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INTRODUCTION

The global predicted energy capacity from offshore

wind is expected to increase from 9 GW at present

to 25 GW by 2020 (reNews 2014). This large-scale

increase in infrastructures in shallow shelf seas has

the potential to cause environmental impacts, which

may include long-term habitat displacements of cer-

tain species of seabirds and marine mammals (Fox et

al. 2006). Within environmental impact assessments,

studies of habitat displacement may preferably be

undertaken using model-based methods such as in -

vestigating the effects on demographic parameters,

or relating shifts of distribution of animals to both the

displacement and natural habitat changes (Buckland

et al. 2012). The use of predictive distribution models
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ABSTRACT: Species distribution models in marine environments typically use static variables,

partly due to the limited availability of fine-resolution dynamic predictor variables and sufficiently

detailed species abundance data. Our aim was to describe and quantify the dynamic coupling

between the distribution of marine species (seabirds) and the natural variability of their habitat in

real time through the combination of a high-resolution hydrodynamic model, aerial digital surveys

and real-time species distribution modelling. We used a 2-step (delta) generalized additive model

at 500 m spatial resolution for assessment and prediction of the changing patterns of wintering

red-throated divers (RTDs) Gavia stellata in the outer Thames estuary, United Kingdom. Our

dynamic species distribution models successfully resolved the major oscillations in the distribution

of RTDs and confirmed their tight association with frontal zones where the probability of prey

encounter was higher. The relative model standard errors (%) were generally below 30% in the

high-density areas. Area under the curve (AUC) values indicated that the models were capable

of distinguishing presence from absence about 75% of the time. The predictive power of the

achieved distribution models made it possible to accurately identify areas where RTDs were con-

centrated. Comparisons between visual aerial and digital stills aerial surveys documented that, in

spite of similar patterns, the aerial digital surveys generally recorded significantly higher densities

of RTDs than the visual aerial surveys. This study demonstrates how marine distribution models

with assimilation of habitat variables from a well-calibrated fine-resolution hydrodynamic model

coupled with the use of digital aerial surveys can facilitate the capture of detailed associations

between seabirds and their dynamic habitats.
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has increased dramatically over the past 20 yr and

they have been applied in a number of terrestrial

studies aimed at describing and understanding the

distribution of species at various spatial scales (Guisan

& Zimmermann 2000, Elith et al. 2006). In compari-

son, relatively few applications of predictive distribu-

tion models have been realised in the marine envi-

ronment (Robinson et al. 2011, Skov et al. 2014).

Pendleton et al. (2012) modelled the weekly proba-

bility of occurrence of the North Atlantic right whale

Eubalaena glacialis in the Gulf of Maine based on

prey and oceanographic variables; and Skov et al.

(2014) modelled the distribution of the harbour por-

poise Phocoena phocoena in the German Bight dur-

ing different current scenarios defined by estuarine

and tidal dynamics. However, the majority of other

marine studies have been made at a relatively coarse

resolution and covering relatively large extents (Bai-

ley & Thompson 2009, Maxwell et al. 2009).

Terrestrial applications of distribution models typi-

cally assume that the physical environment exerts a

dominant control over the natural distribution of a

species. Obviously, the transfer of distribution mod-

els from land to sea means that the validity of model

assumptions and predictive performance will be

affected by the unique physical properties of marine

habitats (Robinson et al. 2011). As a consequence,

the detailed resolution of the distribution of marine

species will require that the dynamic coupling to

their physical environment is determined. However,

synoptic dynamic data on driving habitat parameters

such as currents and hydrographic structures are

often very difficult to obtain; the descriptions of key

habitat features typically stem from correlations with

static parameters such as water depth and distance to

land (Skov et al. 2003, MacLeod & Zuur 2005, Cama

et al. 2012). The fine-scale distribution of marine top

predators has been shown to correlate with physical

oceanographic properties such as fronts, upwellings

and eddies, which enhance the probability of preda-

tors encountering prey (Schneider & Duffy 1985,

Skov & Prins 2001, Fauchald et al. 2011) exhibiting

spatial dynamics and oscillations at different fre-

quencies.

To accurately describe the distribution of seabirds

over time, one needs to be able to take account of the

actual habitat components realised during each

observation. In the absence of these dynamic charac-

teristics of seabird habitats, static distribution models

of seabirds will unlikely resolve the true variation in

the distribution of the birds. In other words, if high-

resolution distribution models are based on static

 factors or mean values rather than in situ values for

dynamic factors, predicted densities will rarely match

the observed densities. As a result, the risk exists that

assessments of habitat displacement based on static

distribution models may lead to a type II error—a

result estimating an impact in an area of low sea-

bird density—or a type I error—a result erroneously

pointing at a smaller or medium impact in an area

where seabirds are highly concentrated. Thus, accu-

rate assessment of habitat displacement of seabirds

and other marine top predators remains a challenge,

due to the need for highly dynamic, fine-resolution

data both for species and the environment. Likewise,

the application of static rather than dynamic distri -

bution models in studies aiming at identifying

 candidate marine protected areas may result in

an over estimate of densities in the periphery of spe-

cies aggregations and an underestimate of densities

within aggregations, leading to less accurate area

designations.

Here, we investigate the potential for achieving a

high predictive accuracy in distribution models of the

red-throated diver (RTD) Gavia stellata in offshore

areas by integrating high-resolution hydrodynamic

models with aerial survey data of the RTD, which

overwinters in large numbers in the outer Thames

estuary (Fig. 1). The outer Thames estuary is heavily

influenced by tidal currents and is a highly dynamic

physical environment, making this an ideal study

system for investigating changes in distribution in

relation to dynamic habitat states. Furthermore, we

explored the use of visual aerial surveys and digital

 high-definition imagery (individual still photographs)

to parameterise the distribution models. This study

therefore provided a useful opportunity to compare

aerial survey methods and particularly to test the

 digital aerial  survey method for its potential in im -

proving the accuracy of marine distribution models.

MATERIALS AND METHODS

Study area and survey methodology

Two aerial survey methods were used—visual and

digital stills. Visual survey data were collected using

standard protocols during the winters 2003−2004,

2004−2005, 2005−2006 and 2009−2010. Digital stills

survey data were collected during the winters

2009−2010 and 2010−2011. Although considerable

coverage was achieved by the aerial surveys, it is

clear that the coverage was rather uneven (see

Fig. S1 in the Supplement at www.int-res.com/articles/

suppl/m542 p221_supp.pdf; Table 1). Visual aerial
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surveys were undertaken along evenly spaced tran-

sects and RTDs were recorded in segments of 300 m

length and allocated into predefined distance bands.

This methodology allowed for distance correction

of the decrease in detectability of RTDs away from

the plane. The digital survey method, using  high-

resolution still-imagery cameras, required different

survey protocols from traditional visual methods,

because it did not employ the counting of birds

within defined distance intervals away from an air-

craft, but instead one or more cameras surveyed a

‘quadrat’ im mediately below the aircraft (Buckland

et al. 2012). Contrary to the situation during visual

aerial surveys, it is assumed that all birds are de -

tected, hence no distance correction is needed. The

digital stills data used in this study are still images

that were taken as planes crossed predefined equally

spaced GPS reference points. Thus, a grid of images

across the survey area was obtained for each survey.

In order to compare the numbers recorded and distri-

bution obtained from the 2 methods, comparative

surveys were conducted for 4 mo during the winter of

2009−2010 (Table 1b, Fig. S1 in the Supplement). The

digital stills aerial surveys generally covered the

same extent of the study re gion as that of the visual

aerial surveys but, due to the reasons described

above, a smaller total area.

Modelling setup

An overview of the model design developed to

 predict densities of RTD is given in Fig. 2. The model

design was composed of a hydrodynamic model frame -
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Survey Transect No. of x/count unit S2/x ratio Skewness Kurtosis W

winter length (km) observed RTDs

(a) Visual 

2003−2004 4004.9 3243 0.03−1.22 1.42−79.61 5.24−21.21 38.62−563.89 0.09−0.35

2004−2005 9287.1 2070 0.01−0.17 0.99−17.27 6.06−28.55 50.11−967.09 0.02−0.30

2005−2006 5035.1 1947 0.03−0.17 1.12−12.58 5.23−28.41 41.25−1084.20 0.07−0.34

2009−2010 2170.2 734 0.16−2.74 1.25−12.58 1.24−7.61  1.2−63.88 0.18−0.87

(b) Digital stills 

2009−2010 5011.5 379 0.012−0.36  0.53−5.76  3.64−21.96 14.8−674.79 0.25−0.41

2010−2011 12738.8  2065 0.007−0.35  1.39−10.34  8.26−17.26 107.54−361.48  0.044−0.21   

Table 1. Survey statistics for (a) visual and (b) digital stills aerial surveys. Given are the transect total length, number of red-

throated divers (RTDs) Gavia stellata observed in the transect per survey winter, the ranges of the daily mean, variance-to-

mean (s2/x ) ratio, skewness and kurtosis values and the results of Shapiro-Wilks W tests of normality. All survey W statistics 

except one (Visual 2009–2010) were significant (p < 0.001)

Fig. 2. Design used for the generation of the dynamic distri-

bution models (SDMs) for red-throated divers (RTDs) Gavia 

stellata

Fig. 1. Study area. The bathymetry and bathymetric features 

frequently referred to in the text are indicated



Mar Ecol Prog Ser 542: 221–234, 2016

work consisting of a regional and a local model, post-

processing chains extracting dynamic habitat variables

for 4 tidal current scenarios and distribution models

covering each scenario and describing sta tistical re-

sponses of observed RTDs to the habitat variables.

Hydrodynamic model

We designed a local fine-scale hydrodynamic model

to include boundary conditions from a regional

model covering all RTD survey periods. The model

computed salinity, temperature, current speed and

direction at 1 h temporal resolution, and 500 m spa-

tial resolution, for the period 2004 to 2012. To derive

biologically meaningful predictors from these, we

post-processed them into habitat-describing vari-

ables (Table S1 in the Supplement). Local and re -

gional tide gauge and current measurements were

used both for data assimilation and validation. Data

assimilation improves the skill and accuracy of the

hydrodynamic model. This allowed the model accu-

racy to be greatly im proved also at non-observed

positions and for additional variables such as the

depth-averaged velocity. The data assimilation

scheme considered for this project was the steady

Kalman filter approach, based on the so-called en -

semble Kalman filter. A time-varying, temporally

smoothed and distance-regularized ensemble Kalman

filter was used with 8 ensemble members.

In addition, the local model integrated river dis-

charge data. The regional hydrodynamic model was

set up covering the northwestern part of the Atlantic

Ocean and the European northwest shelf with the

DHI modelling software MIKE 21 Flexible Mesh HD

(Rasmussen 1991), with the purpose of providing

accurate boundary conditions to the 3-dimensional

(3D) local fine-meshed hydrodynamic model (see

also Skov et al. 2014). The latter was forced by tide

and wind, and integrated data assimilation following

Sørensen et al. (2004). The tidal potential forcing was

implemented as an equilibrium tide. Water levels

around the project area relied primarily on the inter-

play between tidal waves propagating along the

English Channel and the North Sea. Thus, the

regional model was constrained increasingly from

upstream to the outer estuary to ensure accurate pre-

dictions. A local 3D baroclinic fine-scaled hydrody-

namic model was set up with the DHI modelling soft-

ware MIKE 3 FM HD (Rasmussen 1991), with the

purpose of producing a detailed hind-cast of the

hydrodynamics of the estuary. The model used an

unstructured mesh, enabling a high spatial resolu-

tion in focal areas (Fig. 3). The resolution of the hori-

zontal mesh varied from 0.05° at the boundaries to a

mean resolution of 400 m in the area of the sand-

banks. In this area, sandbanks were resolved by tri-

angles with a characteristic length of 200 m, while

the channels had a resolution of 600 m. The vertical

mesh was discretised by 10 equidistant layers, which

was judged sufficiently accurate, as the region is well

mixed by the effect of the strong tidal currents.

In order to summarise these dynamics in a plausi-

ble way, which would allow a sufficient sample size

of RTD observations for the RTD distribution models,

the currents in the estuary were classified by a scheme

of 4 scenarios. The 4 scenarios represented the dom-

inant hydrodynamic patterns observed (Fig. S2 in the

Supplement): (1) developed ebb current directed

southwest to northeast; (2) flow reversing (low tide);

(3) developed flood current directed northeast to

southwest; and (4) flow reversing (high tide).

Distribution models

In order to describe the spatial distribution and

densities of RTDs at the finest spatial and temporal

resolution, we applied distribution models coupled to

dynamic habitat variables produced by the outer

Thames estuary 3D hydrodynamic model at a spatial

resolution of 500 m. As sea state can have a large

influence on detectability during visual surveys, den-

sities from visual surveys were corrected using

detection functions stratified by wave height (thresh-

old at 1.2 m; Table 2; Thomas et al. 2010). We used

the semi-parametric algorithms of generalized addi-

tive models (GAMs; Hastie & Tibshirani 1990) to

enable descriptions of the assumed non-linear rela-

tionships between the observed species and the

measured environmental predictors.

The environmental variables used to model the

diver distribution models were either taken directly

from the outer Thames estuary 3D hydrodynamic

model or the available topographic, landscape and

pressure data layers, or developed through post-

processing of combinations of model simulation

results. Diver distribution models from the German

Bight and Kattegat have pointed at the importance

of frontal features rather than parameters reflecting

structures and processes at large scale, like water

masses and currents (Skov & Prins 2001). This is in

line with the findings of ubiquitous concentrations

of piscivorous species of seabirds at shallow sea

fronts (Schneider 1982, Kinder et al. 1983), plume

fronts (Skov & Prins 2001) and shelf break fronts
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(Schneider & Hunt 1982, Follestad 1990). In the

oceanographic context of the outer Thames estuary,

these structures may be grouped as horizontal low-

frequency fronts, semi-permanent up/down-welling

cells or semi-permanent eddies. The dynamic vari-

ables therefore included vertical velocity (w) indica-

ting upwelling activity, current gradient indicating

frontal activity and vorticity indicating eddy activity.

A complete list of the selected variables used is

given in Table S1 in the Supplement.

Owing to an excess of zero counts, the GAM models

were fitted using a 2-step approach, a delta model (Le

Pape et al. 2004, Potts & Elith 2006) with a presence/

absence part fitted with a binomial error distribu tion,

and a positive part in which bird density was  fitted

with a gamma error distribution and a log link (Ste-

fánson 1996). The standard error of the density pre-

dictions was calculated using the formula for the vari-

ances of the product of 2 random variables (Webley et

al. 2011). The models were fitted in R  version 2.9.0

(R Development Core Team 2004) and the package

‘mgcv’ (Wood 2006) using thin plate regression splines

with a smooth function of 5 (k = 5). The smoothing

was not limited for the interaction term between x-

and y-coordinates. Model selec tion was based on

GCV/UBRE scores (Wood &  Augustin 2002), and

for reasons of compara-

bility used the same

composition of predictor

variables for both survey

platforms. Predicted den -

sities were grouped into

4 suitability classes using

percentiles (90th, 75th,

25th).
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Fig. 3. Horizontal mesh of the local model at the southern part of the outer Thames estuary, showing the bathymetry

Stratum Distance f(0) ESW (m) p p

function (95% CI)

Wave height < 1.2 m Hazard/cosine 0.0032897 303.98 0.30398 0.29917−0.30887

Wave height ≥ 1.2 m Hazard/cosine 0.0044013 227.21 0.22721 0.21554−0.23951

Table 2. Distance probability functions of observed densities of RTDs; parameters and 

observation probabilities. ESW: effective strip width
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RESULTS

The survey statistics strongly indicated that the dis-

tribution of the RTDs was highly clustered (Table 1).

Approximately 7 to 8% fewer RTDs were observed

during the visual surveys when maximum wave

heights were higher than 1.2 m (Table 2). Both the

high-resolution digital stills and visual survey plat-

forms recorded similar overall patterns of diver distri-

bution (Fig. S3 in the Supplement at www.int-res.

com/ articles/suppl/m542p221_supp.pdf).

The predicted semi-diurnal constituents’ character-

istics predicted by the local hydrodynamic model fit-

ted well with the measurements, and their amplitudes

were on average captured properly, with a maximum

difference compared to the measurements of 0.06 m,

and phases fitted well with measurements (Table 3).

Closer to the estuary, the predicted water levels by

the local hydrodynamic model were satisfactory, both

in terms of phase and amplitude (Table 4). The hydro-

dynamic complexity with in the outer

Thames estuary induced by the

presence of sand bars and channels

was also well represented, includ-

ing the asymmetric current pattern

at Kentish Knock and the rotating

flow at Long Sand, during the

entire tidal cycle. The hydrody-

namic model re sults stressed the

 influence of tidal currents on the

conditions in the estuary, and docu-

mented significant changes in the

current speeds and directions, as

well as in the location of frontal

zones through the tidal excursions.

The  post-processing of potential

hydrodynamic habitat features re-

vealed the existence of well-defined zones with

frontal activity of limited spatial extent along the sand

bars. Markedly lower frontal activity was estimated

for the areas in the North Sea east of the outer Thames

estuary. Strong horizontal fronts and eddy activity

(vorticity) were identified during all 4 tidal current

stages in zones with cross-frontal diameters of typically

less than 5 km (Figs. 4 & 5).

The GAM response curves were very similar in

both data sets (Fig. S5 in the Supplement). The pro-

portion of explained deviance was higher in the pos-

itive part of the model for the digital still aerial data,

and the validation  statistics were also in favour of

both the presence/ absence part and the positive part

of the digital stills data (Table 5). The spatial patterns

predicted on the basis of the visual and digital stills

data in 2009−2010 were similar, but the model based

on digital stills data produced higher densities

(Fig. 6; Fig. S4 in the Supplement). An  increasing

gradient was seen in both model deployments from

the west to the east, and both models displayed a

patch of high densities at the eastern end of Long

Sand and Kentish Knock. Higher densities recorded

by the digital stills aerial surveys were expected, as

more birds were counted by the digital stills surveys

in comparison to the visual surveys. To visualise the

agreement between the 2 models, the predicted

probabilities and densities from the visual surveys

were plotted against the digital stills surveys (Fig. 6).

Although predicted probabilities were generally

lower from the digital stills surveys, the predicted

densities from the digital stills surveys were clearly

higher (by a factor of 1 to 2.5) than those from the

 visual surveys. Spearman’s correlation between the

presence/absence predictions was 0.864 and between

predicted densities 0.894. As the responses to the
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Station 2002 2003 2004 2005 January 2006 to January 2002 to 
March 2006 March 2006

Aberdeen 0.12 0.11 0.13 0.13 0.14 0.12
Cherbourg 0.07 0.09 0.07 0.06 0.07 0.07
Cromer 0.06 0.05 0.05 0.06 0.06 0.06
Devonport 0.24 0.29 0.18 0.26 0.14 0.24
Dover 0.12 0.11 0.10 0.09 0.11 0.10
Dunkerque 0.05 0.05 0.09 0.08 0.11 0.07
Felixstowe 0.17 0.15 0.17 0.17 0.16 0.16
Lowestoft 0.17 0.15 0.16 0.17 0.17 0.16
Newhaven 0.06 0.04 0.08 0.07 0.10 0.06
North Shields 0.06 0.05 0.06 0.07 0.07 0.06
Wick 0.12 0.13 0.12 0.14 0.14 0.13

Table 3. Root mean squared errors of the water levels predicted by the 2D regional

model calculated over January 2002 to March 2006. Predictions are compared 

with measurements from tidal gauge stations

Water level Current speed

Station (m) (m s−1)

Felixstowe 0.228 –

Lowestoft 0.141 –

Dover 0.2   –

Knock Deep 0.231 0.096

Kentish Knock 0.217 0.089

Long Sand 0.293 0.136

Table 4. Root mean squared errors of the water levels and

depth-averaged current intensity predicted by the 3D local

model calculated over the validation period. Predictions are

compared with measurements from tidal gauge stations

located within the local model area. –: stations from where 

no current measurements were available

http://www.int-res.com/articles/suppl/m542p221_supp.pdf
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Fig. 4. Identified horizontal fronts (current gradients [see Table S1 in the Supplement at www.int-res.com/ articles/ suppl/ 

m542p221_supp.pdf]) during the 4 current scenarios. The 10 and 30 m depth contours are indicated

http://www.int-res.com/articles/suppl/m542p221_supp.pdf
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Fig. 5. Identified areas of eddy activity (vorticity [see Table S1 in the Supplement]) during the 4 current scenarios. The 10 and 

30 m depth contours are indicated
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 environmental data were also similar in the 2 sets of

models, the inclusion of both data sets in further

analyses of diver distribution in the estuary was justi-

fied, and increased the analytical sample size.

The results for the presence/absence part of all

4 distribution models were very similar and indi-

cated that current speed, water level, vertical current

velocity and seabed slope were important variables

(Table 6, Figs. S6 to S9 in the Supplement). The

 models indicated a higher probability of presence of

RTDs in areas with low water levels, moderate cur-

rent speeds and high up/down-welling activity, and

in sloped areas. In addition, the presence/absence

part of the phase 3 model (flood current) indicated a

higher probability of low ship density in offshore

areas (Fig. S8 in the Supplement; Table 6). The posi-

tive parts of the 2 models representing the distribu-

tion of RTDs during weak tidal currents and slack

water (low/high tide models) indicated high densities

in shallow, slope areas with strong current gradients

(Table 6, Figs. S7 & S9 in the Supplement). Addi -

tionally, low current speed, high eddy activity, high

slopes and low ship density were also important

parameters in the positive part of the phase 4 model.

The positive parts of the 2 models repre-

senting the distribution of RTDs during

strong tidal currents (flood/ebb current

models) were quite different from phases

2 and 4 in the Supplement with weak

tidal currents, and both differed from

each other (Table 6, Figs. S6 & S8 in the

Supplement). In the phase 1 model, ver -

tical velocity and current speed were

important, thus the model indicated

higher densities of RTDs in the outer

Thames estuary during ebb current in areas having

low current speed and strong upwelling. In the phase

3 model, higher densities of RTDs were estimated in

areas having high current speed and low density of

ships. With the exception of the phase 2 model, for

which moderate spatial autocorrelation was found in

the 2 first lags in the positive part, all 4 stratified

distri bution models displayed low to very low spatial

autocorrelation in the residuals of both model parts.

This indicated that the models with the addition of

x- and y-coordinates reflected the variability in the

ob served densities of RTDs reasonably well. How-

ever, the proportion of deviance explained in the

presence/absence parts was quite low (<20%), while

the proportion was moderate to high in the positive

parts (31.3 to 65.6%; Table 7).

In all current scenarios, the major part of the estuary

was classified as either low or medium habitat suit-

ability (Fig. 7). The lowest habitat suitability was indi-

cated for the areas deeper than 20 m, the shipping

lanes and areas close to the coast. The suitable habi-

tats were associated with the 3 southwest to northeast

protruding sands—Sunk Sand, Long Sand and Ken-

tish Knock—and the coastal area of Suffolk (to the

229

Dev. exp. AUC Spearman’s rank

P/A Positive correlation

Visual model 36.8 25.7 0.694 0.24

Digital stills model 13.8 48.4 0.848 0.44

Table 5. Evaluation statistics for the 2 models based on aerial visual and

digital stills data, respectively. Deviance ex plained (dev. exp.) for the pres-

ence/absence (P/A) part of the model and for the positive (density) part.

AUC values are shown for the presence/absence part and the Spearman’s 

rank correlation for the final combined model

Fig. 6. Predicted probability of presence (left panel) and predicted density (right panel) on visual aerial data against the 

predicted probability/density on digital stills aerial data
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north) and Norfolk (to the south), as well as with the

 shallow area off the southwest coast of the  estuary.

The areas of suitable habitat change systematically

with the flow re gime. During the ebb current and low

tide phase, areas in the southwestern part of the outer

Thames estuary generally show low habitat suitability,

while during flood current and high tide phases,

prominent patches of very high habitat suitability are

estimated in this part of the estuary. Therefore, a

westward extension of the main distribution of RTDs

in the estuary seems to take place during the 2 tidal

phases dominated by westward-flowing currents.

 Superimposed on the east to west oscillation, changes

in the north to south location of the most suitable habi-

tats can be observed around the sand bars. During the

flow phases with slack water (low/high tide), RTDs

display a more concentrated distribution along the

slopes of the sands than during the phases with

stronger currents (ebb/flood current). The patch off

the Suffolk−Norfolk coast is most extensive during

flood current and high tide. Fig. 8 shows standard er-

rors for the 4 stratified models. The errors are gener-

ally largest for the areas with higher diver densities;

however, the depicted relative standard errors (% of

the predictions) are generally lower in the  high-

density areas, and are generally below 30%. The

 relative standard errors (%) are generally highest in

areas with very low densities, which means that the

errors are also low and not very influential. The ebb

current model had the highest proportion of explained

variance in both the presence/absence part (19.3) and

the positive part (65.6) (Table 7). The positive parts of
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Fig. 7. Modelled stratified habitat suit-

ability for RTDs in the southern part

of the outer Thames estuary during

all 4 winters (2003−2004, 2004−2005,

2005−2006 and 2010−2011) for different

current scenarios. White areas indicate

missing values. The spatial resolution is 

500 m
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all 4 models had generally much higher

 explained variances. The area under the

curve (AUC) values indicate the models

are capable of distinguishing presence

from absence about 75% of the time,

which is quite low but acceptable, given

the high resolution of the model. The

Spearman’s correlation of the combined

models indicates that there is a clear

agreement between predicted and ob-

served values (Table 7).

DISCUSSION

Despite the fact that the temporal over-

lap of the comparative surveys was rela-

tively coarse (within the same month),

similar density gradient patterns were ob-

tained during the comparative surveys,

and responses to hydrodynamics were

also similar. In addition, the results clearly

documented that digital aerial surveys

generate higher densities of RTDs than

 visual aerial surveys. This difference is

probably a function of smal ler sampling

bias and higher  sampling resolution ob-

tained in digital stills surveys (Buckland et

al. 2012). Visual surveys are normally un-

dertaken at an  altitude of 76 m, whereas

digital aerial surveys are carried out at an

altitude  typically 4 to 6 times higher. This

dif ference means that re sponse move-

ments of sensitive species such as RTDs to

the approaching survey aircraft are more

likely to occur during visual surveys,

which may introduce bias with respect

to false negative observations (Buckland

et al. 2012). False negative observations

due to diving birds are still an issue for

both survey platforms. Moreover, every

observed bird in a high-resolution digital

image can be counted and time spent

 determining its identification, rather than

the count and identification inevitably

 being an approximation of what the visual

observer sees. Together with the com para -

tive results from Buckland et al. (2012) for

the common scoter Melanitta nigra, these

results point at digital surveys as an im-

proved method for unbiased aerial surveys

of the more difficult and sensitive species

of seabirds at sea.
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GAM model Presence/absence Positive density

Chi–squared p F p

Ebb current

w 16.14 <0.01 6.176 0.01

Current speed 28.57 <0.01 43.464 <0.01

Vorticity2 – – – –

Current gradient – – – –

Water level 20.13 <0.01 – –

Slope – – – –

Ship densities – – – –

Land 5 km – – – –

x, y 508.86 <0.01 36.225 <0.01

Low tide

w – – – –

Current speed 33.17 <0.01 2.692 0.04

Vorticity2 – – – –

Current gradient 3.532 0.03

Water level 34.47 <0.01 10.402 <0.01

Slope 18.18 <0.01 5.142 <0.01

Ship densities – – – –

Land 5 km – – – –

x, y 343.12 <0.01 12.766 <0.01

Flood current

w 47.955 <0.01 4.308 <0.01

Current speed – – 24.445 <0.01

Vorticity2 – – – –

Current gradient – – – –

Water level 19.231 <0.01 – –

Slope 6.342 0.01 – –

Ship densities – – 8.563 <0.01

Land 5 km – – – –

x, y 241.165 <0.01 13.106 <0.01

High tide

w – – – –

Current speed 70.957 <0.01 16.580 <0.01

Vorticity2 – – 4.026 <0.01

Current gradient – – 7.065 <0.01

Water level 32.070 <0.01 7.605 <0.01

Slope 8.624 <0.01 4.193 0.01

Ship densities 5.334 0.03 6.752 <0.01

Land 5 km 17.250 <0.01 – –

x, y 272.004 <0.01 10.419 <0.01

Table 6. Smooth terms included in the 4 GAM models. Approximate sig -

nificance and chi-squared/F statistics are shown. Variables not included in

the final model are indicated with a dash. w : vertical velocity; x,y : geo

graphical coordinates

Model Dev. exp. AUC Spearman’s 

P/A Positive correlation rank

Ebb current 19.3 65.6 0.768 0.261

Low tide 14.8 45.1 0.749 0.239

Flood current 9.39 41.6 0.731 0.195

High tide 10.5 31.3 0.746 0.232

Table 7. Evaluation statistics of the 4 GAM models. Deviance explained

(dev. exp.) for the P/A part of the model and for the positive density part.

AUC is the evaluation results for the P/A part and the Spearman’s rank 

correlation is the evaluation of the final combined model
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Both the pure tidal propagation along the east Eng-

lish coast and the interaction between steep bathyme-

try gradients and large tidal range varying across the

area needed to be resolved by the local hydrodynamic

model in order to sufficiently  describe the complex

hydrodynamics in the outer Thames estuary area. The

model validations showed that both features were

captured satisfactorily by the model design. High res-

olution turned out to be important in relation to identi-

fied main predictor variables, especially horizontal

fronts during periods dominated by slack water at

high and low tide, when RTDs are most concentrated

over limited space. The design of the hydrodynamic

modelling scenarios successfully resolved the major

oscillations in the distribution of RTDs in the estuary

in response to the  dynamics of fine-scale hydrody-

namic features, especially fronts. These findings are

in line with the literature on the biological oceano -

graphy of seabirds, which unambiguously points at

concentrations of piscivorous species at small-scale

hydro dynamic features like bathymetry- and tidally

steered frontal structures (Iverson et al. 1979, Schnei-

der & Duffy 1985, Schneider 1990). The general inter-

pretation of these affinities is the enhance ment of the

probability of prey encounter, which greatly maxi-

mizes predators’ foraging success (Schneider & Duffy

232

Fig. 8. Relative standard errors (%

of the predictions) for the com-

bined predictions of the 4 GAMs.

White areas indicate missing val-

ues. The spatial resolution is 500 m
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1985, Skov & Prins 2001, Fauchald et al. 2011). In

 comparison with higher-frequency oce ano graphic

 dynamics, the metastable fronts with lower-frequency

oscillations can be readily identified from fine-scale

hydrodynamic models like the one implemented.

Thus, accurate marine distribution models for seabirds

will have the potential to resolve key habitats, and de-

scribe the changes in distributions in response to the

oscillation of the frontal structure in question. At the

same time, it is worth pointing out the moderate fit of

the presence/absence parts of the models, and the

fact that both the coverage across the period of inves-

tigation and the spatial match between the distribu-

tion of feeding seabirds and oceanographic dynamics

can be improved. Here, specifically the inclusion of

behavioural details during both aerial methods would

enable the analytical distinction between flying, on-

feeding and feeding birds. Such details would typi-

cally require ship-based observations. Furthermore, no

evaluation of the effect of spatial scale on the strength

of the association of RTDs with oceanographic struc-

tures was undertaken. As the analyses were made at

the highest possible  spatial resolution (500 m), it is

likely that spatial mismatches are present in the data.

Hence, the strength of oceanographic  associations

may increase as the scale of analysis  increases.

The validation results for the dynamic distribution

models applied in this study show that the 4 stratified

models were capable of describing the distributional

dynamics of RTDs during the 4 main tidal current

phases in the outer Thames estuary. The complex

oscillation of RTDs between these current phases

reflects combined longitudinal−latitudinal changes

in hydrodynamics, especially currents and fronts,

which were readily identified from the summaries of

the hydrodynamic model. Despite a spatial resolution

of 500 m the models were, based on AUC statistics,

capable of distinguishing presence from absence

about 75% of the time, and the predicted density of

the RTDs agreed closely with the observed values.

These results all indicate that the 2-step model

design and the assimilation of post-processed dy -

namic habitat variables from a well-calibrated local

hydrodynamic model made it possible to strike a bal-

ance between high model parsimony and accuracy.

In the past, most marine distribution models have

been undertaken using static variables, partly due

to the limited availability of dynamic predictor vari-

ables and assumptions that pelagic habitats are

 relatively stable. Our study in the outer Thames estu-

ary has documented that, with high-resolution survey

data and dynamic habitat variables, changes in the

distribution of marine animals can be tracked in real

time with sufficiently detailed predictors and survey

data. The combination of dynamic distribution model-

ling and digital high-resolution aerial survey methods

seems to have the potential to pave the way for assess-

ments of the status and changes in distributions and

local population sizes of marine species on the basis of

more realistic quantitative descriptions of their natural

habitats (Embling et al. 2012). Spatially refined as-

sessments of habitat displacement of species sensitive

to the presence of offshore wind farms and other mar-

ine infrastructures will enhance both the planning and

environmental management of these developments.

In addition, designation of marine protected areas will

potentially benefit from the development of fine-scale

dynamic distribution models and availability of digital

aerial survey data, as boundaries of areas of persistent

high densities can be identified with less error.

Acknowledgements. The research was funded by London

Array Ltd., a consortium of the 3 renewable energy com -

panies DONG, EON and Masdar.

LITERATURE CITED

Bailey H, Thompson PM (2009) Using marine mammal habi-

tat modelling to identify priority conservation zones

within a marine protected area. Mar Ecol Prog Ser 378: 

279−287

Buckland ST, Burt ML, Rexstad EA, Mellor M, Williams A,

Woodward R (2012) Aerial surveys of seabirds:  the

advent of digital methods. J Appl Ecol 49: 960−967

Cama A, Abellana R, Christel I, Ferrer X, Vieites DR (2012)

Living on predictability:  modelling the density distribu-

tion of efficient foraging seabirds. Ecography 35: 912−921

Elith J, Graham CH, Anderson RP, Dudík M and others

(2006) Novel methods improve prediction of species’ dis-

tributions from occurrence data. Ecography 29: 129−151 

Embling CB, Illian J, Armstrong E, van der Kooij J, Sharples

J, Camphuysen CJ, Scott BE (2012) Investigating fine-

scale spatio-temporal predator−prey patterns in dynamic

marine ecosystems:  a functional data analysis approach.

J Appl Ecol 49: 481−492

Fauchald P, Skov H, Skern-Mauritzen M, Hausner VH,

Johns D, Tveraa T (2011) Scale-dependent response

diversity of seabirds to prey in the North Sea. Ecology 92: 

228−239

Follestad A (1990) The pelagic distribution of little auk Alle

alle in relation to a frontal system off central Norway,

March/April 1988. Polar Res 8: 23−28

Fox AD, Desholm M, Kahlert J, Christensen TK, Petersen IK

(2006) Information needs to support environmental im -

pact assessment of the effects of European marine off-

shore wind farms on birds. Ibis 148: 129−144

Guisan A, Zimmermann NE (2000) Predictive habitat distri-

bution models in ecology. Ecol Model 135: 147−186

Hastie T, Tibshirani R (1990) Generalized additive models.

Chapman & Hall, London

Iverson RL, Coachman LK, Cooney RT, English TS and

 others (1979) Ecological significance of fronts in the

233

➤

➤

➤

➤

➤

➤

➤

➤

➤

➤

➤

➤

➤

➤

➤

➤

http://dx.doi.org/10.1016/S0304-3800(00)00354-9
http://dx.doi.org/10.1016/j.jenvman.2013.01.025
http://dx.doi.org/10.1111/j.1474-919X.2006.00510.x
http://dx.doi.org/10.1890/10-0818.1
http://dx.doi.org/10.1111/j.1365-2664.2012.02114.x
http://dx.doi.org/10.1111/j.2006.0906-7590.04596.x
http://dx.doi.org/10.1111/j.1600-0587.2011.06756.x
http://dx.doi.org/10.1111/j.1365-2664.2012.02150.x
http://dx.doi.org/10.3354/meps07887


Mar Ecol Prog Ser 542: 221–234, 2016

southeastern Bering Sea. In:  Livingston RL (ed) Eco -

logical processes in coastal and marine systems. Plenum

Press, New York, NY, p 437−465 

Kinder TH, Hunt GL Jr, Schneider D, Schumacher JD

(1983) Correlations between seabirds and oceanic fronts

around the Pribilof Islands, Alaska. Estuar Coast Shelf

Sci 16: 309−319

Le Pape O, Guérault D, Désaunay Y (2004) Effect of an in -

vasive mollusc, American slipper limpet Crepidula forni-

cata, on habitat suitability for juvenile common sole

Solea solea in the Bay of Biscay. Mar Ecol Prog Ser 277: 

107−115

MacLeod CD, Zuur AF (2005) Habitat utilisation by Blain -

ville’s beaked whales off Great Abaco, northern Bahamas,

in relation to seabed topography. Mar Biol 147: 1−11

Maxwell DL, Stelzenmüller V, Eastwood PD, Rogers SI

(2009) Modelling the spatial distribution of plaice (Pleu-

ronectes platessa), sole (Solea solea) and thornback ray

(Raja clavata) in UK waters for marine management and

planning. J Sea Res 61: 258−267

Pendleton DE, Sullivan PJ, Brown MW, Cole TVN and oth-

ers (2012) Weekly predictions of North Atlantic right

whale Eubalaena glacialis habitat reveal influence of

prey abundance and seasonality of habitat preferences.

Endang Species Res 18: 147−161

Potts JM, Elith J (2006) Comparing species abundance

 models. Ecol Model 199: 153−163

R Development Core Team (2004) R:  a language and envi-

ronment for statistical computing. R Foundation for Sta-

tistical Computing, Vienna. Available at http: //www.R-

project.org

Rasmussen EB (1991) A finite difference scheme for three

dimensional modelling of fluid dynamics. Proc IAHR,

World Congress (International Association for Hydro-

Environment Engineering and Research), Madrid 1: 

339−348

reNews (2014) ReNews Global Offshore Report 2014.

Renews Limited, Winchester

Robinson LM, Elith J, Hobday AJ, Pearson RG, Kendall BE,

Possingham HP, Richardson AJ (2011) Pushing the limits

in marine species distribution modelling:  lessons from

the land present challenges and opportunities. Glob Ecol

Biogeogr 20: 789−802

Schneider DC (1982) Fronts and seabird aggregations in the

southeastern Bering Sea. Mar Ecol Prog Ser 10: 101−103

Schneider DC (1990) Seabirds and fronts—a brief overview.

Polar Res 8: 7−22

Schneider DC, Duffy DC (1985) Scale-dependent variability

in seabird abundance. Mar Ecol Prog Ser 25: 211−218

Schneider DC, Hunt GL Jr (1982) Carbon flux to seabirds in

waters with different mixing regimes in the southeastern

Bering Sea. Mar Biol 67: 337−344

Skov H, Prins E (2001) Impact of estuarine fronts on the dis-

persal of piscivorous birds in the German Bight. Mar Ecol

Prog Ser 214: 279−287

Skov H, Durinck J, Bloch D (2003) Habitat characteristics of

the shelf distribution of the harbour porpoise (Phocoena

phocoena) in the waters around the Faroe Islands during

summer. NAMMCO Sci Publ 5: 31−40

Skov H, Heinänen S, Hansen DA, Ladage F, Schlenz B,

Zydelis R, Thomsen F (2014) Marine habitat modelling

for harbour porpoises in the German Bight. In:  Federal

Maritime and Hydrographic Agency (BSH), Federal

Ministry for the Environment, Nature Conservation and

Nuclear Safety (BMU). Ecological research at the off-

shore windfarm Alpha Ventus − challenges, results and

perspectives. Springer Spektrum, Wiesbaden, p 151–171

Sørensen JVT, Madsen H, Madsen H (2004) Efficient

Kalman filter techniques for the assimilation of tide

gauge data in three dimensional modeling of the North

Sea and Baltic Sea system. J Geophys Res 109:C03017,

doi: 10.1029/ 2003JC002144

Stefánsson G (1996) Analysis of groundfish survey abun-

dance data: combining the GLM and delta approaches.

ICES J Mar Sci 53:577–588

Thomas L, Buckland ST, Rexstad EA, Laake JL and others

(2010) Distance software:  design and analysis of distance

sampling surveys for estimating population size. J Appl

Ecol 47: 5−14

Webley JAC, Mayer DG, Taylor SM (2011) Investigating

confidence intervals generated by zero-inflated count

models:  implications for fisheries management. Fish Res

110: 177−182

Wood SN (2006) Generalized additive models:  an intro -

duction with R. Chapman & Hall, London

Wood SN, Augustin NH (2002) GAMs with integrated model

selection using penalized regression splines and applica-

tions to environmental modeling. Ecol Model 157: 157−177

234

Editorial responsibility: Jacob González-Solís, 

Barcelona, Spain

Submitted: June 8, 2015; Accepted: November 24, 2015

Proofs received from author(s): January 9, 2016

➤

➤

➤

➤

➤

➤

➤

➤

➤

➤

➤

➤

➤

➤

➤

➤

➤

➤

➤

➤

➤

➤

➤

➤

➤

➤

➤

➤

➤

➤

➤

➤

http://dx.doi.org/10.1016/S0304-3800(02)00193-X
http://dx.doi.org/10.1016/j.fishres.2011.03.024
http://dx.doi.org/10.1111/j.1365-2664.2009.01737.x
http://dx.doi.org/10.1029/2003JC002144
http://dx.doi.org/10.1016/j.ecss.2009.06.012
http://dx.doi.org/10.7557/3.2738
http://dx.doi.org/10.3354/meps214279
http://dx.doi.org/10.1007/BF00397674
http://dx.doi.org/10.3354/meps025211
http://dx.doi.org/10.3402/polar.v8i1.6798
http://dx.doi.org/10.3354/meps010101
http://dx.doi.org/10.1111/j.1466-8238.2010.00636.x
http://dx.doi.org/10.1016/j.ecolmodel.2006.05.025
http://dx.doi.org/10.3354/esr00433
http://dx.doi.org/10.1016/j.seares.2008.11.008
http://dx.doi.org/10.1007/s10336-010-0523-y
http://dx.doi.org/10.1007/s00227-004-1546-9
http://dx.doi.org/10.3354/meps277107
http://dx.doi.org/10.1016/0272-7714(83)90148-8

