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Real-Time Speaker Identification and Verification
Tomi Kinnunen, Evgeny Karpov, and Pasi Fränti

Department of Computer Science, University of Joensuu

P.O. Box 111, FIN-80101 Joensuu, FINLAND,

Abstract— In speaker identification, most of the computation
originates from the distance or likelihood computations between
the feature vectors of the unknown speaker and the models in
the database. The identification time depends on the number
of feature vectors, their dimensionality, the complexity of the
speaker models and the number of speakers. In this paper,
we concentrate on optimizing vector quantization (VQ) based
speaker identification. We reduce the number of test vectors
by pre-quantizing the test sequence prior to matching, and the
number of speakers by pruning out unlikely speakers during
the identification process. The best variants are then generalized
to Gaussian mixture model (GMM) based modeling. We apply
the algorithms also to efficient cohort set search for score
normalization in speaker verification. We obtain a speed-up
factor of 16:1 in the case of VQ-based modeling with minor
degradation in the identification accuracy, and 34:1 in the case of
GMM-based modeling. An equal error rate of 7 % can be reached
in 0.84 seconds on average when the length of test utterance is
30.4 seconds.

Index Terms— Speaker recognition, real-time, speaker prun-
ing, pre-quantization, VQ, GMM

I. INTRODUCTION

Speaker recognition refers to two different tasks: speaker

identification (SI) and speaker verification (SV) [1]–[3]. In

the identification task, an unknown speaker X is compared

against a database of known speakers, and the best matching

speaker is given as the identification result. The verification

task consists of making a decision whether a voice sample

was produced by a claimed person.

A. Motivation

Applications of speaker verification can be found in biomet-

ric person authentication such as an additional identity check

during credit card payments over the Internet. The potential

applications of speaker identification can be found in multi-

user systems. For instance, in speaker tracking the task is to

locate the segments of given speaker(s) in an audio stream [4]–

[7]. It has potential applications in automatic segmentation of

teleconferences and helping in the transcription of courtroom

discussions.

Speaker identification could be used in adaptive user in-

terfaces. For instance, a car shared by many people of the

same family/community could recognize the driver by his/her

voice, and tune the radio to his/her favorite channel. This

particular application concept belongs to the more general

Corresponding author: Tomi Kinnunen. Contact address: Department of
Computer Science, University of Joensuu, P.O. Box 111, FIN-80101 Joensuu,
FINLAND. E-mail: Tomi.Kinnunencs.joensuu.fi, Tel. +358 13 251 7905,
Telefax. +358 13 251 7955.

group of speaker adaption methods that are already employed

in speech recognition systems [8], [9]. Speaker-specific codecs

in personal speech coding have been also demonstrated to give

smaller bit rates as opposed to a universal speaker-independent

codec [10].

Speaker identification have also been applied to the ver-

ification problem in [11], where the following simple rank-

based verification method was proposed. For the unknown

speaker’s voice sample, K nearest speakers are searched

from the database. If the claimed speaker is among the K
best speakers, the speaker is accepted and otherwise rejected.

Similar verification strategy is also used in [12].

Speaker identification and adaptation have potentially more

applications than verification, which is mostly limited to secu-

rity systems. However, the verification problem is still much

more studied, which might be due to (1) lack of applications

concepts for the identification problem, (2) increase in the

expected error with growing population size [13], and (3) very

high computational cost. Regarding the identification accuracy,

it is not always necessary to know the exact speaker identity

but the speaker class of the current speaker is sufficient

(speaker adaptation). However, this has to be performed in

real-time. In this paper, we focus on decreasing the compu-

tational load of identification while attempting to keep the

recognition accuracy reasonably high.

B. Review of Computational Speed-Up Methods

A large number of methods have been proposed for speeding

up the verification process. Specifically, Gaussian mixture

model (GMM) based verification systems [14], [15] have

received much attention, since they are considered as the

state-of-the-art method for text-independent recognition. Usu-

ally, speaker-dependent GMMs are derived from a speaker-

independent universal background model (UBM) by adapting

the UBM components with maximum a posteriori (MAP)

adaptation using each speaker’s personal training data [15].

This method incudes a natural hierarchy between the UBM

and the personal speaker models; for each UBM Gaussian

component, there is a corresponding adapted component in the

speaker’s personal GMM. In the verification phase, each test

vector is scored against all UBM Gaussian components, and a

small number (typically 5) of the best scoring components in

the corresponding speaker-dependent GMMs are scored. This

procedure effectively reduces the amount of needed density

computations.

In addition to the basic UBM/GMM approach, a number of

other hierarchical methods have been considered for GMM.
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Beigi & al. [12] propose a hierarchical structuring of the

speaker database with the following merging strategy. Two

closest GMMs are merged, and the process is repeated until the

number of GMMs is 1. A similar approach using the ISODATA

clustering algorithm has been recently proposed by Sun &

al. [16] for the identification task. They report identification

accuracy close to full search with speed-up factors from 3:1

to 6:1. The relative speed-up of their algorithm was higher for

increased number of speakers.

Auckenthaler and Mason [17] applied UBM-like hash

model, in which for each Gaussian component, there is a

shortlist of indices of the expected best scoring components for

each individual GMM. Using the shortlist of the hash model,

only the corresponding components in the individual GMM

are then scored. By increasing the lengths of the shortlists,

scores can be computed more accurately, but with an increased

computational overhead. Auckenthaler and Mason reported a

speed-up factor of about 10:1 with a minor degradation in the

verification performance.

McLaughlin & al. [18] have studied two simple speed-up

methods for the GMM/UBM-based verification system: (1)

decreasing the UBM size, and (2) decimating the sequence

of test vectors with three simple methods. They noticed that

the UBM could be reduced by a factor of 4, and the test

sequence up to a factor of about as high as 20 without affecting

the verification performance. McLaughlin & al. [18] state (p.

1218):

“What is surprising is the degree to which feature vectors
can be decimated without loss in accuracy. . . . The key
factor seems to be the acoustic variety of the vectors
scored, not the absolute number of vectors.”

However, they did not experiment the combination of decima-

tion and reduced UBM.

An efficient GMM-based speaker identification system has

also been presented by Pellom and Hansen [19]. Since the

adjacent feature vectors are correlated and the order of the

vectors does not affect the final score, the vector sequence can

be reordered so that non-adjacent feature vectors are scored

first. After the scoring, worst scoring speakers are pruned

out using a beam search technique where the beam width is

updated during processing. Then, a more detailed sampling of

the sequence follows. The process is repeated as long as there

are unpruned speakers or input data left, and then the best

scoring speaker is selected as the winner. Pellom and Hansen

reported speed-up factor of 6:1 relative to the baseline beam

search.

Recently, more advanced hierarchical models have been

proposed for efficient speaker verification [20], [21]. Xiang

and Berger [20] construct a tree structure for the UBM. Mul-

tilevel MAP adaptation is then used for generating the speaker-

specific GMMs with a tree structure. In the verification phase,

the target speaker scores and the UBM scores are combined

using an MLP neural network. Xiang and Berger reported a

speed-up factor of 17:1 with a 5 % relative increase in the

EER. They also compared their method with the hash model

of Auckenthaler and Mason [17]. Although the method of

Xiang and Berger gave slightly better verification accuracy

(from EER of 13.9 % to EER of 13.5 %) and speed-up (from

15:1 to 17:1) as compared to the hash GMM, the Xiang’s and

Berger’s method is considerably more complex than the hash

GMM.

C. Contributions of This Study

The literary review herein shows that most of the speed

optimizations have been done on GMM-based systems. In this

study, we optimize vector quantization (VQ) based speaker

recognition, because it is straightforward to implement, and

according to our experiments, it yields equally good or better

identification performance than the baseline GMM based on

maximum likelihood training using the EM algorithm.

Most of the computation time in VQ-based speaker identifi-

cation consists of distance computations between the unknown

speaker’s feature vectors and the models of the speakers

enrolled in the system database. Speaker pruning [19], [22],

[23] can be used to reduce the search space by dropping out

unlikely speakers “on the fly” as more speech data arrives.

We survey and compare several speaker pruning variants. We

also propose a new speaker pruning variant called confidence-

based speaker pruning. The idea is to wait for more speech

data until we are confident to decide whether a certain speaker

could be safely pruned out.

We optimize the other components of the recognition system

as well. We reduce the number of test sequence vectors

by silence removal and pre-quantization, and show how the

pre-quantization methods can be combined with the speaker

pruning for more efficient identification. A vantage-point tree

(VPT) [24] is used for indexing the speakers’ code vectors

for speeding up the nearest neighbor search. Our main contri-

bution is a systematic comparison and combining of several

optimization methods.

Although the framework presented in this study is built

around VQ-based speaker modeling, the methods are expected

to generalize to other modeling paradigms. We demonstrate

this by applying the best pre-quantization and pruning variants

to GMM-based identification.

Finally, we demonstrate that the methods apply also to the

verification task. Pre-quantization is applied for searching a

cohort set online for the client speaker during the verification

process, based on the closeness to the input vectors. We

propose a novel cohort normalization method called fast cohort

scoring (FCS) which decreases both the verification time and

the equal error rate.

The rest of the paper is organized as follows. In Section II,

we review the baseline speaker identification, and consider the

computational complexity issue in more detail, focusing on the

real-time processing in general level. A detailed description

of the speaker pruning algorithms follows then in Section

III. In Section IV, we utilize the speed-up methods to the

verification problem. Section V describes the experimental

setup. Test results with discussion are given in Section VI,

and conclusions are drawn in Section VII.

II. VQ-BASED SPEAKER IDENTIFICATION

A. General Structure

The components of a typical VQ-based speaker identifica-

tion [25]–[28] system are shown in Fig. 1. Feature extraction
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Fig. 1. Typical VQ-based closed set speaker identification system.

transforms the raw signal into a sequence of 10- to 20-

dimensional feature vectors with the rate of 70-100 frames

per second. Commonly used features include mel-cepstrum

(MFCC) and LPC-cepstrum (LPCC) [29], [30]. They mea-

sure short-term spectral envelope, which correlates with the

physiology of the vocal tract.

In the training phase, a speaker model is created by clus-

tering the training feature vectors into disjoint groups by a

clustering algorithm. The LBG algorithm [31] is widely used

due to its efficiency and simple implementation. However,

other clustering methods can also be considered; a comparative

study can be found in [32]. The result of clustering is a set of

M vectors, C = {c1, c2, . . . , cM}, called a codebook of the

speaker.

In the identification phase, unknown speaker’s feature vec-

tors are matched with the models stored in the system

database. A match score is assigned to every speaker. Finally,

a 1-out-of-N decision is made. In a closed-set system this

consists of selecting the speaker that yields the smallest

distortion.

The match score between the unknown speaker’s feature

vectors X = {x1, . . . , xT } and a given codebook C =
{c1, . . . , cM} is computed as the average quantization dis-

tortion [25]:

Davg(X,C) =
1

T

T∑

i=1

e(xi, C), (1)

where e(xi, C) = mincj∈ C ‖xi − cj‖
2, and ‖ · ‖ denotes the

Euclidean norm. Several modifications have been proposed to

the baseline VQ distortion matching [27], [33]–[37].

B. Time Complexity of Identification

In order to optimize speaker identification for real-time

processing, first the dominating factors have to be recognized.

In order to compute Davg(X, C), the nearest neighbors of

each xi ∈ X from the codebook C are needed. With a sim-

ple linear search this requires O(TM) distance calculations.

Computation of the squared Euclidean distance between two

d-dimensional vectors, in turn, takes d multiplications and d−1
additions. Therefore, the total number of floating point oper-

ations (flops) for computing Davg(X, C) is O(TMd). The

computation of Davg(X, C) is repeated for all N speakers, so

the total identification time is O(NTMd).
The efficiency of the feature extraction depends on the

selected signal parametrization. Suppose that the extraction

of one vector takes O(f) flops. The total number of flops for

feature extraction is then O(Tf), where T is the number of

vectors. Notice that the feature extraction needs to be done

only once. To sum up, total number of flops in identification

is O(Tf + NTMd) = O(T (f + NMd)). The standard

signal processing methods (MFCC, LPCC) themselves are

very efficient. By assuming f ≪ NMd, we can approximate

the overall time as O(TNMd).
The dimensionality d is much smaller than N , M and T .

For instance, about 10-20 mel-cepstral coefficients is usually

enough due the fast decay of the higher coefficients [29]. There

is no reason to use a high number of cepstral coefficients

unless they are properly normalized; the coefficients with a

small magnitude do not contribute to the distance values much.

C. Reducing the Computation Time

The dominating factors of the total identification time are

the number of speakers (N ), the number of vectors in the

test sequence (T ), and the codebook sizes (M ). We reduce

the number of speakers by pruning out unlikely speakers

during the matching, and the number of vectors by silence

removal and by pre-quantizing the input sequence to a smaller

number of representative vectors prior to matching. In order

to speed up the nearest neighbor search of the codebooks,
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Fig. 2. Diagram of the real-time identification system.

we utilize vantage-point trees (VPT) [24] for indexing the

code vectors in the models. VPT is a balanced binary search

tree where each node represents a code vector. In the best

case (fully balanced binary tree), the search takes O(log2 M)
distance computations. Unfortunately, the VPT as well as

other indexing structures [38] apply only to metric distance

functions. Since (1) does not satisfy the triangular inequality,

we can index only the code vectors but not the codebooks

themselves.

D. Real-Time Speaker Identification

The proposed system architecture is depicted in Fig. 2. The

input stream is processed in short buffers. The audio data in

the buffer divided into frames, which are then passed through a

simple energy-based silence detector in order to drop out non-

information bearing frames. For the remaining frames, feature

extraction is performed. The feature vectors are pre-quantized

to a smaller number of vectors, which are compared against

active speakers in the database. After the match scores for each

speaker have been obtained, a number of speakers are pruned

out so that they are not included anymore in the matching on

the next iteration. The process is repeated until there is no

more input data, or there is only one speaker left in the list of

active speakers.

E. Pre-quantization

In pre-quantization (PQ), we replace the original test vector

sequence X by a new sequence X̂ so that |X̂| < |X|. In order
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Fig. 3. Illustration of speaker pruning (pruning interval = 7 vectors).

to gain time, the total time spent for the PQ and matching must

be less than the matching time without PQ. The motivation

for using PQ is that, in practise, the adjacent feature vectors

are close to each other in the feature space because of the

gradual movements of the articulators. McLaughlin & al. [18]

applied three simple PQ methods prior to GMM matching,

and reported that the test sequence could be compressed by a

factor of 20:1 without compromizing the verification accuracy.

This clearly suggests that there is a lot of redundancy in the

feature vectors.

We consider four different pre-quantization techniques: (1)

random subsampling, (2) averaging, (3) decimation, and (4)

clustering-based PQ. In random subsampling and averaging,

the input buffer is processed in non-overlapping segments of

M >1 vectors. In random subsampling, each segment is rep-

resented by a random vector from the segment. In averaging,

the representative vector is the centroid (mean vector) of the

segment. In decimation, we simply take every M th vector of

the test sequence, which corresponds to performing feature

extraction with a smaller frame rate. In clustering-based PQ,

we partition the sequence X into M clusters using the LBG

clustering algorithm.

III. SPEAKER PRUNING

The idea of speaker pruning [19], [22], [23] is illustrated in

Fig. 3. We must decide how many new (non-silent) vectors are

read into the buffer before next pruning step. We call this the

pruning interval. We also need to define the pruning criterion.

Figure 4 shows an example how the quantization distortion

(1) develops with time. The bold line represents the correct

speaker. In the beginning, the match scores oscillate, and when

more vectors are processed, the distortions tend to stabilize

around the expected values of the individual distances because

of the averaging in (1). Another important observation is that

a small amount of feature vectors is enough to rule out most

of the speakers from the set of candidates.

We consider next the following simple pruning variants:

static pruning [23], hierarchical pruning [22], and adaptive

pruning [23]. We also propose a novel pruning variant called

confidence-based pruning. The variants differ in their pruning

criteria.
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Algorithm 1 Static Pruning (SP)

A := {1, 2, . . . , N} ; X := ∅ ;
while (|A| > 1) and (speech data left) do

Insert M new vectors into buffer X ;
Update Davg(X, Ci) for all i ∈ A ;
Prune out K worst speakers from A ;

end while

Decision: i∗ = arg mini{D(X, Ci)|i ∈ A} ;

The following notations will be used:

X Processing buffer for new vectors

A Indices of the active speakers

Ci Codebook of speaker i
N Size of the speaker database

A. Static Pruning (SP)

The idea is to maintain an ordered list of the best matching

speakers. At each iteration, M new vectors are read in,

match scores of the active speakers are updated, and K worst

matching speakers are pruned out (Algorithm 1). The update of

the match scores can be done efficiently by using cumulative

counts of the scores. The control parameters of the method

are M and K. Fig. 3 gives an example of the method with

parameters M = 7 and K = 2.

B. Hierarchical Pruning (HP)

For each speaker i, two codebooks are stored in the

database: a coarse and a detail codebook, denoted here as Cc
i

and Cd
i , respectively. Both codebooks are generated from the

same training data, but the coarse codebook is much smaller

than the detail one: |Cc
i | ≪ |Cd

i |. First, K worst speakers are

pruned out by matching the vectors against the coarse models.

Scores of the remaining models are then recomputed using the

detail models (Algorithm 2). The control parameters of the

method are the the sizes of the codebooks and K.
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Algorithm 2 Hierarchical Pruning (HP)

Let Cc = {Cc
1 , . . . , Cc

N} be the coarse models ;
Let Cd = {Cd

1 , . . . , Cd
N} be the detail models ;

A := {1, 2, . . . , N} ;
Read the whole test sequence into buffer X ;
Compute Davg(X, Cc

i ) for all i ∈ A ;
Prune out K worst speakers from A ;
Compute Davg(X, Cd

i ) for all i ∈ A ;

Decision: i∗ = arg mini{Davg(X, Cd
i )|i ∈ A} ;

Algorithm 3 Adaptive Pruning (AP)

A := {1, 2, . . . , N} ; X := ∅ ;
while (|A| > 1) and (speech data left) do

Insert M new vectors into buffer X ;
Update Davg(X, Ci) for all i ∈ A ;
Update Pruning threshold Θ ;
Prune out speaker i if Davg(X, Ci) > Θ ;

end while

Decision: i∗ = arg mini{Davg(X, Ci)|i ∈ A} ;

C. Adaptive Pruning (AP)

Instead of pruning a fixed number of speakers, a pruning

threshold Θ based on the distribution of the scores is com-

puted, and the speakers whose score exceeds this are pruned

out (see Algorithm 3). The pruning threshold Θ is computed

as

Θ = µD + η · σD, (2)

where µD and σD are the mean and the standard deviation

of the active speakers’ match scores, and η is a control

parameter. The larger η is, the less speakers are pruned out, and

vice versa. The formula (2) has the following interpretation.

Assuming that the match scores follow a Gaussian distribution,

the pruning threshold corresponds a certain confidence interval

of the normal distribution, and η specifies its width. For η = 1,

the speakers above the 68 % confidence interval of the match

score distribution will be pruned out; that is approximately

(100-68)/2 = 16 % of the speakers. This interpretation is

illustrated in the right panel of Fig. 5. We have found out

experimentally that the Gaussian assumption holds sufficiently

well in practise. The left panel of Fig. 5 shows two real

score distributions computed from two different subsets of the

TIMIT corpus [39].

Notice that the mean and variance of the score distribution

can be updated efficiently using the running values for these.

Since the unlikely speakers (large scores) are pruned out
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Fig. 6. Illustration of the confidence-based pruning.

iteratively, the variance of the match scores decreases with

time. The control parameters of the method are M and η.

D. Confidence-Based Pruning (CP)

In confidence-based pruning, only speakers whose match

scores have stabilized are considered for pruning. If the match

score is poor but it still oscillates, the speaker can still

change its rank and become the winner. Thus, we remove only

speakers that have already stabilized and whose match score is

below a given threshold. This is illustrated in Fig. 6, in which

the speakers are at given one per line, and the time (vector

count) increases from left to right. The numbers in the cells

show the match scores, gray color indicates that the speaker

has stabilized, and black indicates that the speaker has been

pruned out. Notice that both the stabilization and pruning can

happen in the same iteration.

The pseudocode of the method is given in Algorithm 4. Two

score values are maintained for each active speaker i: the one

from the previous iteration (Dprev[i]), and the one from the

current iteration (Dcurr[i]). When these two are close enough

to each other, we mark the speaker as stabilized. Stabilized

speakers are then checked against the pruning threshold as

defined in (2). There are three adjustable parameters: the

pruning interval (M ), the stabilization threshold (ǫ) and the

pruning threshold control parameter (η).

E. Combining PQ and Pruning (PQP)

Pre-quantization and pruning can be combined. Algorithm

5 combines clustering-based PQ and static pruning. First, the

whole input data is pre-quantized by the LBG algorithm [31].

Using the match scores for the quantized data, K worst scoring

speakers are pruned out, and the final decision is based on

comparing the unquantized data with the remaining speaker

models. We refer the ratio of the number of pruned speakers

to the number of all speakers as the pruning rate.

Algorithm 4 Confidence-Based Pruning (CP)

A := {1, 2, . . . , N} ; X := ∅ ;
for i := 1, . . . , N do

Dprev[i] := 0 ; stable[i] := false ;
end for

while (|A| > 1) and (speech data left) do

Insert M new vectors into buffer X ;
Update Davg(X, Ci) for all i ∈ A ;
Update pruning threshold Θ ;
for i ∈ A do

Dcurr[i] := Davg(X, Ci) ;
end for

for i ∈ A do

if ( |1 − Dprev[i]/Dcurr[i]| < ǫ ) then

stable[i] = true ;
end if

if (stable[i]) and (Dcurr(X, Ci) > Θ) then

Prune out speaker i from A ;
else

Dprev[i] := Dcurr[i] ;
end if

end for

end while

Decision: i∗ = arg mini{Davg(X, Ci)|i ∈ A} ;

Algorithm 5 PQ + Static Pruning (PQP)

A := {1, 2, . . . , N} ;
Read new data into buffer X ;
X̂ := LBG-Clustering(X, M)
Compute Davg(X̂, Ci) for all i ∈ A ;
Prune out K worst speakers from A ;
Compute Davg(X, Ci) for all i ∈ A ;

Decision: i∗ = arg mini{Davg(X, Ci)|i ∈ A} ;

IV. EFFICIENT COHORT SCORING FOR VERIFICATION

In this Section, we apply pre-quantization for speeding up

the scoring in the verification task. Current state-of-the-art

speaker verification systems use the Bayesian likelihood ratio

[40] for normalizing the match scores [41], [42]. The purpose

of the normalization is to reduce the effects of undesirable

variation that arise from mismatch between the input and

training utterances.

Given an identity claim that speaker S produced the vectors

X = {x1, . . . ,xT }, two likelihoods p(X|S) and p(X|S̄) are

estimated. The former presents the likelihood that speaker

S produced X (null hypothesis), and the latter presents the

likelihood that X was produced by someone else (alternative

hypothesis). The two likelihoods are combined using the log-

likelihood ratio [1]:

score(X,S) = log p(X|S) − log p(X|S̄). (3)

This score is then compared with a predefined verification

threshold. The speaker is accepted if the score exceeds the

verification threshold, and otherwise rejected. We assume a

common (global) threshold for all speakers.

The problem in the computation of (3) is that the likelihood

of the alternative hypothesis is not directly accessible since this

requires information of all other speakers of the world. There

are two main approaches for the estimation of p(X|S̄) [41]:

universal background model (or world model) and cohort set.
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Algorithm 6 Fast Cohort Scoring (FCS)

Let X be the unknown speaker’s feature vectors ;
Let CS be the claimed speaker’s codebook ;
Let K > 1 be the desired cohort size ;
X̂ := LBG-Clustering(X, M) ;
Let Coh := K best scoring speakers based on Davg(X̂, Ci),
excluding the client ;

score(X, S) = Davg(X̂, CS)/ 1

K

∑
i∈Coh

Davg(X̂, Ci) ;

The world model is generated from a large set of speakers, and

it attempts to model speech in general. In the cohort approach,

for each client speaker, an individual set of cohort speakers is

defined. Usually the cohort set contains the nearest speakers

to the client, since intuitively these are the “best” impostors to

the client speaker. We are not aware of large-scale comparison

of the world model and cohort approaches, and it seems that

currently there is no consensus which one of these is more

accurate.

Cohort normalization methods can be divided into two

classes: those that select the cohort speakers offline in the

training phase [43], and those that select the cohort online

[44] based on the closeness to the test vector sequence X .

The online approach, also known as unconstrained cohort

normalization (UCN) [41], [44], has been observed to be

more accurate [42], [44], probably due to its adaptive nature.

Another desirable feature of the UCN is that it does not require

updating of the cohort sets when new speakers are enrolled in

the system.

The usefulness of the online cohort selection is limited

by its computational complexity. The computation of the

normalized score (3) includes searching the cohort speakers,

whose time increases linearly with the number of cohort

candidates. Ariyaeeinia and Sivakumaran [44] noticed that a

smaller equal error rate (EER) is obtained, if the cohort is

selected among the client speakers instead of using an external

cohort set.

We propose to use pre-quantization for reducing the com-

putational load of cohort search (see Algorithm 6). The input

sequence X is first quantized into a smaller set X̂ using the

LBG algorithm [31], and majority of the speakers are pruned

out based on the scores Davg(X̂, Ci), i = 1, . . . , N . The

remaining set of K > 1 best scoring speakers constitutes

the cohort for the client speaker. The client score is also

computed using the quantized sequence, and the normalized

match score is computed as the ratio between the client score

and average cohort speaker score. A small value indicates that

the client score deviates clearly from the impostor distribution.

The control parameters of the algorithm are the cohort size (K)

and the size of the quantized test set (M ).

In acoustically mismatched conditions, both the client and

cohort scores are expected to degrade, but their ratio is

assumed to remains the same. This is the fundamental rationale

behind score normalization. In other words, we assume:

Davg(X, CS)∑
j Davg(X, Cj)

≈
Davg(X̂, CS)

∑
k Davg(X̂, Ck)

, (4)

where j and k go over the indices of the cohort speakers

TABLE I

SUMMARY OF THE CORPORA USED

TIMIT NIST

Language English English
Speakers 630 230
Speech type Read speech Conversational
Quality Clean (hi-fi) Telephone
Sampling rate 8.0 kHz 8.0 kHz
Quantization 16-bit linear 8-bit µ-law
Training speech (avg.) 21.9 sec. 119.0 sec.
Evaluation speech (avg.) 8.9 sec. 30.4 sec.

selected using X and X̂ , respectively. The approximation (4) is

good when X and X̂ follow the same probability distribution.

V. EXPERIMENTS

A. Speech Material

For the experiments, we used two corpora, the TIMIT corpus

[39] and the NIST 1999 speaker recognition evaluation corpus

[45]. The TIMIT corpus was used for tuning the parameters

of the algorithms, and the results were then validated using

the NIST corpus.

Main features of the evaluated corpora are summarized in

Table I. For consistency, the TIMIT files were downsampled

from 16 to 8 kHz. This was preceded by alias cancellation

using a digital low-pass FIR filter. TIMIT contains 10 files

for each speaker, of which we selected 7 for training and 3

for testing. The files “sa” and “sx” having the same phonetic

content for all speakers were included in the training material.

To our knowledge, no speaker identification experiments

have been performed previously on the NIST-1999 corpus,

and therefore, we needed to design the test setup ourselves.

We selected to use the data from the male speakers only.

Because we do not apply any channel compensation methods,

we selected the training and recognition conditions to match

closely. For training, we used both the “a” and “b” files for

each speaker. For identification, we used the one speaker test

segments from the same telephone line. In general it can

be assumed that if two calls are from different lines, the

handsets are different, and if they are from the same line, the

handsets are the same [45]. In other words, the training and

matching conditions have very likely the same handset type

(electret/carbon button) for each speaker, but different speakers

can have different handsets. The total number of test segments

for this condition is 692.

B. Feature Extraction, Modeling and Matching

We use the standard MFCCs as the features [29]. A pre-

emphasiz filter H(z) = 1 − 0.97z−1 is used before framing.

Each frame is multiplied with a 30 ms Hamming window,

shifted by 20 ms. From the windowed frame, FFT is computed,

and the magnitude spectrum is filtered with a bank of 27

triangular filters spaced linearly on the mel-scale. The log-

compressed filter outputs are converted into cepstral coeffi-

cients by DCT, and the 0th cepstral coefficient is ignored.

Speaker models are generated by the LBG clustering algorithm

[31]. The quantization distortion (1) with Euclidean distance

is used as the matching function.
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C. Performance Evaluation

The recognition accuracy of identification is measured by

identification error rate, and the accuracy of the verification

is measured by the equal error rate (EER). The methods were

implemented using C/C++ languages. All experiments were

carried out on a computing cluster of two Dell Optiplex G270

computers, each having 2.8 GHz processor and 1024 MB of

memory. The operating system is Red Hat Linux release 9 with

2.4.22-openmosix2 kernel. We use system function clock

divided by the constant CLOCKS_PER_SEC to measure the

running time.

VI. RESULTS AND DISCUSSION

A. Baseline System

First, a few preliminary tests were carried out on the TIMIT

corpus in order to find out suitable silence detection threshold.

The number of MFCCs and model sizes were fixed to 12 and

64, respectively. With the best silence threshold (lowest error

rate), about 11-12 % of the frames were classified as silent

and the average identification time improved by about 10 % as

compared without silence detection. Recognition accuracy also

improved slightly when silence detection was used (626/630

correct → 627/630 correct). Using the same silence detection

threshold on the NIST, only 2.6 % of the frames were classified

as silent, and there was no improvement in the identification

time.

The effect of the number of MFCCs was studied next. In-

creasing the number of coefficients improved the identification

accuracy up to 10-15 coefficients, after which the error rates

stabilized. For the rest of the experiments, we fixed the number

of coefficients to 12.

Table II summarizes the performance of the baseline system

on the TIMIT corpus. The identification times are reported

both for the full-search and for the VPT-indexed code vectors.

The last row (no model) shows the results for using all training

vectors directly as the speaker model as suggested in [46].

Increasing the model size improves the performance up to

M = 256. After that, the results start to detoriate due to the

overfitting effect, as observed also in [47]. The identification

time increases with the codebook size. For small codebooks,

VPT indexing does not have much effect on the identification

times, but it becomes effective when M ≥ 32. For the rest of

the experiments, VPT indexing is used.

TABLE II

PERFORMANCE OF THE BASELINE SYSTEM (TIMIT).

Codebook size Error rate (%) Avg. id. time (s)
Full search VPT

8 10.5 0.29 0.33
16 2.22 0.57 0.62
32 0.63 1.15 1.11
64 0.48 2.37 2.07
128 0.16 4.82 4.14
256 0.16 10.2 8.21
512 0.32 21.6 12.9
No model 1.59 42.8 23.7
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Fig. 7. Comparison of the PQ methods with codebook size 64 (TIMIT).

B. Pre-Quantization

Next, we compare the pre-quantization methods with code-

book size fixed to M = 64. Parameters were optimized with

extensive testing for each PQ method separately. The best

time-error curves for each method are shown in Fig. 7. We

observe that the clustering PQ gives the best results, especially

at the low-end when time is critical. In general, PQ can be

used to reduce the time about to 50 % of the full search with

a minor degradation in the accuracy.

C. Speaker pruning

Next, we evaluate the performance of the speaker pruning

variants with the pre-quantization turned off and speaker

model size fixed to 64. Several experiments were carried out

in order to find out the critical parameters. First, the variants

were considered individually (see Figs 8 to 11).

For the SP algorithm, we fixed the pruning interval (M =
5, 10, 15 vectors) and varied the number of pruned speakers

(K). The shortest pruning interval (M = 5) gives the poorest

results and the largest interval (M = 15) the best. The

difference between M = 10 and M = 15 is relatively small.

For the HP algorithm, we fixed the coarse speaker model

size (M = 4, 8, 16) and varied the number of pruned speakers

(K). We observe that the model sizes M = 4 and M = 8 give

the best trade-off between the time and identification accuracy.

If the codebook size is increased, more time is spent but the

relative gain in accuracy is small.

For the AP algorithm, we fixed the parameter η in (2) to

η = {0.0, 0.1, 0.5, 0.9} and varied the pruning interval (M ).

The values η = 0.5 and η = 0.9 give the best results.

For the CP algorithm, we fixed the two thresholds (ǫ =
0.1, 0.5 ; η = 0.1, 1.0) and varied the pruning interval. The

best result is obtained with combination η = 1.0, ǫ = 0.5.

The selection of the stabilization threshold ǫ seems to be less

crucial than the pruning parameter η.

The pruning variants are compared in Fig. 12. The AP

variant gives the best results, whereas the static pruning gives

the poorest results. Next, we select the best PQ and pruning

variants as well as the combination of PQ and pruning (PQP)

as described in Section III-E and compare their performance.

From the Fig. 13 we observe that the pruning approach

gives slightly better results. However, in a time-critical ap-

plication PQ might be slightly better. The combination of
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Fig. 8. Performance of the SP algorithm for different pruning intervals
(TIMIT).
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Fig. 9. Performance of the HP algorithm for different coarse model
sizes with detail model size 64 (TIMIT).
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Fig. 11. Performance of the CP algorithm for different parameters
(TIMIT).

pre-quantization and pruning (PQP) gives the best result as

expected.

D. Validation with NIST and GMM

Since TIMIT is known to give overly optimistic perfor-

mance due to its laboratory quality and lack of intersession

data, we validate the results on the NIST corpus. The best pre-

quantization and pruning variants are also generalized to GMM

modeling [14] as follows. Instead of using the log-likelihood

log p(X|GMMi) as score, we use − log p(X|GMMi) instead.

In this way, the scores are interpreted as dissimilarities, and

the algorithms do not require any changes. We used diagonal

covariance GMMs since they are widely used with the MFCC

features, and they require significantly less computation and

storage.

The best results for both corpora and model types are

summarized in Tables III and IV. For pre-quantization, we

use the clustering-based method, and for the pruning we use

the adaptive variant. For the combination, we selected the

clustering PQ and static pruning.

We optimized the model sizes for VQ and GMM separately.

For VQ, larger codebook give more accurate results on both

corpora as expected. GMM, on the other hand, is more

sensitive to the selection of the model size. With TIMIT, model

sizes larger than 64 degraded results dramatically (for model

size 256 the error rate was 16.5 %). There is simply not enough

training data for robust parameter estimation of the models.

For NIST, there is 5 times more training data, and therefore

large models can be used.

The problem of limited training data for GMM parameter

estimation could be attacked by using, instead of the maximum

likelihood (ML) training, the maximum a posteriori parameter

(MAP) adaptation from the world model as described in [15].

Taking advantage of the relationship between the world model

and the speaker-depended GMMs, it would also possible to

reduce the matching time [15], [20]. In this paper, however,

we restricted the study on the baseline ML method.

From the results of Tables III and IV we can make the

following observations:

• Identification time depends on the size and the type of

the model.
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Fig. 12. Comparison of the pruning variants with speaker model size
64 (TIMIT).
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Fig. 13. Comparison of the best PQ and speaker pruning variants with
speaker model size 64 (TIMIT).

• The error rates are approximately of the same order for

both VQ and GMM. For TIMIT, the error rates are close

to zero, and for NIST they are around 17-19 %.

• The speed-up factor of PQ increases with the model size

as expected. Relative speed-up is higher for GMM than

for VQ. Improvement of the pruning, on the other hand,

depends much less on the model size.

• With TIMIT, PQP doubles the speed-up relative to PQ.

With NIST, on the other hand, the PQP is not successful.

• The best speed-up factor for NIST with VQ is 16:1

increasing the error rate from 17.34 % to 18.20 %. For

GMM, the corresponding speed-up factor is 34:1 with the

increase of the error rate from 16.90 % to 18.50 %.

In general, we conclude that the results obtained with

TIMIT hold also for NIST although there are differences

between the corpora. More importantly, the studied algorithms

generalize to GMM-based modeling. In fact, the speed-up

factors are better for GMM than for VQ on the NIST corpus.

The optimized systems are close to each other both in time

and accuracy, and we cannot state that one of the models

would be better than the other in terms of time/error trade-off.

The ease of implementation, however, makes the VQ approach

more attractive. In fact, prototype implementation for Symbian

series 60 operating system for mobile devices is currently in

progress.

The combination of PQ and GMM gives a good time-

accuracy trade-off, which is consistent with the verification

experiments carried out by McLaughlin & al. [18]. They

noticed that the test sequence could be decimated up to factor

20:1 with minor effect on the verification performance. They

found out that the fixed decimation (every Kth vector) gave

the best performance. However, as we can see from the Fig.

7, the clustering based pre-quantization performs better. This

explains partially why we obtained a better speed-up (up to

34:1).

E. Fast Cohort Scoring for Verification

The proposed cohort normalization method (FCS) was stud-

ied next on the NIST corpus. We used the same subset for veri-

fication than for the identification experiments, thus consisting

of N = 692 genuine speaker trials and N(N−1)/2 = 239086
impostor trials. The speaker model size was set to 128 for

both VQ and GMM based on the identification results, and

the PQ codebook size for the FCS method was set to 32 after

preliminary experiments. In both normalization methods, the

client score is divided by the average cohort score. In the case

of VQ, models are scored using the quantization distortion,

and in the case of GMM, the log likelihood.

We consider the following methods:

• No normalization

• Closest impostors to the test sequence

• Fast cohort scoring (FCS)
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Fig. 14. Effect of the cohort size using different scoring methods (model
sizes = 128; M = 32) (NIST).

The cohort size is varied from K = 1 to K = 20. The

equal error rates of the normalization methods are shown in

Fig. 14, along with the unnormalized case as a reference. We

observe an decreasing trend in EER with increasing cohort

size for both normalization methods and for both modeling

techniques. GMM gives better results for both normalization

methods. More interestingly, the proposed method (FCS) out-
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TABLE III

SUMMARY OF THE BEST RESULTS ON THE TIMIT CORPUS.

Vector quantization (VQ) Gaussian mixture model (GMM)

Setup Model Error Time (s) Speed-up Model Error Time (s) Speed-up
size rate (%) factor size rate (%) factor

Baseline 64 0.32 2.07 1:1 8 0.95 0.93 1:1
PQ 0.64 0.48 4:1 0.95 0.49 2:1
Pruning 0.48 0.43 5:1 1.11 0.21 4:1
PQP 0.32 0.27 8:1 0.95 0.21 4:1

Baseline 128 0.00 4.14 1:1 16 0.16 1.77 1:1
PQ 0.64 0.59 7:1 0.48 0.77 2:1
Pruning 0.00 1.88 2:1 0.16 0.92 2:1
PQP 0.00 0.31 13:1 0.16 0.18 10:1

Baseline 256 0.00 8.21 1:1 32 0.32 3.47 1:1
PQ 0.64 1.18 7:1 0.32 0.72 5:1
Pruning 0.00 3.28 3:1 0.32 1.80 2:1
PQP 0.00 0.65 13:1 0.32 0.40 9:1

TABLE IV

SUMMARY OF THE BEST RESULTS ON THE NIST 1999 CORPUS.

Vector quantization (VQ) Gaussian mixture model (GMM)

Setup Model Error Time (s) Speed-up Model Error Time (s) Speed-up
size rate (%) factor size rate (%) factor

Baseline 64 18.06 2.92 1:1 64 17.34 9.58 1:1
PQ 18.20 0.62 5:1 18.79 0.73 13:1
Pruning 19.22 0.48 6:1 19.36 0.82 12:1
PQP 18.06 0.50 6:1 17.34 0.94 10:1

Baseline 128 17.78 5.80 1:1 128 17.05 18.90 1:1
PQ 18.93 0.64 9:1 18.20 0.84 23:1
Pruning 18.49 0.86 7:1 17.34 2.88 7:1
PQP 17.78 0.67 9:1 17.63 1.34 14:1

Baseline 256 17.34 11.40 1:1 256 16.90 37.93 1:1
PQ 18.20 0.70 16:1 18.50 1.11 34:1
Pruning 17.49 1.46 8:1 17.48 5.78 7:1
PQP 17.49 0.90 13:1 18.06 2.34 16:1

performs the method of closest impostors even though only

the quantized test sequence is used for scoring. This result

supports the claim that redundancy in the test sequence should

be removed. The result also indicates that the assumption (4)

holds in practise.

Table V summarizes the performances of the two score

normalization methods. The speed-up factor is relative to the

closest impostors method. The proposed method speeds up the

verification by a factor of 23:1 and it also decreases the error

rate at the same time. The equal error rates are relatively high

in general, which is because of a simple acoustic front-end. We

did not apply either delta processing nor channel compensation

methods such as cepstral mean subtraction.

TABLE V

SUMMARY OF THE COHORT SELECTION METHODS (COHORT SIZE = 20;

MODEL SIZES = 128; M = 32) (NIST).

Method Model EER (%) Avg. verif. Speed-up
time (s) factor

Closest VQ 7.80 5.79 1:1
impostors GMM 7.51 18.94 1:1

FCS VQ 7.48 0.65 9:1
GMM 6.94 0.84 23:1

VII. CONCLUSIONS

A real-time speaker identification system based on vector

quantization (VQ) has been proposed. The most dominating

factors of the identification time are the number of test vectors

and the number of speakers. We used silence detection and

pre-quantization for the reduction of the vectors, and speaker

pruning for the reduction of the speakers. A VPT tree was

applied for speeding up the nearest neighbor search from the

speaker codebook.

We used the TIMIT corpus for tuning the parameters, and

validated the results using the NIST-1999 speaker recognition

evaluation corpus. With TIMIT, a speed-up factor of 13:1 was

achieved without degradation in the identification accuracy.

With NIST, a speed-up factor of 16:1 was achieved with a

small degradation in the accuracy (17.34 % vs. 18.20 %).

We demonstrated that the methods formulated for VQ

modeling generalize to GMM modeling. With TIMIT, a speed-

up factor of 10:1 was achieved. With NIST, a speed-up factor

of 34:1 was achieved with a small degradation (16.90 % vs.

18.50 %) in the accuracy.

We also applied pre-quantization for efficient cohort normal-

ization in speaker verification. The proposed method turned

out to be both faster and more accurate than the commonly

used method of closest impostors. An EER of 6.94 % was

reached in average verification time of 0.84 seconds when the

length of test utterance is 30.4 seconds, with a speed-up of

23:1 compared to the widely used closest impostors method.

Regarding the selection between pre-quantization and prun-

ing methods, the former seems more attractive in the light of

the experimental results on the NIST corpus, and the findings
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reported in [18]. Clustering can be effectively applied for

removing redundancy from the test sequence with small or

no degradation in the accuracy. A possible future direction

could be towards developing more adaptive pre-quantization

methods (all pre-quantization methods studied here assume

either fixed buffer or codebook size).

In this paper we restricted the study of the GMM to the

baseline ML method. However, it is expected that the studied

methods generalize to the UBM/GMM framework [15] and

further speedups are possible by combining UBM/GMM with

pre-quantization and speaker pruning. It is also possible to use

UBM idea in the VQ context in the same way by generating a

large speaker-independent codebook and adapting the speaker-

dependent codebooks from it.

Finally, it must be noted that the acoustic front-end was

fixed to MFCC processing in this study, and it seems that

further speed optimization with these features is difficult.

A possible future direction could be to use multiparametric

classification: a rough estimate of the speaker class could

be based on pitch features, and the matching could then be

refined using spectral features. Alternatively, one could use

initially high-dimensional features, such as a combination of

cepstrum, delta-parameters, F0 features and voicing informa-

tion, followed by a mapping into a low-dimensional space

by linear discriminant analysis (LDA), principal component

analysis (PCA), or neural networks. In this way, probably more

discriminative low-dimensional features could be derived.
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[36] T. Kinnunen and P. Fränti. Speaker discriminative weighting method
for VQ-based speaker identification. In Proc. Audio- and Video-Based

Biometric Authentication (AVBPA 2001), pages 150–156, Halmstad,
Sweden, 2001.

[37] N. Fan and J. Rosca. Enhanced VQ-based algorithms for speech
independent speaker identification. In Proc. Audio- and Video-Based

Biometric Authentication (AVBPA 2003), pages 470–477, Guildford, UK,
2003.

[38] E. Chavez, G. Navarro, R. Baeza-Yates, and J.L. Marroquin. Searching
in metric spaces. ACM Computing Surveys, 33(3):273–321, 2001.

[39] Linguistic data consortium. WWW page, September 2004. http:

//www.ldc.upenn.edu/.
[40] K. Fukunaga. Introduction to Statistical Pattern Recognition. Academic

Press, London, second edition, 1990.
[41] R. Auckenthaler, M. Carey, and H. Lloyd-Thomas. Score normaliza-

tion for text-independent speaker verification systems. Digital Signal

Processing, 10:42–54, 2000.
[42] Y. Zigel and A. Cohen. On cohort selection for speaker verification.

In Proc. 8th European Conference on Speech Communication and

Technology (Eurospeech 2003), pages 2977–2980, Geneva, Switzerland,
2003.

[43] R.A. Finan, A.T. Sapeluk, and R.I. Damper. Impostor cohort selection
for score normalization in speaker verification. Pattern Recognition

Letters, 18:881–888, 1997.
[44] A.M. Ariyaeeinia and P. Sivakumaran. Analysis and comparison of score

normalization methods for text dependent speaker verification. In Proc.

5th European Conference on Speech Communication and Technology

(Eurospeech 1997), pages 1379–1382, Rhodes,Greece, 1997.
[45] A. Martin and M. Przybocki. The NIST 1999 speaker recognition

evaluation - an overview. Digital Signal Processing, 10:1–18, 2000.
[46] D.R. Dersch and R.W King. Speaker models designed from complete

data sets: a new approach to text-independent speaker verification. In
Proc. 5th European Conference on Speech Communication and Tech-

nology (Eurospeech 1997), pages 2323–2326, Rhodos, Greece, 1997.
[47] R. Stapert and J.S.Mason. Speaker recognition and the acoustic speech

space. In Proc. Speaker Odyssey: the Speaker Recognition Workshop

(Odyssey 2001), pages 195–199, Crete, Greece, 2001.

PLACE
PHOTO
HERE

Tomi Kinnunen received his M.Sc. and Ph.Lic.
degrees in computer science from the University of
Joensuu, Finland, in 1999 and 2004, respectively.
Currently he is a doctoral student in the same de-
partment, and his research topics include automatic
speaker recognition and speech signal processing.

PLACE
PHOTO
HERE

Evgeny Karpov received his M.Sc in applied math-
ematics from Saint-Petersburg state University, Rus-
sia, in 2001, and M.Sc. in computer science from the
University of Joensuu, Finland, in 2003. Currently
he is a doctoral student in the same department,
and his research topics include automatic speaker
recognition and signal processing algorithms for
mobile devices.

PLACE
PHOTO
HERE
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