
Real-Time Spatiotemporal Stereo Matching

Using the Dual-Cross-Bilateral Grid

Christian Richardt1, Douglas Orr1, Ian Davies1,
Antonio Criminisi2, and Neil A. Dodgson1

1 University of Cambridge, United Kingdom
2 Microsoft Research Cambridge, United Kingdom

Christian.Richardt@cl.cam.ac.uk, Douglas.Orr@cantab.net,

Ian.Davies@cl.cam.ac.uk, antcrim@microsoft.com, Neil.Dodgson@cl.cam.ac.uk

Abstract. We introduce a real-time stereo matching technique based
on a reformulation of Yoon and Kweon’s adaptive support weights algo-
rithm [1]. Our implementation uses the bilateral grid to achieve a speedup
of 200× compared to a straightforward full-kernel GPU implementation,
making it the fastest technique on the Middlebury website. We introduce
a colour component into our greyscale approach to recover precision and
increase discriminability. Using our implementation, we speed up spatial-
depth superresolution 100×. We further present a spatiotemporal stereo
matching approach based on our technique that incorporates temporal
evidence in real time (>14 fps). Our technique visibly reduces flickering
and outperforms per-frame approaches in the presence of image noise.
We have created five synthetic stereo videos, with ground truth dispar-
ity maps, to quantitatively evaluate depth estimation from stereo video.
Source code and datasets are available on our project website1.

1 Introduction

In contrast to global stereo matching techniques such as graph cuts [2] or belief
propagation [3], Yoon and Kweon’s adaptive support weights [1] only aggregate
evidence over a finite window size. The effectiveness of their technique is due to
aggregation of support over large window sizes and weights that adapt according
to similarity and proximity to the central pixel in the support window. Results
are good, but the algorithm is slow, taking about one minute to process the
Tsukuba images on a current generation CPU. This has prompted people to
resort to a separable implementation [4] to achieve interactive frame-rates.

We take a different approach. We rewrite their technique (section 2) as a dual-
cross-bilateral filter with Gaussian weights (section 3). Based on the bilateral grid
(section 3.1), we present a real-time GPU-based implementation (section 3.2)
and improve its performance using a dichromatic approach (section 3.3). We
show how spatial-depth super-resolution can be accelerated using our technique
(section 3.4) and we extend our technique to stereo video (section 3.5). We
conclude with results (section 4) and discussion of future work (section 5). Key
literature is referred to in-line where it is most relevant.
1 http://www.cl.cam.ac.uk/research/rainbow/projects/dcbgrid/

K. Daniilidis, P. Maragos, N. Paragios (Eds.): ECCV 2010, Part III, LNCS 6313, pp. 510–523, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

http://www.cl.cam.ac.uk/research/rainbow/projects/dcbgrid/

Real-Time Spatiotemporal Stereo Matching 511

2 Adaptive Support Weights

We start with a brief summary of Yoon and Kweon’s technique. It builds on
a winner-take-all stereo pipeline [5] and computes the initial cost space using
truncated AD (absolute difference). We write this initial cost space as C(p, d)
where p = (x, y) are the coordinates of a pixel in the left image and d is some
disparity hypothesis. For convenience, let p = (x − d, y) be the corresponding
pixel in the right image.

The key idea is to aggregate costs over a large support window of 35×35 pixels
for each pixel, where each pixel in the support window is weighted according to
similarity and proximity to the central pixel. This is motivated by the Gestalt
theory of perceptual grouping, with the weight between two pixels given by

w(p,q) = exp
(
−ΔE(p,q)

γc
− ‖p− q‖

γp

)
, (1)

where ΔE is the Euclidean distance between pixel values in the CIELAB colour
space, and the parameters γc and γp control grouping by similarity and proxim-
ity, respectively. Yoon and Kweon use default values of γc = 5 and γp = 17.5.

The aggregated cost space C′ is now calculated using

C′(p, d) =
1
k
·

∑
q∈Np

w(p,q) · w(p,q) · C(q, d) , (2)

where k =
∑

q∈Np
w(p,q) · w(p,q) is the normalisation quotient and Np the set

of all pixels in the support window. For the winner-take-all stage, we use Yang
et al .’s sub-pixel refinement process [6]. We implemented all techniques in this
paper using C for CUDA, an architecture for general purpose computation on
NVIDIA GPUs. We measure run times on an NVIDIA Quadro FX 5800 GPU.

Our straightforward GPU implementation is about 25× faster than reported
by Yoon and Kweon and produces comparable results to their publicly-available
implementation (on the Middlebury website2). However, neither implementation
achieves the results reported in the original paper. We believe this to be due to
differences in filling in pixels that are invalidated by the left-right consistency
check [7]. As we compare different techniques, it is fairest to only compare GPU
techniques to other GPU techniques, and also to have all techniques share the
same post-processing.

3 Dual-Cross-Bilateral Aggregation

The bilateral filter [8] is a common edge-preserving smoothing filter. One variant,
the cross- or joint-bilateral filter [9], smoothes an image with respect to edges in
a different image. Yoon and Kweon’s technique is another variant that smoothes
the cost space while preserving edges in both input images. In the bilateral
filtering framework, we call this kind of filter a dual-cross-bilateral filter (DCB).
2 http://vision.middlebury.edu/stereo/

http://vision.middlebury.edu/stereo/

512 C. Richardt et al.

We reformulate their approach using Gaussian weights, the de facto standard
in bilateral filtering. This yields

w(p,q) = Gσr (ΔE(p,q)) ·
√

Gσs(‖p − q‖) , (3)

where σr and σs are similarity and proximity parameters, and Gσ(x) = exp(−x2

2σ2)
is the unnormalised Gaussian centred on zero, with standard deviation σ. The
square root is applied to the second factor, so that w(p,q) ·w(p,q) includes the
proximity weight exactly once.

The aggregation remains unchanged from equation 2, resulting in

C′(p, d) =
1
k
·
∑

q∈Np

Gσr (ΔE(p,q)) · Gσr (ΔE(p,q)) · Gσs(‖p − q‖) · C(q, d), (4)

which we compute within a window of 35 × 35 pixels. We use the parameter
values σr = 10 and σs = 10, which we found to produce the best results.

The resulting disparity maps are shown in table 2 and the Middlebury eval-
uation results in table 3. It is notable that our dual-cross-bilateral aggregation
improves on our Yoon and Kweon implementation in the nonocc (non-occluded
pixels) and all pixels categories in almost all cases.

3.1 Bilateral Grid

Full-kernel implementations of the bilateral filter are very slow, so several speed-
up approaches have been proposed. A separable implementation [11] is too in-
accurate for our purposes. Weiss’ technique [12] only supports spatial box-filters
rather than the Gaussians we use. And Yang et al .’s constant-time bilateral fil-
tering [13] does not generalise well to higher dimensions, which we require. We
therefore use the bilateral grid [10,14]. It has the interesting property that it
runs faster and uses less memory as σ increases.

Consider the example of a greyscale image I(x, y). The bilateral grid embeds
it in a 3D space: 2D for spatial coordinates and 1D for pixel values. Each pixel
(x, y) is mapped to (x, y, I(x, y)) in the bilateral grid Γ . The 1D example in
figure 1 illustrates the use of the bilateral grid in three steps.

(a) input signal (b) grid created from signal (c) filtered grid (d) filtered signal

create process slice

Fig. 1. Illustration of 1D bilateral filtering using the bilateral grid: the signal (a) is
embedded in the grid (b), which is processed (c) and sliced to obtain the filtered signal
(d). See text for details. Adapted from Chen et al . [10].

Real-Time Spatiotemporal Stereo Matching 513

1. Grid Creation All grid voxels (x, y, c) are first zeroed using Γ (x, y, c) =
(0, 0). Then, for each pixel (x, y),

Γ

([
x

ss

]
,

[
y

ss

]
,

[
I(x, y)

sr

])
+= (I(x, y), 1) . (5)

where [·] is the rounding operator, and ss and sr are the spatial and range
sampling rates, which are set to σs and σr respectively. Note that the pixel values
and the number of pixels are accumulated using homogeneous coordinates, which
make it easy to compute weighted averages in the grid slicing stage.

2. Grid Processing The grid is now convolved with a Gaussian filter, of
standard deviation σs and σr along the space and range dimensions. As the
previous step has already sub-sampled the data accordingly, we only need to
convolve each dimension with a 5-tap 1D kernel with σ=1.

3. Grid Slicing The result is now extracted by accessing the grid coordinates
(x/ss, y/ss, I(x, y)/sr) using trilinear interpolation, and dividing the homoge-
neous vector to access the actual data.

The bilateral grid is amenable to real-time GPU implementation, as demon-
strated by Chen et al . [10].

3.2 Dual-Cross-Bilateral Grid

Chen et al . [10] show that the bilateral grid can also be used for cross-bilateral
filtering. This is achieved by using an edge image E(x, y) to determine grid
coordinates, but storing the pixel values of the image I(x, y) to be filtered:

Γ

([
x

ss

]
,

[
y

ss

]
,

[
E(x, y)

sr

])
+= (I(x, y), 1) . (6)

The grid processing remains the same, and the slicing stage accesses the grid at
(x/ss, y/ss, E(x, y)/sr).

Recall that our dual-cross-bilateral cost aggregation smoothes the cost space
while preserving edges in the two input images. To implement it, we extend
the bilateral grid to take into account both input images as edge images when
calculating grid coordinates, and to accumulate cost space values instead of pixel
values. We call our extension the dual-cross-bilateral grid, or DCB grid.

For a pixel p at (x, y) in the left image, and its corresponding pixel p at
(x − d, y) in the right image, we create the DCB grid using

Γ

([
x

σs

]
,

[
y

σs

]
,

[
L�

L(p)
σr

]
,

[
L�

R(p)
σr

])
+= (C(p, d), 1) . (7)

514 C. Richardt et al.

Instead of image intensities, as in Chen et al . [10], we use the lightness com-
ponent L� of the CIELAB colour space, as it is perceptually more uniform and
hence more closely models how we perceive greyscale images. However, this also
degrades performance compared to the full-kernel DCB, which uses full-colour
images. The subscripts L and R indicate the left and right images, respectively.

The result of slicing the DCB grid is the aggregated cost

C′(p, d) = Γ

(
x

σs
,

y

σs
,
L�

L(p)
σr

,
L�

R(p)
σr

)
. (8)

In our implementation, we tile the 4D bilateral grids for all disparities into one
large 2D texture. In the slicing stage, we perform the quadrilinear interpolation
by using bilinear texture filtering to fetch the values stored at the surrounding
four ([x/σs], [y/σs]) coordinates, and bilinearly interpolate between them.

The run times in table 1 show that the DCB grid runs at 13 fps or higher on all
data sets, with 70 fps on Tsukuba – more than 200× faster than the full-kernel
implementation, and more than 165× faster than our GPU implementation of
Yoon and Kweon. The disparity maps of all our techniques are shown in table 2
for visual comparison, and evaluated on the Middlebury datasets in table 3.

Table 1. Run time comparison in milliseconds. Our techniques, shown in bold, are
benchmarked on an NVIDIA Quadro FX 5800. Asterisks (�) mark run times estimated
from reported figures, rounded to one significant digit.

Technique Tsukuba Venus Teddy Cones
384×288×16 434×383×20 450×375×60 450×375×60

DCB Grid 14.2 25.7 75.8 75.0

Real-time GPU [15] 30� 60� 200� 200�

Reliability DP [16] 42 109 300� 300�

Dichromatic DCB Grid 188 354 1,070 1,070

Plane-fit BP [17] 200� 400� 1,000� 1,000�

Y&K (our GPU impl.) 2,350 4,480 13,700 13,700

Full-kernel DCB 2,990 5,630 17,700 17,600

Yoon & Kweon [1] 60,000 100,000� 300,000� 300,000�

3.3 Dichromatic DCB Grid

The dramatic speedup achieved by the DCB grid comes at some loss of quality.
This is because the underlying bilateral grid only works on greyscale images and
hence does not differentiate colours that have similar greyscale values, as shown
in the examples of figure 2b.

Real-Time Spatiotemporal Stereo Matching 515

a) greyscale only b) DCB grid
c) greyscale

+ hue
d) dichromatic

DCB grid

T
su

ku
ba

C
on

es

Fig. 2. Comparison of input images (a, c) and disparity maps of the (b) greyscale and
(d) dichromatic DCB grids. The input images are displayed as ‘seen’ by the algorithms.
Note that the dichromatic DCB grid (d) visibly improves on (b).

A solution is to add additional colour axes to the grid, to increase its colour
discriminability. Unfortunately, the memory requirements of the bilateral grid
are exponential in the number of dimensions. The teddy and cones data sets, for
example, each have a total memory footprint of

60 disparities × 450
10

× 375
10

×
(

100
10

)k

× 8 bytes (9)

when using the standard parameters σs = 10 and σr = 10, k colour dimensions,
and two single-precision floating-point numbers per grid cell. For the DCB grid,
where k=2, this amounts to 78 MB. However, the best results, with full CIELAB
colours in both images (k=6), would require a prohibitive 764 GB.

The maximum number of colour dimensions that can be afforded on current
generation graphics cards is k = 3 which equates to 783 MB for teddy. This al-
lows one additional colour axis in one of the images, in addition to each image’s
greyscale component. The result is a dichromatic technique which can differ-
entiate colours along two colour axes. This is an interesting trade-off between
the common monochromatic (greyscale) and trichromatic (e.g. RGB) stereo ap-
proaches, that has not previously been explored.

We experimented with several colour dimensions (table 4) and found that
CIELAB hue hab provided the highest discriminability.

The results in tables 1 and 3 show that the dichromatic approach improves
on the monochromatic DCB grid in all categories (except run time), achieving
results comparable (tsukuba, teddy) or superior (venus) to our implementation
of Yoon and Kweon, at a 13× speedup. The close-ups in figure 2 also show
qualitative improvements.

516 C. Richardt et al.

Table 2. Disparity maps for the Middlebury data sets [5]

Tsukuba Venus Teddy Cones

Yoon &
Kweon [1]

(our imple-
mentation)

Full-kernel
DCB

DCB Grid

Dichromatic
DCB Grid

Ground
truth

Table 3. Performance comparison of the proposed methods to Yoon & Kweon and
selected real-time techniques using the Middlebury stereo benchmark

Technique Rank Tsukuba Venus Teddy Cones
nonocc all disc nonocc all disc nonocc all disc nonocc all disc

Plane-fit BP [17] 19.4 0.97 1.83 5.26 0.17 0.51 1.71 6.65 12.1 14.7 4.17 10.7 10.6

Yoon & Kweon [1] 32.8 1.38 1.85 6.90 0.71 1.19 6.13 7.88 13.3 18.6 3.97 9.79 8.26

Full-kernel DCB 47.7 3.96 4.75 12.9 1.36 2.02 10.4 9.10 15.9 18.4 3.34 9.60 8.26

Y&K (our impl.) 48.2 4.39 5.29 8.10 1.30 2.07 8.31 9.39 16.3 18.4 3.68 9.96 8.42

Dichrom. DCB Grid 52.9 4.28 5.44 14.1 1.20 1.80 9.69 9.52 16.4 19.5 4.05 10.4 10.3

Real-time GPU [15] 56.2 2.05 4.22 10.6 1.92 2.98 20.3 7.23 14.4 17.6 6.41 13.7 16.5

Reliability DP [16] 59.7 1.36 3.39 7.25 2.35 3.48 12.2 9.82 16.9 19.5 12.9 19.9 19.7

DCB Grid 64.9 5.90 7.26 21.0 1.35 1.91 11.2 10.5 17.2 22.2 5.34 11.9 14.9

Real-Time Spatiotemporal Stereo Matching 517

Table 4. Performance comparison of the dichromatic DCB grid with various colour
properties using the Middlebury stereo benchmark. Judging by rank, as computed by
the Middlebury website, the best technique is CIELAB hue, hab.

Technique Rank Tsukuba Venus Teddy Cones
nonocc all disc nonocc all disc nonocc all disc nonocc all disc

hab = atan2(b�, a�) 48.6 4.28 5.44 14.1 1.20 1.80 9.69 9.52 16.4 19.5 4.05 10.4 10.3

HSL saturation 49.0 4.44 5.37 12.9 1.05 1.58 8.29 9.46 16.4 19.4 4.30 10.7 11.3

C�
ab =

√
a�2 + b�2 49.9 4.97 5.94 16.7 1.15 1.75 8.65 9.55 16.4 19.9 4.00 10.4 10.5

sab = C�
ab/L� 50.0 4.36 5.45 12.9 1.19 1.86 9.32 9.41 16.3 19.2 4.41 10.8 11.6

b� 50.8 4.79 5.83 16.2 1.25 1.84 10.1 9.53 16.3 19.6 4.28 10.7 11.6

a� 52.0 5.36 6.49 18.3 1.24 1.84 9.13 9.62 16.5 19.9 4.28 10.5 11.3

HSL hue 51.2 4.62 5.85 14.9 1.30 1.87 10.4 9.83 16.6 20.2 4.18 10.7 11.1

3.4 Spatial-Depth Super-Resolution

Yoon and Kweon’s method is also used in other contexts such as spatial-depth
super-resolution. Yang et al . [6] use it as a central component in their system.
Starting from a low-resolution depth map, they iteratively upsample it to the
full resolution of the input images using Yoon and Kweon’s cost aggregation. We
use the same algorithm with our DCB grid and achieve a speedup of more than
100×. Figure 3 compares results, run times and errors.

a) Yoon and Kweon [1] b) Our DCB Grid

fps nonocc all disc fps nonocc all disc
0.15 17.1 17.4 41.7 17.0 19.9 19.2 42.5

Fig. 3. Comparison of Yoon & Kweon’s and our cost aggregation techniques in Yang
et al .’s spatial-depth super-resolution on 8× sub-sampled teddy. Our technique is more
than 100× faster, at only a small loss of quality.

3.5 Temporal DCB Grid

Stereo videos pose different challenges to stereo images: the application of tech-
niques on a per-frame basis is insufficient to achieve flicker-free and temporally

518 C. Richardt et al.

coherent disparity maps. Given the success of the DCB grid method, we turned
our attention to adding time as an extra dimension, inspired by approaches that
aggregate costs over a 3D spatiotemporal support window [18,19]. Our experi-
ments consider a time window of five frames, which we found to work well.

For each frame of the video, the DCB grid is created and processed as de-
scribed in section 3.2, but the slicing is based on the grids of the last n = 5
frames, each weighted by wi:

C′(p, d) =
n−1∑
i=0

wi · Γi

(
x

σs
,

y

σs
,
L�

L(p)
σr

,
L�

R(p)
σr

)
, (10)

where i = 0 indicates the current frame, i = 1 the previous frame and so on.
The original spacetime stereo approaches use constant weights (wi = 1). We use
Gaussian weights, wi = exp

(−i2/2σ2
t

)
with σt = 2, which extends the DCB grid

into the time dimension. We also tried Paris’ adaptive exponential decay [20],
but did not see any improvements compared to our simpler technique.

Note that we cannot use the dichromatic and temporal extensions at the same
time, as we have insufficient memory to handle 6 dimensions of data (4 GB of
GPU memory). Results of qualitative and quantitative nature are discussed next.

4 Results

All results in this paper were created using an NVIDIA Quadro FX 5800 GPU
with 4 GB video memory, on a 2.4 GHz Intel Quad Core CPU with 4 GB RAM.
Disparity maps created using our per-frame techniques are shown in table 2 and
compared to other techniques in tables 1 and 3. Like Yoon and Kweon, we include
left-right post-processing when reporting performance figures, but exclude it in
run time measurements.

Our DCB grid is currently the fastest stereo correspondence approach on the
Middlebury stereo evaluation website. A faster technique by Yang et al . [21] is
not listed, as it has not been evaluated on the new Middlebury data sets, and
we hence cannot compare to it fairly.

We improved the performance of the DCB grid using a dichromatic technique,
drawing on a second colour axis to increase colour discriminability. Our results
demonstrate that partial-colour solutions can improve stereo results, and we
believe that this idea has more general applicability.

Tables 1 and 3 also show an interesting trade-off: both ‘Real-time GPU’ [15]
and ‘Reliability DP’ [16] are slower than the DCB grid, but faster than the di-
chromatic DCB grid, with performance being inversely related: the dichromatic
DCB grid outperforms both ‘Real-time GPU’ and ‘Reliability DP’ which in turn
outperform the DCB grid. Yang et al .’s plane-fit BP [17] outperforms our di-
chromatic DCB grid at similar run times, but their technique occupies both CPU
and GPU, whereas our techniques leave the CPU available for other tasks.

Real-Time Spatiotemporal Stereo Matching 519

Video frame
(red-cyan anaglyph)

Per-frame DCB Grid Temporal DCB Grid

c© Eric Deren, Dzignlight Studios.

Fig. 4. Disparity maps for selected frames of the ‘skydiving’ stereo video. Note that
our temporal DCB grid visibly reduces errors (see highlighted regions).

4.1 Stereo Videos

We evaluated the temporal DCB grid qualitatively using real stereo videos and
quantitatively on synthetic stereo videos with ground truth disparities, where
we also compared it against per-frame techniques.

Qualitative Evaluation. Figure 4 shows frames from the ‘skydiving’ video3.
We processed it at a resolution of 480×270 with 40 disparities, without left-right
consistency check. On our machine, the per-frame DCB grid runs at 16 fps and
the temporal DCB grid at 14 fps. As can be seen in the supplementary video, the
temporal DCB grid visibly reduces flickering compared to the per-frame method.

Stereo Videos with Ground Truth Disparities. The quantitative evalua-
tion of disparity maps from stereo videos is hindered by the general lack of ground
truth disparity maps. We created a set of five stereo videos with ground truth
disparity maps (see figure 5) and make them available on our project website:

book – turning a page of an old book (41 frames)
street – camera pans across a street view (100 frames)
tanks – camera flies along a grid of tanks (100 frames)
temple – rotating Mayan temple (100 frames)
tunnel – moving through a winding corridor (100 frames)

3 http://www.dzignlight.com/stereo/skydiving.shtml

http://www.cl.cam.ac.uk/research/rainbow/projects/dcbgrid/
http://www.dzignlight.com/stereo/skydiving.shtml

520 C. Richardt et al.

book street tanks temple tunnel

Fig. 5. Selected frames and disparity maps from our synthetic stereo videos

We generated the sequences using Blender, an open source modeller. Each frame
is 400×300 pixels in size with a disparity range of 64 pixels. The ‘book’, ‘tanks’
and ‘temple’ objects were taken from the Official Blender Model Repository4,
while the tunnel scene was our own design. For the ‘street’ sequence, we combined
models and materials by Andrew Kator and Jennifer Legaz5. We added two
parallel cameras to each scene with a small lateral offset between them, to provide
the left and right views, and used the Blender node system to render disparity
maps from the point of view of each camera.

Quantitative Evaluation. We compared the temporal DCB grid against per-
frame techniques using our synthetic ground truth videos. We processed all video
frames by all techniques and used the same left-right consistency post-processing
as earlier. Our ground truth stereo videos do not contain any noise, but real
videos do. For this reason, we investigated the robustness to noise of per-frame
techniques and the temporal DCB grid. We simulate thermal imaging noise by
adding zero-centred Gaussian noise to all colour channels of the input frames.

The performance and run times of our implementations are shown in table 5.
We summarise the level and variability of errors using the mean and standard
deviation of the percentage of bad pixels across frames.

The best results are produced by the temporal DCB grid which significantly
outperforms the per-frame techniques on all datasets except tunnel, on which
it shows the least variation in error. Our per-frame DCB grid techniques come
second and third, and our full-kernel implementations are placed last.

We believe that the poor performance of the temporal DCB grid on the tunnel
video is because it has a lot of texture, so that simple per-frame approaches work
well, while our temporal technique tends to over-smooth. Nevertheless, it reduces
flickering visibly in all videos, as can be seen in the supplementary videos.

It is also notable that our temporal DCB grid has a run time that is sub-linear
in the number of frames: it only takes 76% longer than the per-frame DCB grid
to process a five frames window instead of a single frame.
4 http://e2-productions.com/repository/
5 Licensed under CC-BY 3.0, available at http://www.katorlegaz.com/3d_models/ .

http://e2-productions.com/repository/
http://www.katorlegaz.com/3d_models/

Real-Time Spatiotemporal Stereo Matching 521

Table 5. Performance comparison of the proposed methods on our synthetic stereo
videos with additive Gaussian noise (σ = 20). Shown are the average and standard
deviation of the percentage of bad pixels (threshold is 1), and per-frame run times. For
most datasets, the temporal DCB grid has the least mean error.

Technique Time Book Street Tanks Temple Tunnel
in ms mean stdev mean stdev mean stdev mean stdev mean stdev

Temporal DCB Grid 90 44.0 2.02 25.9 2.00 31.4 6.06 31.7 1.82 36.4 7.88

DCB Grid 51 52.2 2.04 32.5 2.33 36.0 6.16 39.5 1.91 25.7 11.1

Dichromatic DCB Grid 782 58.9 1.83 39.2 2.62 47.8 12.0 43.0 1.73 32.9 12.0

Full-kernel DCB 13,200 65.9 1.45 49.1 3.13 53.5 6.15 52.0 1.28 43.0 11.7

Y&K (our impl.) 9,770 84.2 1.24 56.1 2.67 87.7 2.01 72.8 1.80 58.4 11.7

Plots of the error levels at standard deviations between 0 and 100 (out of 255)
are shown in figure 6. The graphs show that the temporal DCB grid improves on
the per-frame technique at increased noise levels in all cases. In particular, it is
superior for all noise levels in the street and temple sequences, and starting from
noise levels of 5–45 for the other sequences. We assume that it is the integration
of temporal evidence across several frames that makes this improvement possible.

book

σ of Gaussian noise

0 20 40 60 80 100

%
b
a
d

p
ix
e
ls

0

20

40

60

80

100

street

σ of Gaussian noise

0 20 40 60 80 100

%
b
a
d

p
ix
e
ls

0

20

40

60

80

100

tanks

σ of Gaussian noise

0 20 40 60 80 100

%
b
a
d

p
ix
e
ls

0

20

40

60

80

100

temple

σ of Gaussian noise

0 20 40 60 80 100

%
b
a
d

p
ix
e
ls

0

20

40

60

80

100

tunnel

σ of Gaussian noise

0 20 40 60 80 100

%
b
a
d

p
ix
e
ls

0

20

40

60

80

100

Temporal
DCB Grid

DCB Grid

shaded regions: ±σ

Fig. 6. Error versus noise curves for ground truth stereo videos: the temporal DCB
grid performs better than the per-frame DCB grid at higher noise levels. Please also
refer to the supplementary videos for a visual comparison.

5 Discussion

Rewriting Yoon and Kweon’s adaptive support weights as a dual-cross-bilateral
filter with Gaussian weights allows us to use the bilateral grid for acceleration,

522 C. Richardt et al.

and to incorporate temporal information into the stereo matching process. Our
DCB grid achieves real-time frame-rates through a speedup of more than 200×
compared to a full-kernel GPU implementation, at only a small loss of precision.
Our DCB grid is currently the fastest method on the Middlebury stereo website.
The source code for our techniques, our ground truth stereo videos and further
supplementary materials are available from our project website.

The speed of the DCB grid makes it versatile. Techniques building on Yoon
and Kweon’s method automatically benefit from a large speedup. We showed
this by applying it to Yang et al .’s spatial-depth super-resolution, achieving a
speedup of 100×, with minimal loss of quality.

Future Work
Using our dichromatic DCB grid, we showed that colour is a useful component in
achieving high quality disparity maps. However, the enormous memory require-
ments of the bilateral grid effectively inhibit filtering in full colour. Recent work
by Adams et al . [22] proposes a method with linear memory requirements. They
agree that the bilateral grid is currently the fastest bilateral filtering technique
for 4 dimensions when using a filter standard deviation of 10, as we do. However,
full-colour filtering, using a total of 8 dimensions, would be about four times as
fast with their technique, with significantly reduced memory requirements.

We hope that our new ground truth stereo videos provide a useful resource for
research in depth estimation from stereo videos. There is a need for specialised
stereo video correspondence techniques that incorporate temporal evidence to
resolve ambiguities. With this in mind, it will be necessary to set up a stereo
video evaluation website, perhaps as part of the Middlebury vision website.

In addition, we are interested in investigating suitable evaluation metrics for
assessing stereo videos. We used the mean and standard deviation of the bad
pixel percentage. However, it might be useful to consider other metrics that
objectively quantify flickering and temporal coherence in disparity videos.

Acknowledgements

We are grateful to Andrew Fitzgibbon for helpful discussions as well as suggesting
the temporal DCB grid extension. We further thank the anonymous reviewers
for their valuable feedback, and NVIDIA for donating the Quadro graphics card
through their CUDA Centre of Excellence at the University of Cambridge.

Christian Richardt and Ian Davies were supported by the Engineering and
Physical Sciences Research Council (EPSRC). Douglas Orr was supported as
an undergraduate research intern by Presenccia, an Integrated Project funded
under the European Sixth Framework Programme (FP6-FET-27731).

References

1. Yoon, K.J., Kweon, I.S.: Adaptive support-weight approach for correspondence
search. PAMI 28, 650–656 (2006)

2. Boykov, Y., Veksler, O., Zabih, R.: Fast approximate energy minimization via
graph cuts. PAMI 23, 1222–1239 (2001)

http://www.cl.cam.ac.uk/research/rainbow/projects/dcbgrid/

Real-Time Spatiotemporal Stereo Matching 523

3. Felzenszwalb, P.F., Huttenlocher, D.P.: Effcient belief propagation for early vision.
IJCV 70, 41–54 (2006)

4. Gong, M., Yang, R., Wang, L., Gong, M.: A performance study on different cost
aggregation approaches used in real-time stereo matching. IJCV 75, 283–296 (2007)

5. Scharstein, D., Szeliski, R.: A taxonomy and evaluation of dense two-frame stereo
correspondence algorithms. IJCV 42, 7–42 (2002)

6. Yang, Q., Yang, R., Davis, J., Nistér, D.: Spatial-depth super resolution for range
images. In: Proc. CVPR (2007)

7. Egnal, G., Wildes, R.P.: Detecting binocular half-occlusions: Empirical compar-
isons of five approaches. PAMI 24, 1127–1133 (2002)

8. Tomasi, C., Manduchi, R.: Bilateral filtering for gray and color images. In: Proc.
ICCV, pp. 839–846 (1998)

9. Paris, S., Kornprobst, P., Tumblin, J., Durand, F.: A gentle introduction to bilat-
eral filtering and its applications. In: SIGGRAPH Classes (2008) Course material
available online at http://people.csail.mit.edu/sparis/bf_course

10. Chen, J., Paris, S., Durand, F.: Real-time edge-aware image processing with the
bilateral grid. ACM Trans. Graph. 26, 103 (2007)

11. Pham, T., van Vliet, L.: Separable bilateral filtering for fast video preprocessing.
In: Proc. ICME (2005)

12. Weiss, B.: Fast median and bilateral filtering. ACM Trans. Graph. 25, 519–526
(2006)

13. Yang, Q., Tan, K.H., Ahuja, N.: Real-time O(1) bilateral filtering. In: Proc. CVPR
(2009)

14. Paris, S., Durand, F.: A fast approximation of the bilateral filter using a signal
processing approach. IJCV 81, 24–52 (2009)

15. Wang, L., Liao, M., Gong, M., Yang, R., Nistér, D.: High-quality real-time stereo
using adaptive cost aggregation and dynamic programming. In: Proc. 3DPVT, pp.
798–805 (2006)

16. Gong, M., Yang, Y.H.: Near real-time reliable stereo matching using programmable
graphics hardware. In: Proc. CVPR, pp. 924–931 (2005)

17. Yang, Q., Engels, C., Akbarzadeh, A.: Near real-time stereo for weakly-textured
scenes. In: Proc. BMVC (2008)

18. Davis, J., Nehab, D., Ramamoorthi, R., Rusinkiewicz, S.: Spacetime stereo: a uni-
fying framework for depth from triangulation. PAMI 27, 296–302 (2005)

19. Zhang, L., Snavely, N., Curless, B., Seitz, S.M.: Spacetime faces: high resolution
capture for modeling and animation. ACM Trans. Graph. 23, 548–558 (2004)

20. Paris, S.: Edge-preserving smoothing and mean-shift segmentation of video
streams. In: Forsyth, D., Torr, P., Zisserman, A. (eds.) ECCV 2008, Part II. LNCS,
vol. 5303, pp. 460–473. Springer, Heidelberg (2008)

21. Yang, R., Pollefeys, M., Li, S.: Improved real-time stereo on commodity graphics
hardware. In: Proc. CVPR Workshops, pp. 36–36 (2004)

22. Adams, A., Baek, J., Davis, A.: Fast high-dimensional filtering using the permu-
tohedral lattice. Comp. Graph. Forum 29, 753–762 (2010)

http://people.csail.mit.edu/sparis/bf_course

	Real-Time Spatiotemporal Stereo Matching Using the Dual-Cross-Bilateral Grid
	Introduction
	Adaptive Support Weights
	Dual-Cross-Bilateral Aggregation
	Bilateral Grid
	Dual-Cross-Bilateral Grid
	Dichromatic DCB Grid
	Spatial-Depth Super-Resolution
	Temporal DCB Grid

	Results
	Stereo Videos

	Discussion
	References

