in order to

avoid a situation where a transaction can be aborted by a later released transaction. The approach

presented in this section (SRPTM) achieves the same goal, but does not disable preemption during

the progress of a transaction. This feature allows us to improve both the schedulability as more

systems that originally were not schedulable would become schedulable, and on the other hand the

responsiveness of the system as every task not executing a transaction will be scheduled as soon

as it is possible to do so. To this end, we apply the four rules stated in Chapter 6, Section 6.3.2,

and replicated below, to tune the P-EDF policy.

Rule 1 (Core ceiling). We associate to each core πk a non-negative value Λk, referred to as the core

ceiling, and given by the preemption level of the transaction in progress on that core, i.e Λk← λωi
.

When no transaction is in progress on core πk, then the core ceiling is set to zero, i.e. Λk = 0.

Rule 2 (Core ceiling reset). Upon a successful commit of a transaction, the core ceiling is set back

to zero (i.e. Λk← 0).

Rule 3 (Unique transaction in progress per core). At any time instant on each core πk, we allow

only one transaction to be in progress and all arriving jobs executing a transaction are blocked

until the transaction in progress has committed.

Rule 4 (Priority inversion prevention). Assume transaction ωp belonging to job τp is in progress

on core πk. A newly released job, say τa, can preempt τp only if the following three conditions

hold true: (C1) τa has a higher priority (i.e. da < dp); (C2) τa is not executing any transaction (i.e.

λωa
= 0) and (C3) the preemption level of τa is higher than the core ceiling (i.e. λa > Λk). In the

case where job τa is executing a transaction (i.e. λωa
> 0), then the following three actions are

taken: (A1) τa is blocked; (A2) the core ceiling is risen to the preemption level of τa and (A3) the

core πk resumes the execution of ωp.

These rules do not eliminate the interference but, they reduce it during the execution of a

transaction. In a similar manner as for NPUC paradigm, deriving an upper-bound on the WCRT

of a task under SRPTM consists of computing the WCRT of the individual parts of the task taken

separately.

7.3.1 WCRT of transaction ωi

SRPTM shares two fundamental features with NPUC: (1) every transaction suffers the delay as-

sociated to its direct contenders with an earlier release time before it can commit; and (2) no more

than one transaction can be in progress on each core. From these two features, it remains true that

82 Schedulability analysis of tasks under NPDA, NPUC and SRPTM

every transaction requires at most two attempts to commit, once it is legally possible to do so. We

denote an upper-bound on the WCRT of these last two attempts by R∗ωi
for transaction ωi.

Since SRPTM is based on the P-EDF scheduler, the computation of R∗ωi
depends on the so-

called intra-core interference only, i.e., the interference associated to the higher priority jobs not

executing transactions and assigned to the same core as τi. The preemption level of such a task,

say τ j, is thus greater than the core ceiling (i.e., λ j > Λk ≥ λωi
).

Lemma 7.4. An upper-bound R∗ωi
on the WCRT of the last two attempts of ωi is computed recur-

sively by using Equation 7.13 where D∗ωi

def
= {τ j | D j < Dωi

; σ(τi) = σ(τ j); λ j > λωi
; λω j

= 0}.

R
∗(0)
ωi

= 2 ·Cωi

R
∗(q+1)
ωi

= ∑
τ j∈D∗ωi

min

{⌈

R
∗(q)
ωi

Tj

⌉

,1+
⌊

Dωi
−D j

Tj

⌋

}

·C j +2 ·Cωi

(7.13)

The calculation of R∗ωi
stops as soon as the result converges, i.e., R

∗(q+1)
ωi

= R
∗(q)
ωi

for some positive

integer q or when R∗ωi
exceeds Dωi

.

Proof. R∗ωi
is determined by maximising the possible intra-core interference. As such, it is given

by the execution time taken by the last two attempts of the transaction, augmented by the exe-

cution time required by the concurrent jobs that are able to preempt τi during the time window

corresponding to these two attempts.

Let us assume that τi is assigned to core πk and ωi belongs to contention group Ωg. Then, we

have everything necessary to compute a tight upper bound on the WCRT of ωi. For each core πℓ in

Πg, but πk, the transaction that presents the longest response time to execute the last two attempts

is selected and sum-up to produce the worst-case delay on ωi. As such, the inter-core interference,

denoted as IΩg,πk
, can be upper-bounded and formalized as in Equation 7.14.

IΩg,πk
= ∑

πℓ∈Πg\πk

max
{

R∗ω j
| ω j ∈Ωg ∧ σ(τ j) = πℓ

}

(7.14)

Once an upper-bound on the intra-core interference and an upper-bound on the inter-core in-

terference are computed, an upper-bound on the WCRT of ωi can be determined by combining

these two expressions as follows.

Rωi

def
= IΩg,πk

+R∗ωi
(7.15)

7.3.2 WCRT of task τi

The blocking and interference factors when following the SRPTM policy for a set of tasks differ

depending on whether the tasks execute transactions or not. We recall that every newly released

job executing a transaction automatically blocked, irrespective of its priority, when a transaction

is already in progress on the target core. Thus, we compute an upper-bound on WCRT of τi in two

distinct approaches.

7.3 WCRT analysis for SRPTM 83

7.3.2.1 WCRT of τi executing a transaction

We consider the three sections of τi separately, i.e. the section of non-transactional code a−ωi

before the transaction is released; the section of non-transactional code corresponding to the trans-

action itself ωi; and finally the section of non-transactional code p−ωi after the transaction has

committed.

Blocking term. SRPTM does not allow more than one transaction in progress per core. When a

transaction is in progress, the newly released job belonging to task τi is directly blocked until the

transaction commits. Upon the commit, preemption is possible again and ready jobs are scheduled

by following a classical EDF scheduler. This implies that no job can incur an indirect blocking.

Any job executing a transaction can be directly blocked at most once. Hence, the maximum

blocking time, denoted as DBi, is defined by longest response time of a transaction from all the

transactions assigned to the same core. This is derived from the subset of tasks with a lower

preemption level, as formalised in Equation 7.16.

DBi
def
= max

{

Rω j
| λ j < λi ∧ σ(τi) = σ(τ j)

}

(7.16)

WCRT of the section of non-transactional code a−ωi. Under P-EDF, any job can suffer inter-

ference only from other jobs released on the same core, as no migration among cores is permitted

at runtime. An upper-bound on the WCRT of a−ωi can once again be determined by adapting

the technique presented by Spuri (1996). For the purpose of this analysis, the WCET of τi is

approximated by using Equation 7.17.

Ci =Ca−ωi
+Rωi

+Cp−ωi
(7.17)

In the same manner as for NPUC (see Section 7.2.2), the extension of the deadline-d busy

period is determined by Equation 7.18.

L
(0)
a−ωi

(a) = 0

L
(q+1)
a−ωi

(a) = ∑
τ j∈Di

min

{⌈

L
(q)
i

Tj

⌉

,1+
⌊

a+Di−D j

Tj

⌋

}

·C j +
⌊

a
Ti

⌋

·Ci +Ca−ωi

(7.18)

The computation of La−ωi
(a) is performed by using a fixed-point algorithm that converges if

L
(q+1)
a−ωi

(a) = L
(q)
a−ωi

(a) for some non-negative integer q. Otherwise, if L
(q+1)
a−ωi

(a) > a + Di for

a given q, then the system is “not schedulable”. In the former case, the longest deadline-d

busy period La−ωi
occurs when the last job of τi is released at the time instant am such that

am = argmax(La−ωi
(a)), see Spuri (1996) for further details.

Finally, an upper-bound on the WCRT of a−ωi is given by an upper-bound on the WCRT of

this non-transactional section, augmented by the delay produced by the busy period. The possible

blocking time that a job can suffer when it is released is formalized as in Equation 7.19.

Ra−ωi
= DBi+max{Ca−ωi

,La−ωi
−am} (7.19)

84 Schedulability analysis of tasks under NPDA, NPUC and SRPTM

WCRT of the section of non-transactional code p−ωi. This section of the task τi can be pre-

empted by: (1) the jobs executing transactions that were released while the transaction was in

progress, and (2) the jobs with a higher priority that are released in its window of execution. In

order to maximise the interference, we consider the same time window as defined in Equation 7.10

for the jobs executing a transaction. The “critical time instant” at which this section of the task can

start executing occurs when the blocking time and the interference experienced are at their max-

imum. The length of the interval which starts at a critical instant, denoted as Dp−ωi
, is formally

given as in Equation 7.20.

Dp−ωi

def
= Di− (Ra−ωi

+Rωi
) (7.20)

This interval defines the longest possible response time of p−ωi while assuming the lowest slack

of τi upon the commit of ωi. Thus, an upper bound on the WCRT of p−ωi can be defined by

the execution demand of this section augmented by the execution demands of the concurrent jobs,

with an earlier deadline, that are released inside both mentioned time windows as formalized

in Equation 7.21, where:

D1
p−ωi

def
= {τ j |D j < Dωi

;σ(τi) = σ(τ j);λω j
6= 0} and D2

p−ωi

def
= {τ j |D j < Dp−ωi

;σ(τi) = σ(τ j)}.

R
(0)
p−ωi

=Cp−ωi

R
(q+1)
p−ωi

= ∑
τ j∈D1

p−ωi

min

{⌈

R
(q)
p−ωi

Tj

⌉

,1+
⌊

Dωi
−D j

Tj

⌋

}

·C j

+ ∑
τ j∈D2

p−ωi

min

{⌈

R
(q)
p−ωi

Tj

⌉

,1+
⌊

Dp−ωi
−D j

Tj

⌋

}

·C j + Cp−ωi

(7.21)

The iterative computation stops when the result converges to a value such that R
(q+1)
p−ωi

= R
(q)
p−ωi

,

otherwise if for a given q, we have R
(q+1)
p−ωi

> Di , then the system is “not schedulable”.

Theorem 2 (WCRT of a task τi executing a transaction). An upper-bound on the WCRT of task τi

is obtained by combining the direct blocking and the WCRTs of the three sections that compose τi,

as defined in Equation 7.22.

Ri = Ra−ωi
+Rωi

+Rp−ωi
(7.22)

Proof. This theorem follows directly from Equation 7.19, Equation 7.15 and Equation 7.21.

7.3.2.2 WCRT of τi not executing a transaction

In addition to the classical interference that every task can suffer from the jobs executing on the

same core, each task not executing a transaction can experience either direct or indirect blocking.

Direct blocking. It occurs when the job with the earliest deadline is released, but has a pre-

emption level which is not greater than the current core ceiling. We recall that once the transaction

commits, the classical EDF scheduler applies. At this moment, the job with the earliest absolute

deadline is selected for execution.

7.3 WCRT analysis for SRPTM 85

Indirect blocking. It occurs when the job with the earliest deadline is released while a trans-

action is in progress and the job is able to execute because its preemption level is greater than the

core ceiling at that specific time instant. In the meantime, if another job executing a transaction is

released and fulfills the deadline and preemption level requirements to be scheduled, then the core

ceiling is raised to the transaction preemption level of this job and this operation forces the first

transaction that was already in progress to complete its execution. As such, this process helps the

transaction in progress to commit as soon as it is legally possible to do so.

Blocking term. The longest direct blocking term that task τi can experience, denoted as DBi, is

given by an upper-bound on the WCRT of all the transactions which: (1) have a higher preemption

level than λi, (2) belong to the subset of tasks with a lower preemption level than λi, and finally

(3) are assigned to the same core as τi. This is formally expressed in Equation 7.23.

DBi = max
{

Rω j
| λω j

> λi ∧ λ j < λi ∧ σ(τ j) = σ(τi)
}

(7.23)

In contrast, an upper-bound on the longest indirect blocking term is given by an upper-bound

on the WCRT of all the transactions with a lower preemption level than τi. Note that these trans-

actions are assigned to the same core as τi. If a job of a task, say τg, executing a transaction is able

to preempt τi, then task τi will be indirectly blocked as formally expressed in Equation 7.24.

IBi = max{Rω j
| λω j

< λi ∧ σ(τ j) = σ(τi)∧ ∃τg : λg > λi ∧ λωg
> 0} (7.24)

The intuition behind Equation 7.24 is related to the fact that when a job of τi preempts the job

with the current transaction in progress, τi may then be preempted by another job τg also executing

a transaction, but with an earlier deadline and a preemption level greater than the core ceiling.

Under SRPTM, if a job of τi (not executing a transaction) is released while a transaction is in

progress, then τi may be blocked at most once. Consequently, direct and indirect blocking terms

are mutually exclusive for any job not executing a transaction. In this case, the longest blocking

time is given by the maximum value between direct and indirect blocking, as formally expressed

in Equation 7.25.

Bi = max{DBi, IBi} (7.25)

WCRT of task τi not executing a transaction. Assuming a task not executing a transaction, its

jobs are scheduled by following the EDF scheduler. As such, until each released job completes its

execution, it may suffer interference from any released job with an earlier absolute deadline. The

computation of an upper-bound on the WCRT of task τi in this case can thus be achieved by the

method described by Spuri (1996) without any adaptations. The iterative equation is replicated in

Equation 7.26, where Di is defined as in Equation 7.7.

L
(0)
i (a) = 0

L
(q+1)
i (a) = ∑

τ j∈Di

min

{⌈

L
(q)
i

Tj

⌉

,1+
⌊

a+Di−D j

Tj

⌋

}

·C j +
⌊

1+ a
Ti

⌋

·Ci

(7.26)

86 Schedulability analysis of tasks under NPDA, NPUC and SRPTM

The iterative computation stops when the result converges to a value such that L
(q+1)
i (a) =

L
(q)
i (a), otherwise if the deadline is exceeded, the system is not schedulable. Assuming that a job

of τi is released at time instant am = argmax(Li(a)), the length of the deadline-d busy period that

produces the longest delay is denoted as Li, and the upper-bound on the WCRT of τi if no blocking

could occur is given by Li−am. This result can then be combined with the longest blocking time

Bi (see Equation 7.25) to determine an upper-bound on the overall WCRT of a task not executing

a transaction.

Theorem 3. An upper-bound on the overall WCRT of a task τi not executing a transaction is

formalized as in Equation 7.27.

Ri = Bi +max{Ci,Li−am} (7.27)

Proof. This theorem follows directly from the combination of Equation 7.25 and Equation 7.26.

7.4 Summary

In this chapter, we addressed the response time analysis of hard real-time tasks, which share STM

data under partitioned scheduling strategies. A framework wherein an upper-bound on the worst-

case response time of each task has been discussed while assuming three scheduling approaches

– namely NPDA, NPUC and SRPTM. Although NPDA was a promising approach for soft real-

time tasks upon multi-core platforms, we showed that its associated analysis is intractable in the

context of hard real-time tasks. Assuming NPUC, we provided a tight analysis and a linear-time

analysis, which reduces the computational complexity of the proposed analysis of the former.

Finally, we showed that SRPTM improves the responsiveness of the tasks as compared to the

other two approaches, and allows for a computationally tractable analysis. In Chapter 8 we report

on the evaluation results of these synchronisation policies, both from a qualitative and quantitative

viewpoints.

Chapter 8

Evaluation

We proposed the FIFO-CRT contention manager for obstruction-free STM, in order (i) to solve

the conflicts based on the release times of transactions (see Chapter 5); and (ii) to improve the

predictability of multicore systems when it is used together with fully-partitioned scheduling ap-

proaches such as NPDA, NPUC and SRPTM (see Chapter 6). This chapter presents the evaluation

of FIFO-CRT when it is associated to each scheduling policy.

We recall that solving conflicts based on the release times of the transactions (as performed

in FIFO-CRT) without any scheduling support can produce undesirable anomalies (see Chapter 6,

Section 6.1). A transaction which aborts another transaction with an earlier release time is an ex-

ample of such an anomaly. To circumvent this problem, we devised NPDA, NPUC and SRPTM.

This chapter evaluates the gain of each of these proposed techniques over FIFO-CRT when it is as-

sociated to P-EDF. The evaluation is performed both quantitatively and qualitatively. Section 8.1

presents the simulation setup and the quantitative evaluation. Furthermore, as STM is the best

synchronisation scheme candidate for scenarios in which the contention is low and every transac-

tion presents both a short execution time and a low probability of being preempted (Maldonado

et al., 2010), we also perform a comparison against a lock-based sychronisation mechanism that

suits this type of scenarios. On the one hand, synchronisation mechanisms that suspend to wait for

locks (such as FMLP for long critical sections and OMLP) adapt easily to long critical sections

as the host jobs would yield temporarily the core to lower priority jobs not to waste the proces-

sor capacity. This statement holds true as long as the waiting time is long enough to compensate

for the context switch overheads. Indeed, the waiting time increases in a monotonic manner with

the size of the critical sections and the size of the contention (expressed as the number of critical

sections simultaneously competing for a lock). On the other hand, synchronisation that busy-

wait non-preemptively for locks (such as FMLP for short critical sections) are the best candidates

for applications in which the waiting times are generally short and the contention is low. Here,

the context switching overheads may worsen the system performance (Brandenburg et al., 2008).

STM also provides the best performance for these scenarios. Therefore, we choose to compare the

87

88 Evaluation

simulation results against FMLP1. To this end, the task sets are first profiled so that the length of

the atomic sections is not restricted. This results in an increase in the contention size, which in turn

equally stressed both the STM and the locking approaches. Then, the length of the atomic sections

is restricted to an arbitrary upper bound relative the execution time of the tasks. This results in

a decrease in the contention size. Section 8.2 presents a qualitative evaluation of STM (i.e., the

proposed contention manager and the associated scheduling approaches) against the locking mech-

anisms on various aspects in which the synchronisation policy can condition the performance of

the system. This comparison is conducted while assuming a multicore architecture without cache

coherence and a switched network interconnect between the cores.

8.1 Quantitative evaluation

This section reports on the quantitative results of the simulations conducted as a proof of concept of

the contention manager FIFO-CRT proposed in Chapter 5 and the scheduling approaches proposed

in Chapter 6.

8.1.1 Simulation set up

We developed a simulation environment to test the proposed contention management algorithm

under four different scheduling policies – (1) pure P-EDF, (2) P-EDF with NPUC, (3) P-EDF

with NPDA and finally (4) P-EDF with SRPTM – on multicore platforms containing from 2 up

to 64 cores. Additionally, we implemented the FMLP rules over P-EDF, in order to compare our

approaches with a state-of-the-art lock-based synchronisation mechanism.

We conducted our simulations by defining 12 task set profiles that share some common char-

acteristics. The task sets are synchronous (i.e., all the tasks release a job at the time instant, say

the first job at t = 0) and have implicit deadlines (i.e., for a task set with n tasks, Di = Ti, ∀i ∈

{1,2, . . . ,n}). Each task set targets a 75% usage of the system capacity, when the execution time

overhead related to atomic sections (i.e., aborts and retries under STM, and busy-waiting under

lock-based mechanisms) is neglected. The individual utilisation of each task τi (neglecting possi-

ble atomic section overheads) is randomly selected from the interval Ui ∈ (0,0.3], with a uniform

distribution. As suggested by Nelis et al. (2013), the period of each task τi is determined as the

product of three non-negative integer values, i.e., Ti = ai× bi× ci, where ai is randomly chosen

from {2,4,8,16}, bi from {3,6,9,12} and ci from {5,10,15}, in order to keep the hyperperiod

(i.e., the least common multiple of all task periods) reasonably small. The WCET of task τi is

given by Ci = max(Ui×Ti,1). If the task has an atomic section, then the minimum WCET is 2,

as we require one time unit to flag the beginning of the atomic section and another time unit to

flag the end. We randomly select approximately 75% of the tasks to have one atomic section, and

approximately half of the atomic sections modify some element in its data sets. The execution

1The FMLP definition states that resources are classified as long or short by the application designer (Block et al.,

2007).

8.1 Quantitative evaluation 89

time of each atomic section is such that Cωi
∈ {2, . . . ,Ci} with a uniform distribution. The size of

an atomic section data set ranges from 1 to 3, with a discrete uniform distribution.

For each profile, we calculated the number of transactional objects/resources required so that

the expected value of tasks accessing each object is E [|o|] = 3. Considering that the average

number of tasks accessing an object is given by

|o|=
∑i |DSi|

p
(8.1)

we can calculate the number of objects given by the expected sum of data set sizes divided by the

expected number of accesses per object:

p =
Us×P(τi has ωi)

E [Ui]
×

E [|DS|]

E [|o|]
(8.2)

We observed that purely randomly generated transaction data sets ended up creating a single

global contention group (or a single global group lock, as known in FMLP). In order to circum-

vent this effect, we artificially created contention groups by organising the objects into g subsets

as follows: the first (g− 1) groups are of size |Ω| = ⌊p/g⌋ each, and the last group is of size

|Ωlast |= p−⌊p/g⌋× (g−1). Note that the last group may be larger than the previous ones. Each

transaction joins randomly a contention group, and its data set is confined to the objects in this

group. As a consequence of this, a transaction will not compete with transactions in other con-

tention groups. We did not balanced the allocation of transactions to the groups, so some groups

may contain more tasks than others. We defined two groups of profiles.

1. First group of profiles. This group of profiles allows for the observation of the effects of

the system size (number of cores and tasks) on the scheduling of tasks, for equivalent levels of

contention. In this group, we vary the number of cores in the range m ∈ {2,4,8,16,32,64}.

The number of shared objects varies proportionally with the number of cores, in the range p ∈

{5,10,20,40,80,160}, so the expected number of tasks accessing each object remains constant,

equal to 3. Additionally, we vary the number of contention groups proportionally with the number

of cores, in the range g ∈ {1,2,4,8,16,32}, so that contention groups maintain the same size (in

terms of number of objects) and expected number of tasks.

2. Second group of profiles. This group of profiles allows for the observation of the effects of

the contention granularity, for equivalent size of system (cores, tasks and shared objects). In

this group, we keep the number of cores and the number of shared objects constant: m = 64

and p = 160, respectively. However, the number of contention groups varies in the range g ∈

{1,2,4,8,16,32,64}.

8.1.2 Simulation results

For each profile we generated 50 synchronous task sets in a random manner. Each task set was

tested for a time period equivalent to its hyperperiod, which is sufficient to verify the feasibility

of the schedule (i.e., to check whether no deadlines will ever be missed). Every released job was

90 Evaluation

executed until completion, even if it missed its deadline. Deadlines were detected at the end of

the execution of a job, so deadline miss propagation was allowed under heavy utilisation. This

also means that under heavy utilisation, a backlog of workload could be passed to the following

hyperperiod, so the number of unreleased or unfinished jobs were also accounted for as deadline

misses.

During each simulation, we recorded the number of deadline misses (including jobs that were

expected to complete inside the hyperperiod and did not) for each task. We also recorded the time

overhead of the atomic sections (due to aborts or busy waits) performed inside completed jobs,

and the total system capacity used during the simulation time by the task set.

8.1.2.1 Varying system size

In this experiment, we focused on comparing how the different scheduling approaches are capable

of finding a valid schedule for the task sets in the first group of profiles. Figure 8.1 illustrates

the feasibility rates for all the approaches as a function of the number of cores and the number of

groups. The trend in this figure shows that P-EDF provides the highest success ratio in comparison

to the approaches that disable preemptions during the atomic sections. When scrutinizing each in-

dividual task set, we observed that there was a considerable amount of deadline misses from some

tasks because their periods were smaller than or closer to the execution time of the transactions

of other tasks assigned to the same core. For task sets in which some task parameters have these

characteristics, non-preemptive approaches were not capable of finding a valid schedule, while

P-EDF could. SRPTM could provide a valid schedule for a partition of these task sets with no

transactions. This explains why it dominates the non-preemptive approaches. As the system size

increases, so does the probability of occurring longer sequences of serialisation of transactions.

Thus, P-EDF feasibility ratio also drops to zero when transactions may have to wait longer than

the available time to commit.

Analysis of the behaviour of the same task sets with smaller atomic sections. We assigned

a 95% probability to each atomic section with an execution time longer than 20 time units to

having its execution time reduced to 20 time units, and a 5% probability to each atomic section

to keeping its execution time unchanged. We chose 20 because the smallest period in each task

set is 2×3×5 = 30 time units, and the maximum execution time for such a task is 0.3×30 = 9

time units. Hence, there is a slack of 21 time units dedicated to waiting for a concurrent job to

execute one transaction attempt of 20 time units. As expected, the feasibility ratios increased (see

Figure 8.2). We observed that approaches that do not allow preemption points before the atomic

section completes (e.g., NPUC and FMLP) have more difficulties to finding valid schedules. Also,

we observed that SRPTM and NPDA have similar feasibility ratios and behaved better than P-EDF

for systems with few tasks.

Analysis of the overall number of deadline misses. We assumed that there exists a valid sched-

ule for a given task set and we focused on evaluating how far are the different scheduling ap-

proaches from this valid schedule. Figure 8.3 illustrates the total amount of deadlines misses

(including not released or not completed jobs by the hyperperiod) as a function of the number of

8.1 Quantitative evaluation 91

��

����

����

����

����

��

����� ����� ����� ������ ������� �������

��
��
���
��
��
��
���

��

�����������������������������������

����
����
����

�����
����

Figure 8.1: Feasibility rates: varying number of cores.

cores and the number of groups. We assumed 50 task sets with the same number of cores and

the same number of contention groups. Figure 8.3a illustrates the total amount of deadline misses

after 50 simulations. This figure shows that FMLP provides the worst results as we count over

one million deadline misses, whereas SRPTM appears to provide the best results with less than

363.000 deadline misses. Our explanation of these trends is that a job under P-EDF can preempt

any other job, irrespective of whether it executes a transaction or not, whereas this is not the case

under SRPTM. In this case, a job executing a transaction cannot preempt another job executing a

transaction.

Analysis of the total number of aborts. The maximum number of aborts that a transaction

may suffer stresses the effort to meet the deadline of its host job. This holds true for jobs that are

executing an atomic section as well as for jobs that are waiting for the completion of an atomic

section to proceed with their execution. Jobs in the ready queue of a core and jobs with contending

transactions in other cores are examples of such jobs. Figure 8.4 illustrates the total number of

deadline misses for each task set after 50 simulations. From this figure, it follows that NPUC

and NPDA present in average a low maximum number of aborts. These trends can be explained

as follows. Under NPUC, transactions are not exposed to the delays caused by the preempted

contenders in other cores, so it tends to present a low number of aborts. In constrast, these delays

have a negative impact under SRPTM, which increase the number of aborts. This is especially

true for the waiting transactions in the worst case scenario. Under P-EDF, the high number of

aborts can be explained by the possibility of aborting older preempted transactions in order to

avoid eventual deadlocks.

Analysis of the average performance of the atomic sections. For all the released jobs that

completed their execution during our simulation time (i.e., in one hyperperiod), we measured the

92 Evaluation

��

����

����

����

����

��

����� ����� ����� ������ ������� �������

��
��
���
��
��
��
���

��

�����������������������������������

��������
��������
��������

���������
��������

Figure 8.2: Feasibility rates: varying number of cores with smaller atomic sections.

execution time overhead related to the aborts under STM, and to busy waiting under FMLP. Fig-

ure 8.5 illustrates the extra time it takes in average to execute one job with an atomic section. More

precisely, Figure 8.5a illustrates the results for long atomic sections and Figure 8.5b illustrates the

results for limited length atomic sections. It follows that SRPTM presents low overheads in aver-

age in comparison to the other approaches. This trend is explained by the fact that under SRPTM,

a preempted transaction on a core yield back the core to other tasks while this is not the case under

other approaches: a preempted transaction is waiting for its contenders on other cores to commit

before it can proceed. This reduces the number of aborts and improves the amount of workload

performed per core. Unlike under P-EDF, the transaction is not killed by newer contenders when

the job is preempted. The effect of this protection is visible in the gap that separates the SRPTM

curve to the P-EDF curve for the attempt of the last transaction.

Non-preemptive approaches provide better results for systems with few tasks. This phe-

nomenon can be explained by the fact these approaches tend to force transactions to commit as

soon as it is legally possible to do so. When the systems grow, the possibility of longer sequences

of transactions to serialise also grows. This is reflected in an increase of the number of aborts

before commit. FMLP presents higher overheads because it does not profit from intra-group con-

tention granularity, as this is the case for the transactions (non-intersecting data sets inside the

same contention group).

8.1.2.2 Varying granularity of contention

In the second bunch of simulations, we focus on the evaluation of the contention groups granu-

larity. To this end, we considered and tested various scheduling approaches on systems with the

same size (i.e., the same number of cores, tasks, atomic sections and shared objects). We noticed

8.1 Quantitative evaluation 93

��

�������

�������

�������

�������

������

��������

����� ����� ����� ������ ������� �������

��
��
���
��

��
���
���
��
���
��
���

���
��

�����������������������������������

����
����
����
�����
����

(a) Results for task sets with atomic sections with

unrestricted size.

��

������

�������

�������

�������

����� ����� ����� ������ ������� �������

��
��
���
��

��
���
���
��
���
��
���

���
��

�����������������������������������

��������
��������
��������

���������
��������

(b) Results for task sets with atomic sections with

size limited to 20 time units.

Figure 8.3: Total number of deadline misses (50 simulations).

��

��

��

��

��

���

����� ����� ����� ������ ������� �������

�
��
��
��

��
��

��
���
���
��
���
��
��
���
�

�����������������������������������

����
����
����
�����

(a) Results for task sets with atomic sections with

unrestricted size.

��

��

��

��

��

���

����� ����� ����� ������ ������� �������

�
��
��
��

��
��

��
���
���
��
���
��
��
���
�

�����������������������������������

��������
��������
��������

���������

(b) Results for task sets with atomic sections with

size limited to 20 time units.

Figure 8.4: Maximum number of aborts per job (average).

��

����

����

����

����

��

����� ����� ����� ������ ������� �������

��
��

���
��
���
��
����

��
��
��
��
��

�����������������������������������

����
����
����

�����
����

(a) Results for task sets with atomic sections with

unrestricted size.

��

����

����

����

����

��

����� ����� ����� ������ ������� �������

��
��

���
��
���
��
����

��
��
��
��
��

�����������������������������������

��������
��������
��������

���������
��������

(b) Results for task sets with atomic sections with

size limited to 20 time units.

Figure 8.5: Time overhead per atomic section (average).

94 Evaluation

��

����

����

����

����

��

������� ������� ������� ������ ������ ������ ������

��
��
���
��
��
��
���

��

�����������������������������������

��������
��������
��������

���������
��������

Figure 8.6: Feasibility rates: varying number of cores with smaller atomic sections.

that we could not find any valid schedule for any number of groups, when assuming a platform

with 64 cores and allowing long transactions. For the same task sets but with limited transactions

in terms of execution times, we could find valid schedules under P-EDF, NPDA and SRPTM, as

illustrated in Figure 8.6. Again, it can be noticed that fully preemptive P-EDF yields the highest

ability to schedule task sets.

Analysis of the number of deadline misses. For a given task set, we assume that there exists

a valid schedule, (i.e., one for which all the deadlines are met for all the jobs) and we evaluate

how far the task set is from this valid schedule by using the different approaches. We recall that

unreleased and/or unfinished jobs within one hyperperiod increase the number of deadline misses.

Figure 8.7 illustrates the total number of deadline misses after 50 simulations for each profile.

Figure 8.7a illustrates this number for long transactions and Figure 8.7b illustrates this number for

the same task sets, but with limited transactions in terms of execution time. In both cases and for

all profiles, SRPTM always yields the lowest numbers. It is also worth noticing that STM-based

mechanisms present a slight increase in terms of deadline misses when the number of contention

groups becomes smaller.

Analysis of the total number of aborts. Figure 8.8 illustrates the average of the maximum

number of aborts per job. In this figure, where we can observe that the non-preemptive approaches

suffer lesser aborts than both P-EDF and SRPTM in the worst case. The difference is more pro-

nounced for long transactions (see Figure 8.8a). This trend is reduced when the size of the trans-

actions is limited (see Figure 8.8b).

Although the non-preemptive approaches tend to present a better behavior when assuming the

worst case scenario, SRPTM presents fewer overheads in the long run, as illustrated in Figure 8.9.

In this figure, FMLP is heavily penalised when the granularity of contention is coarse and in

8.2 Qualitative evaluation 95

��

�������

�������

�������

�������

������

��������

��������

������� ������� ������� ������ ������ ������ ������

��
��
���
��

��
���
���
��
���
��
���

���
��

�����������������������������������

����
����
����
�����
����

(a) Results for task sets with atomic sections with

unrestricted size.

��

�������

�������

�������

�������

������

��������

��������

������� ������� ������� ������ ������ ������ ������

��
��
���
��

��
���
���
��
���
��
���

���
��

�����������������������������������

��������
��������
��������
���������
��������

(b) Results for task sets with atomic sections with

size limited to 20 time units.

Figure 8.7: Total deadlines missed (50 simulations).

��

��

��

��

��

���

���

������� ������� ������� ������ ������ ������ ������

�
��
��
��

��
��

��
���
���
��
���
��
��
���
�

�����������������������������������

����
����
����
�����

(a) Results for task sets with atomic sections with

unrestricted size.

��

��

��

��

��

���

���

������� ������� ������� ������ ������ ������ ������

�
��
��
��

��
��

��
���
���
��
���
��
��
���
�

�����������������������������������

��������
��������
��������

���������

(b) Results for task sets with atomic sections with

size limited to 20 time units.

Figure 8.8: Maximum number of aborts per job (average).

comparison to STM-based approaches, this penalty increases drastically as the number of groups

decreases (see Figure 8.9a). Except for FMLP, both NPUC and NPDA use a high execution time

overhead to execute their jobs executing transactions (see Figure 8.9b).

8.2 Qualitative evaluation

Section 8.1 covered the simulation of task sets with atomic sections under different combinations

of partitioned real-time scheduling algorithms (namely, P-EDF, NPDA, NPUC, SRPTM) and re-

source sharing protocols (namely, STM, FMLP). The results from the simulations provided good

quantitative comparisons on the performances of the proposed approaches. This section instead

provides a qualitative comparison with respect to a set of characteristics (deadlock and livelock,

composability, transparency, access to multiple data, priority inversion, convoying, impact on the

platform and platform dependency) between the STM-based approaches devised in this work, i.e.,

the contention managers together with the associated scheduling policy and the lock-based ap-

proaches such as the Flexible Multiprocessor Locking Protocol (FMLP) and the more recent pro-

96 Evaluation

��

��

���

���

���

���

���

���

������� ������� ������� ������ ������ ������ ������

��
��

���
��
���
��
����

��
��
��
��
��

�����������������������������������

����
����
����

�����
����

(a) Results for STM and lock-based approaches.

��

����

����

����

����

��

������� ������� ������� ������ ������ ������ ������

��
��

���
��
���
��
����

��
��
��
��
��

�����������������������������������

����
����
����

�����

(b) Detail of the results for the STM approaches

(excluding FMLP).

Figure 8.9: Execution time overhead per atomic section (average).

tocols such as the O(m) Multiprocessor Locking Protocol (OMLP) (Brandenburg and Anderson,

2013) and the Real-time Nested Locking Protocol (RNLP) (Ward and Anderson, 2012) associ-

ated to partitioned scheduling. Before going into more details, let us recall the specifics of these

protocols.

• FMLP. In this protocol, the mutual exclusive access to a group of resources is managed by

a group lock. A job that is waiting to acquire a group lock busy-waits non-preemptively (on

short critical section) or suspends (on long critical section). Critical sections are executed

non-preemptively. Only a long critical section can nest a short critical section; other types

of nesting are not allowed.

• OMLP. This protocol follows the same principle as FMLP. However, a job that is waiting

for a group lock always suspends, and resumes when the lock is granted. Also, nesting is

not allowed.

• RNLP. This protocol is fine-grained and allows nesting critical sections, but with the con-

straint that locks must be acquired in a predetermined order. The chronological order by

which the critical sections start define the order in which the locks are acquired.

8.2.1 Deadlock

Let us consider a set of jobs that are sharing a set of resources. A deadlock is a situation in which

two jobs are each waiting for the other to release a resource, in order to proceed, and thus neither

ever does. If more than two jobs are involved in this process, then a deadlock can be defined as a

situation in which these jobs are waiting for the resources in a circular chain.

Lock-based synchronisation. This mechanism avoids deadlocks either by (i) not allowing nested

critical sections so as to decrease the granularity of the contention, as this is the case in OMLP or

(ii) imposing an explicit order to the programmer in which resources will be acquired, as this is

the case in RNLP. In both cases, these measures must be designed and implemented off-line.

8.2 Qualitative evaluation 97

Software Transactional Memory. This mechanism avoids deadlocks either by helping or by

aborting transactions upon the detection of conflicting requests for the resources. Hence, resources

can be requested in any order and the conflicts are managed at runtime.

Concluding remarks. Following the previous discission, it follows that STM is able to avoid

deadlocks in a more flexible and adaptive manner than lock-based mechanisms.

8.2.2 Livelock

A livelock is similar to a deadlock, except that the states of the jobs involved in the livelock

constantly change with regard to one another, none progressing. In the context of atomic sections,

a livelock corresponds to a situation in which concurrent atomic sections get mutually aborted

upon a conflict. So, although the initial intention of the livelock is to allow the competitor(s) to

progress, none of the concurrent atomic sections is able to progress in the end.

Lock-based synchronisation. This mechanism does not yield the ownership of resources upon

each conflict, so livelocks do not occur.

Software Transactional Memory. Among the various STM strategies, Obstruction-free STM

contention managers must deal with the possibility of livelock2. FIFO-CRT avoids livelock by

applying a selection criteria based on static parameters when solving conflicts. The release time

of each transaction is an example of such a parameter. Ties broken by using the core ids. This

way, FIFO-CRT always determines the same serialisation sequence for any sample of transactions.

This approach provides the same result independently from the time instant at which the sequence

is computed.

Concluding remarks. Livelock is not an issue for any lock-based synchronisation mechanism,

but it might be one for STM-based approaches. However, a properly designed contention manage-

ment criteria allows us to avoid or, at least, bound livelocks.

8.2.3 Access to multiple objects per atomic section

In general, an atomic section allows operations on multiple shared objects that, from the system

perspective viewpoint, can be considered as a large atomic operation on multiple objects. However,

the way atomicity feature is achieved depends on the design of the synchronisation mechanism.

Lock-based synchronisation. This mechanism allows a critical section to get exclusive access

to multiple shared objects either by (i) acquiring a lock that controls the whole data set of the

2For example, the Passive contention manager (Dice et al., 2006) may abort indefinitely two conflicting transactions

in alternate sequence, so that none of the two ever commits. If such a conflicting situation occurs, then an additional

rule such as exponential back-off must be employed to break this cycle.

98 Evaluation

critical section (non-nestable locks); or (ii) successively acquiring the multiple locks that control

parts of the data set (nestable locks).

⊲ Non-nestable locks. A non-nestable lock has to control the exclusive access to a set of shared

objects, such that a critical section that acquires the ownership of that lock is able to access in

mutual exclusion any of the controlled objects. In the worst case, a unique system global lock

controls the access to all shared objects. In FMLP and OMLP, an off-line analysis of the data

sets of all critical sections allows us to improve the granularity of contention by determining the

unions of the intersecting data sets. This way, each of these subsets is assigned to a group lock.

The impact on the parallelism of the critical sections depends on the number of objects controlled

by each lock: the higher the number of objects per lock, the worse the impact is.

⊲ Nestable locks. When locks are nestable, each lock controls very few objects or just one object.

In this case, a critical section must acquire multiple locks in a sequence (nesting critical sections)

in order to ensure exclusive access to its data set, such as in RNLP. Here, deadlocks are avoided

by establishing a strict order in which locks will be acquired.

Software Transactional Memory. With few exceptions in literature, transactions are generally

conceived to support accesses to multiple objects, without following a particular order. Conse-

quently, the concept of nested transactions is not necessary for a transaction to access multiple

shared objects. Nevertheless, some approaches allow nested transactions. In such cases, a inner

transaction must be clear to commit so the outer transaction is able to proceed; however the up-

dates of all inner transactions will be pending until the outermost transaction commits, and will be

discarded if the outermost transaction aborts.

Concluding remarks. STM allows access to multiple shared objects in a transaction without

specific rules, and conflicts are managed at runtime. Oppositely, lock-based mechanisms require

off-line analysis in order to improve the granularity of the contention.

8.2.4 Composability

A common engineering principle in system design is to divide the complexity of a large system into

smaller and simpler subsystems where each subsystem addresses a specific aspect of the desired

functionality. Composability is a system design principle in which such subsystems are expected

to be as much independent as possible. This way, an independent design, an implementation

and testing of each subsystem, as well as a reliable composition of the system by assembling the

subsystems is made possible and proved to be correct. The details of the implementation of each

subsystem are hidden behind the so-called subsystem or component port/interface, thus making

the component interchangeable and reusable. In theory, a highly composable designed system

improves implementation, maintenance and future functionality extension.

8.2 Qualitative evaluation 99

Lock-based synchronisation. Lock-based synchronisation presents some relevant obstacles to

achieve a high degree of composability. Below we discuss single global locks, non-nestable group

locks and nestable locks.

⊲ Single global locks. The simplest approach to lock-based synchronisation consists of having a

unique global lock, such that the development of any system component must operate exclusively

one lock. However, this solution voids any possibility of parallelism between non-contending

atomic sections.

⊲ Non-nestable group locks. The composition of synchronisation solutions based on the concept

of non-nestable group locks, such as FMLP and OMLP, is a non-trivial exercise. To illustrate this

claim, let us assume that the update of a system component requires the modification of a critical

section, say A, such that, besides the previous objects controlled by the respective group lock, it

becomes necessary to access another object, say B, that belongs to another group. It follows that B

must join the initially accessed group (i.e., the group of A). The solution is to join the two groups

under the same group lock. However, doing so requires that all components that access any of

these two groups must also be updated to cope with the changes, otherwise the system will no

longer be correct.

⊲ Nestable locks. Fine-grained locking mechanisms, such as RNLP pose non trivial exercises to

designers. These mechanisms avoid deadlocks by imposing a total order that rules the allowed

sequences of object acquisitions in a (nested) critical section. Any component must be designed

and implemented by taking into consideration the established total order. The same applies when

a component is updated, or when a new component is developed to add functionality or replace a

working component. However, testing a component individually does not reveal that the sequence

is not respected, and the problem will reveal itself only when the whole system is assembled.

Software Transactional Memory. STM does not impose any order on the accessibility of the

shared objects, and manages conflicts at runtime, with just-in-time contention granularity. Thus,

STM is able to cope with updated and added components that have been proved correct. This is

performed without requiring any modifications on concurrent modules and system control struc-

tures to maintain the system correctness.

Concluding remarks. From the previous discussion, lock-based mechanisms that are designed

to allow parallelism are not composable, because any modification in a component or the adding

of any new component may affect the correctness of the system. In contrast, STM allows that

components can be modified or added without affecting the functional correctness of the system,

as STM can adapt to these modifications.

8.2.5 Transparency

Given a model of tasks which are sharing a resource, transparency as it is addressed in this work

refers to the degree of detail on the synchronisation mechanism that is required from the designer

100 Evaluation

in order to be able to implement a correct and efficient multicore system.

Lock-based synchronisation. In order to take full advantage of the parallel feature offered by

the multicore architecture, this mechanism must be designed based on the characteristics of the

critical sections that will access the shared resources. In addition, the implementation of system

components must meet the rules associated with the locking mechanism, namely the mapping of

locks to the resources and the rules in sequential lock acquisition (if allowed). As the locks can be

either nestable or non-nestable, we discuss each case in details below.

⊲ Nestable locks. As already mentioned previously, lock-based approaches that allow nested crit-

ical sections (e.g., RNLP) usually impose a total order on the acquirement of the locks in order

to avoid deadlocks. As the implementation of each system component require such a total order

to be determined, it is the responsibility of the programmer to explicitly guarantee that locks are

acquired in the right order when he is writing the source code.

⊲ Non-nestable locks. We recall that lock-based approaches that do not allow nested critical sec-

tions are not exposed to deadlocks. In general, these approaches present coarser-grained con-

tentions and practical implementations of this kind (e.g., FMLP and OMLP) use the notion of

group locks in order to improve the granularity of the contentions. However, the one-to-one map-

ping between the locks and the resources must be known beforehand (i.e., at design time) from the

programmer viewpoint, and the programmer must explicitly operate the lock that matches each

resource when it accesses the critical section. Furthermore, it is also necessary to analyse the data

sets of all critical sections of the system at design time in order to define the groups of resources

as they are controlled by the group locks.

Software Transactional Memory. In contrast to lock-based approaches, STM saves the pro-

grammer from the burden of knowing the fine inner details of the synchronisation mechanism.

Specifically, STM comes along with three features: (i) it allows objects to be accessed in any or-

der inside a transaction; then (ii) it allows contentions to be detected with just-in-time granularity,

and finally (iii) it allows contentions to be managed by the STM system seamlessly.

Concluding remarks. The design of a lock-based mechanism for a multicore architecture can

be improved in terms of parallelism only by providing an analysis of the critical sections data

sets at design time. In addition, the programmer must follow a predefined set rules defined by

the designer of the locking mechanism. In contrast, STM does not require any knowledge of the

transaction data sets a priori. Furthermore, the programmer is not required to follow any specific

set of rules when he is implementing a transaction.

8.2.6 Priority inversion

Let us assume a set of tasks sharing a resource. Then, the priority inversion is a problematic

situation in the schedule of this resource in which a high priority task is indirectly preempted

8.2 Qualitative evaluation 101

by a medium priority task effectively “inverting” the relative priorities of the two tasks. More

specifically, it is a problematic situation which violates the priority model which infers that high

priority tasks can only be prevented from executing by higher priority tasks. In this case, a high

priority task is briefly prevented from executing by a low priority task which will quickly complete

its use of the resource that is shared with the high priority task.

Lock-based synchronisation. For this mechanism, a priority inversion usually occurs when a

low priority task, say τ j, holds the lock to a resource (critical section), say R, and a high priority

task, say τi, is constrained to wait for the lock on R to be released by τ j before τi can proceed

with its execution and enter R. Removing the ownership of the lock on R from τ j in order to

hand it to τi would require to rolling-back all operations that have already been performed in R.

This is not desirable for the associated time and memory overheads. With this being said, lock-

based synchronisation policies are designed not to avoid priority inversions, but rather to bound

priority inversions to the minimal possible extent. As such, any high priority task τi can be blocked

by a low priority task τ j at most a predefined number of times. As the design-space for such a

policy depends on both the class of the assumed scheduling approach (e.g., global or partitioned)

and the sequence in which the requests for locks are serialised, it appears to be very large. We

assume partitioned scheduling approaches in this work. Therefore, the following discussion about

non-nestable and nestable locks will be restricted to their concrete implementations when they are

associated to partitioned scheduling approaches.

⊲ Non-nestable locks. Lock-based synchronisation policies such as FMLP and OMLP use a FIFO

queue to sequence the access to each (group) lock. These two approaches allow for at most one

task waiting for or owning a lock on each core. Consequently, the maximum length of a lock queue

is m, where m is the number of cores. Assuming such a lock queue, the last task in the queue must

wait for (m−1) concurrent critical sections to complete before it can acquire the lock. In OMLP, a

task which is waiting in a lock queue suspends and allows the corresponding core to execute other

concurrent tasks whereas the story is different in FMLP: a task suspends if it is waiting for a long

resource, and busy-waits with its priority boosted (non-preemptively) if it is waiting for a short

resource. In either of these two approaches, the critical sections are executed with the task priority

being boosted, i.e., all tasks with a higher priority are prevented from executing. The blocking

may be short as in OMLP or long as in FMLP. The maximum blocking due to a low priority

task which is requesting a short resource in FMLP includes the delay time for lock acquisition

augmented by the execution time of the critical section. In contrast, OMLP allows another type of

blocking, referred to as transitive blocking, when a task is not able to request a resource because a

low priority task with another request pending is already executing on the same core. In the worst

case, a high priority task is blocked for a delay corresponding to the lock acquisition augmented

by the execution time of the critical section.

⊲ Nestable locks. Lock-based synchronisation policies such as RNLP restrict the simultaneous

requests of every resource to an arbitrary number of k tasks, and avoid deadlocks by imposing

a total order on the accessibility to the resources on these tasks. In this case, each lock has its

102 Evaluation

own timestamp ordered list of requests, but a task at the head of the list cannot acquire the lock

until all tasks with associated requests with an earlier timestamp did with respect to the predefined

partial order. Hence, each task may have to wait for (k−1) concurrent critical sections to complete

upon the issuance of a request. In its design, RNLP does not specify how the waiting mechanism

is implemented (either busy-waiting or suspending). As such, the maximum blocking of a high

priority task can range from the actual execution time up to the full response time of a critical

section.

Software Transactional Memory. Let us consider the STM approaches devised in this work, in

which the FIFO-CRT contention manager is used together with four different scheduling policies,

namely P-EDF, NPDA, NPUC and SRPTM. Scheduling tasks by following P-EDF allows us to

avoid priority inversion because any high priority job is able to preempt a running low priority

job while it is executing a transaction. FIFO-CRT has been designed such that for a subset of

tasks assigned to the same core, then it holds true that: (i) deadlocks are always avoided; and

(ii) a transaction belonging to a high priority task always commit before the one belonging to a

low priority task does. When the transactions are executed non-preemptively as this is the case in

NPDA and NPUC, the priority inversion is unavoidable. More precisely, NPDA limits a priority

inversion to the execution time of a transaction attempt in order to avoid aborts due to preemptions.

As the delays related to the earlier concurrent parallel transactions add to the execution time of the

attempt that commits, it follows that the blocking times are longer in NPUC. This type of blocking

is similar in FMLP and RNLP when jobs busy-wait for a lock. However, NPUC can take advantage

of the just-in-time contention granularity that STM provides to reach a higher parallelism than the

lock-based approaches.

The number of blockings experienced in NPUC can also be reached in SRPTM, but the num-

ber of jobs that suffer from these blockings may be reduced as the transactions do not run non-

preemptively. Typically, jobs not executing transactions and with a high preemption level may not

suffer any priority inversion in SRPTM, as this could be the case in NPUC. This improvement

in the average response times of the tasks is not possible for lock-based approaches as critical

sections run with a boosted priority.

Concluding remarks. For a given multicore architecture, the priority inversion highly depends

on the characteristics of the synchronisation mechanism that is used in conjunction with the as-

sumed scheduling policy. STM is capable of eliminating priority inversions (as this is case when

FIFO-CRT is considered together with P-EDF) or is capable of bounding its effect to the extension

of a transaction attempt (as this is the case in NPDA), or to the whole length of each transaction un-

til it commits (as this is the case in NPUC and SRPTM). Lock-based approaches do not eliminate

priority inversions and have not been designed to do so. However, they are capable of bounding

each priority inversion from the execution time of a critical section (as this is the case in OMLP

and RNLP with suspension waiting) or from the execution time of the critical section augmented

by the time to acquire the lock (as this is the case in FMLP and RNLP with busy-waiting).

8.2 Qualitative evaluation 103

8.2.7 Convoy effect

Let us consider a set of tasks to be scheduled on a resource by following a specific scheduling

algorithm. Then, the convoy effect as introduced by (Bershad, 1993) is a non desirable situation

in which the scheduling algorithm allows long-running tasks to dominate the resource, i.e., many

tasks get stuck behind the execution of a single task on the target resource.

Lock-based synchronisation. Assuming such a mechanism for the management of the atomic

sections, the convoy effect can be avoided by introducing special scheduling rules which will be

specific to every atomic section. For example, jobs synchronised by FMLP and OMLP execute

critical sections according to their boosted priorities, whereas RNLP requires the critical sections

to be executed according to a priority inheritance scheme.

Software Transactional Memory. Assuming such a mechanism for the management of the

atomic sections, the convoy can also be avoided as any transaction can be aborted in order to

allow concurrent transactions to commit. In this context, we can conduct the following discussion

on the different types of STM implementations.

⊲ Wait-free STM. These implementations are the most complex since a fair access to memory

is usually not guaranteed. They use sized buffers to bound the number of object access by any

operation. However, a transaction that is not progressing can be helped by a concurrent transaction

executing on another core. This way, no transaction will ever be indefinitely blocked.

⊲ Obstruction-free STM. These implementations guarantee a transaction to make progress when

all other transactions are suspended. However they require that the contention manager must take

specific actions to overtake a transaction that is not progressing and thus they are not efficient. For

example, FIFO-CRT allows a transaction trying to commit to abort a conflicting transaction with

an earlier release time that is not executing. This rule applies when FIFO-CRT is used together

with P-EDF and NPDA scheduling policies. However, when jobs are scheduled by following

NPUC, transactions are executed non-preemptively (as this is the case in the previously men-

tioned lock-based mechanisms). Consequently, FIFO-CRT does not need to apply this rule as the

convoy effect is solved at the scheduling level. On another front, SRPTM allows each job to be

preempted while executing a transaction as long as it will not have a “critical impact” on concur-

rent transactions which are executing on other cores. Therefore, the convoy effect is not an issue

for urgent jobs.

Concluding remarks. The convoy effect is addressed by lock-based and STM-based approaches

that limit preemptions during the execution of atomic sections or by allowing the contention man-

ager to overtake preempted competitors to proceed with their execution. The convoy effects caused

by unsound jobs (either by software or hardware failure) are not considered in the practical lock-

based and STM-based approaches as discussed in this section. Hence, measures to deal with these

special issues must be implemented by using orthogonal solutions. The use of watchdogs that

104 Evaluation

monitor the soundness of the jobs and reconfigure the system in the presence of an anomaly is just

an example of such a solution.

8.2.8 Impact of the synchronisation mechanism on a multi-core architecture

It follows from everything that we have been discussing so far that the implementation of the devel-

oped synchronisation mechanisms have various impacts on the underlying multicore architecture.

Nevertheless, the benefits gained from these implementations cover the inherent overheads asso-

ciated with their operations. From a practical viewpoint, the overheads can be associated to the

usage of the following three components at runtime: (1) the processing elements (i.e., the cores);

(2) the platform interconnect; and finally (3) the memory. The overheads associated to each of

these key components must weight in the system designer decision of choosing the most appro-

priate mechanism for the system. This choice must be performed with respect to the application

requirements and the available platform features. In this work, we assume a multicore platform

with the following characteristics:

• The platform does not implement any cache-coherency algorithm3.

• The cores are interconnected by using a switched Network-on-Chip (NoC).

• The memory is accessible via a shared bus.

These characteristics are already available in the large majority of the commercialised processors

in the embedded systems domain. The Kalray MPPA platform (Kalray2015) is an example of such

a processor.

Lock-based synchronisation. The impact of such a mechanism on the target platform comes

mainly from (i) the operations that access off-chip resources and (ii) the manner in which every

core is used during the time period between the moment a lock is requested and the moment it is

acquired. We recall that the three locking protocols discussed so far wait for a requested lock by

busy-waiting (this is the case for FMLP and optionally RNLP) or by suspending the requesting

job (this is the case for OMLP and optionally RNLP).

⊲ Busy-waiting. Assuming this policy, it follows that acquiring a lock involves testing atomically

the current value of the lock. Once this operation is performed, the value of the lock must be

coherent across all cores that are assigned a job competing for this lock. In the absence of a

cache-coherency protocol, this may require an operation on the main memory. If the lock is not

immediately acquired, a pointer is inserted in a wait-queue to this job and the job is busy-waiting,

i.e. it idles in a non-preemptive manner up until the lock is granted to it. During this interlude time

period, the processing capacity is wasted as concurrent ready jobs are not capable of preceeding

with their execution. However, as the job does not execute on the core, nor does it perform any

operation, then the power consumption of the core to which it has been assigned is kept low and

3Given a platform, cache coherency is the protocol which ensures that changes in the values of shared data are

propagated throughout the system in a timely fashion.

8.2 Qualitative evaluation 105

the shared platform resources are not requested. Finally, upon the lock release, a signal is sent to

the job at the head of the wait-queue for it to acquire the lock. This operation requires a message

between two cores.

⊲ Suspending. As for the busy-waiting policy, acquiring a lock also involves testing atomically

the current value of the lock. This operation may also require an operation on the main memory.

If the lock is not immediately acquired, a pointer is inserted in a wait-queue to the job but in

contrast to the behavior got for the busy-waiting policy, the job suspends this time. This allows the

scheduler to select another ready job for execution. Once the lock is granted to the suspended job,

the scheduler preempt the running job irrespective of its priority in order to resume the execution

of the suspended job. It follows that this approach presents the advantage of improving the core

usage in an effective manner; but the disadvantage of requiring at least two context switches.

Unfortunately, this contributes in turn to the overhead associated with this policy. Finally, similar

to the busy-waiting policy, when the lock is released, a signal must be sent to the job at the head of

the wait-queue in order for it to acquired the lock. This operation also requires a message between

two cores.

Software Transactional Memory. Before discussing the specifics of STM-based mechanisms,

it is worth recalling that the assumed target platform does not implement any cache-coherency

algorithm. In this context and assuming an STM-based mechanism, we note that transactions can

be executed in an optimistic manner, i.e., they can operate on local copies of shared objects. This

feature matches well with an absence of cache-coherence as data validity is maintained by the STM

itself. To this end, local updates become globally available only after a commit and transactions

with invalid data abort and refresh the local copies for the following attempt. This procedure may

require readings from the main memory. Below, we discuss the relationship between STM and the

various types of locks.

⊲ Hidden locks. Although from the programmer standpoint STM is free from locks, their actual

implementation may use locks to guarantee mutually exclusive accesses to control and data struc-

tures. In this context, conflict detections can be of two types: eager and lazy. Eager conflict de-

tection is active and detects a conflict early on, while lazy conflict detection is passive and detects

a conflict when tasks are about to commit their results. Even though performance comparisons

show that eager conflict detection heuristics are better in benchmarks where tasks share several

objects among themselves, we adopted lazy policies in this work as they are easier to implement

and faster in benchmarks where tasks share a small number of objects and, most importantly, they

do not mask read transactions (Spear et al., 2006) which is very relevant for real-time systems.

This allows us to have full control on the resolution of conflicts and, therefore, the serialisation

of transactions. With this choice, we benefit from the fact that locks are owned only for the time

required for a transaction to commit (i.e., to detect conflicts and to commit updates), and not for

the whole critical section, as is the case in locking mechanisms.

⊲ Querying job status on other cores. We recall that FIFO-CRT avoids deadlocks by allowing

106 Evaluation

any contender that is trying to commit to abort a preempted transaction. This rule is necessary

only while following either P-EDF or NPDA. Indeed, these approaches allow many transactions

in progress at the same time on the same core. To implement this rule, the scheduler must be

inquired when each job executing a conflicting transaction is running. This operation may incur

significant runtime overheads. As a matter of fact, upon each detected conflict the scheduler must

interrupt the running job and check the status of the job executing the transaction on each core.

⊲ Execution time overhead due to non-preemptively executed aborts. On one front, we recall

that approaches such as NPDA and NPUC execute transactions non-preemptively. On another

front, we recall that SRPTM grants the capability to preempt only to jobs that are more urgent

than the transaction in progress. It follows that the result of each attempt can be discarded if the

transaction aborts, thus augmenting the execution time overhead. Under NPUC, a transaction can

dominate the core upon which it is executing until it commits. In a benchmark with lock-based

suspension-waiting, the worst case execution time overhead can be far superior, whereas it is at

most comparable when comparing with lock-based busy-waiting. The reason for this behaviour

is related to the fact that STM can profit from a finer granularity in conflict detection than in

group locks. FIFO-CRT allows a transaction to commit before concurrent transactions with earlier

release times do when the concurrent transactions are zombies4. Although the worst case execution

overhead may be higher, a transaction may commit earlier than expected in some time windows.

This is not possible with lock-based mechanisms.

Concluding remarks. Lock-based synchronisation impacts the underlying platform in terms of

lock operations that require communication between cores whereas STM matches architectures

without cache-coherency, but may have a significant impact on the execution time overhead due

to the number of aborts.

8.2.9 Platform dependency

The platform characteristics can affect the performance of the transactions as they may favor spe-

cific synchronisation mechanisms over others. In this section, we discuss the platform dependency

as the degree at which the synchronisation mechanism is integrated into the physical hardware

and environment runtime that supports the system. The more the synchronisation mechanism is

integrated inside the core components (e.g., in the scheduler, the kernel) the more dependent it is

to the platform. In this case, it is less portable to other platforms.

Lock-based synchronisation. Locks are implemented in the kernel space. Therefore, they are

intrinsically bounded to the operating system in which they are implemented.

Software Transactional Memory. In general, STM are implementated in user space libraries,

which make them highly portable. Now, as our main goal is to meet the timing requirements of

4This is possible as at the time the transaction commits, this operation does not augment their abort counts.

8.3 Summary 107

real-time embedded systems, it follows that the approaches devised in this work combine both

STM-based techniques and scheduling policies. Below we discuss the various combinations.

⊲ STM and P-EDF. This combination does not require any modification of the kernel. However

it requires that the scheduler is capable of indicating the state of a job that has a transaction in

progress.

⊲ STM and NPUC/NPDA. We recall that NPUC and NPDA are based on the P-EDF scheduler

and do not require any modification of the scheduler itself. Also, as this is already the case for

STM and P-EDF, NPDA requires that the scheduler is capable of indicating the state of a job that

has a transaction in progress. However, both approaches (i.e., NPUC and NPDA) require that

the system is capable of enabling/disabling preemptions. To this end, this operation is performed

through requests or by enabling/disabling interrupts if necessary.

⊲ STM and SRPTM. The SRPTM policy is implemented in the kernel space. Indeed, even though

its design is based on the P-EDF scheduler, it requires the modification of the scheduler, especially

when a transaction is in progress in a core in order to integrate the necessary structures for the fol-

lowing key features: the core ceilings, the premption levels of the tasks and finally, the premption

levels of the transactions.

Concluding remarks. Locks requires to add functionalities in the kernel space whereas STM-

based approaches are usually implemented in user space. As real-time applications may require

that the STM-based approaches make use of system calls to address timing requirements, complex

approaches such as SRPTM require the implementation of scheduling rules inside the kernel.

8.3 Summary

In this chapter we discussed the evaluation of the FIFO-CRT contention manager when it is im-

plemented together with the following four scheduling approaches: P-EDF, NPDA, NPUC and

SPRTM, in both quantitative and qualitative terms.

The quantitative evaluation is based on the results of the simulations conducted on randomly

generated synthetic task sets. The simulation set up is given in Section 8.1.1 and Table 8.1 high-

lights the results for the group of tasks with 64 cores and 32 contention groups in common. These

partial results provide the trend of the characteristics observed in the experiments. That is:

1. The scheduling approaches that execute atomic sections in a non-preemptive manner have

more difficulties to meet the deadlines. This is due to the fact that it is more difficult to

schedule tasks with shorter relative deadlines in this case.

2. The scheduling approaches that allow preemptions during the execution of a transaction

present a higher average number of aborts per job. P-EDF and SRPTM illustrate this claim.

P-EDF allows to abort a transaction that is preempted and SRPTM allows a transaction to

suffer longer delays waiting for concurrent transactions that may have been preempted.

108 Evaluation

3. SRPTM incurs a smaller overhead per transaction in average as: (i) a transaction is not

aborted upon preemption; (ii) when a transaction is preempted, the time period spent in this

state may be less than the time associated to the corresponding number of aborted attempts.

The qualitative evaluation discusses various aspects of the different mechanisms (see Sec-

tion 8.2). Table 8.2 summarises the qualitative comparison of STM-based approaches against

lock-based approaches for real-time embedded systems, when assuming a multi-core platform

with a NoC interconnect and without cache-coherence.

In Chapter 9 we complete this in-depth analysis with the practical implementation of the

FIFO-CRT contention manager together with the three scheduling policies on a two 12-core AMD

Opteron Processor 6168 based computer.

8.3 Summary 109

P-EDF NPDA NPUC SRPTM FMLP

Total deadline misses 432 176 423 635 438 299 362 877 1 006 744

28 501 49 013 53 829 23 435 179 048

Maximum aborts per job 7.73 2.15 2.09 7.14 –

(average) 1.36 0.71 0.74 1.15 –

Average execution time 33% 62% 62% 23% 69%

overhead per job 8% 11% 11% 6% 18%

Table 8.1: Quantitative results for the group of 50 task sets with 64 cores and 32 contention groups

in common. For each category, the bottom line corresponds to results of simulations with smaller

atomic sections.

Lock-based mechanisms STM-based mechanisms

Deadlocks Group locks: No No

Nestable locks: responsibility of the

programmer

Livelocks No No

Access to Group locks: Yes (coarse grained) Yes

multiple objects in

an atomic section

Nestable locks: Yes (fine grained)

Composability No Yes

Transparency No Yes

Priority inversion Yes (bounded) P-EDF: No

NPDA, NPUC, SRPTM: Yes

(bounded)

Convoying Priority boosting/inheritance: No P-EDF, NPDA, NPUC: No

SRPTM: Bounded

Impact on the ar-

chitecture

Busy-waiting: Intercore communica-

tion, execution time overhead

Optimistic execution of transactions

matches architectures without cache-

coherence

Suspending: Intercore communica-

tion, context switching

P-EDF, NPDA: requests of jobs sta-

tus to schedulers on other cores

Locks owned during all critical sec-

tion (impact on parallelism)

Execution time overhead due to

aborts

Lazy conflict detection: locks owned

only during commit

Platform depen-

dency

Locks are implemented inside the

kernel (high dependency)

STM (with contention manager) is

generally a user space library (low

dependency)

NPDA and NPUC: require system

calls to enable and disable preemp-

tions (low dependency)

SRPTM: requires to rewrite the

scheduler inside the kernel (high de-

pendency)

Table 8.2: Summary of the qualitative evaluation of STM (opposed to locking) for real-time em-

bedded systems.

110 Evaluation

Chapter 9

Implementation

The experiments performed in a simulation environment reported in Chapter 8 had as main goal

the comparison of our STM-based approaches, i.e. the FIFO-CRT contention management pol-

icy combined with the Non-Preemptive Until Commit (NPUC), SRP for Transactional Memory

(SRPTM) and Non-Preemptive During Attempt (NPDA) scheduling strategies with the state-of-

the-art lock-based synchronisation mechanism Flexible Multiprocessor Locking Protocol (FMLP).

The set of simulations revealed that our STM-based approaches were more scalable than FMLP.

However, these simulations considered only overheads related to the extra execution time re-

quired when a transaction aborts. We implemented a minimalistic STM system with the FIFO-

CRT contention manager policy, and the NPUC, SRPTM and NPDA schedulers for the Linux

operating system, so as to evaluate the performance of our approaches from a practical view-

point. The experiments were conducted on a testbed that allows us to measure and compare both

the performance and overheads that each approach presented for the executed task sets that were

executed.

9.1 Experimental setup

This section describes the development of a computing system that provides an STM system in

which concurrent accesses are ordered by the FIFO-CRT contention manager proposed in Chap-

ter 5, and the three scheduling approaches (NPUC, SRPTM and NPDA) proposed in Chapter 6.

9.1.1 Platform specification

The target hardware platform used to conduct the experiments is a computer with 24 cores pro-

vided by two 12-core AMD Opteron Processor 6168. Each processor occupies one socket on the

motherboard and contains three levels of cache: 12 x 64 KB instruction and 12 x 64 KB data Level

1 cache, 12 x 512 KB Level 2 cache, and 2 x 6 MB Level 3 cache. Each core is 64-bits and clocked

at 1.90 GHz. Both processors share access to 4 GB of main memory.

111

112 Implementation

The adopted Operating System is the Linux kernel 3.10.15, modified by using the Real-time

TAsk-Splitting scheduling algorithms (ReTAS) framework. ReTAS was developed by Sousa et al.

(2011) to support the development and testing of real-time scheduling algorithms.

9.1.2 Task set generation

We defined a number of task set profiles, and assume transaction and context switch overheads

to be negligible. Each task set profile was characterised by the 2-tuple {m,US/m}, where m is

the number of cores of the system and US/m is the ratio of the system capacity that is demanded.

Specifically, we consider the following values for these two parameters:

• m ∈ {2,4,8,16} cores

• US/m ∈ {0.25,0.30,0.35,0.40,0.45,0.50,0.55,0.60,0.65,0.70,0.75}

For each task set, the maximum task utilisation Umax
i is randomly selected from an arbitrary

set of values with equal probabilities, such that Umax
i ∈ {0.25,0.50,0.75}. In each task set pro-

file, each task τi is categorised as LIGHT, MEDIUM and HEAVY, according to its individual

utilisation, with the following interpretation:

Definition 36 (Light task). Let us consider a system with m cores and a demand of US/m of its total

capacity. Task τi with utilisation Ui =Ci/Ti is categorised as a light task if Ui ∈
[

0.05, 0.20 · Us

m

)

.

Definition 37 (Medium task). Task τi with utilisation Ui is categorised as a medium task if Ui ∈
[

0.20 · Us

m
, min{0.50 · Us

m
,Umax

i }
)

.

Definition 38 (Heavy task). Task τi with utilisation Ui is categorised as an heavy task if Ui ∈
[

min{0.50 · Us

m
,Umax

i }, Umax
i

]

.

For every task set, task τi is generated as LIGHT, MEDIUM or HEAVY with probabilities

P(Light) = 0.50, P(Medium) = 0.35 and P(Heavy) = 0.15, respectively. The utilisation of τi is

randomly selected from an interval (with a uniform distribution) within the limits of the respective

type of task.

The period of each task τi is determined as the product of three non-negative integer values,

i.e. Ti = ai× bi× ci, where ai is randomly chosen from {2,4,8,16}, bi from {3,6,9,12} and

ci from {5,10,15}, in order to keep the hyperperiod (i.e. the least common multiple of all task

periods) reasonably small, as suggested by Nelis et al. (2013). The WCET of task τi is given by

Ci =Ui×Ti. We assume all timing values to be in milliseconds.

We consider synchronous task sets (i.e. all the tasks release a job at the same time instant,

say the first job at t = 0), with implicit deadlines (i.e. for a task set with n tasks, Di = Ti, ∀i ∈

{1,2, . . . ,n}).

Each task set is characterised according to the proportion of tasks executing a transaction, and

the proportion of transactions that update a portion of its dataset. Before we discuss the actual

details of our implementation, let us introduce the following definitions.

9.1 Experimental setup 113

Definition 39 (Transaction ratio). Let τtrans be the subset of τ in which every task executes at least

a transaction. The transaction ratio is defined as Pt
def
= ntrans

n
, where #τtrans = ntrans.

Definition 40 (Update transaction ratio). Let τupdate be the subset of τtrans in which every task

executes an update transaction. The update transaction ratio is defined as Pu
def
=

nupdate

ntrans
, where

#τupdate = nupdate.

For each task set, the transaction ratio Pt is randomly selected from the set of values with equal

probabilities, such that Pt ∈ {0.40,0.50,0.60,0.70,0.80}. A number of tasks is randomly selected

that the ratio of tasks executing a transaction is within a 0.05 error from the selected Pt . In the same

vein, the ratio of update transactions among all transactions, denoted as Pu, is randomly selected

from {0.25,0.50,0.75}. A number of tasks executing a transaction is randomly selected such that

the ratio of tasks executing an update transaction is within a 0.05 error from the selected Pu.

The execution time of the transaction ωi executed by τi, Cωi
, is computed as a fraction of the

task execution time Ci, given by a normal distribution with mean µ = 0.20 and standard deviation

σ = 0.10. The time at which ωi starts inside task τi is random. The STM environment is defined

based on the system characteristics. The number of transactional objects p is computed as p =

2.5n, and the number of contention groups g is defined as g = ⌊n/2⌋. The transactional objects are

evenly distributed between the contention groups, such that the size of each group |Ω| = p
g
= 5.

Each transaction ωi is randomly assigned to a contention group. The size of ωi dataset is randomly

selected from {1, . . . , |Ω|}. The objects in the dataset of ωi are randomly selected from the assigned

contention group, such that ωi does not compete with transactions in other contention groups. If ωi

is an update transaction, each object in its dataset is randomly assigned a read or write operation.

We assume that at least one object must be accessed by a write operation.

9.1.3 STM specification

We developed a minimalistic STM system by using the C language, as a Linux user space service.

This STM stores the current version of the shared transactional objects and manages the current

accesses to every transactional object. The STM is initialised with a fixed number of transactional

objects. Each transactional object is identified by a unique index number and the STM keeps a

pointer to the current object value, its current (sequential) version number, and a chronologically

ordered list of pointers to the descriptors of the transactions that are currently accessing the object.

The chronologically ordered list allows us to assign priorities to the transactions in the commit

sequence. This list is updated everytime a transaction requests access to the transactional object,

and when a transaction commits. Each transactional object has a mutex that synchronises the

operations that involve modifying the current value of the object and insert or remove a transaction

descriptor from the ordered list. The time required by the operations to own this mutex is expected

to be a small fraction of the execution time of a complete transaction/atomic section. Figure 9.1

illustrates a simplified view of this architecture.

114 Implementation

Transaction descriptor

Chronologically ordered list

Transactional object current value

Transactional object descriptors

Figure 9.1: STM transactional object descriptors.

Each transaction descriptor has a pointer to the local copy of the transactional object and a list

of pointers to every transactional object descriptor. This list allows us to check the status of the

transactional objects at the time the transaction is committing.

The STM system provides the tasks with the following calls:

stm_start_transaction. This function is called by the task when it reaches the beginning of

the transactional section, and sets the environment for the transaction. This function signals

the operating system that a transaction was released.

stm_read_object. This function opens a transactional object for read-only access by the call-

ing transaction. The transaction is inserted in the transactional object list of accesses, and

the transactional object is added to the transaction current dataset.

stm_write_object. This function opens a transactional object for read-write access by the

calling transaction. The transaction is inserted in the transactional object list of accesses,

and the transactional object is added to the transaction current dataset.

stm_commit. This function is called by the task at the end of the transactional section. The STM

verifies if the transaction is allowed to commit (and apply the required STM state updates if

this is the case) or it must abort. This function signals the operating system if the transaction

committed or aborted.

9.1.4 Schedulers specification

The scheduling approaches – NPUC, NPDA and SRPTM – were implemented as schedulers into

the ReTAS framework, in the Linux kernel 3.10.15. Every scheduler implemented two system

calls that allow the STM to inform the operating system on the status of the current transaction:

9.2 Results 115

retas_set_active_transaction. This system call is invoked at the beginning of a trans-

action and informs the scheduler that a transaction is currently active on core where the task

has been assigned.

retas_clear_active_transaction. This system call is invoked at the end of a transac-

tion and informs the scheduler on the status of the current active transaction (committed or

aborted).

The three schedulers are based on the original partitioned-EDF scheduler that is part of the

ReTAS framework, adding the respective extensions to the base policy. Specifically, each core

executes its assigned tasks by following the EDF scheduler and the extensions are activated only

when a transaction is released on the core and deactivated when the transaction commits. Both sys-

tem calls retas_set_active_transaction and retas_clear_active_transaction

have the effect of temporarily modify the scheduler behaviour, as described below.

NPUC. The call to retas_set_active_transaction executes the current transaction on

the core in a non-preemptive manner. This is given with the interpretation that any arriving job,

irrespective of its priority, is enqueued and not scheduled until the transaction has committed. The

call to retas_clear_active_transaction is ignored by the scheduler when the transaction

of the executing job aborts, and it switches back the scheduler to EDF once the transaction has

committed.

NPDA. As for NPUC, the call to retas_set_active_transaction executes the trans-

action non-preemptively. However, the call to retas_clear_active_transaction allows

jobs with a higher priority to be executed when the transaction aborts, and it switches back the

scheduler to EDF when the transaction commits.

SPRTM. The call to retas_set_active_transaction sets the core ceiling to the trans-

action preemption level with the interpretation that only arriving jobs with a higher preemp-

tion level than the current core ceiling and with no transaction can be scheduled. The call to

retas_clear_active_transaction is ignored by the scheduler when the transaction aborts,

and it switches back the scheduler to EDF when the transaction commits.

9.2 Results

This section reports on the quantitative results of the experiments conducted in a practical comput-

ing system with real-time requirements assuming synthetic task sets. Each task set was executed

for two hyper-periods for each of the three scheduling approaches – NPUC, SRPTM and NPDA

– and was executed in the context of a Linux process. Each task was executed as a Linux thread.

The master thread loads the task set specifications and sequentially creates the task threads, setting

116 Implementation

their individual core affinity, scheduling and STM parameters. It also sets a common first arrival

time instant so that all tasks are released synchronously.

During the experiments, we monitored the following metrics:

• the time between the arrival of two consecutive jobs for the same task,

• the execution time of each job,

• the response time of each job,

• the number of preemptions of each job,

• the response time of each transaction from its release time until its commit time, and

• the number of aborts experienced by each transaction.

Before we conducted the experiments, we observed that the execution time in isolation of each

job on the platform presents minor fluctuations, increasing with the number of tasks on each core.

The fluctuation could be significant relative to the actual WCET, for tasks with small execution

times. However, to take these fluctuations into account, we tuned the system such that the effective

execution time of a task would be around 80% of the task WCET, on average. The remaining 20%

margin were established to accommodate the eventual system overheads, so as to prevent the actual

execution time of a job to exceed its predefined task WCET.

The period of each task was set exactly as the predefined value. The experimental results

revealed that the arrival of two consecutive jobs of the same task was consistently close to the pre-

defined period across all the task set profiles, with the average
Texperimental

T
= 1.003 and the maximum

standard deviation of this ratio observed was 0.004.

9.2.1 STM performance

The influence of the scheduling strategy on the performance of the STM system was observed by

measuring the number of aborts that were experienced by the transactions during the experiments.

This metric is meaningful in this regard as the maximum number of times an instance of a trans-

action is aborted has a direct impact on the response time of the job that executes it. Figure 9.2 to

Figure 9.5 present the maximum number of aborts observed for a single job of a task, normalised

by the number of tasks that executed a transaction in each task set profile. The charts do not

permit to determine a scheduling strategy that consistently provides the lowest maximum number

of aborts per job. However, in some spurious cases, SRPTM presents results that are worst than

the other two scheduling strategies (NPUC and NPDA). The same conclusion applies to NPDA as

compared to NPUC and SRPTM.

On a different perspective, the total number of aborts per task during the experiments reveals

the total amount of execution time overhead that is due to the STM synchronisation mechanism.

Figure 9.6 to Figure 9.9 illustrate the observed total number of aborts per task, normalised by

the number of tasks that executed a transaction in each task set profile. Again, the charts do

9.2 Results 117

����

���

���

���

�� �� �� �� �� �� �� �� �� �� ��

����������

�
��

��
��

��
���
���
��
���

��
��

���
�

������

����
�����
���� ����

���

���

���

�� �� �� �� �� �� �� �� �� �� ��

����������

�
��

��
��

��
���
���
��
���

��
��

���
�

������

����
�����
����

����

���

���

���

�� �� �� �� �� �� �� �� �� �� ��

����������

�
��

��
��

��
���
���
��
���

��
��

���
�

������

����
�����
���� ����

���

���

���

�� �� �� �� �� �� �� �� �� �� ��

����������

�
��

��
��

��
���
���
��
���

��
��

���
�

������

����
�����
����

����

���

���

���

�� �� �� �� �� �� �� �� �� �� ��

����������

�
��

��
��

��
���
���
��
���

��
��

���
�

������

����
�����
����

Figure 9.2: Maximum number of aborts of a transaction per job (m = 2).

118 Implementation

���

���

���

�� �� �� �� �� �� �� �� �� �� ��

����������

�
��

��
��

��
���
���
��
���

��
��

���
�

������

����
�����
����

���

���

���

�� �� �� �� �� �� �� �� �� �� ��

����������

�
��

��
��

��
���
���
��
���

��
��

���
�

������

����
�����
����

���

���

���

�� �� �� �� �� �� �� �� �� �� ��

����������

�
��

��
��

��
���
���
��
���

��
��

���
�

������

����
�����
����

���

���

���

�� �� �� �� �� �� �� �� �� �� ��

����������

�
��

��
��

��
���
���
��
���

��
��

���
�

������

����
�����
����

���

���

���

�� �� �� �� �� �� �� �� �� �� ��

����������

�
��

��
��

��
���
���
��
���

��
��

���
�

������

����
�����
����

Figure 9.3: Maximum number of aborts of a transaction per job (m = 4).

9.2 Results 119

���

���

���

���

�� �� �� �� �� �� �� �� �� �� ��

����������

�
��

��
��

��
���
���
��
���

��
��

���
�

������

����
�����
����

���

���

���

���

�� �� �� �� �� �� �� �� �� �� ��

����������

�
��

��
��

��
���
���
��
���

��
��

���
�

������

����
�����
����

���

���

���

���

�� �� �� �� �� �� �� �� �� �� ��

����������

�
��

��
��

��
���
���
��
���

��
��

���
�

������

����
�����
����

���

���

���

���

�� �� �� �� �� �� �� �� �� �� ��

����������

�
��

��
��

��
���
���
��
���

��
��

���
�

������

����
�����
����

���

���

���

���

�� �� �� �� �� �� �� �� �� �� ��

����������

�
��

��
��

��
���
���
��
���

��
��

���
�

������

����
�����
����

Figure 9.4: Maximum number of aborts of a transaction per job (m = 8).

120 Implementation

���

���

���

���

�� �� �� �� �� �� �� �� �� �� ��

����������

�
��

��
��

��
���
���
��
���

��
��

���
�

������

����
�����
����

���

���

���

���

�� �� �� �� �� �� �� �� �� �� ��

����������

�
��

��
��

��
���
���
��
���

��
��

���
�

������

����
�����
����

���

���

���

���

�� �� �� �� �� �� �� �� �� �� ��

����������

�
��

��
��

��
���
���
��
���

��
��

���
�

������

����
�����
����

���

���

���

���

�� �� �� �� �� �� �� �� �� �� ��

����������

�
��

��
��

��
���
���
��
���

��
��

���
�

������

����
�����
����

���

���

���

���

�� �� �� �� �� �� �� �� �� �� ��

����������

�
��

��
��

��
���
���
��
���

��
��

���
�

������

����
�����
����

Figure 9.5: Maximum number of aborts of a transaction per job (m = 16).

9.2 Results 121

not show a scheduling strategy that consistently provides the lowest transaction execution time

overhead. However, for systems with a higher number of cores, NPUC presents worst results in

general. This is due to short transactions that are non-preemptible and abort a significant number

of times while waiting for concurrent transactions to commit on other cores. This effect sums up

on multiple instances of such transaction, becoming visible in the charts.

In summary, the results indicate that the task set properties have a major influence on the

number of aborts, rather than the scheduling strategy. However, NPUC is more prone to more

aborts on short transactions that concur with longer transactions than SRPTM and NPDA.

9.2.2 System performance

This section reports on the influence of the proposed scheduling strategies on the overall task set

performance. Specifically, we discuss the maximum number of preemptions a job suffers; the aver-

age execution time overhead that each task incurred; the workload; and, finally, the responsiveness

of each task.

Maximum number of preemptions per job. Preemptive scheduling strategies are characterised

by the ability of the scheduler to suspend the execution of a running job so as to schedule another

job with a higher priority. This technique incurs in practice execution time overheads due to

context switching operations. For each job, we measured the number of preemptions it suffered,

and recorded the maximum observed value for each task. Then, for each task set profile, we

determined the average value for all the tasks.

The results allow us to observe a common trend for all the three strategies: the maximum

number of preemptions for a single job grows as the ideal system demand increases. This result is

intuitive and expected as when the number of tasks increase, more interference is expected.

The results for the three scheduling strategies are very similar in the majority of task set pro-

files. NPUC presents the largest maximum number of preemptions per job for m = 2 cores, but

the lowest for higher number of cores. This indicates that the longer the non-preemptive period,

the larger the number of ready jobs enqueued to be scheduled in a sequential manner when the

scheduler switches back to preemptive again. This leads to a potential reduction of the number of

preemptions on those specific jobs.

Average execution time overhead per task. Although context switching due to preemptions

is a practical source of overhead, diverse system events such as other scheduler operations (not

related to preemption) and STM transaction aborts can add to the total execution time of a task.

The average overhead of each task τi was inferred from the ratio between the total processor time

demanded by the observed ji jobs of τi, and the theoretical demand that τi would require during

the observed experiment, i.e. ji×Ci. Finally, for each task set profile we determined the average

execution time overhead for all tasks. We must recall that the execution time per task in practice

was set to be approximately 80% of the predefined task WCET to accommodate eventual system

fluctuations.

122 Implementation

����

���

���

���

���

�� �� �� �� �� �� �� �� �� �� ��

����������

��
��
���
��

��
���
���
��
���

��
��

���
��

������

����
�����
����

����

���

���

���

���

�� �� �� �� �� �� �� �� �� �� ��

����������

��
��
���
��

��
���
���
��
���

��
��

���
��

������

����
�����
����

����

���

���

���

���

�� �� �� �� �� �� �� �� �� �� ��

����������

��
��
���
��

��
���
���
��
���

��
��

���
��

������

����
�����
����

����

���

���

���

���

�� �� �� �� �� �� �� �� �� �� ��

����������

��
��
���
��

��
���
���
��
���

��
��

���
��

������

����
�����
����

����

���

���

���

���

�� �� �� �� �� �� �� �� �� �� ��

����������

��
��
���
��

��
���
���
��
���

��
��

���
��

������

����
�����
����

Figure 9.6: Average number of aborts per task (m = 2).

9.2 Results 123

���

���

���

���

�� �� �� �� �� �� �� �� �� �� ��

����������

��
��
���
��

��
���
���
��
���

��
��

���
��

������

����
�����
����

���

���

���

���

�� �� �� �� �� �� �� �� �� �� ��

����������

��
��
���
��

��
���
���
��
���

��
��

���
��

������

����
�����
����

���

���

���

���

�� �� �� �� �� �� �� �� �� �� ��

����������

��
��
���
��

��
���
���
��
���

��
��

���
��

������

����
�����
����

���

���

���

���

�� �� �� �� �� �� �� �� �� �� ��

����������

��
��
���
��

��
���
���
��
���

��
��

���
��

������

����
�����
����

���

���

���

���

�� �� �� �� �� �� �� �� �� �� ��

����������

��
��
���
��

��
���
���
��
���

��
��

���
��

������

����
�����
����

Figure 9.7: Average number of aborts per task (m = 4).

124 Implementation

���

���

���

�� �� �� �� �� �� �� �� �� �� ��

����������

��
��
���
��

��
���
���
��
���

��
��

���
��

������

����
�����
����

���

���

���

�� �� �� �� �� �� �� �� �� �� ��

����������

��
��
���
��

��
���
���
��
���

��
��

���
��

������

����
�����
����

���

���

���

�� �� �� �� �� �� �� �� �� �� ��

����������

��
��
���
��

��
���
���
��
���

��
��

���
��

������

����
�����
����

���

���

���

�� �� �� �� �� �� �� �� �� �� ��

����������

��
��
���
��

��
���
���
��
���

��
��

���
��

������

����
�����
����

���

���

���

�� �� �� �� �� �� �� �� �� �� ��

����������

��
��
���
��

��
���
���
��
���

��
��

���
��

������

����
�����
����

Figure 9.8: Average number of aborts per task (m = 8).

9.2 Results 125

���

���

���

�� �� �� �� �� �� �� �� �� �� ��

����������

��
��
���
��

��
���
���
��
���

��
��

���
��

������

����
�����
����

���

���

���

�� �� �� �� �� �� �� �� �� �� ��

����������

��
��
���
��

��
���
���
��
���

��
��

���
��

������

����
�����
����

���

���

���

�� �� �� �� �� �� �� �� �� �� ��

����������

��
��
���
��

��
���
���
��
���

��
��

���
��

������

����
�����
����

���

���

���

�� �� �� �� �� �� �� �� �� �� ��

����������

��
��
���
��

��
���
���
��
���

��
��

���
��

������

����
�����
����

���

���

���

�� �� �� �� �� �� �� �� �� �� ��

����������

��
��
���
��

��
���
���
��
���

��
��

���
��

������

����
�����
����

Figure 9.9: Average number of aborts per task (m = 16).

126 Implementation

����

����

����

����

����

����

�� �� �� �� �� �� �� �� �� �� ��

����������

��
��
��
��

��
��

��
��

��
���
���
��
��

��
���

���
��

���
�

������

����
�����
����

����

����

����

����

����

����

�� �� �� �� �� �� �� �� �� �� ��

����������

��
��
��
��

��
��

��
��

��
���
���
��
��

��
���

���
��

���
�

������

����
�����
����

����

����

����

����

����

����

�� �� �� �� �� �� �� �� �� �� ��

����������

��
��
��
��

��
��

��
��

��
���
���
��
��

��
���

���
��

���
�

������

����
�����
����

����

����

����

����

����

����

�� �� �� �� �� �� �� �� �� �� ��

����������

��
��
��
��

��
��

��
��

��
���
���
��
��

��
���

���
��

���
�

������

����
�����
����

����

����

����

����

����

����

�� �� �� �� �� �� �� �� �� �� ��

����������

��
��
��
��

��
��

��
��

��
���
���
��
��

��
���

���
��

���
�

������

����
�����
����

Figure 9.10: Maximum number of preemptions per job (m = 2).

9.2 Results 127

����

����

����

����

����

����

�� �� �� �� �� �� �� �� �� �� ��

����������

��
��
��
��

��
��

��
��

��
���
���
��
��

��
���

���
��

���
�

������

����
�����
����

����

����

����

����

����

����

�� �� �� �� �� �� �� �� �� �� ��

����������

��
��
��
��

��
��

��
��

��
���
���
��
��

��
���

���
��

���
�

������

����
�����
����

����

����

����

����

����

����

�� �� �� �� �� �� �� �� �� �� ��

����������

��
��
��
��

��
��

��
��

��
���
���
��
��

��
���

���
��

���
�

������

����
�����
����

����

����

����

����

����

����

�� �� �� �� �� �� �� �� �� �� ��

����������

��
��
��
��

��
��

��
��

��
���
���
��
��

��
���

���
��

���
�

������

����
�����
����

����

����

����

����

����

����

�� �� �� �� �� �� �� �� �� �� ��

����������

��
��
��
��

��
��

��
��

��
���
���
��
��

��
���

���
��

���
�

������

����
�����
����

Figure 9.11: Maximum number of preemptions per job (m = 4).

128 Implementation

����

����

����

����

����

����

�� �� �� �� �� �� �� �� �� �� ��

����������

��
��
��
��

��
��

��
��

��
���
���
��
��

��
���

���
��

���
�

������

����
�����
����

����

����

����

����

����

����

�� �� �� �� �� �� �� �� �� �� ��

����������

��
��
��
��

��
��

��
��

��
���
���
��
��

��
���

���
��

���
�

������

����
�����
����

����

����

����

����

����

����

�� �� �� �� �� �� �� �� �� �� ��

����������

��
��
��
��

��
��

��
��

��
���
���
��
��

��
���

���
��

���
�

������

����
�����
����

����

����

����

����

����

����

�� �� �� �� �� �� �� �� �� �� ��

����������

��
��
��
��

��
��

��
��

��
���
���
��
��

��
���

���
��

���
�

������

����
�����
����

����

����

����

����

����

����

�� �� �� �� �� �� �� �� �� �� ��

����������

��
��
��
��

��
��

��
��

��
���
���
��
��

��
���

���
��

���
�

������

����
�����
����

Figure 9.12: Maximum number of preemptions per job (m = 8).

9.2 Results 129

����

����

����

����

����

����

�� �� �� �� �� �� �� �� �� �� ��

����������

��
��
��
��

��
��

��
��

��
���
���
��
��

��
���

���
��

���
�

������

����
�����
����

����

����

����

����

����

����

�� �� �� �� �� �� �� �� �� �� ��

����������

��
��
��
��

��
��

��
��

��
���
���
��
��

��
���

���
��

���
�

������

����
�����
����

����

����

����

����

����

����

�� �� �� �� �� �� �� �� �� �� ��

����������

��
��
��
��

��
��

��
��

��
���
���
��
��

��
���

���
��

���
�

������

����
�����
����

����

����

����

����

����

����

�� �� �� �� �� �� �� �� �� �� ��

����������

��
��
��
��

��
��

��
��

��
���
���
��
��

��
���

���
��

���
�

������

����
�����
����

����

����

����

����

����

����

�� �� �� �� �� �� �� �� �� �� ��

����������

��
��
��
��

��
��

��
��

��
���
���
��
��

��
���

���
��

���
�

������

����
�����
����

Figure 9.13: Maximum number of preemptions per job (m = 16).

130 Implementation

The results show that, for 2 and 4 cores, NPDA presents the highest overheads for the major-

ity of task set profiles, while SRPTM presents the lowest overheads for the majority of task set

profiles. However, NPUC predominantly shows the lowest overheads when the number of cores

increases.

9.2 Results 131

����

����

����

����

����

����

����

����

����

�� �� �� �� �� �� �� �� �� �� ��

����������

��
��
��
��
� �

��
���
�

������

����
�����
����

����

����

����

����

����

�� �� �� �� �� �� �� �� �� �� ��

����������

��
��

��
��
���

��
��
���

������

����
�����
����

����

����

����

����

����

����

����

����

����

�� �� �� �� �� �� �� �� �� �� ��

����������

��
��
��
��
� �

��
���
�

������

����
�����
����

����

����

����

����

����

�� �� �� �� �� �� �� �� �� �� ��

����������

��
��

��
��
���

��
��
���

������

����
�����
����

����

����

����

����

����

����

����

����

����

�� �� �� �� �� �� �� �� �� �� ��

����������

��
��
��
��
� �

��
���
�

������

����
�����
����

����

����

����

����

����

�� �� �� �� �� �� �� �� �� �� ��

����������

��
��

��
��
���

��
��
���

������

����
�����
����

����

����

����

����

����

����

����

����

����

�� �� �� �� �� �� �� �� �� �� ��

����������

��
��
��
��
� �

��
���
�

������

����
�����
����

����

����

����

����

����

�� �� �� �� �� �� �� �� �� �� ��

����������

��
��

��
��
���

��
��
���

������

����
�����
����

����

����

����

����

����

����

����

����

����

�� �� �� �� �� �� �� �� �� �� ��

����������

��
��
��
��
� �

��
���
�

������

����
�����
����

����

����

����

����

����

�� �� �� �� �� �� �� �� �� �� ��

����������

��
��

��
��
���

��
��
���

������

����
�����
����

Figure 9.14: Execution time overheads (m = 2).

132 Implementation

����

����

����

����

����

����

����

����

����

�� �� �� �� �� �� �� �� �� �� ��

����������

��
��
��
��
� �

��
���
�

������

����
�����
����

����

����

����

����

����

�� �� �� �� �� �� �� �� �� �� ��

����������

��
��

��
��
���

��
��
���

������

����
�����
����

����

����

����

����

����

����

����

����

����

�� �� �� �� �� �� �� �� �� �� ��

����������

��
��
��
��
� �

��
���
�

������

����
�����
����

����

����

����

����

����

�� �� �� �� �� �� �� �� �� �� ��

����������

��
��

��
��
���

��
��
���

������

����
�����
����

����

����

����

����

����

����

����

����

����

�� �� �� �� �� �� �� �� �� �� ��

����������

��
��
��
��
� �

��
���
�

������

����
�����
����

����

����

����

����

����

�� �� �� �� �� �� �� �� �� �� ��

����������

��
��

��
��
���

��
��
���

������

����
�����
����

����

����

����

����

����

����

����

����

����

�� �� �� �� �� �� �� �� �� �� ��

����������

��
��
��
��
� �

��
���
�

������

����
�����
����

����

����

����

����

����

�� �� �� �� �� �� �� �� �� �� ��

����������

��
��

��
��
���

��
��
���

������

����
�����
����

����

����

����

����

����

����

����

����

����

�� �� �� �� �� �� �� �� �� �� ��

����������

��
��
��
��
� �

��
���
�

������

����
�����
����

����

����

����

����

����

�� �� �� �� �� �� �� �� �� �� ��

����������

��
��

��
��
���

��
��
���

������

����
�����
����

Figure 9.15: Execution time overheads (m = 4).

9.2 Results 133

����

����

����

����

����

����

����

����

����

�� �� �� �� �� �� �� �� �� �� ��

����������

��
��
��
��
� �

��
���
�

������

����
�����
����

����

����

����

����

����

�� �� �� �� �� �� �� �� �� �� ��

����������

��
��

��
��
���

��
��
���

������

����
�����
����

����

����

����

����

����

����

����

����

����

�� �� �� �� �� �� �� �� �� �� ��

����������

��
��
��
��
� �

��
���
�

������

����
�����
����

����

����

����

����

����

�� �� �� �� �� �� �� �� �� �� ��

����������

��
��

��
��
���

��
��
���

������

����
�����
����

����

����

����

����

����

����

����

����

����

�� �� �� �� �� �� �� �� �� �� ��

����������

��
��
��
��
� �

��
���
�

������

����
�����
����

����

����

����

����

����

�� �� �� �� �� �� �� �� �� �� ��

����������

��
��

��
��
���

��
��
���

������

����
�����
����

����

����

����

����

����

����

����

����

����

�� �� �� �� �� �� �� �� �� �� ��

����������

��
��
��
��
� �

��
���
�

������

����
�����
����

����

����

����

����

����

�� �� �� �� �� �� �� �� �� �� ��

����������

��
��

��
��
���

��
��
���

������

����
�����
����

����

����

����

����

����

����

����

����

����

�� �� �� �� �� �� �� �� �� �� ��

����������

��
��
��
��
� �

��
���
�

������

����
�����
����

����

����

����

����

����

�� �� �� �� �� �� �� �� �� �� ��

����������

��
��

��
��
���

��
��
���

������

����
�����
����

Figure 9.16: Execution time overheads (m = 8).

134 Implementation

����

����

����

����

����

����

����

����

����

�� �� �� �� �� �� �� �� �� �� ��

����������

��
��
��
��
� �

��
���
�

������

����
�����
����

����

����

����

����

����

�� �� �� �� �� �� �� �� �� �� ��

����������

��
��

��
��
���

��
��
���

������

����
�����
����

����

����

����

����

����

����

����

����

����

�� �� �� �� �� �� �� �� �� �� ��

����������

��
��
��
��
� �

��
���
�

������

����
�����
����

����

����

����

����

����

�� �� �� �� �� �� �� �� �� �� ��

����������

��
��

��
��
���

��
��
���

������

����
�����
����

����

����

����

����

����

����

����

����

����

�� �� �� �� �� �� �� �� �� �� ��

����������

��
��
��
��
� �

��
���
�

������

����
�����
����

����

����

����

����

����

�� �� �� �� �� �� �� �� �� �� ��

����������

��
��

��
��
���

��
��
���

������

����
�����
����

����

����

����

����

����

����

����

����

����

�� �� �� �� �� �� �� �� �� �� ��

����������

��
��
��
��
� �

��
���
�

������

����
�����
����

����

����

����

����

����

�� �� �� �� �� �� �� �� �� �� ��

����������

��
��

��
��
���

��
��
���

������

����
�����
����

����

����

����

����

����

����

����

����

����

�� �� �� �� �� �� �� �� �� �� ��

����������

��
��
��
��
� �

��
���
�

������

����
�����
����

����

����

����

����

����

�� �� �� �� �� �� �� �� �� �� ��

����������

��
��

��
��
���

��
��
���

������

����
�����
����

Figure 9.17: Execution time overheads (m = 16).

9.2 Results 135

Workload. At a broader scale, we observed how the different scheduling strategies would affect

the demand of system at runtime. For each task set, we determined the workload as the ratio

between the actual processor demand and the processor capacity. Finally, for each profile, we

computed the average workload as the sum of the workloads of the task sets in the profile over the

number of tasks sets.

NPDA consistently presents the largest workload in all observed profiles, as compared to

NPUC and SRPTM. This result indicates that NPDA requests more system capacity than NPUC

and SRPTM to carry out the same amount of work. This behaviour can be explained by the

amount of interference among jobs with a higher priority than the executing one when the trans-

action aborts, before it eventually commits.

Responsiveness of each task. We measured the responsiveness of each task as the ratio between

its observed worst-case response time over its period. This metric reveals how the scheduling

strategies handle the timing requirements of the task set, such that the tasks can meet their dead-

lines. The smaller the ratio, the more responsive is the scheduler.

Although the three schedulers present close ratios for all the task set profiles, NPDA con-

sistently revealed the highest ratios. On the other end, SRPTM consistently presents the lowest

ratios, providing the best responsiveness in the worst case for the considered task sets. This result

indicates that SRPTM is effectively a promising candidate towards the responsiveness of tasks. It

takes into account the urgency of ready jobs that may be blocked when a transaction is in progress.

136 Implementation

����

����

����

����

����

����

����

�� �� �� �� �� �� �� �� �� �� ��

����������

�
��
���

��
���
��
�
���
��
��

������

����
�����
����

����

����

����

����

����

����

����

�� �� �� �� �� �� �� �� �� �� ��

����������

�
��
���

��
���
��
�
���
��
��

������

����
�����
����

����

����

����

����

����

����

����

�� �� �� �� �� �� �� �� �� �� ��

����������

�
��
���

��
���
��
�
���
��
��

������

����
�����
����

����

����

����

����

����

����

����

�� �� �� �� �� �� �� �� �� �� ��

����������

�
��
���

��
���
��
�
���
��
��

������

����
�����
����

����

����

����

����

����

����

����

�� �� �� �� �� �� �� �� �� �� ��

����������

�
��
���

��
���
��
�
���
��
��

������

����
�����
����

Figure 9.18: Workload (normalised by the number of tasks) (m = 2).

9.2 Results 137

����

����

����

����

����

����

����

�� �� �� �� �� �� �� �� �� �� ��

����������

�
��
���

��
���
��
�
���
��
��

������

����
�����
����

����

����

����

����

����

����

����

�� �� �� �� �� �� �� �� �� �� ��

����������

�
��
���

��
���
��
�
���
��
��

������

����
�����
����

����

����

����

����

����

����

����

�� �� �� �� �� �� �� �� �� �� ��

����������

�
��
���

��
���
��
�
���
��
��

������

����
�����
����

����

����

����

����

����

����

����

�� �� �� �� �� �� �� �� �� �� ��

����������

�
��
���

��
���
��
�
���
��
��

������

����
�����
����

����

����

����

����

����

����

����

�� �� �� �� �� �� �� �� �� �� ��

����������

�
��
���

��
���
��
�
���
��
��

������

����
�����
����

Figure 9.19: Workload (normalised by the number of tasks) (m = 4).

138 Implementation

����

����

����

����

����

����

����

�� �� �� �� �� �� �� �� �� �� ��

����������

�
��
���

��
���
��
�
���
��
��

������

����
�����
����

����

����

����

����

����

����

����

�� �� �� �� �� �� �� �� �� �� ��

����������

�
��
���

��
���
��
�
���
��
��

������

����
�����
����

����

����

����

����

����

����

����

�� �� �� �� �� �� �� �� �� �� ��

����������

�
��
���

��
���
��
�
���
��
��

������

����
�����
����

����

����

����

����

����

����

����

�� �� �� �� �� �� �� �� �� �� ��

����������

�
��
���

��
���
��
�
���
��
��

������

����
�����
����

����

����

����

����

����

����

����

�� �� �� �� �� �� �� �� �� �� ��

����������

�
��
���

��
���
��
�
���
��
��

������

����
�����
����

Figure 9.20: Workload (normalised by the number of tasks) (m = 8).

9.2 Results 139

����

����

����

����

����

����

����

�� �� �� �� �� �� �� �� �� �� ��

����������

�
��
���

��
���
��
�
���
��
��

������

����
�����
����

����

����

����

����

����

����

����

�� �� �� �� �� �� �� �� �� �� ��

����������

�
��
���

��
���
��
�
���
��
��

������

����
�����
����

����

����

����

����

����

����

����

�� �� �� �� �� �� �� �� �� �� ��

����������

�
��
���

��
���
��
�
���
��
��

������

����
�����
����

����

����

����

����

����

����

����

�� �� �� �� �� �� �� �� �� �� ��

����������

�
��
���

��
���
��
�
���
��
��

������

����
�����
����

����

����

����

����

����

����

����

�� �� �� �� �� �� �� �� �� �� ��

����������

�
��
���

��
���
��
�
���
��
��

������

����
�����
����

Figure 9.21: Workload (normalised by the number of tasks) (m = 16).

140 Implementation

����

����

����

����

����

����

����

����

����

�� �� �� �� �� �� �� �� �� �� ��

����������

��
��
��
��
��
��
��
���
��
��
�

������

����
�����
����

����

����

����

����

����

�� �� �� �� �� �� �� �� �� �� ��

����������

��
��

��
��
���
���
��
��
��
���

��
��

������

����
�����
����

����

����

����

����

����

����

����

����

����

�� �� �� �� �� �� �� �� �� �� ��

����������

��
��
��
��
��
��
��
���
��
��
�

������

����
�����
����

����

����

����

����

����

�� �� �� �� �� �� �� �� �� �� ��

����������

��
��

��
��
���
���
��
��
��
���

��
��

������

����
�����
����

����

����

����

����

����

����

����

����

����

�� �� �� �� �� �� �� �� �� �� ��

����������

��
��
��
��
��
��
��
���
��
��
�

������

����
�����
����

����

����

����

����

����

�� �� �� �� �� �� �� �� �� �� ��

����������

��
��

��
��
���
���
��
��
��
���

��
��

������

����
�����
����

����

����

����

����

����

����

����

����

����

�� �� �� �� �� �� �� �� �� �� ��

����������

��
��
��
��
��
��
��
���
��
��
�

������

����
�����
����

����

����

����

����

����

�� �� �� �� �� �� �� �� �� �� ��

����������

��
��

��
��
���
���
��
��
��
���

��
��

������

����
�����
����

����

����

����

����

����

����

����

����

����

�� �� �� �� �� �� �� �� �� �� ��

����������

��
��
��
��
��
��
��
���
��
��
�

������

����
�����
����

����

����

����

����

����

�� �� �� �� �� �� �� �� �� �� ��

����������

��
��

��
��
���
���
��
��
��
���

��
��

������

����
�����
����

Figure 9.22: Responsiveness RT
T

(m = 2).

9.2 Results 141

����

����

����

����

����

����

�� �� �� �� �� �� �� �� �� �� ��

����������
��
��
��
��
��
��
��
���
��
��
�

������

����
�����
����

����

����

����

����

����

�� �� �� �� �� �� �� �� �� �� ��

����������

��
��

��
��
���
���
��
��
��
���

��
��

������

����
�����
����

����

����

����

����

����

����

�� �� �� �� �� �� �� �� �� �� ��

����������

��
��
��
��
��
��
��
���
��
��
�

������

����
�����
����

����

����

����

����

����

�� �� �� �� �� �� �� �� �� �� ��

����������

��
��

��
��
���
���
��
��
��
���

��
��

������

����
�����
����

����

����

����

����

����

����

�� �� �� �� �� �� �� �� �� �� ��

����������

��
��
��
��
��
��
��
���
��
��
�

������

����
�����
����

����

����

����

����

����

�� �� �� �� �� �� �� �� �� �� ��

����������

��
��

��
��
���
���
��
��
��
���

��
��

������

����
�����
����

����

����

����

����

����

����

�� �� �� �� �� �� �� �� �� �� ��

����������

��
��
��
��
��
��
��
���
��
��
�

������

����
�����
����

����

����

����

����

����

�� �� �� �� �� �� �� �� �� �� ��

����������

��
��

��
��
���
���
��
��
��
���

��
��

������

����
�����
����

����

����

����

����

����

����

�� �� �� �� �� �� �� �� �� �� ��

����������

��
��
��
��
��
��
��
���
��
��
�

������

����
�����
����

����

����

����

����

����

�� �� �� �� �� �� �� �� �� �� ��

����������

��
��

��
��
���
���
��
��
��
���

��
��

������

����
�����
����

Figure 9.23: Responsiveness RT
T

(m = 4).

142 Implementation

����

����

����

����

����

����

����

�� �� �� �� �� �� �� �� �� �� ��

����������

��
��
��
��
��
��
��
���
��
��
�

������

����
�����
����

����

����

����

����

����

�� �� �� �� �� �� �� �� �� �� ��

����������

��
��

��
��
���
���
��
��
��
���

��
��

������

����
�����
����

����

����

����

����

����

����

����

�� �� �� �� �� �� �� �� �� �� ��

����������

��
��
��
��
��
��
��
���
��
��
�

������

����
�����
����

����

����

����

����

����

�� �� �� �� �� �� �� �� �� �� ��

����������

��
��

��
��
���
���
��
��
��
���

��
��

������

����
�����
����

����

����

����

����

����

����

����

�� �� �� �� �� �� �� �� �� �� ��

����������

��
��
��
��
��
��
��
���
��
��
�

������

����
�����
����

����

����

����

����

����

�� �� �� �� �� �� �� �� �� �� ��

����������

��
��

��
��
���
���
��
��
��
���

��
��

������

����
�����
����

����

����

����

����

����

����

����

�� �� �� �� �� �� �� �� �� �� ��

����������

��
��
��
��
��
��
��
���
��
��
�

������

����
�����
����

����

����

����

����

����

�� �� �� �� �� �� �� �� �� �� ��

����������

��
��

��
��
���
���
��
��
��
���

��
��

������

����
�����
����

����

����

����

����

����

����

����

�� �� �� �� �� �� �� �� �� �� ��

����������

��
��
��
��
��
��
��
���
��
��
�

������

����
�����
����

����

����

����

����

����

�� �� �� �� �� �� �� �� �� �� ��

����������

��
��

��
��
���
���
��
��
��
���

��
��

������

����
�����
����

Figure 9.24: Responsiveness RT
T

(m = 8).

9.2 Results 143

����

����

����

����

����

����

����

�� �� �� �� �� �� �� �� �� �� ��

����������
��
��
��
��
��
��
��
���
��
��
�

������

����
�����
����

����

����

����

����

����

�� �� �� �� �� �� �� �� �� �� ��

����������

��
��

��
��
���
���
��
��
��
���

��
��

������

����
�����
����

����

����

����

����

����

����

����

�� �� �� �� �� �� �� �� �� �� ��

����������

��
��
��
��
��
��
��
���
��
��
�

������

����
�����
����

����

����

����

����

����

�� �� �� �� �� �� �� �� �� �� ��

����������

��
��

��
��
���
���
��
��
��
���

��
��

������

����
�����
����

����

����

����

����

����

����

����

�� �� �� �� �� �� �� �� �� �� ��

����������

��
��
��
��
��
��
��
���
��
��
�

������

����
�����
����

����

����

����

����

����

�� �� �� �� �� �� �� �� �� �� ��

����������

��
��

��
��
���
���
��
��
��
���

��
��

������

����
�����
����

����

����

����

����

����

����

����

�� �� �� �� �� �� �� �� �� �� ��

����������

��
��
��
��
��
��
��
���
��
��
�

������

����
�����
����

����

����

����

����

����

�� �� �� �� �� �� �� �� �� �� ��

����������

��
��

��
��
���
���
��
��
��
���

��
��

������

����
�����
����

����

����

����

����

����

����

����

�� �� �� �� �� �� �� �� �� �� ��

����������

��
��
��
��
��
��
��
���
��
��
�

������

����
�����
����

����

����

����

����

����

�� �� �� �� �� �� �� �� �� �� ��

����������

��
��

��
��
���
���
��
��
��
���

��
��

������

����
�����
����

Figure 9.25: Responsiveness RT
T

(m = 16).

144 Implementation

9.2.3 Response Time Analysis (RTA) accuracy

In Chapter 7 we provided two analytical methods to determine upper bounds on the worst-case

response time for transactions scheduled by using NPUC and SRPTM. Section 7.1 discussed the

impracticality of a worst-case response time analysis for transactions scheduled by NPDA. The

WCRT analyses for transactions scheduled by usign NPUC and SRPTM introduce non-negligible

pessimism.

Accuracy of the RTA at the transaction level. In this paragraph, we compared the analytical

worst case response time for each transaction against the observed worst case response time as

follows:
WCRT ω

analysis−WCRT ω
observed

WCRT ω
observed

. Figures 9.26 to 9.29 present this comparison. The observed results

illustrate the pessimism in the analysis of NPUC and SRPTM, as expected. On average, for the

majority of task set profiles, the analytical worst response times are 20 to 60 times higher than the

observed worst response times. SRPTM adds slightly more pessimism than NPUC, which can be

explained as follows.

• the analysis for SRPTM yields results that are not smaller than those provided by NPUC,

and

• the observed WCRT for transactions scheduled by SRPTM are smaller as compared to the

WCRT for transactions scheduled by NPUC (see Section 9.2.2).

Accuracy of the RTA at the task level. In contrast to the analysis conducted in the previous

paragraph targeting just the transactions, now we compare the analytical worst-case response time

for each task against the corresponding observed value. We recall that the WCRT analyses for each

task for the NPUC and SRPTM policies are based on the approach proposed by Spuri (1996).

This analysis requires the processor utilisation to be less than or equal to one, i.e. ∑Ci/Ti ≤ 1,

to converge. In the described analyses, we assume that each job is scheduled as long as the

transaction is in progress, then the WCET for any task τi is approximated by the execution time

of the non-transactional parts of the task, summed with the analytical WCRT of the transaction.

The pessimism that the transaction WCRT analyses add, inflates the task WCET. This additional

pessimism results, in some cases, to a computed processor utilisation that exceeds the convergence

requirement limit. In such cases, the WCRT analysis is not possible for the task subset allocated to

the core. Figures 9.30 to 9.33 present the ratio of tasks that were analysed for each task set profile.

We observe that the ratio of tasks analysed decreases when the ideal system utilisation1 in-

creases. This trend was expected as the slack of the system to accommodate the pessimism in the

analysis decreases. We also observe that the ratio slightly decreases with an increase in the number

of tasks executing a transaction (i.e. Pt). Informally speaking, this phenomenon can be explained

by the fact that the higher the number of transactions allocated to a core, the higher the pessimism

induced in the analysis.

1The ideal system utilisation is the system utilisation assuming that no transaction ever aborts.

9.2 Results 145

�

��

��

��

��

���

���

�� �� �� �� �� �� �� �� �� �� ��

����������
��
��
��
��
��
���
��
��
��
���
��
��

��
��
���

���

������
���� �����

�

���

���

���

���

����

����

�� �� �� �� �� �� �� �� �� �� ��

����������

��
��

��
��
���
��

���
��
��
���
��

��
��
��
��
��
���

������
���� �����

�

��

��

��

��

���

���

�� �� �� �� �� �� �� �� �� �� ��

����������

��
��
��
��
��
���
��
��
��
���
��
��

��
��
���

���

������
���� �����

�

���

���

���

���

����

����

�� �� �� �� �� �� �� �� �� �� ��

����������

��
��

��
��
���
��

���
��
��
���
��

��
��
��
��
��
���

������
���� �����

�

��

��

��

��

���

���

�� �� �� �� �� �� �� �� �� �� ��

����������

��
��
��
��
��
���
��
��
��
���
��
��

��
��
���

���

������
���� �����

�

���

���

���

���

����

����

�� �� �� �� �� �� �� �� �� �� ��

����������

��
��

��
��
���
��

���
��
��
���
��

��
��
��
��
��
���

������
���� �����

�

��

��

��

��

���

���

�� �� �� �� �� �� �� �� �� �� ��

����������

��
��
��
��
��
���
��
��
��
���
��
��

��
��
���

���

������
���� �����

�

���

���

���

���

����

����

�� �� �� �� �� �� �� �� �� �� ��

����������

��
��

��
��
���
��

���
��
��
���
��

��
��
��
��
��
���

������
���� �����

�

��

��

��

��

���

���

�� �� �� �� �� �� �� �� �� �� ��

����������

��
��
��
��
��
���
��
��
��
���
��
��

��
��
���

���

������
���� �����

�

���

���

���

���

����

����

�� �� �� �� �� �� �� �� �� �� ��

����������

��
��

��
��
���
��

���
��
��
���
��

��
��
��
��
��
���

������
���� �����

Figure 9.26: Observed pessimism for transaction RT analysis (m = 2).

146 Implementation

�

��

��

��

��

���

���

�� �� �� �� �� �� �� �� �� �� ��

����������

��
��
��
��
��
���
��
��
��
���
��
��

��
��
���

���

������
���� �����

�

���

���

���

���

����

����

�� �� �� �� �� �� �� �� �� �� ��

����������

��
��

��
��
���
��

���
��
��
���
��

��
��
��
��
��
���

������
���� �����

�

��

��

��

��

���

���

�� �� �� �� �� �� �� �� �� �� ��

����������

��
��
��
��
��
���
��
��
��
���
��
��

��
��
���

���

������
���� �����

�

���

���

���

���

����

����

�� �� �� �� �� �� �� �� �� �� ��

����������

��
��

��
��
���
��

���
��
��
���
��

��
��
��
��
��
���

������
���� �����

�

��

��

��

��

���

���

�� �� �� �� �� �� �� �� �� �� ��

����������

��
��
��
��
��
���
��
��
��
���
��
��

��
��
���

���

������
���� �����

�

���

���

���

���

����

����

�� �� �� �� �� �� �� �� �� �� ��

����������

��
��

��
��
���
��

���
��
��
���
��

��
��
��
��
��
���

������
���� �����

�

��

��

��

��

���

���

�� �� �� �� �� �� �� �� �� �� ��

����������

��
��
��
��
��
���
��
��
��
���
��
��

��
��
���

���

������
���� �����

�

���

���

���

���

����

����

�� �� �� �� �� �� �� �� �� �� ��

����������

��
��

��
��
���
��

���
��
��
���
��

��
��
��
��
��
���

������
���� �����

�

��

��

��

��

���

���

�� �� �� �� �� �� �� �� �� �� ��

����������

��
��
��
��
��
���
��
��
��
���
��
��

��
��
���

���

������
���� �����

�

���

���

���

���

����

����

�� �� �� �� �� �� �� �� �� �� ��

����������

��
��

��
��
���
��

���
��
��
���
��

��
��
��
��
��
���

������
���� �����

Figure 9.27: Observed pessimism for transaction RT analysis (m = 4).

9.2 Results 147

�

��

��

��

��

���

���

�� �� �� �� �� �� �� �� �� �� ��

����������
��
��
��
��
��
���
��
��
��
���
��
��

��
��
���

���

������
���� �����

�

���

���

���

���

����

����

�� �� �� �� �� �� �� �� �� �� ��

����������

��
��

��
��
���
��

���
��
��
���
��

��
��
��
��
��
���

������
���� �����

�

��

��

��

��

���

���

�� �� �� �� �� �� �� �� �� �� ��

����������

��
��
��
��
��
���
��
��
��
���
��
��

��
��
���

���

������
���� �����

�

���

���

���

���

����

����

�� �� �� �� �� �� �� �� �� �� ��

����������

��
��

��
��
���
��

���
��
��
���
��

��
��
��
��
��
���

������
���� �����

�

��

��

��

��

���

���

�� �� �� �� �� �� �� �� �� �� ��

����������

��
��
��
��
��
���
��
��
��
���
��
��

��
��
���

���

������
���� �����

�

���

���

���

���

����

����

�� �� �� �� �� �� �� �� �� �� ��

����������

��
��

��
��
���
��

���
��
��
���
��

��
��
��
��
��
���

������
���� �����

�

��

��

��

��

���

���

�� �� �� �� �� �� �� �� �� �� ��

����������

��
��
��
��
��
���
��
��
��
���
��
��

��
��
���

���

������
���� �����

�

���

���

���

���

����

����

�� �� �� �� �� �� �� �� �� �� ��

����������

��
��

��
��
���
��

���
��
��
���
��

��
��
��
��
��
���

������
���� �����

�

��

��

��

��

���

���

�� �� �� �� �� �� �� �� �� �� ��

����������

��
��
��
��
��
���
��
��
��
���
��
��

��
��
���

���

������
���� �����

�

���

���

���

���

����

����

�� �� �� �� �� �� �� �� �� �� ��

����������

��
��

��
��
���
��

���
��
��
���
��

��
��
��
��
��
���

������
���� �����

Figure 9.28: Observed pessimism for transaction RT analysis (m = 8).

148 Implementation

�

��

��

��

��

���

���

�� �� �� �� �� �� �� �� �� �� ��

����������

��
��
��
��
��
���
��
��
��
���
��
��

��
��
���

���

������
���� �����

�

���

���

���

���

����

����

�� �� �� �� �� �� �� �� �� �� ��

����������

��
��

��
��
���
��

���
��
��
���
��

��
��
��
��
��
���

������
���� �����

�

��

��

��

��

���

���

�� �� �� �� �� �� �� �� �� �� ��

����������

��
��
��
��
��
���
��
��
��
���
��
��

��
��
���

���

������
���� �����

�

���

���

���

���

����

����

�� �� �� �� �� �� �� �� �� �� ��

����������

��
��

��
��
���
��

���
��
��
���
��

��
��
��
��
��
���

������
���� �����

�

��

��

��

��

���

���

�� �� �� �� �� �� �� �� �� �� ��

����������

��
��
��
��
��
���
��
��
��
���
��
��

��
��
���

���

������
���� �����

�

���

���

���

���

����

����

�� �� �� �� �� �� �� �� �� �� ��

����������

��
��

��
��
���
��

���
��
��
���
��

��
��
��
��
��
���

������
���� �����

�

��

��

��

��

���

���

�� �� �� �� �� �� �� �� �� �� ��

����������

��
��
��
��
��
���
��
��
��
���
��
��

��
��
���

���

������
���� �����

�

���

���

���

���

����

����

�� �� �� �� �� �� �� �� �� �� ��

����������

��
��

��
��
���
��

���
��
��
���
��

��
��
��
��
��
���

������
���� �����

�

��

��

��

��

���

���

�� �� �� �� �� �� �� �� �� �� ��

����������

��
��
��
��
��
���
��
��
��
���
��
��

��
��
���

���

������
���� �����

�

���

���

���

���

����

����

�� �� �� �� �� �� �� �� �� �� ��

����������

��
��

��
��
���
��

���
��
��
���
��

��
��
��
��
��
���

������
���� �����

Figure 9.29: Observed pessimism for transaction RT analysis (m = 16).

9.2 Results 149

The most noticeable trend in the figures is the decrease of the ratio of tasks analysed as the

number of cores increases. In this case, the length of the sequences of transactions that may

conflict becomes longer. Such long sequences result in higher upper bounds on the transaction

WCRT.

150 Implementation

����

����

����

����

����

����

�� �� �� �� �� �� �� �� �� �� ��

����������

��
��
���

���
��
��
��
���

���

������

����
�����

����

����

����

����

����

����

�� �� �� �� �� �� �� �� �� �� ��

����������

��
��
���

���
��
��
��
���

���

������

����
�����

����

����

����

����

����

����

�� �� �� �� �� �� �� �� �� �� ��

����������

��
��
���

���
��
��
��
���

���

������

����
�����

����

����

����

����

����

����

�� �� �� �� �� �� �� �� �� �� ��

����������

��
��
���

���
��
��
��
���

���

������

����
�����

����

����

����

����

����

����

�� �� �� �� �� �� �� �� �� �� ��

����������

��
��
���

���
��
��
��
���

���

������

����
�����

Figure 9.30: Ratio of tasks that were RT analysed (m = 2).

9.2 Results 151

����

����

����

����

����

����

�� �� �� �� �� �� �� �� �� �� ��

����������

��
��
���

���
��
��
��
���

���

������

����
�����

����

����

����

����

����

����

�� �� �� �� �� �� �� �� �� �� ��

����������
��
��
���

���
��
��
��
���

���

������

����
�����

����

����

����

����

����

����

�� �� �� �� �� �� �� �� �� �� ��

����������

��
��
���

���
��
��
��
���

���

������

����
�����

����

����

����

����

����

����

�� �� �� �� �� �� �� �� �� �� ��

����������

��
��
���

���
��
��
��
���

���

������

����
�����

����

����

����

����

����

����

�� �� �� �� �� �� �� �� �� �� ��

����������

��
��
���

���
��
��
��
���

���

������

����
�����

Figure 9.31: Ratio of tasks that were RT analysed (m = 4).

152 Implementation

����

����

����

����

����

����

�� �� �� �� �� �� �� �� �� �� ��

����������

��
��
���

���
��
��
��
���

���

������

����
�����

����

����

����

����

����

����

�� �� �� �� �� �� �� �� �� �� ��

����������

��
��
���

���
��
��
��
���

���

������

����
�����

����

����

����

����

����

����

�� �� �� �� �� �� �� �� �� �� ��

����������

��
��
���

���
��
��
��
���

���

������

����
�����

����

����

����

����

����

����

�� �� �� �� �� �� �� �� �� �� ��

����������

��
��
���

���
��
��
��
���

���

������

����
�����

����

����

����

����

����

����

�� �� �� �� �� �� �� �� �� �� ��

����������

��
��
���

���
��
��
��
���

���

������

����
�����

Figure 9.32: Ratio of tasks that were RT analysed (m = 8).

9.2 Results 153

����

����

����

����

����

����

�� �� �� �� �� �� �� �� �� �� ��

����������

��
��
���

���
��
��
��
���

���

������

����
�����

����

����

����

����

����

����

�� �� �� �� �� �� �� �� �� �� ��

����������
��
��
���

���
��
��
��
���

���

������

����
�����

����

����

����

����

����

����

�� �� �� �� �� �� �� �� �� �� ��

����������

��
��
���

���
��
��
��
���

���

������

����
�����

����

����

����

����

����

����

�� �� �� �� �� �� �� �� �� �� ��

����������

��
��
���

���
��
��
��
���

���

������

����
�����

����

����

����

����

����

����

�� �� �� �� �� �� �� �� �� �� ��

����������

��
��
���

���
��
��
��
���

���

������

����
�����

Figure 9.33: Ratio of tasks that were RT analysed (m = 16).

154 Implementation

For the subset of tasks for which the WCRT analysis converged, we compared the upper

bounds on the WCRT computed analytically with the observed WCRT for every task, the ra-

tio
WCRTanalysis−WCRTobserved

WCRTobserved
. We must stress that the obtained results are not equally representative

across the task set profiles, because of the significant different sample sizes between task set pro-

files with low system utilisation and number of cores and task set profiles with higher system

utilisation and number of cores.

Figures 9.34 to 9.37 illustrate the results. We observe that the analytical results at the task

level are closer to the observed values, as compared to the results obtained at the transaction level.

This is due to the fact that only task sets that met the processor utilisation convergence requirement

were analysed, i.e. task sets for which the pessimism induced by the computation of the transaction

WCRT was not prohibitive. In almost all task set profiles, SRPTM presents the higher analytical-

to-observed ratio. Again, this is an expected result as the analytical method for SRPTM adds

slight more pessimism than the NPUC analysis. Furthermore, we noticed that SRPTM presents a

better responsiveness than NPUC, thus increasing even more the distance between the observed

and analytical WCRT values.

9.3 Summary

In this chapter we presented the implementation details of an experimental testbed based on a

Linux kernel running on a 24-core platform. The NPUC, SRPTM and NPDA schedulers have

been implemented and added to the kernel. A simple STM with the FIFO-CRT contention man-

ager was developed as a user-space synchronisation mechanism. The experimental results showed

that the STM performance depends more on the characteristics of the particular task set than on

the scheduling algorithm. Regarding the system performance, while the results were not much dis-

tinct, SRPTM is the scheduling algorithm that presents less overheads and better responsiveness

for the large majority of task set profiles. The experiments illustrate the pessimism introduced by

the transaction WCRT analyses. The most influencing factor of the analysis in terms of perfor-

mance is the number of cores as a larger number of transactions can conflict in this case. This

pessimism undermines the task WCRT analysis since the WCET associated to each transaction is

actually assumed to be the analytical WCRT of that transaction. This assumption can make the

iterative task WCRT analysis diverge. Consequently, we conclude that the tasks-to-core mapping

plays an important role on the outcome of the analysis. If every contention group is mapped to

a minimal number of cores, the transaction and task WCRT analyses will be tighter, in the sense

that less pessimism will be added.

9.3 Summary 155

����

����

����

����

����

����

����

����

����

�� �� �� �� �� �� �� �� �� �� ��

����������
��
��
��
��
��
���
��
���

��
��
��
��
���

������

����
�����

����

����

����

����

����

����

����

����

����

�� �� �� �� �� �� �� �� �� �� ��

����������

��
��

��
��
���
��

���
��

��
��
��
��
��
���

������

����
�����

����

����

����

����

����

����

����

����

����

�� �� �� �� �� �� �� �� �� �� ��

����������

��
��
��
��
��
���
��
���

��
��
��
��
���

������

����
�����

����

����

����

����

����

����

����

����

����

�� �� �� �� �� �� �� �� �� �� ��

����������

��
��

��
��
���
��

���
��

��
��
��
��
��
���

������

����
�����

����

����

����

����

����

����

����

����

����

�� �� �� �� �� �� �� �� �� �� ��

����������

��
��
��
��
��
���
��
���

��
��
��
��
���

������

����
�����

����

����

����

����

����

����

����

����

����

�� �� �� �� �� �� �� �� �� �� ��

����������

��
��

��
��
���
��

���
��

��
��
��
��
��
���

������

����
�����

����

����

����

����

����

����

����

����

����

�� �� �� �� �� �� �� �� �� �� ��

����������

��
��
��
��
��
���
��
���

��
��
��
��
���

������

����
�����

����

����

����

����

����

����

����

����

����

�� �� �� �� �� �� �� �� �� �� ��

����������

��
��

��
��
���
��

���
��

��
��
��
��
��
���

������

����
�����

����

����

����

����

����

����

����

����

����

�� �� �� �� �� �� �� �� �� �� ��

����������

��
��
��
��
��
���
��
���

��
��
��
��
���

������

����
�����

����

����

����

����

����

����

����

����

����

�� �� �� �� �� �� �� �� �� �� ��

����������

��
��

��
��
���
��

���
��

��
��
��
��
��
���

������

����
�����

Figure 9.34: Observed pessimism for task RT analysis (m = 2).

156 Implementation

����

����

����

����

����

����

����

����

����

�� �� �� �� �� �� �� �� �� �� ��

����������

��
��
��
��
��
���
��
���

��
��
��
��
���

������

����
�����

����

����

����

����

����

����

����

����

����

�� �� �� �� �� �� �� �� �� �� ��

����������

��
��

��
��
���
��

���
��

��
��
��
��
��
���

������

����
�����

����

����

����

����

����

����

����

����

����

�� �� �� �� �� �� �� �� �� �� ��

����������

��
��
��
��
��
���
��
���

��
��
��
��
���

������

����
�����

����

����

����

����

����

����

����

����

����

�� �� �� �� �� �� �� �� �� �� ��

����������

��
��

��
��
���
��

���
��

��
��
��
��
��
���

������

����
�����

����

����

����

����

����

����

����

����

����

�� �� �� �� �� �� �� �� �� �� ��

����������

��
��
��
��
��
���
��
���

��
��
��
��
���

������

����
�����

����

����

����

����

����

����

����

����

����

�� �� �� �� �� �� �� �� �� �� ��

����������

��
��

��
��
���
��

���
��

��
��
��
��
��
���

������

����
�����

����

����

����

����

����

����

����

����

����

�� �� �� �� �� �� �� �� �� �� ��

����������

��
��
��
��
��
���
��
���

��
��
��
��
���

������

����
�����

����

����

����

����

����

����

����

����

����

�� �� �� �� �� �� �� �� �� �� ��

����������

��
��

��
��
���
��

���
��

��
��
��
��
��
���

������

����
�����

����

����

����

����

����

����

����

����

����

�� �� �� �� �� �� �� �� �� �� ��

����������

��
��
��
��
��
���
��
���

��
��
��
��
���

������

����
�����

����

����

����

����

����

����

����

����

����

�� �� �� �� �� �� �� �� �� �� ��

����������

��
��

��
��
���
��

���
��

��
��
��
��
��
���

������

����
�����

Figure 9.35: Observed pessimism for task RT analysis (m = 4).

9.3 Summary 157

����

����

����

����

����

����

����

����

����

�� �� �� �� �� �� �� �� �� �� ��

����������
��
��
��
��
��
���
��
���

��
��
��
��
���

������

����
�����

����

����

����

����

����

����

����

����

����

�� �� �� �� �� �� �� �� �� �� ��

����������

��
��

��
��
���
��

���
��

��
��
��
��
��
���

������

����
�����

����

����

����

����

����

����

����

����

����

�� �� �� �� �� �� �� �� �� �� ��

����������

��
��
��
��
��
���
��
���

��
��
��
��
���

������

����
�����

����

����

����

����

����

����

����

����

����

�� �� �� �� �� �� �� �� �� �� ��

����������

��
��

��
��
���
��

���
��

��
��
��
��
��
���

������

����
�����

����

����

����

����

����

����

����

����

����

�� �� �� �� �� �� �� �� �� �� ��

����������

��
��
��
��
��
���
��
���

��
��
��
��
���

������

����
�����

����

����

����

����

����

����

����

����

����

�� �� �� �� �� �� �� �� �� �� ��

����������

��
��

��
��
���
��

���
��

��
��
��
��
��
���

������

����
�����

����

����

����

����

����

����

����

����

����

�� �� �� �� �� �� �� �� �� �� ��

����������

��
��
��
��
��
���
��
���

��
��
��
��
���

������

����
�����

����

����

����

����

����

����

����

����

����

�� �� �� �� �� �� �� �� �� �� ��

����������

��
��

��
��
���
��

���
��

��
��
��
��
��
���

������

����
�����

����

����

����

����

����

����

����

����

����

�� �� �� �� �� �� �� �� �� �� ��

����������

��
��
��
��
��
���
��
���

��
��
��
��
���

������

����
�����

����

����

����

����

����

����

����

����

����

�� �� �� �� �� �� �� �� �� �� ��

����������

��
��

��
��
���
��

���
��

��
��
��
��
��
���

������

����
�����

Figure 9.36: Observed pessimism for task RT analysis (m = 8).

158 Implementation

����

����

����

����

����

����

����

����

����

�� �� �� �� �� �� �� �� �� �� ��

����������

��
��
��
��
��
���
��
���

��
��
��
��
���

������

����
�����

����

����

����

����

����

����

����

����

����

�� �� �� �� �� �� �� �� �� �� ��

����������

��
��

��
��
���
��

���
��

��
��
��
��
��
���

������

����
�����

����

����

����

����

����

����

����

����

����

�� �� �� �� �� �� �� �� �� �� ��

����������

��
��
��
��
��
���
��
���

��
��
��
��
���

������

����
�����

����

����

����

����

����

����

����

����

����

�� �� �� �� �� �� �� �� �� �� ��

����������

��
��

��
��
���
��

���
��

��
��
��
��
��
���

������

����
�����

����

����

����

����

����

����

����

����

����

�� �� �� �� �� �� �� �� �� �� ��

����������

��
��
��
��
��
���
��
���

��
��
��
��
���

������

����
�����

����

����

����

����

����

����

����

����

����

�� �� �� �� �� �� �� �� �� �� ��

����������

��
��

��
��
���
��

���
��

��
��
��
��
��
���

������

����
�����

����

����

����

����

����

����

����

����

����

�� �� �� �� �� �� �� �� �� �� ��

����������

��
��
��
��
��
���
��
���

��
��
��
��
���

������

����
�����

����

����

����

����

����

����

����

����

����

�� �� �� �� �� �� �� �� �� �� ��

����������

��
��

��
��
���
��

���
��

��
��
��
��
��
���

������

����
�����

����

����

����

����

����

����

����

����

����

�� �� �� �� �� �� �� �� �� �� ��

����������

��
��
��
��
��
���
��
���

��
��
��
��
���

������

����
�����

����

����

����

����

����

����

����

����

����

�� �� �� �� �� �� �� �� �� �� ��

����������

��
��

��
��
���
��

���
��

��
��
��
��
��
���

������

����
�����

Figure 9.37: Observed pessimism for task RT analysis (m = 16).

Chapter 10

Conclusions

The current trend in increasing the computing capacity of a chip by adding more interconnected

processing cores on the same integrated circuit has been an effective approach to deal with the

physical limitations (thermal and capacitive) that single-processor chips faced. But the efficient

use of the available computing capacity is heavily influenced by both the ability to design the appli-

cation code as a set of components that can execute in parallel, and by the way those components

are scheduled on an inherently parallel platform. This issue exacerbates even more when compo-

nents are not independent and compete to access shared resources such as memory and external

peripherals. While task scheduling and synchronisation techniques are matured and well estab-

lished theories for single-core real-time systems, unfortunately the scale of the problem grows

by several orders of magnitude when it comes to multi-core based systems as the same theory

designed for single-core is no longer applicable. Indeed, in addition to the temporal dimension

of when to schedule each task, multi-core add an extra spatial dimension of where to schedule

this task. Furthermore, the synchronisation between these tasks should also be taken into account

as the shared resources can be accessed simultaneously by concurrent tasks. From these facts, it

follows that the combination of real-time scheduling and synchronisation techniques is an open

research field on multi-core based platforms.

Traditional lock-based synchronisation mechanisms present serious issues when applied to

concurrent applications upon multi-core platforms: coarse-grained locking does not allow to take

advantage of parallel processing, while fine-grained locking negatively impacts the system com-

posability. Software Transactional Memory offers an optimistic concurrency paradigm, in which

transactions (critical sections) execute in parallel with private views of shared memory data. An

underlying synchronisation mechanism determines whether the execution of each transaction is

valid and commits, otherwise the transaction is invalidated, which makes it abort and deemed

to repeat again. Some STM implementations apply a contention management policy to solve

memory access conflicts, and several policies have been proposed along the time presenting dif-

ferent performances for different types of workloads. However, some of the proposed policies are

159

160 Conclusions

known to favour some types of transactions over the others according to some specific characteris-

tic (e.g. execution time, priority, number of current aborts). This approach suits well many parallel

computing applications, but it does not comply with the predictability required for real-time sys-

tems. Indeed, while the burden of dealing with concurrency details is seamless to the programmer,

the probability of executing multiple times the same transaction makes it challenging to provide

tight upper bounds on the response time of each task. We analysed the applicability of STM as

a synchronisation mechanism for real-time systems. To this end purpose, we developed a con-

tention management algorithm that upper bounds the number of aborts for every transaction. We

developed three partitioned scheduling policies – Non-Preemptive Until Commit (NPUC), Non-

Preemptive During Attempt (NPDA) and SRP for Transactional Memory (SRPTM) – that tune the

P-EDF scheduler when a transaction is in progress and provide us the ability to assess the response

time of each transaction in a finite time window. These algorithms have been implemented on a

simulation testbed as well as on a two 12-core AMD Opteron Processor 6168 based computer host-

ing a PREEMPT-RT-patched Linux kernel version. The performance have been compared from

both qualitative and quantitative viewpoints against the Flexible Multiprocessor Locking Protocol

(FMLP). FMLP is a lock-based synchronisation policy for multiprocessor systems. In this final

chapter, we review and discuss the results and contributions presented in this dissertation. We also

provide some directions for future work.

10.1 Summary of results

10.1.1 Fair and predictable contention management algorithm

This work proposed transaction serialisation by chronological order of transactions release times,

referred to as First In First Out Contention manager for Real-Time (FIFO-CRT). Although this pol-

icy is agnostic to the underlying task scheduling policy, it provides a fair opportunity to commit to

every transaction. As a matter of fact, a transaction aborts only when it is conflicting with another

transaction released earlier and currently is active (i.e. not in the zombie of failed states). As the

set of concurrent transactions that prevent the transaction to commit is finite, this set will progres-

sively become empty as the all the concurrent transactions will commit, and then the transaction

of interest will also eventually commit.

In a fully preemptive system where a transaction can be suspended and a conflicting transaction

is released on the same processor, this policy is unfortunately exposed to deadlocks1. To address

this issue, our contention management algorithm allows each transaction to abort a preempted

contender that is suspended on the same core. While this rule avoids deadlock, it also undermines

the main FIFO-CRT rule, i.e. transactions are serialised by their release time instants, and the

number of aborts suffered by a transaction becomes unbounded.

The deadlock-avoidance rule becomes unnecessary when at runtime at most one active trans-

action is allowed to be in progress on each core. Therefore, we modified the behaviour of the

1A very similar situation occurs when a critical section requests a lock owned by a preempted critical section with

the same processor affinity.

10.1 Summary of results 161

original scheduler (P-EDF) associated to FIFO-CRT so as to prevent multiple simultaneous trans-

actions in progress on each core. In turn, this modification resulted in a limited number of aborts

for each transaction, thus improving the responsiveness of each task.

10.1.2 Modifications performed on the original scheduler

This work proposed three fully-partitioned scheduling algorithms, all based on the classical P-EDF

scheduler. Each algorithm modifies the behaviour of P-EDF when a transaction is in progress by

adopting a set of rules that allow us to fully serialise the transactions, improve the predictability of

the system and avoid deadlocks.

NPUC. This approach schedules each transaction without any preemption until they com-

mit, thus ensuring that at most one transaction is in progress on each core at runtime.

NPDA. This approach also schedules each transaction in a non-preemptive manner when

it is in progress. However, preemption points are inserted between every abort and the

subsequent restart. In this time window, ready jobs with a higher priority can be scheduled.

As a consequence, NPDA allows for multiple transactions to be simultaneously in progress

on each core. In this case, preempted transactions are in the failed state and temporarily not

exposed to additional aborts.

SRPTM. This approach extends the SRP mechanism introduced by (Baker, 1991). Tasks

and transactions are assigned preemption levels. Only tasks with a higher priority and not

executing any transaction are allowed to preempt the transaction in progress on each core.

In a simulation environment, these algorithms proved more responsive and scalable than a practi-

cal multiprocessor lock-based synchronisation mechanism that allows a granularity down to con-

tention group level. The simulation results indicated that STM is able to dynamically set the

level of contention granularity, thus allowing a better exploitation of the parallelism provided by

multi-core architectures over the lock-based mechanism. Between the three proposed scheduling

strategies, the simulation revealed that NPUC was able to feasibly schedule the smallest number of

task sets, due to its lower responsiveness to schedule jobs with short deadlines when a transaction

is in progress. SRPTM presented the worst case number of aborts for a single job, but presented

the lowest average time overhead, meaning that in average, it provides a more efficient use of the

computation resources.

We implemented the three scheduling approaches together with FIFO-CRT on a two 12-core

AMD Opteron Processor 6168 based computer hosting a PREEMPT-RT-patched Linux kernel

version by generating a large group of synthetic task sets. The results showed that SRPTM was

predominantly the most responsive scheduler, while NPDA was the least responsive. In average,

SRPTM presented the shortest worst-case response times for each task. In terms of practical time

overheads (i.e. considering the time used for system operations), the resulting data showed that

preemptions have a non-negligible impact: while SRPTM showed the smallest time overhead for

2 and 4 cores, NPUC became dominant for 8 and 16 cores, despite its reduced responsiveness.

162 Conclusions

10.1.3 Response time analysis

We developed a worst case response time analysis for transactions scheduled by NPUC and by

SRPTM. We showed that an exact analysis is computationally intensive. Therefore, in order to

be agnostic to the platform characteristics and task-to-core mapping, we assume that all other

cores are executing the longest transaction in the same contention group assigned to it. We did

not carried out an analysis for NPDA as it would be too pessimistic. Indeed, in order to collect

sound and convincing results for each transaction under this scheduler, all transactions in the

same contention group would need to be considered. We compared the observed WCRT of each

transaction obtained from the experiments, against the corresponding WCRT resulting from the

analysis. In all cases, the measured WCRT for both NPUC and SRPTM schedulers fell within the

computed analytical bounds.

The transaction WCRT analysis set the basis for the complete task WCRT analysis. The task

WCRT analysis was adapted from the framework proposed by Spuri (1996). To account for the

time overhead incurred by the attempts to commit of each transaction, we incorporate the previous

transaction WCRT into the worst case execution time of the task, thus adding some pessimism in

our approach. The added pessimism becomes a particular issue when the considered tasks WCET

are inflated to an extent such that the WCRT analysis no longer converges and no results can be

extracted. The experimental results indicate that this issue exacerbates with an increase of the

number of cores assigned to each contention group.

10.2 Future directions

We demonstrated the realism in constructing a synchronisation mechanism for real-time systems

based on the Software Transactional Memory paradigm. Such a mechanism allows for the pro-

grammer to abstract from the low-level synchronisation details and focus only on the functional

aspects of the code. However, this feature raises non-trivial issues in the assessment of the schedu-

lability of the task set. A substantial number of these issues have been addressed in this manuscript,

but a few more remain open and require an in-depth investigation. A few examples go below.

Task-to-core mapping. The mapping of tasks-to-cores has a significant impact either on the

practical system performance and on the feasibility analysis. In this work we assume a given

random mapping. Among the possible mappings, the next natural step along this line of research

would be to derive heuristics to determine the mapping or the finite set of mappings that dominate

the others in terms of performance as well as the responsiveness of the system. A few metrics

to guide us in deriving such heuristics are the number of conflicts among the transactions and

the number of cores assigned to each contention group. Regarding the former metric, it would

substantially improve the schedulability of the system, whereas the latter metric would help in

reducing the response time of each transaction. That is, conflicts will occur only between a smaller

number of transactions, and will be solved faster at runtime. In addition, the pessimism added to

the WCRT computation of each transaction is smaller.

10.2 Future directions 163

Probabilistic analysis. An alternative to deal with the pessimism that impairs the analysis pre-

sented in this manuscript is to adopt a probabilistic approach for the actual execution time of each

transaction and, subsequently, the execution time of each task. In this work, we assume the worst-

case scenario in the computation of these parameters, which may never occur in practice. In order

to circumvent this issue, a probabilistic task analysis might reduce the pessimism associated with

the transaction execution time overheads. This assumes that the execution time for each task is not

the same for all of its jobs. As a matter of fact, the number of times a transaction aborts within

a job might be associated a probability. Although this increases a bit more the complexity of the

problem, the results would be more precise in comparison to those derived from a deterministic

approach as ours.

Mixed criticality. The advent of more and more sophisticated multi-core platforms and the in-

crease in the complexity of the application make it commonplace to execute application function-

alities with different levels of importance or criticality on the same architecture. Such applications

are referred to as mixed criticality systems. A predictable STM model for real-time systems could

be extended to cope with the requirements of such systems. Our model assumes that all tasks have

the same criticality level, despite the diverse priorities of jobs. On another front, our STM con-

tention management policy is based on a single FIFO serialisation process. A more sophisticated

one can be tailored to match the mixed-criticality model.

164 Conclusions

References

Adapteva. Epiphany Multicore IP, August 2012. URL http://www.adapteva.com/products/

epiphany-ip/epiphany-architecture-ip/. Cited on pages 5 and 6.

Ali-Reza Adl-Tabatabai, Tatiana Shpeisman, and Justin Gottschlich. Draft specification of trans-

actional language constructs for C++ (v1.1). C++ Transactional Memory Specification Draft-

ing Group, February 2012.

James H. Anderson and Philip Holman. Efficient pure-buffer algorithms for real-time systems.

In Proceedings of the 7th International Conference on Real-Time Computing Systems and Ap-

plications (RTCSA), pages 57–64, Cheju Island, South Korea, December 2000. Cited on page

3.

James H. Anderson and Mark Moir. Universal constructions for large objects. IEEE Transactions

on Parallel and Distributed Systems, 10(12):1317–1332, December 1999. ISSN 10459219.

Cited on page 37.

James H. Anderson and Srikanth Ramamurthy. A framework for implementing objects and

scheduling tasks in lock-free real-time systems. In Proceedings of the 17th IEEE Real-Time

Systems Symposium (RTSS), pages 94–105, Los Alamitos, USA, December 1996. Cited on page

37.

James H. Anderson, Srikanth Ramamurthy, Mark Moir, and Kevin Jeffay. Lock-free transactions

for real-time systems. In Real-Time Database Systems: Issues and Applications, pages 215–

234. Kluwer Academic Publishers, Norwell, USA, May 1997. Cited on page 3.

James H. Anderson, John M. Calandrino, and UmaMaheswari C. Devi. Real-Time Scheduling on

Multicore Platforms. In Proceedings of the 12th IEEE Real-Time and Embedded Technology

and Applications Symposium (RTAS), pages 179–190, San Jose, USA, 2006. Cited on page 2.

Björn Andersson, Sanjoy Baruah, and Jan Jonsson. Static-priority scheduling on multiproces-

sors. In Proceedings of the 22nd IEEE Real-Time Systems Symposium (RTSS), pages 193–202,

London, UK, Dec 2001. Cited on page 26.

Theodore P. Baker. Stack-based scheduling of realtime processes. Real-Time Systems, 3(1):67–99,

March 1991. Cited on pages 3, 33, 61, 66, and 161.

Theodore P. Baker. What to Make of Multicore Processors for Reliable Real-Time Systems?

In Proceedings of the 15th International Conference on Reliable Software Technologies (Ada-

Europe), pages 1–18, Valencia, Spain, 2010. Cited on pages 20 and 22.

Theodore P. Baker and Sanjoy K. Baruah. Schedulability Analysis of Multiprocessor Sporadic

Task Systems. In Insup Lee, Joseph Y-T. Leung, and Sang Son, editors, Handbook of Real-time

165

http://www.adapteva.com/products/epiphany-ip/epiphany-architecture-ip/
http://www.adapteva.com/products/epiphany-ip/epiphany-architecture-ip/

166 REFERENCES

and Embedded Systems, pages 3.1–3.15. CRC Press, 2008. ISBN 1-58488-678-1. Cited on page

22.

António Barros and Luís Miguel Pinho. Software transactional memory as a building block for

parallel embedded real-time systems. In Proceedings of the 37th EUROMICRO Conference

on Software Engineering and Advanced Applications (SEAA), pages 251–255, Oulu, Finland,

August 2011a. Cited on page 180.

António Barros and Luís Miguel Pinho. Revisiting Transactions in Ada. In Proceedings of the

15th International Real-Time Ada Workshop (IRTAW), Fuente Dé, Spain, 2011b.

Sanjoy Baruah. Partitioned edf scheduling: a closer look. Real-Time Systems, 49(6):715–729,

2013. ISSN 0922-6443. Cited on page 27.

Sanjoy K. Baruah, Aloysius K. Mok, and Louis E. Rosier. Preemptively scheduling hard-real-time

sporadic tasks on one processor. In Proceedings of the 11th IEEE Real-Time Systems Symposium

(RTSS), pages 182–190, Lake Buena Vista, USA, Dec 1990. Cited on pages 24 and 25.

Sanjoy K. Baruah, J.E. Gehrke, and C.G. Plaxton. Fast scheduling of periodic tasks on multiple

resources. In Proceedings of the 9th International Parallel Processing Symposium (IPPS), pages

280–288, Santa Barbara, USA, April 1995. Cited on page 20.

Sanjoy K. Baruah, N.K. Cohen, C.G. Plaxton, and D.A. Varvel. Proportionate progress: A notion

of fairness in resource allocation. Algorithmica, 15:600–625, 1996. ISSN 0178-4617. Cited on

page 20.

Andrea Bastoni, Björn B. Brandenburg, and James H. Anderson. An Empirical Comparison of

Global, Partitioned, and Clustered Multiprocessor EDF Schedulers. In Proceedings of the 31st

IEEE Real-Time Systems Symposium (RTSS), pages 14–24, San Diego, USA, November 2010.

IEEE. Cited on pages 21 and 22.

L. Benini, E. Flamand, D. Fuin, and D. Melpignano. P2012: Building an ecosystem for a scalable,

modular and high-efficiency embedded computing accelerator. In Proceedings of theConference

& Exhibition Design, Automation Test in Europe (DATE), pages 983–987, Dresden, Germany,

March 2012.

Brian N. Bershad. Practical considerations for non-blocking concurrent objects. In Proceedings of

the 13th International Conference on Distributed Computing Systems (ICDCS), pages 264–273,

Pittsburgh, USA, May 1993. Cited on pages 3 and 103.

E. Bini, G.C. Buttazzo, and G.M. Buttazzo. Rate monotonic analysis: the hyperbolic bound.

IEEE Transactions on Computers, 52(7):933–942, Jul 2003. ISSN 0018-9340. doi: 10.1109/

TC.2003.1214341. Cited on page 23.

Aaron Block, Hennadiy Leontyev, Björn B. Brandenburg, and James H. Anderson. A Flexible

Real-Time Locking Protocol for Multiprocessors. In Proceedings of the 13th IEEE International

Conference on Embedded and Real-Time Computing Systems and Applications (RTCSA), pages

47–56, Daegu, South Korea, August 2007. Cited on pages 3, 34, 63, and 88.

Björn B. Brandenburg. Scheduling and locking in multiprocessor real-time operating systems.

PhD thesis, University of North Carolina, 2011. Cited on page 22.

REFERENCES 167

Björn B. Brandenburg and James H. Anderson. Optimality results for multiprocessor real-time

locking. In Proceedings of the IEEE 31st Real-Time Systems Symposium (RTSS), pages 49–60,

San Diego, USA, Nov 2010. Cited on page 35.

Björn B. Brandenburg and James H. Anderson. The OMLP family of optimal multiprocessor real-

time locking protocols. Design Automation for Embedded Systems, 17(2):277–342, June 2013.

ISSN 0929-5585. Cited on page 96.

Björn B. Brandenburg, John M. Calandrino, Aaron Block, Hennadiy Leontyev, and James H. An-

derson. Real-Time Synchronization on Multiprocessors: To Block or Not to Block, to Suspend

or Spin? In Proceedings of the 14th IEEE Real-Time and Embedded Technology and Applica-

tions Symposium (RTAS), pages 342–353, Saint Louis, USA, April 2008. Cited on pages 3 and 87.

Peter Bright. IBM’s new transactional memory: make-or-break time for multithreaded

revolution. Arstechnica, August 2011. URL http://arstechnica.com/gadgets/2011/08/

ibms-new-transactional-memory-make-or-break-time-for-multithreaded-revolution/.

Alan Burns. Scheduling hard real-time systems: a review. Software Engineering Journal, 6(3):

116–128, May 1991. ISSN 0268-6961. Cited on page 1.

Alan Burns and Andy J. Wellings. Concurrent and Real-Time Programming in Ada. Cambridge

University Press, Cambridge, UK, 2007. ISBN 978-0-521-86697-2.

Alan Burns and Andy J. Wellings. Real-Time Systems and Programming Languages. Addison-

Wesley, Essex, UK, 4th edition, April 2009. ISBN 978-0-321-41745-9. Cited on page 2.

João Cachopo and António Rito-Silva. Versioned boxes as the basis for memory transactions.

Science of Computer Programming, 63(2):172–185, December 2006. ISSN 01676423. Cited on

pages 181 and 182.

John M. Calandrino, James H. Anderson, and Dan P. Baumberger. A Hybrid Real-Time Schedul-

ing Approach for Large-Scale Multicore Platforms. In Proceedings of the 19th Euromicro Con-

ference on Real-Time Systems (ECRTS), pages 247–258, Pisa, Italy, July 2007. IEEE. Cited on

page 22.

John Carpenter, Shelby Funk, Philip Holman, Anand Srinivasan, James H. Anderson, and San-

joy K. Baruah. A categorization of real-time multiprocessor scheduling problems and al-

gorithms. In Joseph Y. Leung, Laurie Kelly, and James H. Anderson, editors, Handbook

of Scheduling Algorithms, Models, and Performance Analysis, chapter 30, pages 30.1–30.19.

Chapman Hall/CRC, Boca Raton, USA, April 2004. ISBN 978-1-58488-397-5. Cited on page 19.

Calin Cascaval, Colin Blundell, Maged Michael, Harold W. Cain, Peng Wu, Stefanie Chiras, and

Siddhartha Chatterjee. Software Transactional Memory: why is it only a research toy? Queue,

6(5):40–46, September 2008. ISSN 15427730. Cited on page 41.

Byn Choi, R. Komuravelli, Hyojin Sung, R. Smolinski, N. Honarmand, S.V. Adve, V.S. Adve,

N.P. Carter, and Ching-Tsun Chou. Denovo: Rethinking the memory hierarchy for disciplined

parallelism. In Proceedings of the International Conference on Parallel Architectures and Com-

pilation Techniques (PACT), pages 155–166, Galveston Island, USA, October 2011. Cited on page

5.

Sylvain Cotard. Contribuition á la robustesse des systémes temps réel embarqués multicoeur

automobile. PhD thesis, Université de Nantes, 2013. Cited on pages 3 and 42.

http://arstechnica.com/gadgets/2011/08/ibms-new-transactional-memory-make-or-break-time-for-multithreaded-revolution/
http://arstechnica.com/gadgets/2011/08/ibms-new-transactional-memory-make-or-break-time-for-multithreaded-revolution/

168 REFERENCES

Liliana Cucu-Grosjean and Joël Goossens. Exact schedulability tests for real-time scheduling of

periodic tasks on unrelated multiprocessor platforms. Journal of Systems Architecture, 57(5):

561–569, 2011. Cited on page 45.

Robert I. Davis and Alan Burns. A survey of hard real-time scheduling for multiprocessor systems.

ACM Computer Surveys, 43(4):35:1–35:44, October 2011. Cited on pages 21 and 22.

UmaMaheswari C. Devi, Hennadiy Leontyev, and James H. Anderson. Efficient Synchronization

under Global EDF Scheduling on Multiprocessors. In Proceedings of the 18th Euromicro Con-

ference on Real-Time Systems (ECRTS), pages 75–84, Dresden, Germany, July 2006. Cited on

page 43.

Sudarshan K. Dhall and C. L. Liu. On a Real-Time Scheduling Problem. Operations Research,

26(1):127–140, January 1978. ISSN 0030-364X. Cited on pages 20 and 21.

Dave Dice, Ori Shalev, and Nir Shavit. Transactional Locking II. In Shlomi Dolev, editor, Dis-

tributed Computing: 20th International Symposium (DISC), volume 4167 of Lecture Notes in

Computer Science, pages 194–208. Springer Berlin Heidelberg, Stockholm, Sweden, Septem-

ber 2006. Cited on pages 41, 50, 97, and 180.

Edsger Wybe Dijkstra. Cooperating Sequential Processes, EWD123. Technical report, Eindhoven

University of Technology, Eindhoven, Netherlands, 1965. Cited on page 3.

François Dorin, Patrick Meumeu Yomsi, Joël Goossens, and Pascal Richard. Semi-partitioned

hard real-time scheduling with restricted migrations upon identical multiprocessor platforms. In

Proceedings of the 18th International Conference on Real-Time and Network Systems (RTNS),

Toulouse, France, Nov 2010. Cited on page 22.

Aleksandar Dragojević, Rachid Guerraoui, and Michal Kapalka. Stretching transactional memory.

In Proceedings of the 2009 ACM SIGPLAN conference on Programming language design and

implementation (PLDI), pages 155–165, Dublin, Ireland, 2009. ACM Press. Cited on page 41.

Aleksandar Dragojević, Pascal Felber, Vincent Gramoli, and Rachid Guerraoui. Why STM can

be more than a research toy. Communications of the ACM, 54(4):70–77, April 2011. ISSN

00010782. Cited on pages 6 and 41.

Arvind Easwaran and Björn Andersson. Scheduling Sporadic Tasks on Multiprocessors with Mu-

tual Exclusion Constraints. In Proceedings of the International Conference on Parallel Pro-

cessing Workshops (ICPPW), pages 50–57, Vienna, Austria, September 2009a. Cited on page

3.

Arvind Easwaran and Björn Andersson. Resource Sharing in Global Fixed-Priority Preemptive

Multiprocessor Scheduling. In Proceedings of the 30th IEEE Real-Time Systems Symposium

(RTSS), pages 377–386, Washington, USA, December 2009b. Cited on pages 3 and 34.

Mohammed El-Shambakey and Binoy Ravindran. STM concurrency control for embedded real-

time software with tighter time bounds. In Proceedings of the 49th Annual Design Automation

Conference (DAC), pages 437–446, San Francisco, USA, June 2012a. ACM. Cited on page 43.

Mohammed El-Shambakey and Binoy Ravindran. STM concurrency control for multicore em-

bedded real-time software: time bounds and tradeoffs. In Proceedings of the 27th Annual

ACM Symposium on Applied Computing (SAC), pages 1602–1609, Riva del Garda, Italy, March

2012b. ACM. Cited on page 43.

REFERENCES 169

Mohammed El-Shambakey and Binoy Ravindran. On real-time STM concurrency control for

embedded software with improved schedulability. In Proceedings of the 18th Asia and South

Pacific Design Automation Conference (ASP-DAC), pages 47–52, Yokohama, Japan, January

2013a. Cited on page 43.

Mohammed El-Shambakey and Binoy Ravindran. FBLT: A Real-Time Contention Manager with

Improved Schedulability. In Proceedings of the Conference on Design, Automation and Test in

Europe (DATE), pages 1325–1330, Grenoble, France, March 2013b. EDA Consortium. Cited on

pages 3 and 43.

Robert Ennals. Efficient Software Transactional Memory. Technical report, Intel Research

Cambridge, Cambridge, UK, 2005. URL http://berkeley.intel-research.net/rennals/pubs/

051RobEnnals.pdf. Cited on page 4.

Sherif F. Fahmy, Binoy Ravindran, and E. D. Jensen. On Bounding Response Times under Soft-

ware Transactional Memory in Distributed Multiprocessor Real-Time Systems. In Proceedings

of the Design, Automation & Test in Europe Conference & Exhibition (DATE), pages 688–693,

Nice, France, April 2009. Cited on page 42.

Keir Fraser. Practical lock-freedom. PhD thesis, University of Cambridge, September 2003. Cited

on pages 4 and 41.

Paolo Gai, Giuseppe Lipari, and Marco Di Natale. Minimizing memory utilization of real-time

task sets in single and multi-processor systems-on-a-chip. In Proceedings of the 22nd IEEE

Real-Time Systems Symposium (RTSS), pages 73–83, London, UK, December 2001. Cited on

pages 3 and 34.

Michael R. Garey and David S. Johnson. Computers and intractability : a guide to the theory of

NP-completeness. W.H. Freeman and Co., San Francisco, 1979. ISBN 0716710455. Cited on

page 21.

N.H. Gehani. Concurrent c: real-time programming and fault tolerance. Software Engineering

Journal, 6(3):83–92, May 1991. ISSN 0268-6961.

Laurent George, Nicolas Rivierre, and Marco Spuri. Preemptive and non-preemptive real-time

uniprocessor scheduling. Technical report, INRIA, 1996. Cited on page 79.

Rachid Guerraoui, Maurice Herlihy, and Bastian Pochon. Polymorphic contention management.

In Pierre Fraigniaud, editor, Distributed Computing: 19th International Conference (DISC),

volume 3724 of Lecture Notes in Computer Science, pages 303–323. Springer Berlin Heidel-

berg, Cracow, Poland, September 2005a. ISBN 978-3-540-29163-3. Cited on page 51.

Rachid Guerraoui, Maurice Herlihy, and Bastian Pochon. Toward a theory of transactional

contention managers. In Proceedings of the 24th annual ACM Symposium on Principles

of Distributed Computing (PODC), pages 258–264, Las Vegas, USA, 2005b. ACM. ISBN

1581139942. URL http://portal.acm.org/citation.cfm?doid=1073814.1073863. Cited on page 51.

J. Hansen, John P. Lehoczky, and Ragunathan Rajkumar. Optimization of quality of service in

dynamic systems. In Proceedings of the 9th International Workshop on Parallel and Distributed

Real-Time Systems (WPDRTS), San Francisco, USA, April 2001. Cited on page 2.

Tim Harris and Keir Fraser. Language support for lightweight transactions. ACM SIGPLAN

Notices, 38(11):388–402, November 2003. ISSN 03621340. Cited on page 38.

http://berkeley.intel-research.net/rennals/pubs/051RobEnnals.pdf
http://berkeley.intel-research.net/rennals/pubs/051RobEnnals.pdf
http://portal.acm.org/citation.cfm?doid=1073814.1073863

170 REFERENCES

Tim Harris, James Larus, and Ravi Rajwar. Transactional Memory, 2nd edition. Synthesis Lectures

on Computer Architecture, 5(1):1–263, December 2010. ISSN 1935-3235. Cited on page 40.

Maurice Herlihy. A methodology for implementing highly concurrent data objects. ACM Trans-

actions on Programming Languages and Systems, 15(5):745–770, November 1993. ISSN

01640925. Cited on page 37.

Maurice Herlihy and J. Eliot B. Moss. Transactional memory: architectural support for lock-

free data structures. In Proceedings of the 20th anual International Symposium on Computer

Architecture (ISCA), pages 289–300, San Diego, USA, May 1993. Cited on pages 4 and 41.

Maurice Herlihy and Nir Shavit. The Art of Multiprocessor Programming. Morgan Kaufmann

Publishers, Burlington, MA, USA, 2008. Cited on pages 4 and 36.

Maurice Herlihy, Victor Luchangco, Mark Moir, and William N. Scherer III. Software transac-

tional memory for dynamic-sized data structures. In Proceedings of the 22nd annual symposium

on Principles of distributed computing (PODC), pages 92–101, Boston, USA, 2003. Cited on

pages 4, 5, 41, and 50.

C. A. R. Hoare. Monitors: an operating system structuring concept. Communications of the ACM,

17(10):549–557, October 1974. ISSN 00010782. Cited on page 3.

Intel. The SCC Platform Overview. Santa Clara, CA, USA, May 2010. URL

http://www.intel.com/content/dam/www/public/us/en/documents/technology-briefs/

intel-labs-single-chip-platform-overview-paper.pdf. Cited on pages 5 and 6.

Intel. Intel Many Integrated Core Architecture – Advanced, 2012. URL http:

//www.intel.com/content/www/us/en/architecture-and-technology/many-integrated-core/

intel-many-integrated-core-architecture.html. Cited on pages 5 and 6.

Kalray. MPPA256 – Product Brief, 2015. URL http://www.kalrayinc.com/download/4640/. Cited

on pages 5, 6, and 16.

Shinpei Kato, Nobuyuki Yamasaki, and Yutaka Ishikawa. Semi-partitioned scheduling of sporadic

task systems on multiprocessors. In Proceedings of the 21st Euromicro Conference on Real-

Time Systems (ECRTS), pages 249–258, Dublin, Ireland, 2009. IEEE. Cited on page 22.

Jörg Kienzle, Ricardo Jiménez-Peris, Alexander Romanovsky, and Marta Patiño-Martínez. Trans-

action Support for Ada. In Proceedings of the 6th International Conference on Reliable Software

Technologies (Ada-Europe), volume 2043, pages 290–304, Leuven, Belgium, 2001. Cited on page

175.

M Klein, T Ralya, B Pollak, R Obenza, and M Harbour. A practitioner’s handbook for real-time

analysis. Kluwer Academic Publishers, 1993. Cited on page 1.

Leslie Lamport. Concurrent reading and writing. Communications of the ACM, 20(11):806–811,

November 1977. ISSN 00010782. Cited on page 37.

C. L. Liu and James W. Layland. Scheduling Algorithms for Multiprogramming in a Hard-Real-

Time Environment. Journal of the ACM, 20(1):46–61, 1973. Cited on pages 18, 19, and 23.

J.M. López, J.L. Díaz, and D.F. García. Utilization bounds for edf scheduling on real-time mul-

tiprocessor systems. Real-Time Systems, 28(1):39–68, 2004. ISSN 0922-6443. Cited on page

26.

http://www.intel.com/content/dam/www/public/us/en/documents/technology-briefs/intel-labs-single-chip-platform-overview-paper.pdf
http://www.intel.com/content/dam/www/public/us/en/documents/technology-briefs/intel-labs-single-chip-platform-overview-paper.pdf
http://www.intel.com/content/www/us/en/architecture-and-technology/many-integrated-core/intel-many-integrated-core-architecture.html
http://www.intel.com/content/www/us/en/architecture-and-technology/many-integrated-core/intel-many-integrated-core-architecture.html
http://www.intel.com/content/www/us/en/architecture-and-technology/many-integrated-core/intel-many-integrated-core-architecture.html
http://www.kalrayinc.com/download/4640/

REFERENCES 171

Walther Maldonado, Patrick Marlier, Pascal Felber, Adi Suissa, Danny Hendler, Alexandra Fe-

dorova, Julia L. Lawall, and Gilles Muller. Scheduling support for transactional memory con-

tention management. In Proceedings of the 15th ACM SIGPLAN symposium on Principles and

practice of parallel programming (PPoPP), pages 79–90, Bangalore, India, January 2010. Cited

on pages 6, 39, and 87.

Jeremy Manson, Jason Baker, Antonio Cunei, Suresh Jagannathan, Marek Prochazka, Bin Xin,

and Jan Vitek. Preemptible Atomic Regions for Real-Time Java. In Proceedings of the 26th

IEEE International Real-Time Systems Symposium (RTSS), pages 62–71, Miami, USA, Decem-

ber 2005. Cited on page 41.

Virendra J. Marathe, William N. Scherer III, and Michael L. Scott. Adaptive software transactional

memory. In Pierre Fraigniaud, editor, Distributed Computing: 19th International Conference

(DISC), volume 3724 of Lecture Notes in Computer Science, pages 354–368. Springer Berlin

Heidelberg, Cracow, Poland, 2005. Cited on page 41.

Milo M. K. Martin, Mark D. Hill, and Daniel J. Sorin. Why on-chip cache coherence is here to

stay. Communications of the ACM, 55(7):78–89, July 2012. ISSN 0001-0782.

Aloysius K. Mok. Fundamental design problems of distributed systems for the hard-real-time

environment. PhD thesis, Massachusetts Institute of Technology, 1983. Cited on pages 12 and 19.

Vincent Nelis, Patrick Meumeu Yomsi, and Joël Goossens. Feasibility intervals for homogeneous

multicores, asynchronous periodic tasks, and FJP schedulers. In Proceedings of the 21st In-

ternational Conference on Real-Time Networks and Systems (RTNS), pages 277–286, Sophia

Antipolis, France, 2013. ACM. Cited on pages 88 and 112.

G. Nelissen, V. Berten, V. Nelis, J. Goossens, and D. Milojevic. U-edf: An unfair but optimal

multiprocessor scheduling algorithm for sporadic tasks. In Real-Time Systems (ECRTS), 2012

24th Euromicro Conference on, pages 13–23, July 2012. doi: 10.1109/ECRTS.2012.36. Cited

on page 20.

Marta Patiño-Martínez, Ricardo Jiménez-Peris, and Sergio Arévalo. Integrating groups and trans-

actions: A fault-tolerant extension of Ada. In Proceedings of the International Conference on

Reliable Software Technologies (Ada-Europe), pages 78–89, Uppsala, Sweden, June 1998. Cited

on page 175.

Marta Patiño-Martínez, Ricardo Jiménez-Peris, and Sergio Arévalo. Implementing Transactions

using Ada Exceptions : Which Features are Missing? Ada Letters, XXI(3):64–75, September

2001. Cited on pages 175 and 176.

Dmitri Perelman and Idit Keidar. SMV: Selective Multi-Versioning STM. In Proceedings of the

5th ACM SIGPLAN Workshop on Transactional Computing (TRANSACT), Paris, France, April

2010. Cited on pages 180, 181, and 182.

Dmitri Perelman, Rui Fan, and Idit Keidar. On Maintaining Multiple Versions in STM. In Pro-

ceedings of the 29th ACM SIGACT-SIGOPS symposium on Principles of distributed computing

(PODC), pages 16–25, Zurich, Switzerland, July 2010. Cited on pages 181 and 182.

Ragunathan Rajkumar. Real-time synchronization protocols for shared memory multiprocessors.

In Proceedings of the 10th International Conference on Distributed Computing Systems, pages

116–123, 1990. Cited on page 63.

172 REFERENCES

Ragunathan Rajkumar, Lui Sha, and John P. Lehoczky. Real-time synchronization protocols for

multiprocessors. In Proceedings of the 9th IEEE Real-Time Systems Symposium (RTSS), pages

259–269, Huntsville, USA, December 1988. Cited on page 34.

James Reinders. Transactional Synchronization in Haswell. Intel, July 2012. URL http://software.

intel.com/en-us/blogs/2012/02/07/transactional-synchronization-in-haswell/.

Torvald Riegel and Pascal Felber. Snapshot Isolation for Software Transactional Memory. In

Proceedings of the 1st ACM SIGPLAN Workshop on Languages, Compilers, and Hardware

Support for Transactional Computing (TRANSACT), Ottawa, Canada, June 2006. Cited on page

182.

Torvald Riegel, Pascal Felber, and Christof Fetzer. A Lazy Snapshot Algorithm with Eager Vali-

dation. In Proceedings of the 20th International Symposium on Distributed Computing (DISC),

pages 284–298, Stockholm, Sweden, September 2006. Cited on pages 180, 181, and 183.

Christopher J. Rossbach, Owen S. Hofmann, and Emmett Witchel. Is transactional programming

actually easier? In Proceedings of the 15th ACM SIGPLAN symposium on Principles and

practice of parallel programming (PPoPP), pages 47–56, Bangalore, India, January 2010. Cited

on page 6.

Bratin Saha, Ali-Reza Adl-Tabatabai, Richard L. Hudson, Chi Cao Minh, and Benjamin

Hertzberg. {McRT-STM}: a high performance software transactional memory system for a

multi-core runtime. In Proceedings of the 11th ACM SIGPLAN symposium on Principles and

practice of parallel programming (PPoPP), pages 187–197, New York, USA, 2006. ACM Press.

Cited on page 41.

Toufik Sarni, Audrey Queudet, and Patrick Valduriez. Real-Time Support for Software Trans-

actional Memory. In Proceedings of the 15th IEEE International Conference on Embedded

and Real-Time Computing Systems and Applications (RTCSA), pages 477–485, Beijing, China,

August 2009. Cited on pages 3, 42, and 180.

William N. Scherer III and Michael L. Scott. Contention Management in Dynamic Software Trans-

actional Memory. In PODC Workshop on Concurrency and Synchronization in Java programs,

pages 70–79, July 2004. Cited on page 51.

William N. Scherer III and Michael L. Scott. Advanced contention management for dynamic soft-

ware transactional memory. In Proceedings of the 24th annual ACM symposium on Principles

of distributed computing (PODC), pages 240–248, Las Vegas, USA, 2005. Cited on page 51.

Martin Schoeberl, Florian Brandner, and Jan Vitek. RTTM: Real-Time Transactional Memory. In

Proceedings of the 2010 ACM Symposium on Applied Computing (SAC), pages 326–333, Sierre,

Switzerland, March 2010. Cited on page 42.

Lui Sha, Ragunathan Rajkumar, and John P. Lehoczky. Priority inheritance protocols: an approach

to real-time synchronization. IEEE Transactions on Computers, 39(9):1175–1185, September

1990. ISSN 00189340. Cited on pages 3 and 33.

Nir Shavit and Dan Touitou. Software transactional memory. In Proceedings of the 14th an-

nual ACM symposium on Principles of distributed computing (PODC), pages 204–213, Ottawa,

Canada, August 1995. Cited on pages 4 and 41.

http://software.intel.com/en-us/blogs/2012/02/07/transactional-synchronization-in-haswell/
http://software.intel.com/en-us/blogs/2012/02/07/transactional-synchronization-in-haswell/

REFERENCES 173

Nir Shavit and Dan Touitou. Software transactional memory. Distributed Computing, 10(2):

99–116, February 1997. ISSN 0178-2770. Cited on pages 41 and 45.

Paulo B. Sousa, Konstantinos Bletsas, Eduardo Tovar, and Björn Andersson. On the implementa-

tion of real-time slot-based task-splitting scheduling algorithms for multiprocessor systems. In

Proceedings of the 13th Real-Time Linux Workshop (RTLWS), pages 207–218, Prague, Czech

Republic, 2011. Cited on page 112.

Michael F. Spear, Virendra J. Marathe, William N. Scherer III, and Michael L. Scott. Conflict

Detection and Validation Strategies for Software Transactional Memory. In Proceedings of the

20th International Symposium on Distributed Computing (DISC), pages 179–193, Stockholm,

Sweden, September 2006. Cited on pages 40 and 105.

Marco Spuri. Analysis of Deadline Scheduled Real-Time Systems. Research Report RR-2772,

INRIA - Institut National de Recherche en Informatique et en Automatique, Paris, France, 1996.

Cited on pages 25, 78, 79, 83, 85, 144, and 162.

Anand Srinivasan. Efficient and Flexible Fair Scheduling of Real-time Tasks on Multiprocessors.

PhD thesis, University of North Carolina at Chapel Hill, 2003. Cited on page 20.

John A. Stankovic. Misconceptions about real-time computing: a serious problem for next-

generation systems. Computer, 21(10):10–19, October 1988. ISSN 0018-9162. Cited on pages 1

and 11.

John A. Stankovic and Krithi Ramamritham. What is predictability for real-time systems. Real-

Time Systems, 2(4):247–254, November 1990. Cited on page 14.

Herb Sutter and James Larus. Software and the concurrency revolution. Queue, 3(7):54–62,

September 2005. ISSN 15427730. Cited on pages 2 and 3.

Tilera. Tilera TILEPro64 processor (product brief), 2012. URL http://www.tilera.com/sites/

default/files/productbriefs/TILEPro64_Processor_PB019_v4.pdf. Cited on pages 5 and 6.

Tilera. TILE-Gx72 Product Brief, 2015. URL http://www.tilera.com/files/drim__TILE-Gx8072_

PB041-04_WEB_7683.pdf. Cited on pages 5 and 16.

Philippas Tsigas and Yi Zhang. Non-blocking data sharing in multiprocessor real-time systems.

In Proceedings of the 6th IEEE International Conference on Real-Time Computing Systems and

Applications (RTCSA), pages 247–254, Hong Kong, China, December 1999. Cited on pages 3

and 36.

Bryan C. Ward and James H. Anderson. Supporting nested locking in multiprocessor real-time

systems. In Proceedings of the 24th Euromicro Conference on Real-Time Systems (ECRTS),

pages 223–232, Pisa, Italy, July 2012. IEEE. Cited on page 96.

Bryan C. Ward and James H. Anderson. Multi-resource real-time reader/writer locks for multi-

processors. In Proceedings of the IEEE 28th International Parallel and Distributed Processing

Symposium (IPDPS), pages 177–186, Phoenix, USA, May 2014. Cited on page 35.

Bryan C. Ward, Glenn A. Elliott, and James H. Anderson. Replica-request priority donation: A

real-time progress mechanism for global locking protocols. In Proceedings of the 18th IEEE

International Conference on Embedded and Real-Time Computing Systems and Applications

(RTCSA), pages 280–289, Seoul, South Korea, August 2012. IEEE. Cited on page 35.

http://www.tilera.com/sites/default/files/productbriefs/TILEPro64_Processor_PB019_v4.pdf
http://www.tilera.com/sites/default/files/productbriefs/TILEPro64_Processor_PB019_v4.pdf
http://www.tilera.com/files/drim__TILE-Gx8072_PB041-04_WEB_7683.pdf
http://www.tilera.com/files/drim__TILE-Gx8072_PB041-04_WEB_7683.pdf

174 REFERENCES

Andy J. Wellings, Alan Burns, Osmar Marchi dos Santos, and Benjamin M. Brosgol. Integrating

Priority Inheritance Algorithms in the Real-Time Specification for Java. In Proceedings of the

10th IEEE International Symposium on Object and Component-Oriented Real-Time Distributed

Computing (ISORC), pages 115–123, Santorini Island, Greece, May 2007.

Jeannette Marie Wing, Maurice Herlihy, Stewart Clamen, David Detlefs, Karen Kietzke, Richard

Lerner, and Su-Yuen Ling. The Avalon/C++ programming language (version 0). Technical Re-

port CMU-CS-88-209, Carnegie Mellon University, Computer Science Department, December

1988.

Fengxiang Zhang and A. Burns. Schedulability analysis for real-time systems with edf scheduling.

Computers, IEEE Transactions on, 58(9):1250–1258, Sept 2009. Cited on page 25.

Appendix A

Ada language support for transactions

This appendix specifies how to enrich the syntax of the Ada programming language so that it

provides support to the execution of transactions on a multi-core platform by following an STM

based approach.

A.1 State of the art

The Ada programming language was originally developed for writing concurrent software dedi-

cated to embedded systems. Previous work on transactions was oriented for fault tolerant systems,

as a mean to maintain the state sound despite failures. The solutions found in literature on this

topic have several similarities with memory transactions: once a transaction starts executing, it

must commit or abort. In this way, they are serialised as atomic sections that are meant to main-

tain data consistency. This work can be useful for the definition of new language constructs, and

for the design of a STM service in real-time systems.

Support for transactions in Ada was already subject of research in the field of fault-tolerant

systems. The concept of a transaction grouping a set of operations that appear to be executed

atomically (with respect to other concurrent transactions) if succeed, or having no effect what-

soever on the state of the system if failed, is quite appealing as a concurrent control mechanism

for fault-tolerant and/or distributed systems. The ability to abort a transaction due to data access

conflict or to an unexpected error, rolling back any state modifications, permits to preserve auto-

matically the system in a safe and consistent state. Safe consistent states can be stored in a durable

medium, so they might be available even after a crash.

The loose parallelism provided by the isolation property of the transactional paradigm suits

systems based on multiple processors (either clustered or distributed) and the inherent backward

recoverability mechanisms suits fault-tolerant concerns.

Two paradigmatic implementations of transaction support in Ada are the Transactional Drago

(Patiño-Martínez et al., 1998, 2001) and the OPTIMA framework (Kienzle et al., 2001).

175

176 Ada language support for transactions

Listing A.1: Transaction block (Transactional Drago).

transaction

declare

-- data declared here is subject to concurrency control

begin

-- sequence of statements

-- can include tasks that work on behalf of transaction

-- can include nested transactions

exception

-- handle possible exceptions here...

end transaction;

Both proposals share many common attributes, aiming to support competitive concurrency

(between transactions) and cooperative concurrency (inside a transaction), and provide the es-

sential interface to start, commit and abort transactions. Transactions can be multithreaded, i.e.

multiple tasks can work on behalf of a single transaction. Both implementations support nested

transactions and exception handling.

Despite the similarities, both implementations take different approaches.

Transactional Drago is an extension to the Ada language, so it can only be used with compilers

that include this extension. Transactions are defined using the transactional block, an extension

that resembles an Ada block statement, but identified with the keyword transaction (Patiño-

Martínez et al., 2001). The transactional block creates a new scope in which data, tasks and nested

transactions can be defined. Data declared inside a transactional block are volatile and subject

to concurrency control. Tasks inside a transactional block work cooperatively on behalf of the

transaction and their results will dictate the outcome of the transaction.

The transactional block provides a clean syntax, defining clearly the limits of the transaction.

A transaction is aborted by rising an exception, as there is no explicit abort statement. The sample

code in Listing A.1 illustrates a transactional block.

The OPTIMA framework is provided as a library, thus the language is not modified. In this

framework, a transaction is created with the command Begin_Transacion and ends with either

Commit_Transaction or Abort_Transaction, depending on the result of the computation.

The OPTIMA framework supports open multithreaded transactions, so the additional command

Join_Transaction allows one task to join and cooperate in an ongoing transaction. A task be-

comes linked to the transaction setting the appropriate parameters in the Ada.Task_Attributes

record, which allows the transaction support to determine in which transaction context the task is

working on. The code sample in listing A.2 illustrates a task that starts a transaction.

This example shows how this framework uses the exceptions mechanism to define handlers for

foreseen exceptional cases, thus allowing forward recovery in such cases. However, unexpected

exceptions will abort the transaction, like in Transactional Drago.

A.2 Ada language support for transactions 177

Listing A.2: Transaction (OPTIMA framework).

begin

Begin_Transaction;

-- perform work

Commit_Transaction;

exception

when ...

-- handle recoverable exceptions here...

Commit_Transaction;

when others =>

Abort_Transaction;

raise;

end;

A.2 Ada language support for transactions

In this section, we elaborate on the specific instructions we propose to enrich the Ada language.

Essential support to STM can be implemented in a stand-alone library, without introducing any

modifications in the Ada programming language itself. This approach facilitates the portability

of the STM service, without any need to modify compilers and debuggers. However, the burden

rely on the programmer as he will be responsible for delimiting the boundaries of the transactional

sections of code of the progrm.

The code in listing A.3 illustrates how a very simple transaction should be written.

This example shows how the initialisation of the transaction and the retry-until-commit loop

have to be explicitly written.

This STM perspective requires two key classes of objects: the transactional object and the

transaction identifier.

The transactional object encapsulates a data structure with the transactional functionality. For

instance, a write operation will not effectively modify the value of the object if the STM applies

lazy version management.

The transaction identifier is a structure that stores the data required by the contention manager

to apply the conflict solving policy chosen for the system.

A.2.1 Transactional object

A transactional object is a type of class that wraps a classical data structure with the transactional

functionality. The interface provided is similar to the non-transactional version, but adds the oper-

ations required to maintain the consistency of the object, according to the implementation details

of the STM.

Thus, for every access, the identification of the transaction is required, either to locate the

transaction holding the object (case of eager version management) or track all transactions re-

ferring the object (case of lazy version management). In each case, the object must locate one

or all accessing transactions, respectively, so under contention, transactions’ attributes are used

178 Ada language support for transactions

Listing A.3: TM transaction syntax for Ada.

-- we need a transaction identifier structure

My_Transaction : Transaction;

-- start an update transaction

My_Transaction.Start(Update);

loop

-- read a value from a transactional object

x := trans_object_1.Get(My_Transaction);

-- write a value to a transactional object

trans_object_2.Set(My_Transaction, y);

-- try to commit transaction

exit when My_Transaction.Commit;

exception

-- handle possible exceptions here...

end loop;

to determine which transaction is allowed to proceed, according to the contention management

policy.

Reading accesses can also be tailored for read-only transactions, if a multi-versioned STM is

used. Transparently, the transactional object can return the latest version to an update transaction,

or a consistent previous version to a read-only transaction.

Listing A.4 proposes an interface for a transactional object.

A.2.2 Transaction identifier

The transaction identifier provides the transactional services to a task, identifying uniquely a trans-

action. The essential interface of this class should provide the Start, Commit and Abort oper-

ations, and keep track of the accessed objects, as seen in listing A.5.

The Start procedure initialises the transaction environment. Starting an already active trans-

action is not allowed, and an exception should be raised.

The Abort procedure erases any possible effects of the transaction, but the transaction remains

active and is allowed to undertake further execution attempts. Aborting an inactive transaction is

not allowed, and an exception should be raised.

The Terminate procedure cancels the transaction, leaving the transaction inactive. Termi-

nating an inactive transaction is not allowed, and an exception should be raised.

The last operation provided by this interface is the Commit function that validates accessed

data and resolves possible conflicts. If the transaction is allowed to commit its updates, then this

function will return the True value. Committing an inactive transaction is not allowed, and an

exception should be raised.

A.2 Ada language support for transactions 179

Listing A.4: Transactional object.

-- Transactional object

package Transactional_Objects is

type Transactional_Object is tagged private;

-- examples of transactional class methods

procedure Set(T_Object: Transactional_Object;

Transaction_ID : Transaction;

Value : Object_Type);

function Get(T_Object: Transactional_Object;

Transaction_ID : Transaction)

return Object_Type;

private

type Transactional_Object is tagged

record

Current_Value : Object_Type;

Accesses_Set : <list_of_references_to_transaction_identifiers>

-- some other relevant fields...

end record;

end Transactional_Objects;

Listing A.5: Transaction identifier.

type Transaction_Type is (Read_Only, Update);

-- Transaction identifier

package Transactions is

type Transaction is tagged private;

procedure Start(T : Transaction;

TRX_Type : Transaction_Type);

procedure Abort(T : Transaction);

procedure Terminate(T : Transaction);

function Commit(T : Transaction)

return Boolean;

private

type Transaction is tagged

record

Data_Set : <list_of_references_to_accessed_transactional_objects>;

end record;

end Transactions;

180 Ada language support for transactions

Listing A.6: Extension to base transaction identifier.

type Transaction_Status is (Active,

Preempted,

Zombie,

Validating,

Committed);

-- Transaction identifier

package Transactions_Foo_STM is

type Transaction_Foo_STM is new Transaction with private;

overriding

function Commit(T : Transaction_Foo_STM) return Boolean;

private

type Transaction_Foo_STM is new Transaction with

record

-- implementation specific elements

-- some examples below

Type_of_Accesses : Transaction_Type;

Time_Started : STM_Time;

Time_Current_Begin : STM_Time;

Status : Transaction_Status;

-- some other relevant fields...

end record;

end Transactions_Foo_STM;

This class also stores the references to the transactional objects that were accessed in the

context of the transaction. This data is required when trying to commit, to validate read and

update locations.

Specific STM implementations will, most likely, require modified operation functionality and

additional attributes. For example, some STM algorithms require to know the instant the transac-

tion arrived, the current status of the transaction (Barros and Pinho, 2011a), transaction deadlines

(Sarni et al., 2009), or the instant the current attempt of the transaction began (Dice et al., 2006;

Riegel et al., 2006; Perelman and Keidar, 2010).

These attributes can be included in extensions of this class, deriving a new class for each

implementation, as the example in listing A.6 illustrates.

Appendix B

Bounded-memory multi-version STM

for real-time systems

Previous work on STM has consistently shown that the amount of contention has a relevant im-

pact on the behaviour of STM. While contention may never be eliminated, measures that reduce

contention may improve the performance of the STM. Multi-versioned STM was proposed as

a way to reduce contention, improving directly the abort ratio of read-only transactions and, in

consequence, improve the overall system performance (Cachopo and Rito-Silva, 2006). In this

approach, multiple versions of shared objects are temporarily kept so each read-only transaction

executes with a recent and consistent snapshot of its read set without conflicting with other con-

current transactions. However, published works on multi-versioned STM either propose a fixed

number of versions for each object (Riegel et al., 2006) or a variable number of versions that are

garbage collected (Cachopo and Rito-Silva, 2006; Perelman et al., 2010; Perelman and Keidar,

2010). In all cases, since there is no knowledge on the timing characteristics of tasks, the number

of outdated versions is either set as a fixed parameter that reduces the probability of aborts, or elim-

inates this probability keeping a strict number of versions necessary for the ongoing transactions

at the expense of using a garbage collector mechanism, which is known for not being suitable to

real-time systems. This appendix demonstrates how the timing characteristics of real-time systems

can be used to determine the maximum number of versions for each data object.

A conflict occurs when two or more transactions access concurrently a common data object and

at least one of the transactions updates this object. Considering the example in Figure B.1, where

shared objects X and Y are initially in version v, respectively denoted as Xv and Yv. Transaction ω1

first reads object Xv. Then transaction ω2 is released and modifies both objects, updating them to

versions Xv+1 and Yv+1, and finishes its execution. Finally, transaction ω1 reads object Yv+1, which

is no longer consistent with Xv. This concurrent execution is not serialisable because ω1 will not

behave exactly the same way as if it was executed sequentially before or after ω2: ω1 reads Xv as

if ω2 has not executed yet, and reads Y v+1 as if ω2 has finished executing. In this situation, and

181

182 Bounded-memory multi-version STM for real-time systems

Conflict!

re
ad
(X

v)

re
ad
(Y

v+
1)

wr
it
e(
Xv

+1
)

wr
it
e(
Yv

+1
)

!1

!2

time

Figure B.1: Conflict between a read-only (ω1) and an update (ω2) transactions.

Actual sequence of operations with multiple versions

Perceived serialisation of transactions with multiple

versions

re
ad
(X

v)

re
ad
(Y

v)

!1

wr
it
e(
Xv

+1
)

wr
it
e(
Yv

+1
)

!2

time

re
ad
(X

v)

re
ad
(Y

v)

!1

wr
it
e(
Xv

+1
)

wr
it
e(
Yv

+1
)

!2

time

wr
it
e(
Xv

+1
)

wr
it
e(
Yv

+1
)

!2

Figure B.2: Conflict between a read-only (ω1) and an update (ω2) transactions.

depending on contention management policy applied, one of the transactions must abort so the

contender can commit.

Multi-versioned STM allows read-only transactions to work on recent consistent snapshots

of their read sets without ever conflicting with other concurrent transactions (Cachopo and Rito-

Silva, 2006) and, therefore, execute in a wait-free manner and commit at first try. Considering the

same example in Figure B.1, both transactions can now commit, as long as ω1 has access to the

version of Yv, previous to the update performed by ω2. In this case, although ω1 commits after ω2,

it can be serialisable as if it has executed before ω2, as represented in figure B.2.

Multi-versioned STM reduces the amount of contention on object accesses at the expense of

higher memory utilization, since previous versions of each object must be temporarily stored. The

amount of memory overhead that optimises the system throughput is a subject of current research

in the field of parallel systems (Perelman et al., 2010; Perelman and Keidar, 2010; Riegel and

Bounded-memory multi-version STM for real-time systems 183

Felber, 2006; Riegel et al., 2006), essentially relying on fixed number of versions or in garbage

collecting techniques that will statistically reduce or eliminate the abort ratio of read-only trans-

actions.

In real-time systems, it is known beforehand the timing characteristics of the task set which,

in conjunction with the knowledge of the data set of each transaction, gives the means to deter-

mine the exact number of versions required for any given object. Knowing the exact number of

versions each object must store, permits to design a STM with minimum memory overhead and

predictable version management (excluding garbage collecting mechanisms), and guaranteeing

read-only transactions will complete with deterministic execution time while avoiding collisions

with update transactions.

To determine the number of versions required for any object it is necessary to:

1. bound the number of updates each object is subject to in a given interval, and

2. determine the time each object must store a individual version.

The maximum number of updates of an object in a given interval can be calculated considering

the timing properties of the tasks that host update transactions that include the object in their write

set. For an arbitrary time interval ∆T , the maximum number of updates of object ok, denoted as

updatesk, is given by the number of job releases of tasks that host transactions that include the ok

in its write set:

updatesk = ∑
i

ai ·

⌈

∆T

Ti

⌉

(B.1)

in which the binary variable ai is given by

ai =

1 if ok ∈WSi,

0 otherwise.
(B.2)

The time each version of object ok must be stored, denoted as storek, is given by the maximum

time a read-only transaction including the ok in its read set can execute. Since there are no restric-

tions on where the transaction is located inside the task, we must assume the object may be read

any time during the period of the task. Thus, a version of object ok must be stored for

storek = max{Ti : ok ∈ RSi ∧ ωi is read only}. (B.3)

Combining the two results from Equations (B.1) and (B.3), we can determine the number of

versions required for Ok, denoted as versionsk, is

versionsk = ∑
i

ai ·

⌈

storek

Ti

⌉

(B.4)

184 Bounded-memory multi-version STM for real-time systems

in which ai is given by

ai =

1 if ok ∈WSi,

0 otherwise.
(B.5)

Therefore, multi-versioned STM can be implemented efficiently in real-time systems with

predetermined memory overhead, and assuring all read-only transactions will execute in a wait-

free manner.

	Front Page
	Table of Contents
	List of Figures
	List of Tables
	1 Introduction
	1.1 Problem definition
	1.2 Relevance of the subject
	1.3 Main thesis preposition
	1.4 Thesis contributions
	1.5 Outline

	2 Background on real-time embedded systems
	2.1 Modelling real-time systems
	2.2 Modelling the computing platform
	2.3 Real-time scheduling paradigms
	2.4 Relevant works in the real-time scheduling theory
	2.5 Summary

	3 Background on synchronisation mechanisms
	3.1 Lock-based synchronisation
	3.2 Non-blocking data structures
	3.3 Transactional memory
	3.4 Relevant works on software transactional memory
	3.5 Summary

	4 System model
	4.1 Task specifications
	4.2 Platform and Scheduler specifications
	4.3 STM specifications

	5 FIFO-CRT: a predictable STM contention management
	5.1 Requirements
	5.2 Classical contention management policies
	5.3 Discussion of criteria
	5.4 FIFO-CRT: a predictable contention manager for real-time systems
	5.5 Summary

	6 Scheduling tasks and transactions under FIFO-CRT
	6.1 Impact of the scheduling policy on the contention manager
	6.2 Non-preemptive approaches
	6.2.1 Non preemptible until commit (NPUC)
	6.2.2 Non preemptible during attempt (NPDA)

	6.3 Preemptive approach (SRPTM)
	6.3.1 Assigning preemption levels to tasks and to transactions
	6.3.2 Scheduling policy

	6.4 Summary

	7 Schedulability analysis of tasks under NPDA, NPUC and SRPTM
	7.1 WCRT analysis for NPDA
	7.2 WCRT analysis for NPUC
	7.2.1 WCRT of transaction i
	7.2.2 WCRT of task i

	7.3 WCRT analysis for SRPTM
	7.3.1 WCRT of transaction i
	7.3.2 WCRT of task i

	7.4 Summary

	8 Evaluation
	8.1 Quantitative evaluation
	8.1.1 Simulation set up
	8.1.2 Simulation results

	8.2 Qualitative evaluation
	8.2.1 Deadlock
	8.2.2 Livelock
	8.2.3 Access to multiple objects per atomic section
	8.2.4 Composability
	8.2.5 Transparency
	8.2.6 Priority inversion
	8.2.7 Convoy effect
	8.2.8 Impact of the synchronisation mechanism on a multi-core architecture
	8.2.9 Platform dependency

	8.3 Summary

	9 Implementation
	9.1 Experimental setup
	9.1.1 Platform specification
	9.1.2 Task set generation
	9.1.3 STM specification
	9.1.4 Schedulers specification

	9.2 Results
	9.2.1 STM performance
	9.2.2 System performance
	9.2.3 Response Time Analysis (RTA) accuracy

	9.3 Summary

	10 Conclusions
	10.1 Summary of results
	10.1.1 Fair and predictable contention management algorithm
	10.1.2 Modifications performed on the original scheduler
	10.1.3 Response time analysis

	10.2 Future directions

	References
	A Ada language support for transactions
	A.1 State of the art
	A.2 Ada language support for transactions
	A.2.1 Transactional object
	A.2.2 Transaction identifier

	B Bounded-memory multi-version STM for real-time systems

