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Abstract—This paper presents a novel approach for speckle
reduction and coherence enhancement of ultrasound images based
on nonlinear coherent diffusion (NCD) model. The proposed NCD
model combines three different models. According to speckle ex-
tent and image anisotropy, the NCD model changes progressively
from isotropic diffusion through anisotropic coherent diffusion to,
finally, mean curvature motion. This structure maximally low-pass
filters those parts of the image that correspond to fully developed
speckle, while substantially preserving information associated
with resolved-object structures. The proposed implementation
algorithm utilizes an efficient discretization scheme that allows for
real-time implementation on commercial systems. The theory and
implementation of the new technique are presented and verified
using phantom and clinical ultrasound images. In addition, the
results from previous techniques are compared with the new
method to demonstrate its performance.

Index Terms—Coherence enhancement, nonlinear anisotropic
diffusion, speckle reduction, ultrasound imaging.

I. INTRODUCTION

T HE noninvasive nature, low cost, portability, and real-time
image formation make ultrasound imaging an essential

tool for medical diagnosis. Over the years, its application ex-
tended to include many fields and research is underway to im-
prove the technology even further. One of the areas where re-
search in this field has addressed is the fundamental problem
of speckle noise, which is a major limitation on image quality
in ultrasound imaging. The presence of speckle noise affects
human interpretation of the images as well as the accuracy of
computer-assisted diagnostic techniques. Poor image quality in
some cases makes feature extraction, analysis, recognition, and
quantitative measurements impossible.

A number of methods have been proposed to address the
problem of speckle noise including temporal averaging, median
filtering, maximum amplitude writing (temporal dilation),
adaptive speckle reduction (ASR) (statistical enhancement),
homomorphic Wiener filtering, and wavelet shrinkage (WS).
Temporal averaging and multiframe methods try to increase
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the signal-to-noise ratio (SNR) by generating multiple uncorre-
lated images that are summed incoherently to reduce speckle.
Despite being simple and fast, these approaches suffer from
two limitations. First, in order to produce uncorrelated images,
the transducer has to be translated at least by about half its
element width for each of the generated frames [1]. Second,
temporal averaging based on transducer movement causes the
loss of small details such as small vessels and texture patterns
because of blurring.

A more reliable technique based on ASR filtering was pro-
posed in [3]–[7]. This technique depends on the SNR and pos-
sibly the autocorrelation function to permit a varying degree of
smoothing according to the extent of the speckle pattern from
the fully formed speckle (FFS), which is known to follow a
Rayleigh distribution. This approach works well when applied
to the uncompressed backscattered envelope signal but becomes
severely inaccurate with the log-compressed signal. Moreover,
the parameters introduced in this method (such as neighbor-
hood, structure, and speckle thresholds) may not correlate well
with actual speckle models.

In another method based on adaptive weighted median filter
(AWMF) [8], pixel values are replaced by the weighted median
of a local neighborhood whose width is determined based on the
SNR around that pixel. The over simplification of this method
led to limited success of this method given that fine image de-
tails are usually lost.

Speckle reduction via filtering in the wavelet domain was
proposed by several groups. Most of these techniques are based
on the idea of soft-thresholding denoising first presented by
Donoho [22]. In this method, the signal is decomposed in the
wavelet domain and the obtained wavelet coefficients are then
soft-thresholded. That is, the wavelet coefficients with absolute
values below a certain threshold are replaced by zero, while
those above it are only modified by shrinking them toward
zero. A modification of this technique is to apply nonlinear soft
thresholding within finer levels of scales to suppress speckle
[17]. Feature enhancement was accomplished via stretching
of wavelet coefficients in the midrange levels. The estimated
image is reconstructed by taking the inverse wavelet transform
of the processed coefficients.

Since the above methods could not succeed to balance
between speckle suppression and feature preservation due to
the complexity of speckle statistics, another technique was
proposed to process the signal before it is logarithmically
compressed for its simple characteristics [15]. First, the
recorded image is low-pass filtered. Then, the filtered part and

0018-9294/02$17.00 © 2002 IEEE



998 IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, VOL. 49, NO. 9, SEPTEMBER 2002

the discarded part are decomposed by wavelet transform. The
coefficients of both parts pass through soft-thresholding and
finally merge to construct the final speckle-suppressed image.

In spite of the encouraging results obtained using the above
techniques, they have not been widely considered for practical
implementation because of their high computational complexity
and large memory space requirements. Furthermore, some tech-
niques require the signal be processed before logarithmic com-
pression [23], which is not usually possible in most commer-
cial ultrasound systems. In addition, the stability and robustness
of such techniques against parameter variations have not been
addressed. Therefore, a technique that relies on a more accu-
rate model for speckle noise while maintaining low complexity,
simple implementation, and robustness against parameter vari-
ations would be rather valuable for practical use.

In this paper, we describe a new speckle reduction technique
whereby the log-compressed ultrasound pulse-echo image is
smoothed to suppress the FFS while substantially preserving
image components corresponding to resolved (or partially re-
solved) object structures. This technique is based on a nonlinear
diffusion model adapted to remove the compressed speckle pat-
tern from the raw lines acquired using a convex array ultrasound
imager (without loss of generality). We demonstrate that the use
of raw lines instead of the formed image is more accurate since
the actual scan is rather in radial coordinates than in Cartesian
coordinates and that it is nearly an order of magnitude faster than
when applied to the formed image. Due to its anisotropy, the pro-
posed technique allows coherent structure enhancement while
the dynamics of the proposed diffusion model is controlled by
the local behavior of the signal. The model measures signal co-
herence, which is an important speckle feature, to control the di-
rection and magnitude of diffusion. A modified version of this
model is also proposed to ensure parameter robustness of the
technique whereby a bias term is added in such a way not to im-
pose significant additional computational effort. This bias term
enables the technique to reach a meaningful steady-state that is
different from the constant trivial solution. To ensure real-time
implementation, a special discretization scheme is proposed to
further reduce the complexity of this method. The stability and
robustness of the new techniques are analyzed and verified by
experiments using computer simulations as well as actual ultra-
sound images.

II. SPECKLE MODEL

A. Medical Ultrasound Speckle Pattern

The nature of the speckle pattern can be categorized into one
of three classes according to the number of scatterers per reso-
lution cell or the so called scatterer number density (SND), in
addition to their spatial distribution and the characteristics of the
imaging system itself. These classes are described as follows:

1) FFS pattern, which occurs when many fine randomly dis-
tributed scattering sites exist within the resolution cell of
the pulse-echo system . In this case, the
amplitude of the backscattered signal can be modeled as
a Rayleigh distributed random variable with a constant
SNR of 1.92. Under such conditions, the textural features

of the speckle pattern represent a multivariate signature of
the imaging instrument and its point spread function [3].
Blood cells are typical examples of this type of scatterers.

2) Nonrandomly distributed with long-range order (NRLR)
[2]. Examples of this type are the lobules in liver
parenchyma. It contributes a coherent or specular
backscattered intensity that is in itself spatially varying.
Due to the correlation between scatterers, the effective
number of scatterers is finite . This situation
can be modeled by the K-distribution. This type is asso-
ciated with SNR below 1.92 [15]. It can also be modeled
by the Nakagami distribution [29].

3) Nonrandomly distributed with short-range order (NRSR)
[2]. Examples of this type include organ surfaces and
blood vessels. When a spatially invariant coherent struc-
ture is present within the random scatterer region, the
probability density function (PDF) of the backscattered
signals becomes close to the Rician distribution. This
class is associated with SNR above 1.92 [15].

Hence, the coherence phenomena make the SNR an am-
biguous feature that cannot be used alone to characterize the
speckle model. The deviation in image properties due to the
presence of coherent structures that are partially or completely
resolved results in a speckle pattern that is no longer entirely
characteristic of the imaging system [3]. It should, therefore,
be possible to use these deviations to classify each local region
of the image according to how much it resembles the FFS
normally generated by that particular imaging system in that
part of the image. This measure of similarity can then be used
to control the spatial bandwidth of a smoothing filter of some
kind so that regions within the image that closely resemble the
FFS are replaced by a local mean value. At the other extreme,
regions with properties that are least similar to FFS should be
kept unaltered [3].

B. Effect of Logarithmic Compression

Due to the limited dynamic range of commercial display
monitors, ultrasound imaging systems compress the echo
signal to fit in the display range. Such compression changes
the characteristics of the signal PDF. In particular, it affects the
high intensity tail of the Rayleigh and Rician PDFs more than
the low intensity part. As a result, the speckle noise becomes
very close to white Gaussian noise corresponding the uncom-
pressed Rayleigh signal [15]. It should be noted that some
authors suggested the use of a generalization of the Gaussian
distribution, namely, the alpha-stable distribution, to model
such noise and handle the data with a degree of nonlinearity
that corresponds to the deviation from the Gaussian model
[27]. In fact, the Gaussian distribution is the limiting case of
such class of probability density functions. This approach has
an advantage in image areas where very few scatterers are
present and the SNR is very poor such that the assumption of
Gaussianity is severely violated. This is not a common situation
in most sonographic applications though and the associated
complexity to use such model may not be justified.

At the output of the beamformer on the ultrasound imaging
system and prior to the logarithmic compression stage for the
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envelope signal, speckle noise can be approximated as a multi-
plicative noise such that

(1)

Here, is an unknown piecewise constant two-dimen-
sional (2-D) function representing the noise-free original
image, is the noisy observation of , and
are multiplicative and additive noise, respectively, andand

are variables of spatial locations that belong to 2-D space
of all real numbers, . Since the effect of additive
noise (such as sensor noise) is considerably small compared
with that of multiplicative noise (coherent interference)

, (1) can be rewritten as

(2)

The logarithmic amplification transforms the model in (2) into
the classical signal in additive noise form. That is

or

(3)

Here, is approximated as additive white noise. We
assume here that the speckle pattern has a white Gaussian
noise model. This assumption is valid especially if we consider
the speckle nature (initially Rayleigh scattered) after envelope
detection and logarithmic amplification of the radio-frequency
(RF) signal. In the absence of underlying structures, the speckle
pattern and noise can both be assumed to have a white Gaussian
noise model. It should be noted however that even though this
assumption might not hold in the presence of nonflat structures,
it still considered close enough for practical purposes.

III. D IFFUSION FILTERING MODELS

The SNR remains the most fundamental feature that is most
widely used in single feature texture classifiers due to its sen-
sitivity to the variation of scatterer distribution in a region. The
unsharp filter described in [3] allows the degree of smoothing
to be controlled by the local features of image texture. The pro-
posed filter, named ASR, attempts to differentiate between FFS
and NRLR classes of speckle. Hence, this filter has the form

(4)

where is the new (processed) value of a pixel to be computed
from the old unprocessed value,, and the local mean of the old
values surrounding and including that pixel,. The constant, ,
is controlled by the measure of similarity used,, which in this
case is the deviation in the ratio of the local variance of gray
levels to the local mean [3], [7]. That is

and,

or alternatively

where is the mean value of in a region corresponding to
FFS [3].

A. Nonlinear Anisotropic Diffusion

Diffusion algorithms remove noise from an image by modi-
fying the image via solving a partial differential equation (PDE).
For example, consider applying the isotropic diffusion equation
(the heat equation) given by , using
the original (degraded or noisy) image as the initial
condition, where is an image in the con-
tinuous domain, specifies spatial position,is an artificial
time parameter, is the diffusion constant, and where is the
image gradient. Modifying the image according to this linear
isotropic diffusion equation is equivalent to filtering the image
with a Gaussian filter.

The previous ASR technique can be expressed in the form

(5)

or,

(6)

which is very close to the nonlinear isotropic diffusion model
described by

(7)

Here, is the ultrasound image after smoothing with a linear
Gaussian kernel of scale, and are the Laplacian
of the smoothed image in theand directions, respectively,

is a function of the SNR or , which represents
a nonlinear diffusivity replacing the constant diffusivity in the
linear case. Diffusion is maximum (i.e., ) in a Rayleigh
scatterer region and zero in a fully structured or correlated re-
gion (specified experimentally for each imaging system envi-
ronment). Simple speckle reduction algorithms like the model
above enhance only those regions associated with low SNR, i.e.,
belonging to NRLR speckle model, while organ surfaces are
misclassified and possibly degraded.

B. Perona and Malik Formulation

In their seminal work, Perona and Malik replaced the classical
isotropic diffusion with [9]

(8)

where is the gradient, and is the diffusivity func-
tion or the edge-stopping function [13]. This function is chosen
such that as , and should be monotonically de-
creasing so that the diffusion or the smoothing decreases as the
gradient strength increases and the diffusion is stopped across
edges.

C. Coherent Nonlinear Anisotropic Diffusion

Although can be a scalar function and diffusion is still
anisotropic and since serves only as an edge detector, the ap-
plicability of the above filter is restricted to smoothing with edge
enhancement. In general, can be put into a tensor form that
measures local coherence of structures such that the diffusion
process becomes more directional in both the gradient and the
contour directions, which represent the directions of maximum
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and minimum variations, respectively. Hence, the coherent dif-
fusion model takes the form

(9)

where is a symmetric positive semi-definite diffu-
sion tensor representing the required diffusion in both gradient
and contour directions and, hence, enhancing coherent struc-
tures as well as edges. The design ofrequires estimating
the local coherence, which can be represented by the local con-
tour and gradient principal directions and their relative contrast.
There are two tensors widely used to detect the local coherence,
namely, the structure tensor (also called scatter matrix or win-
dowed second moment tensor) and the Hessian tensor, which
represents the second order derivatives. These can be expressed
as follows:

Because the Hessian matrix is more sensitive to noise, the use of
the structure tensor was favored. The multiscale structure matrix
takes the form

or equivalently

(10)

Here, the symbol ’’ stands for convolution and the convolution
kernel is expressed as

(11)

The above convolution is done component-wise mainly to av-
erage a feature over a known neighborhood (scale) whereis
the integration scale (the window size) over which the orienta-
tion information is averaged [14]. Using eigenvalue decompo-
sition, the formulation in (10) can be put as

(12)

Here, the eigenvectors , and the eigenvalues , cor-
respond to the directions of maximum and minimum variations
and the strength of these variations, respectively.

D. Mean Curvature Motion (MCM)

In general, the above models make smoothing (motion)
along the direction of local curvature. On the other hand, no
smoothing occurs in the gradient direction. Linear diffusion
model causes smoothing isotropically in all directions and it is
better expressed as

(13)

Here, is the gradient direction; the direction of maximum
variation, and is the contour direction; the direction of
minimum variation. This model modifies the diffusion equation

such that smoothing is now in thedirection [10]; the direction
of the piecewise stationary process. That is, smoothing with
unity diffusivity perpendicular to gradient direction. This can
be expressed as [28]

(14)

Here, a bar was placed on the symbols standing for functions
as opposed to the constants in the diffusivity matrix. A modi-
fied version has appeared with a monotonically decreasing dif-
fusivity in contour direction only [11]. Another modification has
been introduced that adds isotropic term to the equation above
[12]. It now takes the form

(15)

Choosing a large value ofamplifies edges in the image and
yields a filter with very strong edge preserving properties. Al-
ternatively, choosing a small value will yield a faster isotropic
diffusion. The wordfasterhere refers to the speed of the itera-
tive algorithm to reach the final steady-state, which is the trivial
constant solution. That is, the solution as the artificial time
goes to infinity. This can be expressed as

(16)

IV. NONLINEAR COHERENTDIFFUSION (NCD) MODEL

A. Proposed Model Description

The diffusion tensor should be chosen with the same eigen-
vectors of the structure matrix but with eigenvalues that repre-
sent the strength of diffusion in each principal direction. That is

(17)

and

if

else
(18)

B. Model Analysis

The dynamics of the proposed NCD model can be under-
stood from the eigen-analysis framework. The flow at each
point is affected by the local coherence or anisotropy. When the
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local coherence, measured by , is close to zero, i.e.,
the region corresponds to speckle pattern close to FFS carrying
little tissue information, diffusion must become isotropic

and inversely proportional to the information
content [which is also related to ]. On the other hand,
when image anisotropy becomes large, which corresponds to
structured tissue, image texture is rich of information about the
imaged tissue and, therefore, diffusion should be very selective
in both direction and strength. This idea is implemented by the
above-mentioned Tukey’s function, which is monotonically
decreasing such that as information content increases, diffusion
becomes increasingly anisotropic. A fully specular region
corresponding to is associated with diffusion
only in level set, contour, direction. Fig. 1 shows the response
of the system when applied to different types of regions. In all
cases, smoothing is represented as an elliptic Gaussian kernel
whose radii are shown. When the region is highly specular, it
is merely a one-dimensional (1-D) Gausian smoothing in the
principal minimum variation direction.

The proposed NCD model has the same principal PDE de-
scribed in [14]. Nevertheless, from the functional point of view,
it combines three different models together; namely, isotropic
linear diffusion, anisotropic diffusion, and MCM. According to
speckle extent and image anisotropy, the model changes pro-
gressively from isotropic diffusion through anisotropic coherent
diffusion to, finally, MCM. This structure maximally low-pass
filters those parts of the image that correspond to fully devel-
oped speckle, while substantially preserving information asso-
ciated with resolved-object structures [24]. Several reasons sup-
port this model formulation. First, our main objective is to pro-
duce a filter that is not only edge preserving but also coherence
enhancing. This is essential to overcome the ambiguity of using
the SNR alone and to further enhance tissue texture, organ sur-
faces, and blood vessels. Also, is related to the anisotropy of
the image through a monotonically decreasing func-
tion that resemble Tukey’s biweight robust estimator, which pre-
serves sharp boundaries and improves the automatic stopping of
the diffusion in the gradient direction [13]. Finally, the stopping
level is determined experimentally corresponding to the fully
structured region resulting from the imaging system and manu-
ally set by the user.

C. Pseudobiased Diffusion

Although the previous model has proved to be efficient in
removing speckle, if prior knowledge of the appropriate time
evolution needed to reach this speckle-free image is not avail-
able, the model continues to evolve to the trivial solution. This
behavior is not recommended for parameter robustness. The
overall time step is a very important parameter that drastically
influences the final status of the filtered image. However, the
behavior of a robust filtering algorithm should not be sensitive
to parameter selection especially time evolution. Therefore, the
flow dynamics of the diffusion process should be controlled
based on both the spatial local coherence as well as the tem-
poral distance between the original speckled image and the cur-
rent evolved image [25]. Meanwhile, the added diffusion control
should not increase (at least, minimally) the complexity of the
numerical implementation of the process. The proposed model

can be summarized in the design of the required diffusion eigen-
values.

Let

(19)

and

if

else
(20)

The distance between the original and the evolved images [rep-
resented in (19)] is continuously measured at all time instants
and is embedded within the formulation of the eigenvalues to
control the status of diffusion process. This modification has
the effect of completely stopping the flow of the diffusion at
any time and location where the deviation between the two im-
ages becomes unreasonable as will be analyzed.

The dynamics of the proposed model can be clearly under-
stood from the eigen-analysis framework. The flow is affected
by two factors; the first one is the distance between the evolved
image at any timeand the original image at time (that we
call temporal distance). The second factor is the spatial local co-
herence or anisotropy (spatial coherence). At early time values

, the temporal distance effect is completely negligible
and the only dominant factor is that of the spatial co-

herence. When the local coherence, measured by , is
close to zero, i.e., the region corresponds to speckle pattern close
to FFS carrying little tissue information, diffusion must become
isotropic and inversely proportional to the infor-
mation content (which is also related to ). On the other
hand, when image anisotropy becomes large, which corresponds
to structured tissue, image texture is rich of information about
the imaged tissue and, therefore, diffusion should be very selec-
tive in both direction and strength. This idea is implemented by
the above-mentioned Tukey’s function, which is monotonically
decreasing such that as information content increases, diffusion
becomes increasingly anisotropic. A fully structured region cor-
responding to is associated with diffusion only
in contour direction.

As time evolution goes forward, the image continues to dif-
fuse and some structures may be inevitably unsharpened. In
such cases, the temporal distance increases between the orig-
inal and diffused edge sharpness. The embedding of this dis-
tance in the diffusion matrix has the effect of choking extra dif-
fusion in these locations. This effect dominates over the effect
of spatial coherence and thus, limiting diffusion. With time, the
unshaped edges become relatively sharper than before with re-
spect to inter-region fluctuations [25]. Hence, the stopping crite-
rion in this formulation can be made that the difference between
the results from two consecutive iterations becomes less than a
preset minimum.

D. Discretization Scheme

The final form of the model takes the form

(21)
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Fig. 1. The behavior of the proposed model as the speckle pattern changes. Two examples are shown with three different regions in each with the behaviorof the
algorithm in each region.

where , , and represent the entries of the diffusivity matrix
in (17), which are in general functions of the local image inten-
sity. We assume that the discrete image at hand is of size. To
apply the scalar model in (8), an efficient and stable discretiza-
tion scheme can be used [21]. This scheme uses Euler-Backward
method to obtain a system of linear equations that is stable for
any time step. With a 2-D image, the resultant system involves
solving a sparse matrix with number of unknown equals. To
overcome the problem of solving this huge matrix, the algorithm

further split the works by splitting the -dimensional system of
equations into 1-D systems.

Due to the need for , , and , all eight points in
the neighborhood are used in our model. As a result, several
such proposed schemes cannot be applied here. Explicit scheme
seems stable for only very small step ( for the scalar
diffusion) [14] and even smaller for our model. Implicit scheme
is extremely complicated due to the nonlinearity and the bulky
system matrix to be solved. Semi-implicit has shown uncondi-
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Fig. 2. Block diagram of ultrasonic convex B-mode system showing the location of the proposed speckle reduction stage. It is applied on stick lines instead of
the constructed raster image.

tional stability in scalar nonlinear diffusion for any time step
where the pentadiagonal system matrix is divided into

simple tridiagonal ones with each of size [21]. Due
to the added complexity in the coherent model, the scheme is
no longer as simple. The system matrix is now pentadiagonal
with fringes due to the added diagonal points. To overcome this
difficulty, a hybrid scheme is proposed that combines stability
and computational efficiency. The scheme can be described as
shown in the equation at bottom of the page, or

(22)

Here, stands for the pixel at location , at time
instance . That is, the axial points are made backward in time
and the diagonal and cross-diagonal points are made forward in
time. In this scheme, splitting can be used to convert the system
matrix into tridiagonal matrices, which are easily solved.

With no loss of generality, we put and
, which is a valid assumption when dealing with images. The

result takes the form

Similar to [21], it can be solved using additive operator splitting
scheme as

(23)

where

,

,

otherwise.

(24)

and

(25)

E. Algorithm

An iteration of the proposed algorithm consists of the fol-
lowing steps.
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Fig. 3. Results with contrast details phantoms. (a) Original speckled image. (b) Reference image. (c)–(f) Images processed with NCD, AWMF, WS, and WSCE
methods, respectively. (g) and (h) Profile of the evolution of a line passing through the positive contrast regions with different algorithms.

TABLE I
QUANTITATIVE EVALUATION OF THE

PERFORMANCE OFAPPLYING DIFFERENT TECHNIQUES TOCONTRAST

PHANTOM IMAGES

Step 1) For each point, obtain the window-
scatter matrix from (10) and the

principal components and vectors
from (12).

Step 2) Evaluate the diffusivity from (17)
and (18) (for NCD model) or (19) and
(20) (for pseudobiased NCD) based on
the previously obtained scatter ma-
trix.

Step 3) Solve the diffusion equation in
(21). Time evolution of an image
point is split into two parts: the
Euler-Forward scheme for the time
evolution involving the diagonal and
cross-diagonal neighbor image points
as in (25) and the Euler-Backward
scheme for the time evolution in-
volving the axial neighbor image
points as in (23) and (24).

F. System Implementation

The construction of ultrasound B-mode image involves cap-
turing the echo signal returned from tissue at the surface of
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Fig. 4. The effect of the algorithm on clinical images: (a) abdomen, (b) blood
vessels, (c) kidney, and (d) heart— short axis view. The number of iterations
used was two, and the parameters used were�t = 2, � = 0:9, ands = 2.
The original image is shown to the left while the denoised image using NCD is
shown to the right in each case.

piezoelectric crystal transducers. These transducers convert the
ultrasonic RF mechanical wave into electrical signal. Convex
ultrasound probes collect the echo from tissue in a radial form.
Each group of transducers is simultaneously activated to look
at a certain spatial direction from which they generate a raw
line signal (stick) to be used later for raster image construc-
tion [26]. These sticks are then demodulated and logarithmically
compressed to reduce their dynamic range to suit the commer-
cial display devices. The final Cartesian image is constructed

Fig. 4. (Continued.) The effect of the algorithm on clinical images. (e) Heart—
two chambers view. The number of iterations used was two, and the parameters
used were�t = 2, � = 0:9, ands = 2. The original image is shown to the
left while the denoised image using NCD is shown to the right in each case.

from the sampled sticks in a process calledscan conversion(see
Fig. 2).

For the sake of efficiency and accuracy, the proposed model is
applied on the ultrasound convex B-mode sampled sticks after
the logarithmic compression and before constructing the final
rectangular image. The machine we used forms 80 sticks or lines
of 320 samples each. Hence, the original radial image size is
80 320. Since the stick coordinates are closer to radial than
to the Cartesian, the model is modified simply by adjusting the
gradient step in the axial direction to take into consideration
the diverging pattern of the sticks. The advantage of using the
sticks before scan conversion is that the small number of pixels
makes the algorithm at least three times faster. Furthermore, the
algorithm is now more accurate since the coordinate system of
the image is the same as that of the probe. This step enables
the achievement of real-time rates using the available modest
computing platforms.

V. RESULTS

To test the performance of the proposed NCD model, we com-
pared its results against those of one of the most used real-time
models, which is the AWMF model. In addition, the results were
compared with those from off-line sophisticated models such as
the wavelet shrinkage (WS) model and the wavelet shrinkage
coherence enhancing (WSCE) models. Experiments included
images containing diverse shapes and sizes of structural details.
We applied the same wavelet functions described in [17]. The
images were decomposed into four levels. The high-frequency
content of each level is then removed using a threshold value

that is level dependant, varying linearly from to .
These bounds are functions of the noise level in the signal esti-
mated using the standard deviation of the signal. In the WSCE
technique, the same parameters as the WS technique were used
but in this case, the low-frequency content of the first two levels
is amplified in order to enhance the features in the spatial do-
main. We applied these models on ultrasound phantom and real
scan-converted ultrasound clinical images. Comparison is di-
vided into two parts. First, we compare the qualitative results
from the used algorithms. Second, profiles of the effect of the
tested algorithms on a details line within the images are plotted
to observe the behavior of these methods.
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Fig. 5. The results of an ultrasound image of the heart. (a) Original speckled image with line mark superimposed. (b)–(e) Images processed with NCD, AWMF,
WS, and WSCE methods, respectively. (f) and (g) Profile of the evolution of the row line labeled in (a) with different algorithms.

A. Contrast Detail Phantom Data

The four techniques were applied to enhance images of a
commercial contrast detail phantom (ATS laboratories, Bridge-
port, CT). This phantom was made to produce standard contrast
levels from 15 dB to 12 dB. Images were logarithmically
compressed in the postprocessing stage to simulate compressed
B-scan images [15]. Fig. 3 shows the results of this comparison.
The phantom image has a resolution of 256128 and consists
of eight different contrast regions (four positive contrast regions

and four negative contrast regions). Regions are ordered in two
rows. The upper row contains negative contrast regions while
the lower one contains the positive contrast regions as shown
in Fig. 3(a). A reference image, Fig. 3(b), is constructed man-
ually from the speckled image by evaluating the mean value in
each region. The obtained results are shown in Fig. 3(c)–(f) cor-
responding to NCD, AWMF, WS, and WSCE techniques, re-
spectively. Fig. 3(g) and (h) shows a comparison between test
methods through a profile of their effect on a positive contrast
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Fig. 6. The results of an ultrasound image of a kidney. (a) Original speckled image with line mark superimposed. (b)–(e) Images processed with NCD, AWMF,
WS, and WSCE methods, respectively. (f) and (g) Profile of the evolution of the row line labeled in (a) with different algorithms.

line. Image results show that the proposed method looks very
close to the reference image. Profile results show that although
all methods, in general, preserved the locality of boundaries, the
NCD model also stayed close to the reference intraregion values
with minimal variations within each region.

To evaluate the results in a quantitative manner, the
mean-square error (MSE) of the different techniques is listed
in Table I. As can be observed, the result of the NCD model is
superior to other techniques.

B. Clinical Ultrasound Imaging Data

Phantom images proved the efficiency of the proposed model
in separating Rayleigh distributed noise while preserving both
the locality of edges and the intraregion mean value. With the
simplicity of phantom structures (boundaries only), the behavior
of NCD is similar to MCM model. In the following, we present
a comparison using three different clinical ultrasound images
corresponding to images of the heart, kidney, and liver images.
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Fig. 7. The results of an ultrasound image of liver texture and blood vessels. (a) Original speckled image with line mark superimposed. (b)–(e) Imagesprocessed
with NCD, AWMF, WS, and WSCE methods, respectively. (f) and (g) Profile of the evolution of the row line labeled in (b) with different algorithms.

These images exhibit different scales of information and should
be useful to differentiate between the performances of the four
techniques. Sample results for applying the proposed method on
clinical images are shown in Fig. 4.

Case 1)Heart image
Results of this experiment are shown in Fig. 5.

The proposed model succeeded in preserving

the locality of heart boundaries while maximally
smoothing both cavities and muscular tissue. WS
and AWMF could not remove the speckle pattern
inside heart cavity and boundaries were blurred. The
profile line shows that the cavities (marks 2 and 4)
are maximally smoothed while structures (marked
as 5) are best preserved by NCD.
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Fig. 8. Phantom results. (a) Speckled image. (b) Reference image. (c), (e), (g), (i), and (k) Evolution of unbiased diffusion after four, eight, 12, 16, and 20
iterations, respectively. (d), (f), (h), (j), and (l) Evolution of pseudobiased diffusion after four, eight, 12, 16, and 20 iterations, respectively.

Case 2)Kidney image
The results of this experiment are shown in Fig. 6.

NCD succeeded to achieve speckle smoothing while
preserving the structures and without any noticeable
dilation. It can be seen that the NCD model compares
favorably with the other three models.

Case 3)Liver image
The results of this experiment are shown in Fig. 7.

This case contains both small and large details. From
the evolution lines, we can see the high sensitivity of
the new NCD model to small details and none of the
marked details has been distorted.
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Fig. 9. The evolution of a real ultrasound image with both models. (a) Original speckled image. (b)–(f) The evolution with the unbiased diffusion after two, four,
six, eight, and ten iterations respectively. (g) Speckled image with a detail line position indicated. (h)–(l) Evolution with the pseudobiased model after two, four,
six, eight, and ten iterations, respectively.

C. Pseudobiased Model Results

The NCD model was applied with the eigenvalues as in (18) to
represent the unbiased diffusion and with the eigenvalues of (20)
to represent the proposed pseudobiased diffusion. Both models

utilized the same values for the common algorithm parameters.
To clarify flow improvement by the proposed model, we did
the phantom experiment with relaxed parameters. Both models
were applied to filter phantom images for 20 iterations with a
time step per iteration, , , and
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Fig. 10. The evolution of a real ultrasound image of the heart with both models. (a) Original speckled image. (b)–(f) Evolution with the unbiased diffusion after
two, four, six, eight, and ten iterations respectively. (g) Speckled image with a detail line position indicated. (h)–(l) Evolution with the pseudobiased model after
two, four, six, eight, and ten iterations, respectively.

in the pseudobiased model. Fig. 8 shows the evolution of both
models with successive iterations. Fig. 11(a) and (b) shows the
evolution of a line passing through different positive contrast
regions with both models.

The two algorithms were applied to filter real ultrasound im-
ages of a blood vessel and the heart chambers. The size of both
images was 256 256. In this experiment, we employed pa-
rameter values that are more conservative. Both models share
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Fig. 11. Plot of reference lines from images of previous figures to observe the evolution with unbiased diffusion (left). The evolution with pseudobiased diffusion
(right). (upper panels) A positive contrast line from Fig. 8. (middle panels) A line whose position is marked in Fig. 9. (lower panels) A line whose position is
marked in Fig. 10.

the same parameters for ten iterations with a time step
per iteration, , , and in the pseudobi-
ased model. Figs. 9 and 10 show the results obtained from the
two images. Fig. 11(c)–(f) presents the evolution of two lines
through the images.

From the above results, we observe that the edges of both
phantom and vessel images have been restored better with the
pseudobiased model even with excessive iterations. The unbi-
ased model is still iteration-dependant and thus continues to-
ward the trivial single gray level solution. Edge preservation and
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iteration-robustness of the proposed model come at only min-
imal extra complexity in the implementation of the model. Both
unbiased and pseudobiased models require almost the same time
per iteration. Since the modification was merely in the determi-
nation of the diffusion components, the proposed models share
the same simplicity of discretization. Only two additions and
two multiplication operations are needed per pixel for embed-
ding of the distance component of (19) Considering the overall
complexity, these additional operations can be neglected.

VI. DISCUSSION

From the experiments above, we notice that wavelet-based
methods require converting the image to the Cartesian space.
This contributes to extra computational time and also reduces
solution accuracy. In addition, the AWMF model does not faith-
fully consider the 2-D nature of the image. On the other hand,
the MCM method was designed to enhance piecewise constant
images, which are not generally common in ultrasound imaging.
Moreover, this method is noise-sensitive due to the use of second
order derivative in estimating the direction of mean curvature,
which can drastically degrade the results. The proposed model
mimics MCM only near borders and highly specular regions
where MCM is an optimal model.

The results suggest that the new technique has a large
potential in assisting segmentation techniques and automated
area/volume calculation methods. Examples of these are
the area calculations of heart chambers and urinary bladder.
Moreover, the implementation of the new NCD model enabled
a computational rate of one image per 50 ms (computed as
16 ms/iteration for an average of three iterations) on a modest
computational platform consisting of a PC with PII 366-MHz
microprocessor. This shows the possibility of real-time use in
commercial ultrasound imaging systems given the much higher
computational speeds attainable with current PC technology.
Moreover, the selection of the parameters of the iteration was
observed to be robust for different types of images.

VII. CONCLUSIONS

A new nonlinear coherent diffusion model was proposed to
reduce ultrasound speckle while preserving the appearance of
structured regions and organ surfaces. The new technique has
the advantages of robust parameter selection, speed of compu-
tation and preservation of texture and organ surfaces. The new
technique has a large potential in real-time ultrasound imaging
enhancement and in assisting automated segmentation/calcula-
tion techniques.
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