
Real-Time Speaker Identification

Evgeny Karpov

15.01.2003

University of Joensuu
Department of Computer Science
Master’s Thesis

i

Table of Contents

1 Introduction..1

1.1 Basic definitions ...1
1.2 Applications..4
1.3 Thesis Description ...4

2 Identification Background...6

2.1 DSP Fundamentals..6
2.1.1 Basic Definitions ..6
2.1.2 Convolution ..7
2.1.3 Discrete Fourier Transform ..8
2.1.4 Filters ...11

2.2 Human Speech Production Model ...12
2.2.1 Anatomy...12
2.2.2 Vocal Model ...14

3 Feature Extraction ...17

3.1 Introduction ..17
3.2 Short-Term Analysis ..18
3.3 Cepstrum ...20
3.4 Mel-Frequency Cepstrum Coefficients...22
3.5 Linear Predictive Coding..24
3.6 Alternatives and Conclusions...26

4 Feature Matching and Speaker Modeling ..28

4.1 Introduction ..28
4.2 Vector Quantization ...29
4.3 Gaussian Mixture Modeling..32
4.4 Decision ...34
4.5 Confidence of Decision ..35
4.6 Alternatives and Conclusions...38
4.7 Remarks ..39

5 Real-Time Speaker Identification..40

5.1 Introduction ..40

5.2 Front-End Analysis and Optimization...41
5.2.1 MFCC and LPCC Analysis...42
5.2.2 Front-End Optimization ..44

ii

5.2.3 Remarks...48

5.3 Feature Matching Analysis and Optimization...48
5.3.1 Analysis of Matching Step in VQ and GMM ...48
5.3.2 Matching Optimization ...50
5.3.3 Remarks...54

5.4 Conclusions ...55

6 Speaker Pruning ..56

6.1 Principle of Speaker Pruning..56

6.2 Static Pruning...59
6.2.1 Principle ...59
6.2.2 Complexity analysis ...60

6.3 Adaptive Pruning..62
6.3.1 Principle ...63
6.3.2 Complexity analysis ...64

6.4 Discussion..67

7 Experiments ...69

7.1 Experiments conditions..69

7.2 Results...70
7.2.1 Pruning basis ...70
7.2.2 Static pruning ...72
7.2.3 Adaptive pruning ..73
7.2.4 Comparisons..76

7.3 Discussion..77

8 Conclusions ...79

List of References...81

iii

Abstract

Nowadays it is obvious that speakers can be identified from their voices.

In this work we look into the details of speaker identification from the real-time

system point of view. Firstly, we review the well-known techniques used in

speaker identification. We look into the details of every step in identification

process and explain the ideas, which leaded to these techniques. We start

from the basic definitions used in DSP, then we move to the feature extraction

step and review two types of features, namely MFCC and LPCC, and finally

we review two speaker modeling techniques, VQ and GMM. Secondly, we

analyze described techniques from the time complexity point of view and

propose several approaches to their optimization. Finally, we propose a novel

approach to the feature matching step in the speaker identification and

analyze it theoretically and practically. The main objective of this approach is

an iterative pruning of speaker models, which are far away from the unknown

speech sample, during the identification process. In order to analyze this

method in practice we made appropriate software and using real data we ran

several tests. Empirical results show that proposed approach greatly improves

identification speed in feature matching step.

iv

Acknowledgments

I would like to thank Tomi Kinnunen for his guidance and support during

my work on this thesis.

1

Chapter 1

Introduction

In this chapter we make a brief introduction into the area of speaker

identification and shortly describe the main parts of this thesis.

1.1 Basic definitions

The human speech conveys different types of information. The primary

type is the meaning or words, which speaker tries to pass to the listener. But

the other types that are also included in the speech are information about

language being spoken, speaker emotions, gender and identity of the speaker.

The goal of automatic speaker recognition is to extract, characterize and

recognize the information about speaker identity [40]. Speaker recognition is

usually divided into two different branches, speaker verification and speaker

identification. Speaker verification task is to verify the claimed identity of

person from his voice [6,35]. This process involves only binary decision about

claimed identity. In speaker identification there is no identity claim and the

system decides who the speaking person is [6].

Speaker identification can be further divided into two branches. Open-set

speaker identification decides to whom of the registered speakers unknown

speech sample belongs or makes a conclusion that the speech sample is

unknown. In this work, we deal with the closed-set speaker identification,

which is a decision making process of who of the registered speakers is most

likely the author of the unknown speech sample. Depending on the algorithm

used for the identification, the task can also be divided into text-dependent

and text-independent identification. The difference is that in the first case the

system knows the text spoken by the person while in the second case the

system must be able to recognize the speaker from any text. This taxonomy is

represented in Figure 1.1.

2

Speaker Recognition

Speaker Verification Speaker Identification

Closed-Set Identification Open-Set Identification

Text-independent Identification Text dependent Identification

Figure 1.1 Identification Taxonomy

The process of speaker identification is divided into two main phases.

During the first phase, speaker enrollment, speech samples are collected from

the speakers, and they are used to train their models. The collection of

enrolled models is also called a speaker database. In the second phase,

identification phase, a test sample from an unknown speaker is compared

against the speaker database. Both phases include the same first step, feature

extraction, which is used to extract speaker dependent characteristics from

speech. The main purpose of this step is to reduce the amount of test data

while retaining speaker discriminative information. Then in the enrollment

phase, these features are modeled and stored in the speaker database. This

process is represented in Figure 1.2.

3

Speaker
database

Feature
extraction

Speech

Speaker
modeling

Features

Speaker
model

Figure 1.2 Enrollment Phase

In the identification step, the extracted features are compared against the

models stored in the speaker database. Based on these comparisons the final

decision about speaker identity is made. This process is represented in Figure

1.3.

Speaker
database

Feature
extraction

Speech

Comparison with
speaker database

Features

Decision

Figure 1.3 Identification Phase

4

However, these two phases are closely related. For instance, identification

algorithm usually depends on the modeling algorithm used in the enrollment

phase. This thesis mostly concentrates on the algorithms in the identification

phase and their optimization.

1.2 Applications

Practical applications for automatic speaker identification are obviously

various kinds of security systems. Human voice can serve as a key for any

security objects, and it is not so easy in general to lose or forget it. Another

important property of speech is that it can be transmitted by telephone

channel, for example. This provides an ability to automatically identify

speakers and provide access to security objects by telephone. Nowadays, this

approach begins to be used for telephone credit card purchases and bank

transactions. Human voice can also be used to prove identity during access to

any physical facilities by storing speaker model in a small chip, which can be

used as an access tag, and used instead of a pin code. Another important

application for speaker identification is to monitor people by their voices. For

instance, it is useful in information retrieval by speaker indexing of some

recorded debates or news, and then retrieving speech only for interesting

speakers. It can also be used to monitor criminals in common places by

identifying them by voices.

In fact, all these examples are actually examples of real time systems. For

any identification system to be useful in practice, the time response, or time

spent on the identification should be minimized. Growing size of speaker

database is also common fact for practical systems and can also lead to

system optimization.

1.3 Thesis Description

Nowadays, speaker identification is not anymore just a theory.

Applications based on it are widely used around the word and found their

5

appropriate places in the industry. But even though a lot of work has already

done in this field [6,8,20], it is still not a solved problem. The research in the

area of speaker identification still continues and at present there are a few

basic techniques that have shown their effectiveness in practice and called

“classical” by scientists. The goal of this work is to make general overview of

these techniques and then analyze them from the real time system point of

view. The main requirement, which is set by real-time system, is a fast

identification time. Therefore, the main emphasize in this work is set on the

optimization approaches for identification algorithms.

To give a better understanding, we start from the very beginning. In

Chapter_2, we study the fundamentals of digital signal processing theory used

in speaker identification, and model of biometric characteristics of human

speech production organs. This model will serve us as a basis for techniques

described in the next chapters. In Chapter 3, we study different methods for

the extraction of the speaker characteristics from speech signal. In Chapter 4,

we discuss possible ways for modeling of extracted characteristics and

methods, used to calculate the dissimilarity value between unknown speech

sample and the stored speaker models. In Chapter 5, we analyze the methods

described in the two previous chapters and discuss some possible

optimization approaches. In Chapter 6, we provide a novel approach for the

optimization problem, which is evaluated in practice in Chapter 7. Finally, we

finish this work by giving short discussion and conclusions in Chapter 8.

6

Chapter 2

Identification Background

In this chapter we discuss theoretical background for speaker

identification. We start from the digital signal processing theory. Then we

move to the anatomy of human voice production organs and discuss the basic

properties of the human speech production mechanism and techniques for its

modeling. This model will be used in the next chapter when we will discuss

techniques for the extraction of the speaker characteristics from the speech

signal.

2.1 DSP Fundamentals

According to its abbreviation, Digital Signal Processing (DSP) is a part of

computer science, which operates with special kind of data – signals. In most

cases, these signals are obtained from various sensors, such as microphone

or camera. DSP is the mathematics, mixed with the algorithms and special

techniques used to manipulate with these signals, converted to the digital form

[45].

2.1.1 Basic Definitions

By signal we mean here a relation of how one parameter is related to

another parameter. One of these parameters is called independent parameter

(usually it is time), and the other one is called dependent, and represents what

we are measuring. Since both of these parameters belong to the continuous

range of values, we call such signal continuous signal. When continuous

signal is passed through an Analog-To-Digital converter (ADC) it is said to be

discrete or digitized signal. Conversion works in the following way: every time

period, which occurs with frequency called sampling frequency, signal value is

taken and quantized, by selecting an appropriate value from the range of

7

possible values. This range is called quantization precision, and usually

represented as an amount of bits available to store signal value. Based on the

sampling theorem, proved by Nyquist in 1940 [45], digital signal can contain

frequency components only up to one half of the sampling rate. Generally,

continuous signals are what we have in nature while discrete signals exist

mostly inside computers. Signals that use time as the independent parameter

are said to be in the time domain, while signals that use frequency as the

independent parameter are said to be in the frequency domain.

One of the important definitions used in DSP is the definition of linear

system. By system we mean here any process that produces output signal in a

response on a given input signal. A system is called linear if it satisfies the

following three properties: homogeneity, additivity and shift invariance [45].

Homogeneity of a system means that change in the input signal amplitude

corresponds to the change in the output signal. Additivity means that the

output of the sum of two signals results in the sum of the two corresponding

outputs. And finally, shift invariance means that any shift in the input signal will

result in the same shift in the output signal [8,38,45].

2.1.2 Convolution

An impulse is a signal composed of all zeros except one non-zero point.

Every signal can be decomposed into a group of impulses, each of them then

passed through a linear system and the resulting output components are

synthesized or added together [45]. The resulting signal is exactly the same as

obtained by passing the original signal through the system.

Every impulse can be represented as a shifted and scaled delta function,

which is a normalized impulse, that is, sample number zero has a value of one

and all other samples have a value of zero. When the delta function is passed

through a linear system, its output is called impulse response. If two systems

are different they will have different impulse responses. According to the

properties of linear systems every impulse passed through it will result in the

8

scaled and shifted impulse response and scaling and shifting of the input are

identical to the scaling and shifting of the output [38,45]. It means that knowing

systems impulse response we know everything about the system [8,38,45].

Convolution is a formal mathematical operation, which is used to describe

relationship between three signals of interest: input and output signals, and

the impulse response of the system. It is usually said that the output signal is

the input signal convolved with the system’s impulse response. Mathematical

equation of convolution for discrete signals is represented in the following

(convolution is denoted as a star):

(2.1)

where y[i] is the output discrete signal, x[i] is the input discrete signal and h[i]

is M samples long system’s impulse response flipped left-for-right. Index i

goes through the size of the output signal. Mathematics behind the

convolution does not restrict how long the impulse response is. It only says

that the size of the output signal is the size of the input signal plus the size of

the impulse response minus one.

Convolution is very important concept in DSP. Based on the properties of

linear systems it provides the way of combining two signals to form a third

signal. A lot of mathematics behind the DSP is based on the convolution. In

detail it is described in [8,38,45].

2.1.3 Discrete Fourier Transform

Fourier transform belongs to the family of linear transforms widely used in

DSP based on decomposing signal into sinusoids (sine and cosine waves).

Usually in DSP we use the Discrete Fourier Transform (DFT), a special kind of

Fourier transform used to deal with aperiodic discrete signals [45]. Actually

there are an infinite number of ways how signal can be decomposed but

�
�

�

����

1

0
][][][][][

M

j
jixjhihixiy

9

)/2sin(][
)/2cos(][

NikiS
NikiC

k

k

�

�

����

����

sinusoids are selected because of their sinusoidal fidelity that means that

sinusoidal input to the linear system will produce sinusoidal output, only the

amplitude and phase may change, frequency and shape remain the same

[45].

Discrete Fourier Transform changes an N point input signal into two N/2+1

point output signals. The output signals represent the amplitudes of the sine

and cosine components scaled in a special way that is represented by the

equations:

(2.2)

where Ck are N/2+1 cosine functions and Sk are N/2+1 sine functions, index k

runs from zero to N/2. These functions are called basis functions. Actually zero

samples in resulting signals are amplitudes for zero frequency waves, first

samples for waves which make one complete cycle in N points, second for

waves which make two cycles and so on. Signal represented in such a way is

called to be in frequency domain and obtained coefficients are called spectral

coefficients or spectrum. Frequency domain contains exactly the same

information as the time domain and every discrete signal can be moved back

to the time domain, using operation called Inverse Discrete Fourier Transform

(IDFT). Because of this fact, the DFT is also called Forward DFT [45].

Schematically DFT is represented in Figure 2.1.

10

Input signal

N samples

Cosine wave amplitudes

N/2 +1 samples

N/2 +1 samples

Sine wave amplitudes

Forward DFT

Inverse DFT

Time domain Frequency domain

Figure 2.1 Discrete Fourier Transform

The amplitudes for cosine waves are also called real part (denoted as

Re[k]) and for sine waves are called imaginary part (denoted as Im[k]). This

representation of frequency domain is called rectangular notation.

Alternatively, the frequency domain can be expressed in the polar notation. In

this form, real and imaginary parts are replaced by magnitudes (denoted as

Mag[k]) and phases (denoted as Phase[k]) respectively [45]. The equations for

conversion from rectangular notation to the polar notation are as follows:

 (2.3)

There are two main reasons why DFT became so popular in DSP. First is

Fast Fourier Transform (FFT) algorithm [45], developed by Cooley and Tukey

in 1965, which opened a new era in DSP because of the efficiency of the FFT

algorithm. The second reason is the convolution theorem [45], which states

that convolution in time domain is a multiplication in frequency domain and

��
�

�
��
�

�
�

��

]Re[
]Im[arctan][

)]Im[](Re[][22

k
kkPhase

xkkMag

11

vice versa. This makes possible to use high-speed convolution algorithm,

which convolves two signals by passing them through the Fast Fourier

Transform, multiplying and using Inverse Fourier Transform computing

convolved signal. More details about Fourier Transform can be found in

[8,38,45].

2.1.4 Filters

By filter we mean here a method to manipulate with signals defined as a

linear system. There are two main uses for filters: signal separation and signal

restoration. Signal separation is needed when the signal was interfered with

the other not useful signals or noise. Signal restoration is needed when the

signal was distorted for example due to the transform through a long wire or

bad quality recording. There are two main types of filters: analog and digital.

Analog filters are cheap and have a large dynamic range in frequency and

amplitude. However, digital filters can achieve thousands better performance

[45].

Easiest way to implement a digital filter is to convolve the input signal with

the filters impulse response. Based on the length of its impulse responses,

filters are usually divided into Infinite Impulse Response (IIR) filters and Finite

Impulse Response (FIR) filters. There are also few types of responses: step

response and frequency response. Each of these responses can be used to

completely define filter. Step response is the output signal of the filter when

input is a step function, which is defined as a transition from one level of signal

to another. This type of responses can be used to define filters, which are able

to divide signal into regions with similar characteristics. The frequency

response can be found by taking discrete Fourier transform of the impulse

response. It can be useful to define filters, which are able to block undesirable

frequencies in input signals or separate one band of frequencies from another,

such as high-pass, band-pass and band-reject filters.

12

Digital filter theory is important in speaker identification, since it allows by

a given signal to analyze origin of it or in this case the unknown speaker.

There are also few minor uses for filters like a noise removal or other types of

filtering to achieve better results in signal analyzing. More details about filter

design and implementation can be found in [8,38,45].

2.2 Human Speech Production Model

Undoubtedly, ability to speak is the most important way for humans to

communicate between each other. Speech conveys various kind of

information, which are essentially the meaning of information speaking person

wants to impart, individual information representing speaker and also some

emotional filling. Speech production begins with the initial formalization of the

idea which speaker wants to impart to the listener. Then speaker converts this

idea into the appropriate order of words and phrases according to the

language. Finally, his brain produces motor nerve commands, which move the

vocal organs in an appropriate way [14]. Understanding of how human

produce sounds forms the basis of speaker identification.

2.2.1 Anatomy

The sound is an acoustic pressure formed of compressions and

rarefactions of air molecules that originate from movements of human

anatomical structures [20]. Most important components of the human speech

production system are the lungs (source of air during speech), trachea

(windpipe), larynx or its most important part vocal cords (organ of voice

production), nasal cavity (nose), soft palate or velum (allows passage of air

through the nasal cavity), hard palate (enables consonant articulation), tongue,

teeth and lips. All these components, called articulators by speech scientists,

move to different positions to produce various sounds. Based on their

production, speech sounds can also be divided into consonants and voiced

and unvoiced vowels [8,20].

13

From the technical point of view, it is more useful to think about speech

production system in terms of an acoustic filtering operations that affect the air

going from the lungs. There are three main cavities that comprise the main

acoustic filter. According to [8] they are nasal, oral and pharyngeal cavities.

The articulators are responsible for changing the properties of the system and

form its output. Combination of these cavities and articulators is called vocal

tract. Its simplified acoustic model is represented in Figure 2.2.

Pharyngeal
area

Lungs

Vocal
cords

Trachea
Oral

cavity

Nasal
cavity

Velum

Nasal
sound
output

Oral
sound
output

Figure 2.2 Vocal tract model

Speech production can be divided into three stages: first stage is the

sound source production, second stage is the articulation by vocal tract, and

the third stage is sound radiation or propagation from the lips and/or nostrils

[14]. A voiced sound is generated by vibratory motion of the vocal cords

powered by the airflow generated by expiration. The frequency of oscillation of

vocal cords is called the fundamental frequency. Another type of sounds -

unvoiced sound is produced by turbulent airflow passing through a narrow

constriction in the vocal tract [6,8].

14

In a speaker recognition task, we are interested in the physical properties

of human vocal tract. In general it is assumed that vocal tract carries most of

the speaker related information [6,8,20,39]. However, all parts of human vocal

tract described above can serve as speaker dependent characteristics

[6,8,39]. Starting from the size and power of lungs, length and flexibility of

trachea and ending by the size, shape and other physical characteristics of

tongue, teeth and lips. Such characteristics are called physical distinguishing

factors. Another aspects of speech production that could be useful in

discriminating between speakers are called learned factors, which include

speaking rate, dialect, and prosodic effects [6].

2.2.2 Vocal Model

In order to develop an automatic speaker identification system, we should

construct reasonable model of human speech production system. Having such

a model, we can extract its properties from the signal and, using them, we can

decide whether or not two signals belong to the same model and as a result to

the same speaker.

Modeling process is usually divided into two parts: the excitation (or

source) modeling and the vocal tract modeling [8]. This approach is based on

the assumption of independence of the source and the vocal tract models

[6,8]. Let us look first at the continuous-time vocal tract model called multitube

lossless model [8], which is based on the fact that production of speech is

characterized by changing the vocal tract shape. Because the formalization of

such a time-varying vocal-tract shape model is quite complex, in practice it is

simplified to the series of concatenated lossless acoustic tubes with varying

cross-sectional areas [8], as shown in Figure 2.3.

This model consists of a sequence of tubes with cross-sectional areas Ak

and lengths Lk. In practice the lengths of tubes assumed to be equal [8]. If a

large amount of short tubes is used, then we can approach to the continuously

varying cross-sectional area, but at the cost of more complex model. Tract

15

model serves as a transition to the more general discrete-time model, also

known as source-filter model, which is shown in Figure 2.4 [8].

Glottis Vocal tract Lips

A1
A2

A3 A4

L1

L4

L3

L2

Figure 2. 3 Multitube lossless model

In this model, the voice source is either a periodic pulse stream or

uncorrelated white noise, or a combination of these. This assumption is based

on the evidence from human anatomy that all types of sounds, which can be

produced by humans, are divided into three general categories: voiced,

unvoiced and combination of these two (2.2.1). Voiced signals can be

modeled as a basic or fundamental frequency signal filtered by the vocal tract

and unvoiced as a white noise also filtered by the vocal tract. Here E(z)

represents the excitation function, H(z) represents the transfer function, and

s(n) is the output of the whole speech production system [8]. Finally, we can

think about vocal tract as a digital filter, which affects source signal and about

produced sound output as a filter output. Then based on the digital filter theory

we can extract the parameters of the system from its output.

16

Pulse
generator

White noise
generator

Vocal tract
H(z)

E(z)Voiced /
Unvoiced

switch
s(n)

Figure 2.4 Source-filter model

The issues described in this chapter serve as a basis for developing

speaker identification techniques described in the next chapter. More details

about speech production system modeling can be found in [6,8,20,39].

17

Chapter 3

Feature Extraction

In this chapter we discuss the possible ways of extracting speaker

discriminative characteristics from speech signal.

3.1 Introduction

The acoustic speech signal contains different kind of information about

speaker. This includes “high-level” properties such as dialect, context,

speaking style, emotional state of speaker and many others [35]. A great

amount of work has been already done in trying to develop identification

algorithms based on the methods used by humans to identify speaker. But

these efforts are mostly impractical because of their complexity and difficulty in

measuring the speaker discriminative properties used by humans [35]. More

useful approach is based on the “low-level” properties of the speech signal

such as pitch (fundamental frequency of the vocal cord vibrations), intensity,

formant frequencies and their bandwidths, spectral correlations, short-time

spectrum and others [1].

From the automatic speaker recognition task point of view, it is useful to

think about speech signal as a sequence of features that characterize both the

speaker as well as the speech. It is an important step in recognition process to

extract sufficient information for good discrimination in a form and size which is

amenable for effective modeling [17]. The amount of data, generated during

the speech production, is quite large while the essential characteristics of the

speech process change relatively slowly and therefore, they require less data.

According to these matters feature extraction is a process of reducing data

while retaining speaker discriminative information [8,17].

18

Based on the issues described above, we can define requirements that

should be taken into account during selection of the appropriate speech signal

characteristics or features [1,35]:

� discriminate between speakers while being tolerant of intra-speaker

variabilities,

� easy to measure,

� stable over time,

� occur naturally and frequently in speech,

� change little from one speaking environment to another,

� not be susceptible to mimicry.

Of course, practically, it is not possible to meet all of these criteria and

there will be always a trade-off between them, based on what is more

important in the particular case.

The speech wave is usually analyzed based on spectral features. There

are two reasons for it. First is that the speech wave is reproducible by

summing the sinusoidal waves with slowly changing amplitudes and phases.

Second is that the critical features for perceiving speech by humans ear are

mainly included in the magnitude information and the phase information is not

usually playing a key role [14].

3.2 Short-Term Analysis

Because of its nature, the speech signal is a slowly varying signal or

quasi-stationary. It means that when speech is examined over a sufficiently

short period of time (20-30 milliseconds) it has quite stable acoustic

characteristics [8]. It leads to the useful concept of describing human speech

signal, called “short-term analysis”, where only a portion of the signal is used

to extract signal features at one time. It works in the following way: predefined

length window (usually 20-30 milliseconds) is moved along the signal with an

scg
Highlight

19

overlapping (usually 30-50% of the window length) between the adjacent

frames. Overlapping is needed to avoid losing of information. Parts of the

signal formed in such a way are called frames. In order to prevent an abrupt

change at the end points of the frame, it is usually multiplied by a window

function. The operation of dividing signal into short intervals is called

windowing and such segments are called windowed frames (or sometime just

frames). There are several window functions used in speaker recognition area

[14], but the most popular is Hamming window function, which is described by

the following equation:

(3.1)

where N is the size of the window or frame. A set of features extracted from

one frame is called feature vector. Overall overview of the short-term analysis

approach is represented in Figure 3.1.

In the next subchapters we describe a few features, commonly used in

speaker recognition. More details about feature selection and extraction can

be found in [1,6,8,14,17,39,35].

�
�

�
�
�

�

�
��

1
2cos46.054.0)(
N

nnw �

20

Signal processing

...Frame 1 Frame 2 Frame 3 Frame N

Signal processing

Signal processing

Signal processing

Frame length

Frame overlap

Window
function

x11
x12

x1d

…x1=

x21
x22

x2d

…x2=

x31
x32

x3d

…x3=

xN1
xN2

xNd

…xN=

Feature vector

Figure 3.1 Short-Term Analysis

3.3 Cepstrum

According to the issues described in the subchapter (2.2.2), the speech

signal s(n) can be represented as a “quickly varying” source signal e(n)

convolved with the “slowly varying” impulse response h(n) of the vocal tract

represented as a linear filter [8]. We have access only to the output (speech

signal) and it is often desirable to eliminate one of the components. Separation

of the source and the filter parameters from the mixed output is in general

difficult problem when these components are combined using not linear

operation, but there are various techniques appropriate for components

combined linearly. The cepstrum is representation of the signal where these

two components are resolved into two additive parts [8]. It is computed by

taking the inverse DFT of the logarithm of the magnitude spectrum of the

frame. This is represented in the following equation:

21

(3.2)

Some explanation of the algorithm is therefore needed. By moving to the

frequency domain we are changing from the convolution to the multiplication.

Then by taking logarithm we are moving from the multiplication to the addition.

That is desired division into additive components. Then we can apply linear

operator inverse DFT, knowing that the transform will operate individually on

these two parts and knowing what Fourier transform will do with quickly

varying and slowly varying parts. Namely it will put them into different,

hopefully separate parts in new, also called quefrency axis [8]. Let us look at

the speech magnitude spectrum in Figure 3.2 [8].

“Slow” variations
(envelope)

“Fast” variations
(pulses)

=

Excitation responsible
for “fast” spectral

variations

Vocal system responsible
for “slow” spectral

variations

|S(w)| |E(w)| |H(w)|

x

Speech magnitude
spectrum

Figure 3.2 Speech magnitude spectrum

From the Figure 3.2 we can see that the speech magnitude spectrum is

combined from slow and quickly varying parts. But there is still one problem:

multiplication is not a linear operation. We can solve it by taking logarithm from

the multiplication as described earlier. Finally, let us look at the result of the

inverse DFT in Figure 3.3 [8].

e)|))(|DFT(fram(IDFTrame)cepstrum(f log �

22

=

Low quefrency
High quefrency

+

Figure 3.3 Cepstrum

From this figure we can see that two components are clearly distinctive

now. Cepstrum is explained in more details in [8,17,39].

3.4 Mel-Frequency Cepstrum Coefficients

Mel-frequency cepstrum coefficients (MFCC) are well known features

used to describe speech signal. They are based on the known evidence that

the information carried by low-frequency components of the speech signal is

phonetically more important for humans than carried by high-frequency

components [8]. Technique of computing MFCC is based on the short-term

analysis, and thus from each frame a MFCC vector is computed.

MFCC extraction is similar to the cepstrum calculation except that one

special step is inserted, namely the frequency axis is warped according to the

mel-scale. Summing up, the process of extracting MFCC from continuous

speech is illustrated in Figure 3.4.

continuous

speech
Windowing DFT

Mel-frequency
warping

Magnitude
spectrum

spectrum
log mel

Inverse DFT
mel

cepstrum spectrum
mel

Log

windowed frames

Figure 3.4 Computing of mel-cepstrum

23

As described above, to place more emphasize on the low frequencies one

special step before inverse DFT in calculation of cepstrum is inserted, namely

mel-scaling. A “mel” is a unit of special measure or scale of perceived pitch of

a tone [8]. It does not correspond linearly to the normal frequency, indeed it is

approximately linear below 1 kHz and logarithmic above [8]. This approach is

based on the psychophysical studies of human perception of the frequency

content of sounds [8,39]. One useful way to create mel-spectrum is to use a

filter bank, one filter for each desired mel-frequency component. Every filter in

this bank has triangular bandpass frequency response. Such filters compute

the average spectrum around each center frequency with increasing

bandwidths, as displayed in Figure 3.5.

H1[k] H4[k]H2[k] H3[k]

frequency

magnitude

f[0]

f[3]f[1] f[2]

0

1

Figure 3.5 Triangular filters used to compute mel-cepstrum

This filter bank is applied in frequency domain and therefore, it simply

amounts to taking these triangular filters on the spectrum. In practice the last

step of taking inverse DFT is replaced by taking discrete cosine transform

(DCT) for computational efficiency.

24

The number of resulting mel-frequency cepstrum coefficients is practically

chosen relatively low, in the order of 12 to 20 coefficients. The zeroth

coefficient is usually dropped out because it represents the average log-

energy of the frame and carries only a little speaker specific information.

However, MFCC are not equally important in speaker identification [3] and

thus some coefficients weighting might by applied to acquire more precise

result. Different approach to the computation of MFCC than described in this

work is represented in [34] that is simplified by omitting filterbank analysis.

More details about MFCC can be found in [6,8,17,20,39].

3.5 Linear Predictive Coding

Another widely used in speaker recognition area method for speech signal

analysis is based on Linear predictive coding (LPC) (also know as auto-

regressive modeling or AR-modeling). LPC is based on the speech production

source-filter model described in subchapter (2.2.2) and it assumes that this

model is an all-pole model. As described in [8] the speech production system

can be ideally characterized by the pole-zero system function and such

assumption to use only poles has two main reasons. First reason is the

simplicity, and as we will see LPC will result in simple linear equations.

Second reason is that based on human perception mechanism, human ear is

fundamentally “phase deaf” and phase information is less important. All-pole

model can exactly preserve magnitude spectral dynamics (the “information”) in

the speech but may not retain the phase characteristics [8].

The main idea behind LPC is that given speech sample can be

approximated as a linear combination of the past speech samples [39]. LPC

models signal s(n) as a linear combination of its past values and present input

(vocal cords excitation). Because in speaker recognition task the present input

is generally unknown it is simply ignored [6]. Therefore, the LPC

25

�
�

����

p

k
k knsans

1
)()(ˆ

approximation depends only on the past values, which is represented by the

equation:

(3.3)

where ŝ(n) is an approximation of the present output, s(n-k) are past outputs, p

is the prediction order, and ak are the model parameters called the predictor

coefficients. Prediction error is defined as the difference between real and

predicted output, also called as prediction residual.

In speaker recognition task, we can use LPC based on the short-term

analysis approach. Because of the quasi-stationary nature of speech, we can

compute a set of prediction coefficients from every frame. Then we can use

these coefficients as features to describe the signal and therefore, the

speaker. In practice, prediction order is set to 12-20 coefficients, depending on

the sampling rate and the number of poles in the model. More details about

selection of prediction order can be found in [20].

Thus, the basic problem in LPC analysis is to determine prediction

coefficients from the speech frame. There are two main approaches how to

derive them. The classical least-square method selects prediction coefficients

to minimize the mean energy in prediction error over a frame of speech [44].

Examples of this method are autocorrelation and covariance methods. More

details about these two common methods can be found in [6,8,20,39,44].

Another approach is called lattice, which permits instantaneous updating of the

coefficients [44]. In other words, LPC parameters are determined sample by

sample. This method is more useful for real-time application.

In speaker recognition area the set of prediction coefficients is usually

converted to the so-called linear predictive cepstral coefficients (LPCC),

because cepstrum is proved to be the most effective representation of speech

signal for speaker recognition [1]. An important fact is that it can be done

26

directly from the LPC parameter set. The relationship between cepstrum

coefficients cn and prediction coefficients ak is represented in the following

equations [1]:

(3.4)

where p is a prediction order. It is usually said that the cepstrum, derived in

such a way represents the “smoothed” version of the spectrum [8]. More

details about LPC and LPCC can be found in [1,6,8,20,39,44].

3.6 Alternatives and Conclusions

MFCC and LPCC described above are well known techniques used in

speaker identification to describe signal characteristics, relative to the speaker

discriminative vocal tract properties. They are quite similar as well as different.

Both MFCC and LPCC result in the cepstrum coefficients, but the method of

computation differs. MFCC are based on the filtering of spectrum using

properties of human speech perception mechanism. On the other hand, LPCC

are based on the autocorrelation of the speech frame. There is no general

agreement in the literature about what method is better. However, it is

generally considered that LPCC are computationally less expensive while

MFCC provide more precise result [17]. The reason of such opinion is based

on that all-pole model used in the LPC provides a good model for the voiced

regions of speech and quite bad for unvoiced and transient regions [39]. The

main drawback of LPCC is that it does not resolve the vocal tract

characteristics from the glottal dynamics [8], which vary from person to person

pncankc

pnacankc

ac

n

k
knkn

n

k
nknkn

�����

�������

�

�

�

�

�

�

�

�

�

 ,)/1(

1 ,)/1(

1

1

1

1

11

27

and might be useful in speaker identification, whereas MFCC just pay less

attention to them. However, some authors do not agree with the

psychoacoustic analysis on which MFCC are based [49]. More broad

discussion about the advantages and disadvantages of MFCC and LPCC can

be found in [8].

As alternatives for the methods described in this work, a few different

approaches can be suggested. First approach is to improve either MFCC or

LPCC. For example, well-known technique to improve recognition is to add the

first-order derivatives of cepstrum coefficients called delta features to every

feature vector [8]. Such features capture the time dynamics of cepstrum

coefficients from frame to frame. Another technique to improve recognition

accuracy of systems based on MFCC is proposed in [10]. This method is

based on the adding of information about the pitch into the feature vectors. Yet

another approach is to combine MFCC and LPCC. This method can be found

in [8].

Finally, other types of features can be used in speaker identification, such

as perceptual linear prediction cepstrum coefficients (PLPCC) [20,30] or

eigen-MLLR coefficients [52]. Experimental evaluation of recognition accuracy

of the MFCC, LPCC and PLPCC was made in [42] and result of this report is

that all features perform poorly without some form of channel compensation,

however, with channel compensation MFCC slightly outperform other types

[42].

Cepstrum representation of the speech signal has shown to be useful in

practice. However, it is not without drawbacks. The main disadvantage of the

cepstrum is that it is quite sensitive to the environment and noise [8].

Therefore, in practice speech signal is usually preprocessed to achieve more

precise representation. This process usually includes noise removal [8,43] and

pre-emphasis [8,50]. One approach for separating speaker information and

environment can be found in [43]. More details about cepstrum and other

feature extraction methods can be found in [1,6,8,14,17,20,30,39,40,42].

28

Chapter 4

Feature Matching and Speaker Modeling

In this chapter we discuss techniques for modeling of features extracted

from the speech signal, and methods, which are allowing to compute

dissimilarity between unknown speech sample and stored speaker models.

4.1 Introduction

In the previous chapter we were discussing so called measurement step in

the speaker identification where a set of speaker discriminative characteristics

is extracted from the speech signal. In this chapter, we go through the next

step called classification, which is a decision making process of determining

the author of a given speech signal based on the previously stored or learned

information [1]. This step is usually divided into two parts, namely matching

and modeling. The modeling is a process of enrolling speaker to the

identification system by constructing a model of his/her voice, based on the

features extracted from his/her speech sample. The matching is a process of

computing a matching score, which is a measure of the similarity of the

features extracted from the unknown speech sample and speaker model [6].

There are two main approaches for solving the classification problem in

the speaker identification, namely template matching and stochastic matching

[6]. The template method can be dependent or independent of time. In the

time-dependent template approach the model consists of a sequence of

feature vectors extracted from a fixed phrase. During identification a matching

score is produced using dynamic time warping (DTW) algorithm to align and

measure the similarity between the template and test phrase [6,40]. This

method can be used for text-dependent identification systems. For text-

independent systems there is a variation of template matching called feature

averaging [17], which uses the mean of some feature over a relatively long

29

period of time to distinguish among speakers, based on the distance to the

average feature. An alternative stochastic approach is to build probabilistic

model of the speech signal that describes its time-varying characteristics [35].

This method refers to the modeling of speakers by probability distributions of

feature vectors and its classification decision is based on the probabilities or

likelihoods [17]. In the following text we go shortly trough the most popular and

well-known techniques used in modeling and matching. More details about

classification step in speaker identification can be found in [1,6,17,35,40].

4.2 Vector Quantization

Vector quantization (VQ) is a process of mapping vectors from a vector

space to a finite number of regions in that space. These regions are called

clusters and represented by their central vectors or centroids. A set of

centroids, which represents the whole vector space, is called a codebook. In

speaker identification, VQ is applied on the set of feature vectors extracted

from the speech sample and as a result, the speaker codebook is generated.

Such codebook has a significantly smaller size than extracted vector set and

referred as a speaker model. Actually, there is some disagreement in the

literature about approach used in VQ. Some authors [6] consider it as a

template matching approach because VQ ignores all temporal variations and

simply uses global averages (centroids). Other authors [17,35] consider it as a

stochastic or probabilistic method, because VQ uses centroids to estimate the

modes of a probability distribution [17]. Theoretically it is possible that every

cluster, defined by its centroid, models particular component of the speech.

But practically, however, VQ creates unrealistically clusters with rigid

boundaries in a sense that every vector belongs to one and only one cluster

[17].

Mathematically a VQ task is defined as follows: given a set of feature

vectors, find a partitioning of the feature vector space into the predefined

30

number of regions, which do not overlap with each other and added together

form the whole feature vector space. Every vector inside such region is

represented by the corresponding centroid [46]. The process of VQ for two

speakers is represented in Figure 4.1.

Codebook for Speaker 1 Codebook for Speaker 2

Feature vector space

Speaker 1
Sample
Centroid

Speaker 2
Sample
Centroid

Figure 4.1 Vector quantization of two speakers

The are two important design issues in VQ: the method for generating the

codebook and codebook size [24]. Known clustering algorithms for codebook

generation are [24]:

� Generalized Lloyd algorithm (GLA),

� Self-organizing maps (SOM),

� Pairwise nearest neighbor (PNN),

� Iterative splitting technique (SPLIT),

� Randomized local search (RLS).

31

�
�

��

N

i
iiC yxyxd

1

),(

� � � � � �
2

1

),(�
�

������

N

i
ii

T
E yxyxyxyxd

� � � �yxDyxyxd T
M �����

�1),(

According to [24], iterative splitting technique [12] should be used when

the running time is important but RLS [13] is simpler to implement and

generates better codebooks in the case of speaker identification task.

Codebook size is a trade-off between running time and identification accuracy.

With large size, identification accuracy is high but at the cost of running time

and vice versa [24]. Experimental result obtained in [24] is that saturation point

choice is 64 vectors in codebook. The quantization distortion (quality of

quantization) is usually computed as the sum of squared distances between

vector and its representative (centroid) [13]. The well-known distance

measures are Euclidean, city block distance, weighted Euclidean and

Mahalanobis [6,36]. They are represented in the following equations:

City block distance

Euclidean distance (4.1)

Weighted Euclidean

distance

where x and y are multi-dimensional feature vectors and D is a weighting

matrix [6,36]. When D is a covariance matrix weighted Euclidean distance also

called Mahalanobis distance [6,36]. A set of observation was made in [36]

concerning the choice of distance for speaker identification task. Their

conclusion is that weighted Euclidean distance where D is a diagonal matrix

and consists of diagonal elements of covariance matrix is more appropriate, in

a sense that it provides more accurate identification result. The reason for

such result is that because of their nature not all components in feature

vectors are equally important [3] and weighted distance might give more

precise result.

32

During the matching a matching score is computed between extracted

feature vectors and every speaker codebook enrolled in the system.

Commonly it is done as a partitioning extracted feature vectors, using

centroids from speaker codebook, and calculating matching score as a

quantization distortion. Another choice for matching score is mean squared

error (MSE), which is computed as the sum of the squared distances between

the vector and nearest centroid divided by number of vectors extracted from

the speech sample. MSE formula is represented in the following:

(4.2)

where X is a set of N extracted feature vectors, C is a speaker codebook, xi

are feature vectors, ci are codebook centroids and d is any of distance

functions. However, these methods are not adapted to the speaker

identification. More realistic approaches are proposed in [22,25], which are

based on the assigning of weights to the code vectors according to their

discrimination power or the correlations between speaker models in the

database.

The final identification decision is made based on the matching score:

speaker who has a model with the smallest matching score is selected as an

author of the test speech sample. More details about vector quantization can

be found in [13,15,46].

4.3 Gaussian Mixture Modeling

Another type of speaker modeling techniques is Gaussian mixture

modeling (GMM). This method belongs to the stochastic modeling and based

on the modeling of statistical variations of the features. Therefore, it provides a

statistical representation of how speaker produces sounds [40].

�
�

�

N

i
jij

cxd
N

CXMSE
1

2)),((min1),(

33

A Gaussian mixture density is a weighted sum of component densities, as

represented in the following equation [6,17,41]:

(4.3)

where M is a number of components, x is a multi-dimensional feature vector,

bi(x) are the components densities and pi are the mixture weights or prior

probabilities. To ensure that the mixture is a proper density, the prior

probabilities should be chosen to sum to unity [17]. Each component density is

given by equation:

(4.4)

where N is a dimensionality of feature vector x, µi is a mean vector and Σi is a

covariance matrix for i-th component [17,41]. For the identification each

speaker is represented by his/her GMM, which is parameterized by the mean

vectors, covariance matrices and mixture weights from all component

densities. The number of components must be determined, either by some

clustering algorithm or by automatic speech segmenter [17,41]. An initial

model can be obtained by the estimating of parameters from the clustered

feature vectors whereas proportions of vectors in each cluster can serve as a

mixture weights. Means and covariances are estimated from the vectors in

each cluster. After the estimation, the feature vectors can be reclustered using

component densities (likelihoods) from the estimated mixture model and then

model parameters are recalculated. This process is iterated until model

parameters converge [17,41]. This algorithm is called Expectation

Maximization (EM) and explained in detail in [41]. In identification phase,

mixture densities are calculated for every feature vector for all speakers and

�
�

��

M

i
ii xbpxp

1
)()(

�
�
�

�
�
�

��	�
����

	��

� �)()(
2
1exp

)2(

1)(1

2
1

2
iii

i

Ni xxxb ��

�

34

speaker with maximum likelihood is selected as the author of a speech

sample.

The GMM has several forms depending on the choice of covariance

matrix. The model can have covariance matrix per one component density, per

one speaker or shared for all speakers [41]. The underlying reasons behind

the using of GMM in speaker identification are well explained in [41]. More

information about GMM can be found in [1,6,17,41].

4.4 Decision

The next step after computing of matching scores for every speaker model

enrolled in the system is the process of assigning the exact classification mark

for the input speech. This process depends on the selected matching and

modeling algorithms. In template matching, decision is based on the computed

distances, whereas in stochastic matching it is based on the computed

probabilities. This process is represented in Figure 4.2.

Feature
extraction

Speech

Model for
speaker 1

Model for
speaker 2

Model for
speaker N

...

Feature

signal vectors

Matching
score

Matching
score

Matching
score

D
ec

is
i o

n
p r

oc
es

s

Index of identified

speaker

Matching against all models

Figure 4.2 Decision process

35

In template matching, the speaker model with smallest matching score is

selected, whereas in stochastic matching, the model with highest probability is

selected. Practically, decision process is not so simple and for example for so

called open-set identification problem the answer might be that input speech

signal does not belong to any of the enrolled speaker models. More details

about decision process can be found in [6,17].

4.5 Confidence of Decision

After performing identification it might be useful to measure the confidence

of the decision. It might be needed in the open-set task when the speaker

model may not exist in the speaker database or, based on confidence

threshold, identification result might be classified as reliable or not. Unreliable

tests can be for example further processed by human [17]. The underlying

assumption in confidence measurements is that maximum score for correct

identification is in general higher than scores for incorrect identifications and

therefore, a confidence measure is a quantification of this assumption [17].

According to [17], the confidence measure is a number from 0 to 1, where 0

corresponds to the no confidence at all and 1 to the certainty.

In stochastic models, identification process results in a measure of

likelihood or conditional probability [6]. There are several methods of

confidence measure based on likelihoods. For speaker identification two

different methods are proposed in [17]. The first method is based on the

significance testing. In order to estimate the confidence, a two-term mixture

model of obtained score is constructed:

(4.5))()()()()(xfCPxfCPxp TTFF ����

36

where x denotes the score of identified speaker, CF and CT denote the classes

of incorrect and correct identifications respectively, fF(x) and fT(x) denote the

distributions of incorrectly and correctly identified speakers, P(CT) is the

probability of correct identification and P(CF)=1-P(CT) is the probability of

incorrect identification. Both fF(x) and fT(x) are assumed to be normal

distributions, and four parameters associated with them as well as P(CT) can

be estimated, for instance, by using cross-validation [17]. The significance

confidence measure is a measure of how far on the tail of the distribution fF(x)

the identification result occurred. Such confidence measure (CM) is defined as

follows:

(4.6)

The higher the confidence, the more we trust that matching score is too

high to be incorrect. The problem with this approach is that it does not use the

probability of incorrect classification [17]. Another approach to attack this

problem is based on Bayes rule [17]. Bayes confidence measure is defined as

follows:

(4.7)

which is a probability that matching score x is a correct identification. More

details about these two approaches can be found in [17].

However, in template matching models the result is deterministic and

based on the distance calculation between model and input feature vectors

and therefore, we can not use the probability theory apparatus. The likelihood

in such models can be approximated by exponentiating the matching score [6]:

dxxfxCM
x

F�
�

��)(1)(

)()()()(
)()()(

xfCPxfCP
xfCPxCP

TTFF

TT
T

���

�
�

37

(4.8)

where d is a distance value and a is a positive constant, which is set

empirically [6]. In this way having the matching scores as the likelihoods, we

can use the probabilistic methods described above to calculate confidence

measures. In this work, we propose another approach for measuring

confidence in template matching models. It is based on the assumption that

distribution of matching scores follows a Gaussian shape. Proposed

confidence measure is represented as follows:

(4.9)

where d is a distance or matching score returned by matching function and σ

is a parameter selected based on how strong we are measuring confidence, or

in other words, based on what is more important: either do not accept incorrect

identification or prevent incorrect rejection. The intuitive idea behind this

approach is that we are quite confident in the matching score if it is clearly

different from other distances. The parameter σ is selected in the following

way: first compute the mean of all distances, then select σ from the interval

from zero to mean. More close to the mean we select σ more higher

confidence will be assigned for the matching score and vice versa.

Another novel approach was recently proposed in [21]. Confidence in this

work is measured based on the duration of speech samples used for modeling

and identification, level of noise in speech signal and overlapping of speaker

models. This fusion technique is shown to have high accuracy for both

stochastic and template matching models. Also the influence of the amount of

models enrolled in the system (population size) on the confidence measure is

studied in [37]. In real-time systems, the confidence measure might be used

)exp(daL ���

�
�

�

�

�
�

�

�
�
�

�
�
�

�
��	

2

2
1exp)(

�

ddC

38

as a stopping criterion, e.g. when it reaches some predefined threshold, there

are no reasons anymore to continue identification. More details about

confidence measurement can be found in [6,17,21,37].

4.6 Alternatives and Conclusions

The issues described in this chapter actually fall into the more general

topic, namely pattern recognition, which aims to classify object of interest into

one of a number of classes [48]. Therefore, the methods applicable for pattern

recognition are applicable for speaker identification as well. VQ and GMM are

the most well studied techniques for speaker identification. Both of these

methods aim to produce reasonable model for high accuracy identification.

However, VQ works mostly as a quantifier rather than modeler and therefore,

in practice it produces reduced number of feature vectors rather than speaker

model. Whereas GMM models stochastic processes, which underlie speech

signal, and therefore, it produces more accurate speaker model for robust

identification [41]. GMM is based on the broader theory, Hidden Markov

Models, which got its name “hidden” because it models hidden or not

observable stochastic process (speech production) that can be observed

through another stochastic process (speech signal) [8,20,35]. However, VQ

has its own place in the speaker identification and has shown good results in

practice [15,22,24,46]. It outperforms GMM in the tasks where the small

amount of training data is available and sufficiently fast modeling (training)

time is necessary [9,11]. VQ approach dominated early work in speaker

identification whereas stochastic modeling has been developed recently and

offers more flexible and theoretically meaningful probabilistic score [6].

Comparison of GMM with other techniques can be found in [11,41,42,51].

As an alternatives to the two techniques described above few methods

can be suggested. First of all, these are modified GMM’s techniques [17,47],

modified VQ [11] and combination of VQ and GMM [9,19]. A novel and fast

39

developing nowadays approach to speaker identification problem is neural

network (NN) based methods [53]. Instead of training of an individual model

for each speaker neural networks are trained to model differences among

known speakers and therefore, requires less amount of parameters and more

efficiently performs in training and identification phases [53]. Some

comparison of NN approach and GMM can be found in [51]. More details

about feature matching and speaker modeling can be found in

[6,8,14,17,20,35,39,41].

4.7 Remarks

In chapters 2,3,4 we were discussing about general techniques used in

speaker identification area. These methods serve as a basis for future

investigations and ideas behind them still lead researchers to the new

discoveries. Nowadays it is obvious that it is possible to recognize speakers

from their voices using computers, at least under laboratory environments and

within small speaker populations. Nowadays research in speaker identification

area is mostly concentrated on the developing fast and robust algorithms,

which can work in difficult, from the identification task point of view, conditions,

such as in noise or using poor environments. The motivation for future work is

driven by practical and economical applications of automatic speaker

recognition. In the next chapters we judge these basic techniques from the

real-time speaker identification task point of view and also propose few

solutions for this kind of identification problems.

40

Chapter 5

Real-Time Speaker Identification

Speaker identification is a computationally expensive task and requires a

large amount of computations to identify the unknown speaker. In this chapter,

we analyze the speaker identification methods from the running time point of

view. We do not discuss here classical optimization problems but concentrate

only on the specific for speaker identification area approaches to optimization.

We start from the analysis of basic techniques, described in the previous

chapters. Then we discuss possibilities of their optimization.

5.1 Introduction

In this context, by real-time system we refer to a system, which works

under some time constraints. These constraints are defined using so called

response time, which is a length of time from the moment when the task for

the system was set and the moment when the system replied with the answer

[29]. Usually, time constraints are divided into two types: hard and soft. Under

hard constraints, when the system can not accomplish its task in proper time it

should stop executing of the task and reply with failure, whereas under soft

constraints system can continue executing its task. More details about real-

time systems can be found in [29].

By real-time speaker identification (RTSI) we mean here the process of

identification, which works at the same time when the unknown person is

speaking. More precise, RTSI system is a soft real-time system with response

time is set to the length of the input speech sample. However, speaker

identification is the time-consuming process and a growing population size

dramatically decreases identification time, because matching score should be

computed for every speaker enrolled in the system. Therefore, some

optimization is required. As a motivation for necessity of optimization, a typical

41

example of the growing identification time as a function of population size is

represented in Figure 5.1.

0

20

40

60

80

100

120

0 100 200 300 400 500 600

Population size (speakers)

Id
en

tif
ic

at
io

n
tim

e
(s

ec
on

ds
)

Figure 5.1 Dependency of identification time on population size

However, we do not consider here optimization of speaker modeling,

because it can be done once off-line and used during the many identifications.

At the speaker modeling step, accuracy of modeling is more important for

speaker identification rather than computation speed.

5.2 Front-End Analysis and Optimization

In chapter 3, we discussed two popular types of features, the mel-

frequency cepstral coefficients (MFCC) and linear predictive cepstral

coefficients (LPCC). In this subchapter, we analyze the time complexities of

these algorithms and also discuss some optimization issues.

42

 5.2.1 MFCC and LPCC Analysis

As it was described in chapter 3, MFCC and LPCC are computed based

on the short-term analysis or, in other words, a vector of MFCC or LPCC is

computed for every speech frame. Knowing the time needed to extract one

MFCC or LPCC vector we can easily compute the time needed to extract

vectors from the whole speech sample. We also compute approximate amount

of operations instead of order of algorithm or classical asymptotic time

complexity, because for real-time case problem size (frame size) is relatively

small and order analysis does not make sufficient sense.

Let us assume that the analysis frame has N samples. At first, frame is

multiplied by a window function. It takes N operations. Then the FFT is taken

from the speech sample. Time complexity of the FFT is N·logN [45]. Next step

is to take the magnitude of the complex frequency spectrum. The time

complexity for this is also N operations. Next, the frequencies are warped

according to the mel scale. This step depends on the amount of mel-filters M

and their bandwidths. However, the bandwidths of filters vary for different

filters, depending on the order in the filter bank, as a function of the filter

center frequency. Let L denote the sum of all filter bandwidths L1,…,LM. The

time complexity for mel filtering is approximately L operations, because one

mel-frequency coefficient is computed as a sum of multiplication of all

frequencies in one interval on filter coefficients [8,20]. In other words,

computing of the i-th mel-frequency coefficient takes LI operations and thus,

computing of all MFCC takes approximately L1+…+LM=L. Therefore, we need

to resolve L as a function of N. If we look carefully at Figure 2.9, we can see

that every filter is exactly covered by its two adjacent filters, or, in other words,

the sum of filter bandwidths can be approximated as a two times N. Thus, the

time complexity for mel warping is approximately 2·N operations. Finally,

discrete cosine transform is taken, for which the time complexity is M·K, where

K is a number of desired MFCC.

43

Summing up, the time complexity of computing of the MFCC is

approximately N+N·logN+N+2·N+M·K= N·logN+4·N+M·K operations.

Dominating parameter in this equation is the frame size N, because, for

example, for 8kHz sampling frequency and 20 milliseconds window size N

equals to 160, while usually M is set to three times natural logarithm of

sampling frequency (usually 29) and K is set to 15.

As discussed in chapter 3, there are two main methods used in computing

of linear predictive coefficients, which are then transformed to the cepstrum.

Namely, they are autocorrelation and covariance methods. In both methods

one matrix equation is solved to find predictive coefficients [20]. The rank of

these matrix equals to the number of predictive coefficients and therefore, can

be computed in constant time p2, where p is a prediction order. In both cases

matrixes are symmetric with respect to its main diagonal and have only p

different elements located in appropriate places [20]. According to the

algorithm in [20] first element is computed by N operations, second by N-1,

and so on. Finally, p-th element is computed by N-p operations. Summing up,

computing of matrix coefficients takes approximately N·p+(p+1)/2 operations.

The final step is to compute cepstrum from these coefficients, which also

depends only on the number of needed cepstrum coefficients and has

approximately K·(K+1)/2 operations, where K is a desired amount of cepstrum

coefficients. Summing up, the time complexity for computing LPCC is

p2+N·p+(p+1)/2+ K·(K+1)/2. More dominating factors here are the frame size

N and prediction order. Much expensive part in this computation is computing

of autocorrelation coefficients. Prediction order is selected to minimize

prediction error and practically it is set to 10-20. Numerical examples for these

algorithms are presented in Table 1.

From this table we can see that LPCC can be computed approximately 1.2

times faster than MFCC. Note also, that the mel-scaling greatly increase the

speed of computing of the cepstrum coefficients, because after it, significantly

lower input size is provided to the final inverse Fourier transform.

44

Table 5.1 Numerical examples for time complexities of feature extraction
algorithms

Sampling
frequency

Window
size

Vector
size

Number of
computations

(MFCC)

Number of
computations (LPCC,
prediction order 10)

8kHz 20ms 24 2460 2311

8kHz 20ms 12 2136 1867

16kHz 30ms 24 6891 5511

16kHz 30ms 12 6543 5067

5.2.2 Front-End Optimization

Nevertheless the time complexity analysis made in previous subchapter is

quite rough, it shows advantage of LPCC over MFCC. The main reason of this

result is that in MFCC computing computationally expensive Fourier transform

is used, even though it is computed using the fast algorithm (FFT). However,

as discussed in chapter 3, the advantage of MFCC is their more precise

characterizing, comparing with the LPCC, of speech signal. On the other hand,

these methods are widely used in the speaker identification and good results

are reported for both of them [6,44].

In our case of real-time system, this time complexity is not so important,

because the problem size (frame size) is relatively small and both of these

algorithms are well studied and, in general, no essential improvements can be

done for them. We concentrate mostly on the abilities to improve computation

speed based on the problem nature. As we know, human’s speech does not

consist only from connected speech sounds, but there are always some silent

regions between them. By removing these parts of speech, we can greatly

improve identification speed, because the amount of frames will be reduced.

Another approach might be to classify speech frames as a speaker

discriminative or not, and use only discriminative.

45

By silence we mean here the region of speech signal, which does not

contain speech information. For instance, it can be pauses between words or

sentences, filled by background noise. Examples of silent regions are

represented in Figure 5.2.

Silent regions

Figure 5.2 Silence detection

Silence detection is usually based on the measuring some signal

characteristics, for instance, the following [31]:

� Relative energy level,

� Zero crossing rate,

� First autocorrelation coefficient,

� First LPC linear predictor coefficient,

� First mel-frequency cepstrum coefficient,

� Normalized prediction error.

The easiest method proposed in this work to detect silent regions in

speech is based on the computing of variations of the signal samples in

speech frame, against the frame mean. If variations are big enough, the frame

is considered as a speech frame, otherwise as a silence. Silent region is

detected in the following way. First, the mean of the frame samples is

computed, then cumulative sum of absolute magnitude of differences between

46

samples and mean is collected. Then if this sum exceeds predefined threshold

the frame is considered as a speech frame, otherwise as a silent frame. This

process is represented in the following equation:

(5.1)

where sk(n) are the signal samples for frame k, µ is a mean and Ω is a

cumulative sum, compared with the threshold. Although this method is quite

simple, our experiments show that it performs good for clean speech and poor

for noisy speech. However, the threshold should be set different for different

sound recording hardware.

Another algorithm for silence detection is proposed in [4]. In this work, the

authors designed a novel explicit energy-based speech detection algorithm. It

measures the energy of the speech frame and makes decision based on this

energy level. Proposed algorithm works in four steps. First, speech is

preprocessed by high-pass filtering. Then two energy thresholds are

calculated using the following equations:

(5.2)

where Emin is the minimum energy value, computed as a minimum speech

sample value for whole signal, Emax is the peak energy value for the speech

signal, and SL is the average level of the signal above T1, computed using the

following equation:

�

�

�

�

���

��

N

n
k

N

n
k

ns

ns
N

1

1

)(

)(1

�

�

� �112

min

max
10min1

25.0

log21

TSLTT
E
EET

����

��
�

�
��
	

����

47

(5.3)

where i is the index for all frames having sk>T1. Using these threshold rough

boundaries of speech are estimated. At the third step, these boundaries are

refined using zero-crossing rate. Finally, silent frames are eliminated. This

algorithm yielded good results both in accuracy and identification speed, and

therefore, it might be used for real-time speaker identification [4].

In the methods described above, frames are rejected before the feature

extraction, or, in other words, independently on the feature extraction

algorithm. Another approach is to use extracted features to classify frames as

a silent or not. However, since feature extraction is required, they provide less

input for computationally expensive matching step, and thus improve

identification speed. Such methods are proposed in [18,32]. In [32] two

classes, speech and silence are discriminated based on finding of the linear

function, which maximizes between classes and minimizes within classes and

operates on the MFCC. In [18] cepstral features are used to compute energy

of the frame and based on this energy we can decide does this frame contain

speech or not.

An approach based on the selection of input frames, which at best

contribute to the speaker identification, is proposed in [2]. This method is

based on calculating of the likelihoods for the speech frames using Gaussian

modeling. Noise removal or other types of speech enhancements can also be

used as an optimization technique because analysis of enhanced speech will

produce more precise results and therefore, less data will be needed for

identification. More details about silence detection and noise removal can be

found in [4,16,20,26,31].

�

�
�

i

i
k

i

is
SL

)(

48

5.2.3 Remarks

In this subchapter, we analyzed the two basic methods used in feature

extraction from the time complexity point of view. Linear predictive cepstrum

showed its advantage over mel-frequency cepstrum in this sense. However,

there is a trade-off between the computation speed and the identification

accuracy, and thus, the algorithm for feature extraction should be selected

based on what is more important in a particular case. We also proposed

optimization method, which is based on the classification of the speech as a

silent or not. However, there is a trade-off between time, spent on the silence

detection and the identification speed up and accuracy. Exact amount of

frames, dropped as a silent frames depends on many factors, such as

speaking style and speed. Practically, silence removal reduces identification

time by 5-10 percents.

5.3 Feature Matching Analysis and Optimization

In this subchapter, we discuss matching step analysis and optimization.

Modeling step is left out from discussion, since modeling can be done offline,

and it does not affect the real-time identification. Also updating of speaker

models after identification can be done independently of speaker, using

already recorded data. Also, heuristic optimization for matching, proposed in

this work, namely speaker pruning is left in separate chapter.

5.3.1 Analysis of Matching Step in VQ and GMM

Matching step in VQ consists in the computing of quantization distortion

between feature vectors and speaker model. In the previous chapter, we

described several approaches to its computation. Most of them are based on

the finding of the nearest centroid for every feature vector and computing of

distortion as a sum of distances between vector and its centroid. Let us

assume that after feature extraction step, we have N feature vectors, and M

speaker models are enrolled in the system and each speaker model has K

49

centroids. The number of operations needed for matching step is equal to

N·M·K, because in order to find nearest centroid for every vector we have to

calculate distance to every centroid in the model and select centroid with the

smallest distance. Then we should repeat this process for every speaker

model. This process is represented in Figure 5.3.

Test vectorCentroids for
speaker model A

Distance calculations

Shortest distances

Centroids for
speaker model B

Figure 5.3 Matching of one vector in VQ

However, in real time applications amount of feature vectors is relatively small

and can be dropped. The size of feature vectors also affects computation time.

The time complexity for distance calculation can be approximated as an O(p),

where p is a vector size. Therefore, the result time complexity is O(M·K·p).

In the GMM approach, matching step consists in the computing of

probability densities for every feature vectors. Let N denote amount of feature

vectors, K amount of densities in the model and M amount of speaker models,

enrolled in the system. Again as it was in the VQ case, the time needed for

computation of matching score takes O(N·M·K). Because we compute all

densities in the model for every feature vector and this process is repeated for

every model, enrolled in the system. Computation of model densities depends

on the chosen type of covariance matrix. If this matrix is diagonal, then

computation of model densities can be approximated as 2·p operations, but in

the case of full matrix it takes approximately p2+p operations. However,

50

practically only diagonal matrix is used because full matrix requires

dramatically greater amount of computations. Summing up, time complexity for

GMM matching is O(M·K·p). Again we dropped amount of feature vectors

because in real-time case it is relatively small.

The preceding discussion showed that in both cases time complexity can

be approximated as O(M·K·p), where M is an amount of models in the system,

K is a model size and p is a feature vector dimensionality. In general,

according to our analysis, if diagonal matrix is used in GMM for both

approaches computation time is almost the same. The main factors that affect

computation time are model size and number of enrolled speakers, because

computation should be done between every feature vector and every model.

However, these approaches to computing matching scores are straightforward

and in the rest of this chapter we discuss the possibilities to improve them.

5.3.2 Matching Optimization

Computing of matching score for every enrolled model is the most

computationally expensive step in speaker identification. Such approach,

when we straightforward compute score for every model and find the best

model by searching the minimum matching score, will lead to the identification

system with high computational requirements. For instance, as we can see

from Figure 5.1 growing population size dramatically decreases identification

speed.

For VQ, this problem can be leaded to the more general problem, namely

searching in metric spaces [7], because it uses some metric functions to

compute distances. Using algorithms from this theory, nearest centroid in a

codebook can be found more quickly and therefore, overall identification time

can be reduced. One of the solutions for fast searching in metric space was

presented in [5], which is suitable for discrete-valued distance functions or for

functions, which have finite amount of values. They propose a tree, called

Burkhard-Keller tree (BKT), which is constructed in the following way. First,

51

one vector q is arbitrary selected from the set of vectors U as a root of tree.

Then for every distance value i>0, a set of vectors Ui={u Є U,d(u,q)=i} which

have such distance to the root, is selected and for every non-empty set Ui one

child is created. Then this algorithm is repeated for every child until there are

more then one vector in any of the children. First step of this algorithm is

represented in Figure 5.4.

U3
U1 U2 U4

2 3 4

q

Figure 5.4 Building of Burkhard-Keller tree

In the searching stage with a given vector t and a searching radius r we

calculate the distance to the root d(q,t) and enter into the all children i such

that d(q,t)-r ≤ i ≤ d(q,t)+r. Each time we arrive to a leaf u we calculate d(u,t)

and if it less then r we report the element u. The triangular inequality of

distance functions ensures that we cannot miss the answer [7]. However, this

method is suitable only for discrete-valued distance functions and report

vectors that have distance less or equal to r from given vector t, and therefore,

some modification for VQ is required. One approach to such modification

proposed in [7] is to start search with zero radius r and increase it until at least

one vector is found. To move from the continuous distance function to the

52

discrete-valued it should be quantized using suitably small step. Approach to

the building of a tree for searching with the continuous distance function also

presented in [7]. They propose binary tree where children are created based

on the mean of the distances from the root to all children. Those, which have

distance less than mean, are moved to the left child, others are moved to the

right child. This process continues recursively for all children, which contain

more than one vector. At the searching stage it works as described for

Burkhard-Keller tree. More precise overview of techniques used to search in

metric spaces can be found in [7].

Another approach to improve identification speed, proposed in this work,

is to reduce amount of test vectors by forming a codebook of them using VQ.

This method produces centroids for test data, which are used in comparisons

with speaker models instead of the whole test set. Such approach is useful for

different modeling techniques because it does not depend on the modeling

algorithm. Schematically this process is represented in Figure 5.5.

Quantization of test vectors

Test vectors

Required distance
calculations

Required distance
calculations

Codebook centroids

Speaker model Speaker model

Figure 5.5 Quantization of test data

53

Based on our experiments this approach greatly reduces computation load

for identification system without degrading significantly identification accuracy.

However, there is always a trade-off between time, spent on the codebook

creation, and time, gained by reducing the amount of vectors. Because

codebook generation also takes time, there is some maximum amount of

centroids, which can replace the test data without decreasing of identification

speed, comparing with direct computation.

For example, well-known clustering algorithm GLA [27] takes

approximately M·N distance calculations for one step, where M is a number of

clusters, used for quantization of test data, and N is amount of test vectors. Let

G be the number of GLA steps and K is the size of speaker model. Summing

up, the number of distance calculations, required with quantization of test data,

equals to the number of distance calculations needed for codebook generation

M·N·G plus M·K calculations for matching quantized data with speaker model.

Therefore, it is M·N·G+M·K distance calculations. On the other hand, matching

without quantization requires N·K distance calculations. Numerical examples

for the number of distance calculations with GLA steps fixed to 3 and model

size fixed to 64 are presented in Table 5.2.

From this table we can see that quantization of test data is useful with

different amount of test vectors. However, there is always a trade-off between

matching speed-up and identification accuracy. For the real time systems this

approach can also be useful. Even though the amount of test vectors is

relatively small, we can replace few input vectors by one code vector and

greatly improve identification speed.

54

Table 5.2 Comparison of matching with and without quantization

Number of

test vectors

(N)

Number of

clusters (M)

Matching with

quantization

Matching

without

quantization

Speed-up

ratio

5 1 79 320 4,05

10 5 470 640 1,36

50 10 2140 3200 1,49

100 20 7280 6400 0,87

200 20 13280 12800 0,96

500 20 21280 32000 1,02

1000 20 61280 64000 1,04

5000 20 301280 320000 1,06

For GMM modeling there are no well-known techniques which can

essentially improve identification speed. Because for every model a set of

densities should be computed and, for instance, this process does not fit to the

mathematical requirements for distance functions and therefore, mathematical

apparatus for metric spaces can not be used here.

5.3.3 Remarks

In this subchapter we analyzed two basic techniques for speaker

modeling. From the first time analysis, under certain conditions VQ and GMM

do not show any great difference in identification speed. However, VQ deals

with a quite old and therefore, well studied area in mathematics, namely

searching in metric space. And there is a great amount of different techniques,

which can reduce number of computation by pre-computing information about

speaker models [7]. On the other hand, GMM approach is quite new for

speaker identification [41] and different techniques for its speed improvements

55

are nowadays under investigation. We also proposed our approach, which can

reduce amount of comparisons by reducing the number of test vectors.

5.4 Conclusions

In this chapter we discussed known speaker identification techniques from

the real-time systems point of view. The main requirement, which is set by the

meaning of real-time system, is fast identification time. However, there is

always a trade-off between identification speed and accuracy. Based on the

analysis in this chapter we can conclude that matching phase in the

identification is the most time consuming part, because it requires large

amount of comparisons between high-dimensional vectors. For example, from

table 5.1 we can see that computation of one 12 dimensional feature vector,

even using slowest method and high quality speech, requires about 6543

operations. On the other hand, based on Table 5.2 the matching of this vector

requires distance computations between this vector and all speaker models. If

we assume for example, that there are only 20 speakers in the database,

modeled by 64 codebook centroids each, the amount of computation equals to

20·64·12 = 15306 operations. The amount of computation grows rapidly if the

size of speaker database increases. Practically, feature extraction takes less

than 5-10 percent of time, spent on the identification. Therefore, the main

efforts should be leaded on the matching optimization.

In this chapter we also discussed few optimization methods. However, we

did not consider a general approaches to speed improvements. Indeed, we

discussed methods related only to the area of speaker identification. The main

approaches were silence removal and fast searching algorithms in the high-

dimensional vector spaces.

56

Chapter 6

Speaker Pruning

As we discussed in previous chapter, speaker identification requires a

great amount of computations, which are mostly distance calculations between

test vectors and speaker models. We also discussed some possible ways to

improve identification speed, such as silence removal and algorithms for fast

searching in metric spaces. In this chapter, we propose our own approach to

this problem [23], which can be combined with these two methods. Our

method is heuristic, in a sense that it improves identification speed at the cost

of a little growing of the probability of incorrect identification. Therefore, there

is a trade-off between the running time and identification accuracy.

6.1 Principle of Speaker Pruning

In this work, by speaker pruning we mean the continuous process of

reducing amount of speaker models involved into the matching step by

pruning from it models, to which much probable unknown speaker voice does

not belong. The main idea behind this technique is that at the beginning we do

not know anything about unknown speaker voice. But when more data comes

into the system we can realize what models are close to the unknown speech

sample and what models are far away from it and can be ignored in the next

computations. This process is illustrated in Figure 6.1. The ellipses represent

the speaker models and the “x” dots are the feature vectors of unknown

speaker. Speaker identification using speaker pruning works in the following

way. At the beginning matching function is computed between test vectors and

all speaker models. Then, depending on the pruning algorithm, when there is

enough data some speaker models are dropped and not anymore used in

matching.

57

Figure 6.1 Principle of speaker pruning

This process continues until finally only one speaker model is left. If there is

not enough test data to finish pruning process, final decision is made between

remained speaker models based on the value of the matching function.

Following issues should be taken into account during development of speaker

pruning algorithm [23]:

� what are the features,

� how speaker models are represented and what is a matching function,

� what is the pruning criterion (when the speaker model should be

pruned),

� how many vectors should be extracted prior to next pruning,

� how many speakers are pruned at each iteration.

Let us suppose that feature vectors are extracted and inserted into so

called input buffer independently of speaker pruning process and identification

only deals with input buffer of feature vectors. Speaker pruning is iterative

process and depends on two main factors:

1. pruning interval,

2. pruning criterion.

Pruning interval defines when to check speaker model against pruning

criterion, because it is computationally not efficient to check models every

feature vector. This factor specifies the amount of vectors taken from the input

58

buffer before the next pruning iteration. This process is represented in Figure

6.2.

Input buffer

New feature vector

Last pruning Next pruning

Pruning interval

Figure 6.2 Pruning interval

Pruning criterion describes the way in which speaker models are pruned.

All speaker models are checked against this criterion and those who meet it

are pruned from identification process. Two proposed variants of pruning

criterion are discussed in detail in the following subchapters. The following

notations are used:

X Feature vectors of the unknown speaker

Ci The model of i-th speaker

D(X,Ci) Matching function between vector sequence X and

speaker model Ci

M The number of new vectors read at each iteration

K The number of pruned speakers at each iteration

It is also supposed that matching function D computes dissimilarity between

vector sequence and speaker model. Stochastic matching functions can be in

general transformed to this form.

59

6.2 Static Pruning

In this subchapter we discuss the first proposed variant for speaker

pruning.

6.2.1 Principle

The basic idea of static pruning is to prune K worst speaker models at

every pruning interval. To do that, an ordered list of speaker models is

maintained. At each iteration, K models, which have the smallest matching

score, are pruned out from the list. As the new vectors appear in the input

buffer, the matching scores are updated and list is sorted. This process

continues until only one model is left in the list. Note that, in practice, updating

of matching scores can be done fast by using cumulative values of matching

function. The pseudocode for static pruning is given in Figure 6.3.

STATIC PRUNING (M,K) RETURNS speaker model C

Let C={C1,…,CN} be the set of all speaker models

Let X= Ø

WHILE (C contains more than one model AND vectors left in the buffer)

DO

Insert M new vectors from the input buffer to the set X

Update matching scores for all Ci in C

Remove K models with the lowest matching score from C

END

RETURN C

Figure 6.3 Static pruning

This process is controlled by two parameters. They are pruning interval M

and number of speaker models pruned at each iteration K. One iteration of

static pruning is illustrated in Figure 6.4.

60

2,0001

0,32671

0,56973

0,93681

1,35654

...

List of models sorted
according to the matching score

2,23518

2,92176

Static pruning

K

Pruning threshold

0,32671

0,56973

0,93681

1,35654

...

List of models
after static pruning

Figure 6.4 One iteration of static pruning

Also the static pruning is a simple algorithm, it shows good results in

practice and its implementation is very easy. Its implementation consists only

in addition of a special counter for the new feature vectors. When this counter

reaches a predefined value M, the models are sorted and K worst models are

pruned.

6.2.2 Complexity analysis

Let us assume that feature vectors have L elements and every model has

the same size S. Then, computing of matching score between one vector and

speaker database will take approximately N·S·L operations, where N is

amount of models in the database. Further, one iteration of static pruning

takes M·S·L·T, where T is amount of models, which are not pruned yet, plus

number of operations, needed for model sorting. Simple sorting algorithm, like

bubble sort, takes T2 operations, where T is a number of models to sort. More

powerful sorting algorithms work faster and take T·log(T) operations, but for

simplicity of analysis we use simple algorithm. Let n be the current iteration

number, then T equals to N-(n-1)·K, because K models are pruned at each

61

iteration. Therefore, the final equation for the number of operations, needed for

one iteration of static pruning, is given by equation 6.1.

M·S·L·(N-(n-1) ·K)+(N-(n-2) ·K)2 (6.1)

The first term in this equation corresponds to the matching of the remained

models and the second term corresponds to the sorting of the remained

models, based on the computed matching scores. Note that we start sorting

only on the second iteration, after we have computed matching scores. Based

on this equation, we can compute the cumulative number of operation needed

for n iterations:

Iteration 1: M·S·L·N

Iteration 2: M·S·L·(N-K)+N2

Iteration 3: M·S·L·(N-2·K)+(N-K)2

…

Iteration n: M·S·L·(N-(n-1)·K)+(N-(n-2)·K)2

Summing these numbers of operations, we get the number of operations,

made after n iterations:

M·S·L·N+ M·S·L·N·(N-K)+N2+…+ M·S·L·N·(N-(n-1)·K)+(N-(n-2)·K)2=

= M·S·L·(N+N-K+N-2·K+…+(n-1)·K)+N2+(N-K)2+…+(N-(n-2)·K)=

=M·S·L·(n·N-n·(n-1)·K/2)+(n-1)·N2-2·N·K-4·N·K-…-2·(n-2)·N·K+

+K2+4·K2+…+(n-2)2·K2=

= M·S·L·(n·N-n·(n-1)·K/2)+(n-1)·N2-(n-1)·(n-2)·N·K+(n-1)·(n-2)·(2·n-3)K2/6

On the other hand, matching without pruning requires P·S·L·N operations,

where P is a number of test vectors. To compare it with equation (6.1) we fixed

62

some of the parameters to see how these two methods behave during the

time. We compare static pruning and full search by varying the number of

feature vectors, available in the input buffer. Iteration number for static pruning

can be resolved from the amount of feature vectors in the input buffer P as n =

P/M. The fixed parameters are M=10, S=64, L=12, N=500. The results for two

different K=10 and K=20 are represented in Figure 6.5.

Number of vectors

O
pe

ra
tio

ns

Static pruning (K=20)

Static pruning (K=10)

Full search

Figure 6.5 Static pruning complexity

From this figure we can see, that with the small amount of test vectors static

pruning requires more computations, but when more vectors are available it

starts work faster, because some of the models are pruned and are not used

in computations. We can also see that pruning parameters also affect

computation load. For example, growing number of pruned speakers increase

identification speed. Note also, that after N/K iterations static pruning will stop,

because all models except one will be already pruned.

6.3 Adaptive Pruning

In this subchapter we discuss the second proposed pruning variant.

63

6.3.1 Principle

In the adaptive pruning, the pruning criterion is data-driven. This means

that the number of speakers pruned at each iteration depends on the current

distribution of the matching scores of remained models. Based on the mean

value µ and standard deviation σ of the matching score distribution, a pruning

threshold θ is set and all models, which have matching score above this

threshold are pruned. After pruning, the distribution of matching scores

changes, and therefore, the mean and standard deviation must be

recomputed. The pseudocode for adaptive pruning is given in Figure 6.6.

ADAPTIVE PRUNING (M, ŋ) RETURNS speaker model C

Let C={C1,…,CN} be the set of all speaker models

Let X= Ø

WHILE (C contains more than one model AND vectors left in the buffer)

DO

Insert M new vectors from the input buffer to the set X

Update matching score for all Ci in C

Compute µ and σ of the distribution { D(X,Ci) | CI Є C}

Let θ = µ + ŋ· σ be the pruning threshold

Remove all models i from set C satisfying D(X,Ci) > θ

END

RETURN C

Figure 6.6 Adaptive pruning
This adaptive pruning is controlled by two parameters. First is the pruning

interval M, and the second parameter ŋ determines the “degree” of the

thresholding. The larger it is, the less speakers are pruned and vice versa.

One iteration of adaptive pruning is represented in Figure 6.7.

64

Matching score

Number of
speakers

Pruning threshold

Speakers with this distances
will be pruned

µ µ+ η · θ

Figure 6.7 One iteration of adaptive pruning

This method has the following mathematical interpretation. In our

experiments we found out that distribution of matching scores follows more or

less a Gaussian curve. Because of this, the pruning threshold corresponds to

the certain confidence interval of the normal distribution, and ŋ specifies its

width [23]. According to the probability theory, for Gaussian distribution interval

[µ – θ, µ + θ] contains 68 percent of speaker, and interval [µ – 2·θ, µ + 2·θ]

contains 95 percent [33]. For example, if ŋ equals one we prune 16 percent of

speakers, or if it equals two we prune 2,5 percent [33]. In the first case the

probability that the correct speaker was not pruned is at least 84 percent, and

in the second case at least 97,5 percent.

6.3.2 Complexity analysis

Let us assume, that distribution of matching scores follows ideally the

Gaussian shape at every iterations, and thus, at every iteration the same

percentage of speaker models is pruned. Therefore, at every iteration q

percents of remained models are pruned. Let us also assume that feature

vectors have L elements and every model has size S. Then calculating of

matching score between one vector and speaker database will take

approximately N·S·L operations, where N is an amount of models in database.

65

Further, one iteration of adaptive pruning takes M·S·L·T, where T is an amount

of models, which are not pruned yet, plus number of operations, needed for

threshold calculation. Threshold calculation is simple and takes T operations

to find mean and T operations to find standard deviation. However, we do not

calculate threshold at first iteration, and therefore, one iteration takes

M·S·L·T+2·Q operations, where Q is a number of not pruned models at

previous iteration. To calculate T and Q, let us look at the number of speakers,

remained at each iteration:

Iteration 1: N-q ·N

Iteration 2: N-q ·N-q ·(N-q ·N)=N- 2·q ·N+q2·N

Iteration 3: N- 2·q ·N+q2·N-q ·(N- 2·q ·N+q2·N) = N- 3·q ·N+3·q2·N-3·q3·N

…

Let n be the current iteration number, then based on the Binomial theorem

we can calculate the number of remained speakers as a function of n:

N·(1-q)n (6.2)

Based on this equation we can compute the final number of operations for

iteration n:

M·S·L·N·(1-q)n-1+2·N·(1-q)n-2 (6.3)

Summing these numbers of operations for every iteration, we get the following:

M·S·L·N+ M·S·L·N·(1-q)+2·N+ M·S·L·N· (1-q)2+2·N· (1-q)+…+

+M·S·L·N·(1-q)n-1+2·N·(1-q)n-2=

���
�

�
��
�

�

�

	

				���

�

�

q
NNLSMq

n

i

i

1
2)1(

1

1

66

��
�

�
��
�

�

�

�
	����

��

q
NNLSM

q
q n

1
2)1(1

Matching without pruning requires P·S·L·N operations, where P is a

number of test vectors. To compare it with adaptive pruning, we fixed some of

the parameters to see how these two methods behave during the time. We

compare adaptive pruning and full search by varying the number of feature

vectors, available in the input buffer. Iteration number for adaptive pruning can

be resolved from the amount of feature vectors in the input buffer P as n =

P/M. The fixed parameters are M=10, S=64, L=12, N=500. The results for two

different ŋ=1 and ŋ=2 are represented in Figure 6.8. The percentage of

speaker models pruned at every iteration q can be resolved from ŋ based on

the assumption, that distribution follows Gaussian shape. For ŋ=2 we have

q=0.025 and for ŋ=1 we have q=0.16.

Number of vectors

O
pe

ra
tio

ns

Full search

Adaptive pruning ŋ=2

Adaptive pruning ŋ=1

Figure 6.8 Adaptive pruning complexity

67

From this figure we can see, that even at the beginning adaptive pruning

requires less or the same amount of computations. We also can see, that

pruning threshold can significantly change computation load. However, it

should be chosen accurately to prevent high error rate.

6.4 Discussion

In this chapter, we proposed a speaker pruning algorithm, which is a novel

approach to improving identification speed during the matching step. We

proposed two pruning variants, static and adaptive. Also we compared these

two methods with the full search, and the main conclusion from it is that both

algorithms work well and outperform full search, except static pruning is useful

only for sufficiently large amount of test vectors. Combining Figure 6.5 and

Figure 6.8 we can compare two variants between each other. This comparison

is represented in Figure 6.9. From this figure we can see that adaptive pruning

is more useful for cases with small amount of test vectors. However, for large

number of vectors static pruning outperforms adaptive, because it prunes

every iteration the same number of speakers, whereas adaptive variant prunes

less and less speakers. It is also the reason why static pruning stops earlier

than adaptive. However, the analysis presented in this chapter is only

theoretical and it does not tell us anything about identification error rate. It only

shows us the computational load for different parameters and algorithms

dynamics over time. Note also, that analysis for static pruning is exact,

whereas analysis for adaptive variant is made under certain assumptions and

therefore, practical justification is needed. In the next chapter we present

experiments on the real data for both variants.

68

Number of vectors

O
pe

ra
tio

ns
Static pruning (K=10)

Static pruning (K=20)

Adaptive pruning (ŋ=1)

Adaptive pruning (ŋ=2)

Figure 6.9 Complexity of static and adaptive pruning

For future work, we plan to extend the algorithm to use time-depended

values for parameters, which are controlling the pruning. For example, pruning

interval should be initially large to give ability to stabilize for matching scores,

and then it should be gradually minimized to make the identification faster.

Pruning threshold can also be extended. It can be based on probability that

correct speaker already has the minimum matching score. When it is high

enough the pruning threshold can be increased to prune more speakers and

vice versa.

69

Chapter 7

Experiments
In this chapter, we report the results from our experiments. In order to

evaluate empirically speaker pruning algorithms proposed in the previous

chapter, we created appropriate speaker identification software. First, we

present experiments, which show the underlying basis for pruning. Then we

show how the proposed algorithms improve identification speed. Finally, we

show the comparisons result between two proposed variants of speaker

pruning and also discuss the possible reasons for the results.

7.1 Experiments conditions

In our experiments, we used feature vectors composed from 12 lowest

mel-frequency cepstral coefficients (MFCC) computed using 27 mel-spaced

filters. The 0-th coefficient was excluded, because it carries a little of speaker

specific information. Analysis frame was windowed by 30 milliseconds

Hamming window with 10 milliseconds overlapping. The signal was pre-

emphasized by the filter H(z)=1-0.97·z-1 and silence frame were removed

before the feature extraction. All sample durations in these experiments refer

to the silence-removed speech. For speaker modeling we used vector

quantization (VQ) as described in subchapter 4.1. All speakers were modeled

by a codebook of 64 vectors using GLA [27] as the clustering algorithm. The

matching function was the mean squared error between the test vector

sequence and speaker codebook. The decision was simply the speaker with

minimum error.

As a test materials for our experiments we used the American English

TIMIT corpus [28]. The length of training data (silence removed speech) was

on average 8.8 seconds. Speech data was sampled using 8 kHz sampling

frequency and 16-bit resolution. All speech samples are recorded under noisy-

free laboratory conditions. For tests we used different workstations, equipped

70

with Pentium 4 processor, 256 megabytes of memory and Windows XP

operating system.

7.2 Results

In this subchapter, we show the results of our experiments. Every chart is

preceded by the short explanation what we measured and why and followed

be the short discussion about results.

7.2.1 Pruning basis

First, we start from the basis for speaker pruning. We ran a few tests to

see how the matching function behaves during the identification and when it

stabilizes. Chart in Figure 7.1 represents the variation of matching score

depending on the available test vectors for 20 different speakers. One vector

refers to the one analysis frame.

1,55

1,65

1,75

1,85

1,95

2,05

2,15

2,25

2,35

0 20 40 60 80 100 120 140 160 180 200 220 240 260 280 300 320 340 360

Vectors

M
at

ch
in

g
sc

or
e

Figure 7.1 Distance stabilization

71

In this figure, the bold line represents the owner of the test sample. It can

be seen that at the beginning the matching score for correct speaker is

somewhere among the other scores. But after large enough amount of new

vectors extracted from the test speech, it becomes close with only few scores

and at the end it becomes the smallest score. Actually, this is the underlying

reason for speaker pruning: when we have more data we can drop some of

the models from identification.

In the next test, we analyze how much vectors we need to identify speaker

correctly. We ran identification tests for 100 and for all 630 speakers from

TIMIT corpus and marked the amount of vectors where the system started to

identify speaker correctly. Then we transformed these values to the error rate

in the following way. For every amount of feature vectors we calculated what is

the identification error rate if we use only this amount of vectors. The result of

these tests is represented in Figure 7.2.

From this figure we can see that for TIMIT corpus, about 90 percent of

speakers are already identified after approximately 120 feature vectors for 630

speakers and 50 vectors for 100 speakers. This corresponds to the test

sample of lengths about 2,5 and 1 second of non-silent speech respectively.

This is another reason of pruning, because the curves decrease very fast and

it means that correct speaker is usually found after surprisingly small amount

of test data. Another observation is that for small speaker database less

number of test vectors is required to identify speakers.

72

0

10

20

30

40

50

60

70

80

90

100

0 25 50 75 100 125 150 175 200 225 250 275 300 325 350 375 400 425
Amount of vectors

Er
ro

r r
at

e
(%

)

630 Speakers

100 Speakers

Figure 7.2 Identification error rate depending on amount of test data

7.2.2 Static pruning

In the next experiment, we consider the trade-off between identification

error rate and average time spent on the identification for static pruning. By

varying the pruning interval or number of pruned speakers we expect different

error rates and different identification times. From several runs with different

parameter combination we can plot the error rate as a function of average

identification time. To obtain such dependency, we fixed three values for

pruning interval and were varying the number of pruned speakers. The results

are shown in Figure 7.3.

73

0

10

20

30

40

50

60

70

80

90

100

0 10 20 30 40 50 60 70 80
Average identification time (s)

Er
ro

r r
at

e
(%

)

Interval 2
Interval 5
Interval 10

Figure 7.3 Evaluation of static variant using different pruning intervals

From this figure we can see that all curves follow almost the same shape.

It is because in order to have fast identification we have to choose either small

pruning interval or large number of pruned speakers. On the other hand, in

order to have low error rate we have to choose large interval or small number

of pruned speakers. The main conclusion from this figure is that these two

parameters compensate each other.

7.2.3 Adaptive pruning

The idea of adaptive pruning is based on the assumption that distribution

of matching score follows more or less the Gaussian curve. In Figure 7.4 we

can see the distributions of matching scores for two typical identifications.

74

0

10

20

30

40

50

60

1,47 1,5
1,53

1,56
1,59

1,62
1,65

1,68
1,71

1,74
1,77 1,8

1,83
1,86

1,89
1,92

1,95
1,98

2,01
2,04

2,07

Distance

Sp
ea

ke
rs

Figure 7.4 Examples of the matching score distribution

From this figure we can see that distribution is not exactly follows the

Gaussian curve but its shape is almost the same. In the next experiment, we

consider the trade-off between identification error rate and average time spent

on the identification for adaptive pruning. By fixing the parameter ŋ and

varying the pruning interval we obtained desired dependency. The results are

shown in Figure 7.5.

From this figure we can see that parameter ŋ has some minor effect only

for small identification times. For high identification times, curves do not show

significant differences. Again, as in the case of static pruning, algorithm

parameters compensate each other. This means, that for fast identification, we

have high error rate, whereas for low error rate we have relatively slow

identification speed. Algorithm parameters have only a minor effect.

75

0

10

20

30

40

50

60

70

80

90

100

0 5 10 15 20 25 30 35 40
Average identification time (s)

Er
ro

r r
at

e
(%

)
ŋ = 0.5

ŋ = 0.9

ŋ = 0.1

Figure 7.5 Evaluation of adaptive variant using different values for ŋ-
parameter

We also were interested how the distribution and pruning threshold in the

adaptive pruning variant change over the time after few iterations of pruning.

This observation is represented in Figure 7.6.

From this figure we can see an example of how the distributions and

thresholds change over time. Our general observation is that the variance of

the matching scores decreases with time, because after pruning, models with

large distances are pruned and only models, which are close to the unknown

speaker, are remained.

76

1,8 1,85 1,9 1,95 2

Dissimilarity value

A
m

ou
nt

 o
f s

pe
ak

er
s

Iteration i
Iteration i+1
Iteration i+2

31

63

94

126

157

1,921 1,952 1,966

Figure 7.6 Moving of the matching score distribution and the pruning
threshold over time

7.2.4 Comparisons

The results for best parameter combinations for the static and adaptive

variants are shown in Figure 7.7.

We can easily see from this figure that adaptive variant works better in

general. It reaches lower error rate with the same identification time. For

example, with error rate of 0.46 percent the adaptive variant works in 24

seconds of speech, whereas the static method spends over 60 seconds to

reach the same error rate.

77

0

10

20

30

40

50

60

70

80

90

100

0 10 20 30 40 50 60 70 80
Average identification time (s)

Er
ro

r r
at

e
(%

)
Static
Adaptive

Figure 7.7 Comparison of the static and adaptive pruning

We also ran few tests with larger pruning intervals and ŋ parameter (up to

M = 30 and ŋ = 2.0). However, these results were poor and these tests are not

included in this work. We also ran the full test for all 630 speakers without any

pruning. In this case, we reach identification time on average 230 seconds

with 0.15 percent error rate. Therefore, the speed-up is significant in both

static and adaptive cases. The high identification rate is due to the fact that

TIMIT was recorded in noise-free laboratory conditions.

7.3 Discussion

In this chapter, we presented our experiments on proposed pruning

algorithms. First, we presented observations, which gives us the motivation for

pruning algorithms. Then we tested both variants on the TIMIT speech corpus.

The main result is that adaptive pruning outperforms the static variant on every

78

case. We also studied the influence of the parameters on the algorithm

performance and concluded that in both cases there is no significant

difference what values to choose for parameters in a sense of fixed error rate

or identification speed. In other words, if we need certain error rate we can

choose different sets of parameters to reach it but the difference between

achieved identification speeds will be not significant, and vice versa. Note

also, that in previous chapter we made theoretical analysis for pruning

variants, which shows us the computational load for different parameters.

Whereas in this chapter we made practical analysis, which shows us the

relationship between the identification speed and error rate, and therefore, is

more reliable.

79

Chapter 8

Conclusions

In this work, we studied and analyzed different techniques for speaker

identification. In the first part, we started from the identification background,

which is based on the digital signal theory and modeling of the speaker vocal

tract. Then we discussed various techniques for reducing amount of test data

or feature extraction. Further, we studied most popular speaker modeling

methods, which are commonly used in the speaker identification. In the

second part, we studied techniques, discussed in the previous part, from the

real-time systems point of view. We proposed different optimization

approaches to the speaker identification. However, we discussed only

methods related to the speaker identification area, and left out from discussion

general optimization methods.

We proposed a speaker pruning as a novel approach to reducing amount

of distance calculations in the matching step. This method is heuristic, and

therefore, improves identification speed at the cost of increasing of the

probability of incorrect identification. We proposed two variations of the

pruning algorithm and made approximate time complexity analysis for this

methods and concluded that it significantly improves matching step. Finally,

we studied speaker pruning empirically and found out that theory analysis was

correct and it really improves identification speed. We also compared different

parameter combinations for both variants of speaker pruning.

From this work we can conclude that in speaker identification process

matching between test vectors and speaker models is the most time

consuming part. It takes about 90 percent of all time spent on the

identification. Therefore, optimization efforts should be concentrated on the

matching optimization. Based on our experiments and theoretical analysis, we

can also conclude that proposed speaker pruning is useful in practice. For

instance, the error rate of 0.46 percent can be reached using adaptive pruning

80

in 24 seconds, whereas for full search we reached error rate of 0.15 percent in

230 seconds. These two results in general can not be compared because

using pruning we reach result faster but the full search is more accurate.

Therefore, pruning should be used in applications where the identification time

is more important. We also proposed future directions for improvements of

speaker pruning algorithm. We plan to extend the algorithm to use time-

depended values for parameters, which are controlling the pruning. This is the

topic for future research.

81

List of References

[1] B. S. Atal, “Automatic Recognition of Speakers from their Voices”,
Proceedings of the IEEE, vol 64, 1976, pp 460 – 475.

[2] L. Besacier, J.F. Bonastre, “Frame Pruning for Speaker Recognition”,
Acoustics, Speech and Signal Processing, 1998. Proceedings of the 1998 IEEE
International Conference, Vol. 2, pp. 765-768.

[3] Z. Bin, W. Xihong, C. Huisheng, “On the Importance of Components of the
MFCC in Speech and Speaker Recognition”, Center for Information Science,
Peking University, China, 2001.

[4] D. Burileanu, L. Pascalin, C. Burileanu, M. Puchiu, “An Adaptive and Fast
Speech Detection Algorithm”, Proc. TSD 2000 - Third International Workshop on
Text, Speech and Dialogue, Brno, Czech Republic, September 13-16, 2000.

[5] W. Burkhard and R. Keller, “Some approaches to best-match file searching”,
Comm. Of the ACM, 16(4):230-236, 1973.

[6] J.P. Campbell, “Speaker Recognition: A Tutorial”, Proc. of the IEEE, vol. 85,
no. 9, Sept 1997, pp. 1437-1462

[7] E. Chavez, G. Nevarro, R. Bayeza-Yates, J. Marroquin, “Searching in Metric
Spaces”, ACM Computing Surveys (CSUR) September 2001 Volume 33, pp.
273-321.

[8] J. R. Deller, J. H. L. Hansen, J. G. Proakis, Discrete-Time Processing of
Speech Signals, Piscataway (N.J.), IEEE Press, 2000.

[9] M. Do, M. Wagner, “Speaker Recognition with Small Training Requirements
Using a Combination of VQ and DHMM”, Proc. of Speaker Recognition and Its
Commercial and Forensic Applications, pp. 169-172, Avignon, France, April
1998.

[10] H. Ezzaidi, J. Rouat, D. O’Shaughnessy, “Towards Combining Pitch and
MFCC for Speaker Identification Systems”, Aalborg, Eurospeech 2001 –
Scandinavia.

[11] T. Filho, R. Messina, E. Cabral, “Learning Vector Quantization in Text-
Independent Automatic Speaker Identification”, 5-th Brazilian Symposium on
Neural Networks December 09 - 11, 1998 Belo Horizonte, MG, Brazil, pp. 135-
139.

82

[12] P. Fränti, T. Kaukoranta, O. Nevalainen, “On the Splitting Method for Vector
Quantization Codebook Generation”, Optical Engineering, 36 (11), pp. 3043-
3051, November 1997.

[13] P. Fränti, J. Kivijärvi, “Randomized Local Search Algorithm for the Clustering
Problem”, Pattern Analysis and Applications, 3 (4), 358-369, 2000.

[14] S. Furui, Digital Speech Processing, Synthesis and Recognition, New York,
Marcel Dekker, 2001.

[15] S. Furui, “Vector-Quantization-Based Speech Recognition and Speaker
Recognition Techniques”, IEEE Signals, Systems and Computers, 1991, Volume
2, pp. 954-958.

[16] N.R. Garner, P.A. Barrett, D.M. Howard, A.M. Tyrrell, “Robust Noise
Detection for Speech Detection and Enhancement”, IEEE Electronic Letters 13-th
February 1997, Vol. 33, No 4, pp. 270-271.

[17] H. Gish and M. Schmidt, “Text Independent Speaker Identification”, IEEE
Signal Processing Magazine, Vol. 11, No. 4, 1994, pp. 18-32.

[18] J.A. Haigh, J.S. Mason, “Robust Voice Activity Detection using Cepstral
Features”, Computer, Communication, Control and Power Engineering.
Proceedings. TENCON '93, 1993 IEEE Region 10 Conference, Part: 30000 ,
1993, Vol. 3, pp. 321-324

[19] P. Hedelin and J. Skoglund, “Vector quantization based on Gaussian mixture
models”, IEEE Transactions on Speech and Audio Processing, Vol. 8, No 4, July
2000, pp. 385-401.

[20] X. Huang, A. Acero and H.-W. Hon, Spoken language processing, Upper
Saddle River, New Jersey, Prentice Hall PTR, 2001.

[21] M. C. Huggins, J. J. Grieco, “Confidence Metrics for Speaker Identification”,
ICSLIP 2002, Denver, pp. 1381-1384

[22] T. Kinnunen and P. Fränti, “Speaker Discriminative Weighting Method for
VQ-Based Speaker Identification”, Proc. 3rd International Conference on audio-
and video-based biometric person authentication (AVBPA)), pp. 150-156,
Halmstad, Sweden, 2001.

[23] T. Kinnunen, E. Karpov, P. Fränti, “A speaker pruning algorithm for real-time
speaker identification”, submitted to ICASSP 2003.

83

[24] T. Kinnunen, T. Kilpeläinen, P. Fränti, “Comparison of Clustering Algorithms
in Speaker Identification”, Proc. IASTED Int. Conf. Signal Processing and
Communications (SPC 2000), pp. 222-227, Marbella, Spain, 2000.

[25] T. Kinnunen, I. Kärkkäinen, “Class-Discriminative Weighted Distortion
Measure for VQ-based Speaker Identification”, Springer-Verlag Berlin Heidelberg
2002, Volume 2396, pp 681-688.

[26] L. Liao, M. Gregory, “Algorithms for Speech Classification”, ISSPA 1999,
Brisbane, Australia.

[27] Y. Linde, A. Buzo, R. Gray, “An algorithm for Vector Quantizer Design”, IEEE
transactions on Communications, Vol. 28 (1), 84-95, January 1980.

[28] Linguistic Data Consortium, http://www.ldc.upenn.edu/

[29] J. W. S. Liu, Real-time systems, Upper Saddle River, (N.J.), Prentice Hall,
2000.

[30] V. Mantha, R. Duncan, Y. Wu, J. Zhao, A. Ganapathiraju, J. Picone,
“Implementation and Analysis of Speech Recognition Front-Ends”, Southeastcon
'99. Proceedings. IEEE, 1999, pp. 32-35.

[31] J. Marks, “Real Time Speech Classification and Pitch Detection”, IEEE
Communications and Signal Processing, 1988. Proceedings., COMSIG 88.
Southern African Conference, pp. 1-6.

[32] A. Martin, D. Charlet, L. Mauuary, “Robust Speech/Non-Speech Detection
using LDA applied to MFCC”, IEEE Acoustics, Speech, and Signal Processing,
2001 IEEE International Conference, Vol. 1, pp. 237-240.

[33] J. S. Milton, and J. C. Arnold , Introduction to Probability and Statistics,
Singapore, McGraw-Hill International Edition, 1990

[34] S. Molau, M. Pitz, R. Schluter, H. Ney, “Computing Mel-Frequency Cepstral
Coefficients on the Power Spectrum”, Acoustics, Speech, and Signal Processing,
2001 IEEE International Conference, Volume: 1, 2001, pp. 73-76

[35] J. M.Naik, “Speaker Verification: A Tutorial”, IEEE Communications
Magazine, January 1990, pp.42-48.

[36] S. Ong, S. Sridharan, Cheng-Hong Yang, Miles Moody, “Comparison of Four
Distance Measures for Long Time Text-Independent Speaker Identification”,
ISSPA, 1996, pp. 369-372

84

[37] S. Ong, M. Moody, S. Sridharan, “Confidence Analysis for Text-Independent
Speaker Identification: Inspecting the Effect of Population Size”, IEEE
International Symposium on Speech, Image Processing and Neural Networks,
April 1994, Hong Kong, pp. 611-613.

[38] J. G. Proakis and D. G. Manolakis, Digital Signal Processing, Principles,
Algorithms, and Applications, New York, Macmillan Publishing Company, 1992.

[39] L. Rabiner and B.-H. Juang, Fundamentals of Speech Recognition,
Englewood Cliffs (N.J.), Prentice Hall Signal Processing Series, 1993.

[40] D. A. Reynolds, “An Overview of Automatic Speaker Recognition
Technology”, ICASSP 2002, pp 4072-4075.

[41] D. Reynolds, R. Rose, “Robust Text-Independent Speaker Identification
Using Gaussian Mixture Speaker Models”, IEEE transactions on speech and
audio processing, Vol. 3, No1, 1995, pp. 72-83

[42] D. A. Reynolds, “Experimental Evaluation of Features for Robust Speaker
Identification”, IEEE Transactions on Speech and Audio Processing, Vol. 2, No 4,
October 1994, pp. 639-643.

[43] L. Rigazio, P. Nguyen, D. Kryze, J.-C. Junqua, “Separating Speaker and
Environment Variabilities for Improved Recognition in Non-Stationary
Conditions”, Eurospeech 2001 – Scandinavia.

[44] D. O’Shaughnessy, ” Linear Predictive Coding”, IEEE Potentials -- Vol. 7,
1988, no. 1, p. 29-32.

[45] S. W. Smith, The scientist and Engineer’s Guide to Digital Signal
Processing, California Technical Publishing, 1999, http://www.dspguide.com
(was valid at 20.12.2002)

[46] F. K. Soong, A. E. Rosenberg, L. R. Rabiner and B. H. Juang, “A Vector
Quantization Approach to the Speaker Recognition”, AT&T Technical Journal,
Vol. 66, pp. 14-26, Mar/Apr 1987.

[47] R.Stapert, J. Mason, “A Segmental Mixture Model for Speaker Recognition”,
Eurospeech 2001 – Scandinavia.

[48] S. Theodoridis, K. Koutroumbas, Pattern recognition, San Diego, Academic
Press, 1999

[49] S. Umesh, L. Cohen, D. Nelson, “Fitting the Mel Scale”, Acoustics, Speech,
and Signal Processing, 1999 IEEE International Conference, Volume: 1, 1999,
pp. 217 –220.

85

[50] R. Vergin, D. O’Shaughnessy, “Pre-Emphasis and Speech Recognition”,
Electrical and Computer Engineering, 1995. Canadian Conference, Volume: 2,
pp. 1062-1065.

[51] C. Vivaracho, J. Ortega-Garcia, L. Alonso, Q. Moro, “A Comparative Study of
MLP-Based Artificial Neural Networks in Text-Independent Speaker Verification
against GMM-Based Systems”, Eurospeech 2001 – Scandinavia.

[52] N. J.-C. Wang, W.-H. Tsai, L.-S. Lee, “Eigen-MLLR Coefficients as New
Feature Parameters for Speaker Identification”, Eurospeech 2001 – Scandinavia.

[53] X. Yue, D. Ye, C. Zheng, X. Wu, “Neural Networks for Improved Text-
Independent Speaker Identification”, IEEE Engineering in Medicine and Biology
Magazine, Vol. 22, 2002, pp. 53-58.

