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Abstract. Current active 3D range sensors, such as time-of-flight cam-
eras, enable acquiring of range maps at video frame rate. Unfortunately,
the resolution of the range maps is quite limited and the captured data
are typically contaminated by noise. We therefore present a simple
pipeline to enhance the quality as well as improve the spatial and depth
resolution of range data in real time. To improve the spatial resolution
of range data, we first upsample the depth information with the data
from high resolution video camera. And then, a new strategy is utilized
to increase the sub-pixel accuracy. We show that these techniques can
greatly improve the reconstruction quality, boost the resolution of the
range data to that of video sensor while achieving high computational
efficiency for a real-time application.

Keywords: Time-of-Flight Camera, Super Resolution, Fast Multi-Lateral
Filter, Sub-Pixel Estimation.

1 Introduction

In recent years, a variety of range measuring devices have been developed for
3D data acquisition.For example, by using extremely faster shutter (on the or-
der of nanosecond),time-of-flight(TOF) sensors [1] measure time delay between
transmission of a light pulse and detection of the reflected signals on an entire
frame at once which are best suited for dynamic scene. This process is largely
independent of the scene texture and full frame real-time depth estimates are
possible.On the other hand, the main contender to TOF sensor- stereo vision [3]
- is rather limited: it is known to be quite fragile in practice (e.g. due to lack of
texture).

Unfortunately, being a relatively young technology, TOF sensors have not
enjoyed the same advances, with respect to image resolution, quality and photo
speed, that have been made in traditional 2D intensity imaging sensors. As a
result, in current generation, these sensors provide range data of comparably low
image resolution (e.g. only up to 176 × 144 for MESA SwissRangerTM SR4000
[2]) that are heavily contaminated with noise in the distance measurement.

To overcome this issue, this paper proposes a simple framework to substan-
tially enhance the spatial and depth resolution of range data, e.g., those from the
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Mesa imaging sensor. To achieve this goal, firstly, we propose a new fast multi-
lateral filter, termed as FMLF, to adaptively upsample the low resolution range
data in real time by taking advantage of the significant information provided by
registered high resolution video camera. To enhance the depth resolution and
reduce the discontinuities caused by quantization in the depth map initiation
process, a sub-pixel estimation algorithm then is formulated as a Markov Ran-
dom Field (MRF) and treated it as a Maximum A Posteriori (MAP) problem
which can be solved via the gradient descent method.

The main contribution of our method is to present a simple pipeline to en-
hance the spatial and depth resolution of range data while obtaining real time
performance. We also extend our method in a new realm: combined with the low
resolution intensity image generated by TOF sensor itself, the quality of range
data can be greatly improved.

The rest of the paper is organized as follows. Section 2 introduces the previous
works. Section 3 describes the multi-sensor setup of our system. The complete
description of the proposed fast and simple super resolution technique is pre-
sented in Section 4. The extension is given in Section 5.The experimental results
are given in Section 6. Finally the conclusions are outlined in Section 7.

2 Previous Work

There are many approaches that exploit additional information to improve the
resolution of range data combining TOF sensor with one or two high resolu-
tion video cameras. The main assumption is that depth discontinuities are often
related to color changes in the corresponding color image.

Prior researchers often use a probabilistic approach: In [5], MRF is first de-
signed based on the low resolution depth maps and the high resolution cam-
era images and solved via conjugate gradient. Unfortunately, this method gives
promising spatial resolution enhancement only up to 10×. Yang et al. [6] then
present a method modals a cost volume of depth probability and iteratively ap-
plies bilateral filter [7] to refine the cost volume, providing a spatial resolution
enhancement of 100× (10× width and 10× height). However, they do not use
a joint bilateral filter [8] to link the two images and even with GPU (Graphics
Processing Unit) [9] optimization, their effective runtime would be very large
due to the number of cost slices and the iterative scheme.

Another recent method [10] utilizes exclusively depth maps, without color
image aid: a sequence of low resolution depth maps of same scene is aligned and
then merged together to obtain a single depth map with improved resolution.
But this method is restricted to static scenes’ acquisition. Lindner et al. [23]
apply noise and edge aware upsampling for range data. However, using a pure
upsampling method, they do not to recover details which are beyond the depth
sensor’s resolution limit.

Key to our success is the use of multi-lateral filter, which is essential the ex-
tension of joint bilateral filter widely used in several state-of-the-art upsampling
algorithms [11].Until recently, these edge preserving bilateral filters were too
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computationally intensive for real time applications. Several efficient methods
[12] enable it to be computed at constant time or even video using GPU imple-
mentation [13]. Yang et al. [14] improve on this by not explicitly representing
the entire space, but instead sweeping a plane through the intensity level, com-
puting the output in intensity order. This low-memory, cache-friendly algorithm
is the fastest known bilateral filter. Inspired by Yang’s acceleration strategy,
our multi-lateral filter is sliced into one bilateral filter and one joint bilateral
filter that computed through discretization technology respectively. Therefore,
the real-time performance can be eventually achieved via GPU implementation.
What’s more, compared with the work of Chan et al. [16], our multi-lateral filter
method then allows for sub-pixel accuracy, in contrast with a potentially blocky
range result.

TOF sensor also provides an intensity image that is perfectly registered with
a depth map at each frame. Since a little interest has been put into this realm
[15], we extend our algorithm for improving the quality of range data of TOF
sensor by its own low resolution intensity image. Experimental results indicate
that even with the help of low resolution intensity image, the quality of range
data could be greatly improved by our algorithm.

3 Multi-sensor Setup

We combine a TOF sensor with a high resolution video camera (as shown in
Fig.1). In our setup, it has a baseline about 100mm and two sensors are verged
towards each other from the parallel setup.

The TOF sensor we have is a SwissRanger SR4000 [2], which can continuously
emit a sin wave and detected its reflected signal to produce a depth map in 176
× 144 size. Its operational range is up to seven meters with the modulation
frequency of 20MHZ. In addition, it will also produce an intensity image in the

Fig. 1. Multi-sensor setup
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same resolution based on object reflectance. The video camera we have is a
dragonfly2 video camera, providing color images with resolution up to 1024 ×
768 pixels.

4 Algorithm

An overview of the framework of the approach is given out in Fig.2 and it has
two main independent phases: First, up-sample the low resolution range image
from TOF sensor to the same size as the high resolution camera image and fast
multi-lateral filter (FMLF) is applied for the purpose of spatial super resolution
and denoising afterwards. In contrast to Chan’s method [16], our fast multi-
lateral filter enables of arbitrary spatial function and arbitrary range function.
To reduce the quantization effect of the depth map (i.e. for the enhancement of
depth super resolution), then a sub-pixel refinement algorithm is proposed based
on probabilistic model. We will explain the details below.

Fig. 2. Pipeline of our algorithm. The range image is up-sampled to the same size
as the camera image, and two different images serves as the inputs of the fast multi-
bilateral filter. The following is a sub-pixel refinement process.

4.1 FMLF for Depth Upsampling

To cope with the spatial super resolution requirement and meanwhile denosing
for noisy real-time 3D sensors, like time-of-flight cameras, we propose a new fast
multi-lateral filter for upsampling (FMLF). It is our goal to satisfy spatial super
resolution and denosing requirement for real-time 3D sensors as fast as possible
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and to make our filter to be more flexible. Like [16], the FMLF filter takes the
following form:

IF
x =

1
Kp

∑

y∈N(x)

I(y)fS(x, y)[(1 − φ(σ2))fR̃(D(x), D(y))

+φ(σ2)fR(I(x), I(y))] (1)

Where x is a pixel in low resolution range image and y is a pixel in the neighbor-
hood of N(x),I(x) and I(y) are the corresponding range values of pixel x and
y, D(x) and D(y) denote the intensity values of pixel x and y in high resolution
camera image respectively,fS, fR̃ and fR are all arbitrary functions, e.g. Gaus-
sian function or Box function, φ(σ2) represents a blend function, defining in the
interval [0,1], σ2 is the variance in pixel neighborhood N (e.g. 3×3 lattice) and
Kp is a normalizing factor.

From the Equation (1), it is easy to conclude that a low weight φ makes our
filter behave like a standard joint bilateral filter while a high weight φ gives
higher influence to the latter range term fR(I(x), I(y)) which makes the filter
behave like an edge preserving bilateral filter that smoothes the 3D geometry
independently of information from the high resolution camera image.

The main issue is to decide the value of weight φ since it controls the char-
acteristic of our filter. We want the filter to switch to a bilateral filter in cases
where the areas are actually smooth but heavily contaminated with random
noise caused by range measure. Therefore, we intuitively define our blend func-
tion φ(σ2) as follows:

φ(σ2) =
τ

σ2 + τ
(2)

Here, σ2 is the variance in pixel neighborhood in N . We reason that if this
variance is large, the local surface patch is most likely to be smooth and only
noise-affected - thus former range term fR̃(D(x), D(y)) should be triggered. Once
σ2 being low, latter range term fR(I(x), I(y)) will be triggered and our filter
will act as a bilateral filter to ease the errors caused by range measurement. The
unique parameter τ depends on the characteristic of the employed depth sensor
and can be determined through experiments.

Please note that the computation of σ2 on a low-pass filtered depth map
is important, because it enables us to reliably disambiguate between isolated
random noise peaks and actual depth edges. We have also found that it is better
that the range term fR̃ takes the Gaussian form and cannot simply be set to
a box filter in the range domain. With this design, we achieve much better
preservation of depth discontinuities if φ lies in the transition zone. Finally, by
choosing a small spatial support for our FMLF filter (3 × 3 lattice or 5 × 5
lattice), any form of texture copy around true depth edges can be reduced in
practice while high-quality denoising is still feasible.

4.2 Acceleration Strategy

The complexity of Equation (1) makes direct compute could be time consuming
and it is infeasible for real-time application. Several efficient numerical schemes
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[14, 17], have been proposed to reduce the computational load of bilateral filter.
Inspired by the fastest bilateral filter method [14] so far, our filter is sliced into
one bilateral filter and one joint bilateral filter as follow:

IF
x =

1
Kp

∑

y∈N(x)

fS(x, y)(1 − φ(σ2))fR̃(D(x), D(y))I(y)

+
1

Kp

∑

y∈N(x)

fS(x, y)φ(σ2)fR(I(x), I(y))I(y) (3)

Here, the former is a joint bilateral filter while the latter is a bilateral filter. We
then could take advantage of acceleration technology proposed by [14]: the range
data of low resolution range image and the intensity data of high resolution cam-
era image are discretized into a number of values, compute a linear filter for each
such value respectively, the output of which is termed as PBFIC in [14] and get
intermediate results by a linear interpolation between two closest PBFICs. The
final result is obtained through adding operation between intermediate results.
The details are given below:

In practice, we assume that the pixel intensity for an range image I(x) is dis-
crete with I(x) ∈ {0, · · · , N−1}, where N is the total number of grayscale values.
Letting I(x) = k, the latter term of Equation (3) 1

Kp

∑
y∈N(x) fS(x, y)fR(I(x),

I(y))I(y) can be written as:

II(x) =

∑
y∈N(x) fS(x, y)fR(k, I(y))I(y)
∑

y∈N(x) fS(x, y)fR(k, I(y))
(4)

For every pixel y and every intensity value k ∈ {0, · · · , N − 1}, we define:

Wk(y) = fR(k, I(y)) (5)

Jk(y) = Wk(y) ∗ I(y) (6)

Therefore, this bilateral filtering can then be decomposed into N sets of linear
filter responses

JI
k (x) =

∑
y∈N(x) fS(x, y)Jk(y)

∑
y∈N(x) fS(x, y)Wk(y)

(7)

Thus, we have
II(x) = JI

I(x)(x) (8)

Where JI
k is defined as Principle Bilateral Filtered Image Component (PBFIC)

in [14]. In practice, only N1 out N PBFIC (k ∈ {0, · · · , N1 − 1}) are used.
Supposing x is I(x) ∈ [Lk, Lk+1],therefore, the bilateral filtering value II(x) can
then be linearly interpolated [25] from JI

k (x) and JI
k+1(x) as following:

II(x) = (Lk+1 − I(x))JI
k (x) + (I(x) − Lk)JI

k+1(x) (9)

Note that, the range filter fR is not constrained and any desired filter function
can be chosen, but approximation can be poor if N1 is extremely small for some
range filters, e.g., Box filter.
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Similarly, the former term of Equation (3) 1
Kp

∑
y∈N(x) fS(x, y)fR̃(D(x), D(y))

I(y) can be reformulated as:

ID(x) =

∑
y∈N(x) fS(x, y)fR̃(k, D(y))I(y)
∑

y∈N(x) fS(x, y)fR̃(k, D(y))
(10)

Like Equation (9), it can be expressed as:

ID(x) = (Pk+1 − D(x))JD
k (x) + (D(x) − Pk)JD

k+1(x) (11)

Where we assume that the intensity of pixel x in high resolution camera image
is D(x) ∈ [Pk, Pk+1], and JD

k (x) is defined according to:

JD
k (x) =

∑
y∈N(x) fS(x, y)Zk(y)

∑
y∈N(x) fS(x, y)Uk(y)

(12)

Where Zk(y) and Uk(y) are computed as:

Uk(y) = fR̃(k, D(y)) (13)

Zk(y) = Uk(y) ∗ I(y) (14)

Finally, we get
IF
x = (1 − φ(σ2))ID(x) + φ(σ2)II(x) (15)

These are the two main reasons why our approach outperforms the current state-
of-the-art [12] for both accuracy and speed. The main storage required is six
memory buffers with the same size as the input image for images. However, [12]
requires a set of N1 image buffers to store the integral histogram during aggre-
gation. Additionally, in our approach, image pixels are processed independently,
allowing for parallel implementation.

Owing to the acceleration strategy discussed above, our GPU implementation
of FMLF runs at about 35 frames per second using 8 PBFICs.

4.3 Sub-pixel Estimation

We obtain disparities of the range image on integer level after the process detailed
in section above. However, unlike other methods, we also exploit the confidence
of an established disparity value.

There has been a growing interest [6, 18] in obtaining accurate sub-pixel
disparity since the parabola fitting approaches exhibit artifacts known as pixel-
blocking [19]. With the help of Fourier analysis, Scharstein and Szeliski [20] have
concluded that sinc interpolator is in theory the best interpolation to evaluate
the disparity space image at fractional disparities.

Our approach performs a depth-edge-preserving smoothing on the disparity
image, similar to [6] where bilateral filtering was used. Our sub-pixel estimation
is similar to adaptive smoothing [26], however, unlike other methods we also
further exploit the confidence of an established disparity value.
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Our approach treats the sub-pixel estimation as energy minimization problem
[27] with:

Etot =
∑

p∈V

Ep(dp) +
∑

(p,q)∈D

αEs(dp, dq) (16)

Where data term Ep is the cost of assigning disparity dp to pixel p, pairwise
smoothness term Es is the cost of assigning labels dp and dq to two neighboring
pixels and α is a scale factor. The higher that α is chosen, the smoother is the
resulting disparity map. One could also incorporate the image gradient or the
gray value variance as a confidence measure to determine the value of α.

How can an appropriate data term be formulated? Let dint be the integer
disparity computed by our fast multi-lateral filter. The data cost of choosing dp

unequal to the former estimated dint is formulated as following:

Ep(dp) = (dp − dint)2 (17)

From the Equation (17), we can conclude that the data cost tends to be small
in low-textured regions, whereas it will be large in textured regions.

Let d̃ be the average disparity within the considered patch D. The smoothness
term Es is defined according to:

Es(dp, dq) = (dp − d̃)2 (18)

Since our energy Equation (16) has a simple form, it is easy to compute the best
solution for a certain point directly instead of to inference by belief propagation
(BP) [4, 30] or graph cut (GC) [28, 31]. Partial derivation ∂Etot/∂dp = 0 yields

dp =
dint + α(N − 1)/N ∗ d̃

1 + α(N − 1)/N
≈ dint + α ∗ d̃

1 + α
(19)

Where N is the number of pixels within considered patch D. The higher that α
is chosen, the smoother is the resulting disparity image.

In order to get close to the best solution of the above described problem,
we need to iterate Equation (19) to propagate the update disparity values: dint

remains the origin value while dp updated in every iteration.
This sub-pixel estimation favors solutions that are planar in 3D, i.e. fronto-

parallel or slanted planes. This way, the algorithm is especially helpful for re-
constructing flat object.

See Section 6.3 for results of our sub-pixel estimation.

5 Extended Range Data Super Resolution Based on a
Single TOF Sensor

TOF camera robustly provides a range image of real world scenes at video frame
rates that is perfectly registered with an intensity image. At this point, it looks
like an ordinary color camera plus additional range information. We extend
our range data super resolution only with a single TOF sensor, based on the
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(a) Low-res depth map (b) Low-res intensity image

(c) Our refined result (d) Raw depth map (zoomed)

(e) Refined result (zoomed)

Fig. 3. From a low resolution depth map (a) and a low resolution grayscale intensity
map (b) we create a depth map at a higher level quality. The significantly higher quality
of our refined result (e) as opposed to the raw depth (d) is obvious.

insight that range measurement may be improved according to the low resolution
grayscale intensity image of TOF sensor itself.

Unlike [10], our method relies on one frame and it does not require the setup
or calibration process as literature [21] did previously. Therefore, it is available
for real-time application, especially within dynamic environment.
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Assume the Ĩ denote the low resolution grayscale intensity image obtained
from TOF sensor. The fast multi-lateral filter we used is changed into following:

IF
x =

1
Kp

∑

y∈N(x)

I(y)fS(x, y)[(1 − φ(σ2))fR̃(Ĩ(x), Ĩ(y))

+φ(σ2)fR(I(x), I(y))] (20)

This is almost identical to Equation (1) with the exceptions that the high res-
olution camera image is substituted with the low resolution grayscale intensity
image.

Equation (20) can be also sliced into one bilateral filter and one joint bilateral
filter as follows:

IF
x =

1
Kp

∑

y∈N(x)

fS(x, y)(1 − φ(σ2))fR̃(Ĩ(x), Ĩ(y))I(y)

+
1

Kp

∑

y∈N(x)

fS(x, y)φ(σ2)fR(I(x), I(y))I(y) (21)

Therefore, the proposed acceleration strategy is utilized for speed up. The sub-
pixel refinement strategy detailed in section 4.3 is also utilized to reduce quan-
tization effect.

At the low integration times required for scene capture at 25 fps, the depth
data provided by the SR4000 are severely noise-affected. As shown in Fig.3, our
method successfully improves the quality of the low resolution depth maps and
the resolution of the depth data can be effectively raised to the level of the video
camera. True geometry detailed in data, such as discontinuities, are preserved
and enhanced, the random noise level is greatly reduced.

Note that the generic artifacts that arise from the sensitivity of TOF sensor to
object reflectance [21] are also prevented. By exploiting the GPU as a fast stream
processor, real time performance is feasible. In a word, our design successfully
handles the data produced by state-of-the-art time-of-flight sensors which exhibit
significantly higher random noise levels than most active scanning devices.

6 Experimental Results

To demonstrate the effectiveness of our approach we applied our technique to
various scenes including our own recorded sequences as well as scenes from the
Middlebury stereo benchmark datasets [29]. In the following, we discuss im-
plementation details in Section 6.1. Then, we analyze two main aspects of our
approach more closely. We first demonstrate the visual superiority of our spa-
tial super resolution results to results obtained with previous upsampling meth-
ods, Section 6.2. Thereafter, our depth super resolution results are described in
Section 6.3. Finally, we discuss the advantageous run time properties of our al-
gorithm, and discuss practical performance gains in comparison to optimization
based upsampling methods, Section 6.4. We end the section by noting some over-
all limitations from our results and by discussing some possible future directions
of investigation for our work, Section 6.5.
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6.1 Implementation

Our experimental system consists of a Mesa SwissrangerTM SR4000 time-of-
flight camera and a Point GrayTM dragonfly2 video camera. The two cameras
are placed side-by-side (as closely as possible) and are frame-synchronized. The
Swissranger can produce range images with size up to 176 × 144 pixels and the
dragonfly2 can provide color images with resolution up to 1024 × 768 pixels. To
align the range and video images, we resort to the gray-scale intensity images
that the Swissranger sensor provides in addition to range images. For the purpose
of image registration, the approach proposed in [22] is applied. A better setup
would be to use an beam-splitter to align the optical axes of both sensors to
guarantee image alignment.

The approach is implemented on a state-of-the-art graphics card. Since our
approach operations on individual pixels can be carried out independently, we
can capitalize on the massive stream processing power of modern GPUs which
by now feature up to 256 individual stream processors. In particular, we employ
Nvidia’s CUDA programming framework [9] to port our algorithm onto graph-
ics hardware. Overall, we thereby achieve real-time up-sampling and denoising
performance.

The simplicity of our method lies in that, Compared with previous work [16,
21], only two main parameters are involved in it, they are τ and α. τ is the
constant used in Equation (2) which in essential denotes the expected variance
due to noise, it is set to 50 experimentally. α is the magnification ratio of smooth
term in Equation (16) and is set to 2 in this paper.

6.2 Spatial Super Resolution

Let the fS in Equation (1) be Box function and fR̃ and fR in Equation (1)
be all Gaussian functions, we evaluate our algorithms on a real scene where
a checkerboard and a cup are involved as shown in Fig.4. It is clear that our
method successfully upsamples the low resolution depth maps to high resolution
and with respect to the raw 3D data, the visual appearance of depth detail of the
checkerboard is improved, especially on textured regions and around boundaries.

Our approach is also superior to the Chan’s method proposed by [16]. Please
pay attention to the details, indicated by the red boxes and arrows, for further
comparisons. Furthermore, evaluated on Nvidia Geforce 9800 GT platform, the
GPU implementation of our approach averages 31ms which is faster than that
of the Chan’s method (37 ms).

A visual comparison of the depth maps of the Middlebury datasets are pro-
vided in Fig.5.The original depth map is down-sample by 8 (2∧3) from the
ground truth.Currently, fS is chosen to be Box functions, fR̃ and fR in Equa-
tion (1) are all chosen to be Gaussian functions. The MRF approach in [5] also
improves the stereo quality, but the improvement is relatively small compared
to our approach. Cleary, the results using our approach have more clean edges
than the input depth maps and the result using MRF approach [5]. According
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(a) Low-res depth map (b) High-res camera image

(c) Raw 3D data

(d) Refined 3D data using Chan’s ap-
proach

(e) Refined 3D data using our approach

Fig. 4. By using of the high-res camera image (b), our technique upsamples a low-res
depth map (a) reconstructed as 3D geometry(c) to a high-res depth map which can be
reconstructed as 3D geometry (e) with the comparison of Chan’s results (d)

to Fig.5, it is faithfully acknowledged that our results are inferior to the results
using Yang’s method [6]. However, our approach is designed based on fast and
simple pipeline whereas the Yang’s method relies on iterations which make it
impossible for real-time application.

By visual comparison, our approach outperforms the MRF approach as the
resolution of the range sensor keeps on decreasing. In Fig.6, we show that even
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Fig. 5. Super resolution result on Middlebury datasets. (a) Before refinement. (b)
Using Diebel’s approach [5].(c) Using Yang’s approach [6]. (d) Using our approach.

with tiny sensors (down-sample by 16, 2∧4), we can still produce decent high-
resolution range images.

Fig.7 show the performance of our algorithm on Middlebury datasets when
fS is chosen to be Box function or Gaussian function. Obviously, the two curves
(corresponding to fS is set to be Box function or Gaussian function) are al-
most coincidence in this experiment. A reasonable explanation may be that test
images in Middlebury datasets are well taken under an ideal environment. How-
ever, practical experiments have proven that Gaussian function is more robust,
especially for noisy cases.
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(a) Using Diebel’s approach [5] (b) Using our approach

Fig. 6. Super resolution result on Cones dataset (down-sample by 16)

Fig. 7. The performance of our algorithm on Middlebury datasets with regard to fR

being Box or Gaussian function (with error threshold 1)

6.3 Depth Super Resolution

Besides the enhancement of the spatial resolution of range images, our approach
also provides sub-pixel estimation for the further enhancement of the depth res-
olution of range images. A set of synthesized views are shown in Fig.8, providing
a visual comparison of the algorithms with and without sub-pixel refinement.
The enhancement of the depth resolution is clear: As shown in Fig.8(a), Fig.8(c)
and Fig.8(e), the results are quantized into discrete number of planes. After sub-
pixel estimation, the quantization effect is removed, as it is shown in Fig.8(b),
Fig.8(d) and Fig.8(f).
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(a) Before (b) After

(c) Before (d) After

(e) Before (f) After

Fig. 8. Synthesized views produced by our approach before or after sub-pixel
estimation

Table 1 evaluates the performance of our approach with and without sub-pixel
estimation on Middlebury datasets. The original depth map is down-sample
by 8 (2∧3) from the ground truth. By comparing bad pixel percentages with
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Table 1. Comparison of the results on Middlebury datasets with or without sub-pixel
refinement (with error threshold 1, down-sample by 8)

Tsukuba V enus Teddy Cone

Without sub-pixel refinement 8.23% 1.73% 13.5% 12.9%
With sub-pixel refinement 7.71% 1.62% 12.4% 11.9%

Table 2. Comparison of the results on Middlebury datasets with or without sub-pixel
refinement (with error threshold 1, down-sample by 2)

Tsukuba V enus Teddy Cone

Without sub-pixel refinement 2.45% 0.52% 2.66% 3.25%
With sub-pixel refinement 2.12% 0.43% 2.54% 2.98%

Table 3. Comparison of the results on Middlebury datasets with or without sub-pixel
refinement (with error threshold 1, down-sample by 4)

Tsukuba V enus Teddy Cone

Without sub-pixel refinement 4.93% 1.02% 7.64% 7.42%
With sub-pixel refinement 4.06% 0.58% 6.90% 6.32%

and without sub-pixel estimation, we can conclude that sub-pixel refinement
improves the performance of our approach for all data sets.

For further comparison, Table 2 and Table 3 list the performance of our
approach with and without sub-pixel estimation on other two scales, i.e., down-
sample by 2 (2∧1) or 4 (2∧2). Clearly, sub-pixel refinement improves the perfor-
mance of our approach throughout all scales.

6.4 Runtime Analysis

In [5], Diebel et al. use an iterative solver to find the MAP upsampled depth
values based on a MRF. Chan et al. [16] report their runtime analysis on Diebel’s
method: They used an implementation of the error metric and gradient compu-
tation on a cpu solved with an iterative L-BFGS-B solver [32] to derive depth
results.

In [16], Chan et al. have shown that, to find an optimal set of MRF parame-
ters, it consistently took over 150 iterations to converge to a solution when ran
upon upsampling several scenes from the Middlebury dataset. When performing
the error metric and gradient computation on the GPU along with appropriate
loading of data to and from the GPU, it took on average 755 ms to compute
150 iterations. In the event of a full GPU solution, the iterative runtime of the
gradient computation is 279 ms. This value is also absent of the time required
for a GPU based solver to find a new gradient direction. In contrast, the GPU
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implementation of our approach averages 38 ms, which includes transfering data
to and from the GPU.

Our approach is implemented with CUDA technique on a Geforce 9800 GT
graphics card (512 MB video memory) GPU, together with a 2.7GHz CPU with
dual core. In our experiments, the spatial super resolution phase contributes to
major time spent in our algorithm while the run-time of depth super resolution is
negligible since the Equation (19) is well suited for parallel execution. Generally
speaking, processing an entire video camera image with large size (1024 × 768
pixels), our approach takes around 40 ms that makes it applausible for real-time
applications. The runtime of some experiments is listed in Table4.

Table 4. Runtime on some experiments

Figure3 Figure4 Figure6

Runtime 19ms 42ms 30ms

Finally, we would like to note that our approach performs much more effi-
ciently than the multi-plane bilateral filtering and upsampling method of Yang
et al. [6]. Although their method reportedly produces higher quality results, it
will requires many iterations of a bilateral filter at each time step. Therefore, it
is infeasible for real-time applications.

6.5 Discussions and Future Work

Although our approach improves depth details well, it does poorly in some cases.
Fig.9 depicts such cases, e.g., the transparent and textureless glass and the high
specular head statue. This is because the complimentary nature of the TOF
sensor and color camera is invalid. Our formulation (color camera with the TOF
sensor) cannot deal with this problem.

However, 3D shape of specular and transparent objects could be recovered by
three viewpoints if incoming light undergoes two reflections or refractions [24].
Although we have not implemented this method, we can image that shape by
light path may provide the depth for transparency and textureless objects which
is currently not addressed in this paper.

In previous sections we have demonstrated that our approach allows us to
produce high-resolution noise-reduced depth data in real-time even with a highly
noisy TOF camera. The real-time requirement, however, makes some necessary
for which we would like to contrive improved alternatives in the future. First,
our FMLF switches between its two operating modes using a fundamentally
heuristic model that requires manual parameter setting. In future, we plan to
investigate how to learn the correct blending function from real data. Although
our approach is defined in a local 3D domain which enables further improvement
of our spatial super resolution results, also, we plan to research if it is feasible
to improve accuracy of depth super resolution results.
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(a) a transparent and textureless glass (b) a high specular head statue

(c) Raw 3D data from the high specular
head statue

Fig. 9. Some problematic cases for our approach

Furthermore, some stepping artifacts in the results are due to 8-PBFICs quan-
tization which we will resolve in future. Finally, we would like to note that our
current warping-based alignment, completed before starting experiments, may
lead to non-exact depth and video registration in some areas, which may explain
remaining blur in our results around some actually sharp depth edges. A feasible
hardware solution would have the video and depth sensors record through the
same optics which would greatly facilitate alignment.

7 Conclusions

In this paper, we present a fast and simple framework that enable us substan-
tially enhance the spatial and depth resolution of range data in real-time while
preserving features, reducing random noise and eliminating artifacts like texture
copying phenomenon. We have shown that the results of our approach exceed
the reconstruction quality obtainable with related methods from the previous
literature. Adapting the fastest acceleration strategy ever known and using the
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parallel processing power of a modern graphics processor, the construction of
dynamic scene with a high resolution is feasible. In addition, the super resolu-
tion method is extended to one single TOF sensor case. Look into future, there
are still rooms for improvement. For instance, some constraints and priors (e.g.
gradient profile prior) are hoped to be incorporated into our algorithm for fur-
ther improvement.We also want to investigate how to tackle some difficult cases,
such as specular and transparent objects.
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