
 Open access Proceedings Article DOI:10.1109/ISCAS.2019.8702290

Real-Time Speech Recognition for IoT Purpose using a Delta Recurrent Neural
Network Accelerator — Source link

Chang Gao, Stefan Braun, Ilya Kiselev, Jithendar Anumula ...+2 more authors

Institutions: University of Zurich

Published on: 26 May 2019 - International Symposium on Circuits and Systems

Topics: Recurrent neural network, Latency (engineering), Throughput (business) and Field-programmable gate array

Related papers:

 EdgeDRNN: Recurrent Neural Network Accelerator for Edge Inference

 DeltaRNN: A Power-efficient Recurrent Neural Network Accelerator

 FPGA Acceleration of Recurrent Neural Network Based Language Model

 Compact hardware for real-time speech recognition using a Liquid State Machine

 A Hardware Accelerated Low Power DSP for Recurrent Neural Networks

Share this paper:

View more about this paper here: https://typeset.io/papers/real-time-speech-recognition-for-iot-purpose-using-a-delta-
3nkq1zf5tu

https://typeset.io/
https://www.doi.org/10.1109/ISCAS.2019.8702290
https://typeset.io/papers/real-time-speech-recognition-for-iot-purpose-using-a-delta-3nkq1zf5tu
https://typeset.io/authors/chang-gao-220shswh66
https://typeset.io/authors/stefan-braun-11zg90ifne
https://typeset.io/authors/ilya-kiselev-ktkv0nhazt
https://typeset.io/authors/jithendar-anumula-2hyecp53an
https://typeset.io/institutions/university-of-zurich-144im07m
https://typeset.io/conferences/international-symposium-on-circuits-and-systems-3oh1gx7z
https://typeset.io/topics/recurrent-neural-network-h8eidlb4
https://typeset.io/topics/latency-engineering-huk1eavo
https://typeset.io/topics/throughput-business-1jozfba5
https://typeset.io/topics/field-programmable-gate-array-1w67h42e
https://typeset.io/papers/edgedrnn-recurrent-neural-network-accelerator-for-edge-18nsaeft4f
https://typeset.io/papers/deltarnn-a-power-efficient-recurrent-neural-network-1kkgn81h4n
https://typeset.io/papers/fpga-acceleration-of-recurrent-neural-network-based-language-km31nr9se6
https://typeset.io/papers/compact-hardware-for-real-time-speech-recognition-using-a-3e3hmoipdf
https://typeset.io/papers/a-hardware-accelerated-low-power-dsp-for-recurrent-neural-290o9d7i89
https://www.facebook.com/sharer/sharer.php?u=https://typeset.io/papers/real-time-speech-recognition-for-iot-purpose-using-a-delta-3nkq1zf5tu
https://twitter.com/intent/tweet?text=Real-Time%20Speech%20Recognition%20for%20IoT%20Purpose%20using%20a%20Delta%20Recurrent%20Neural%20Network%20Accelerator&url=https://typeset.io/papers/real-time-speech-recognition-for-iot-purpose-using-a-delta-3nkq1zf5tu
https://www.linkedin.com/sharing/share-offsite/?url=https://typeset.io/papers/real-time-speech-recognition-for-iot-purpose-using-a-delta-3nkq1zf5tu
mailto:?subject=I%20wanted%20you%20to%20see%20this%20site&body=Check%20out%20this%20site%20https://typeset.io/papers/real-time-speech-recognition-for-iot-purpose-using-a-delta-3nkq1zf5tu
https://typeset.io/papers/real-time-speech-recognition-for-iot-purpose-using-a-delta-3nkq1zf5tu

Zurich Open Repository and

Archive

University of Zurich
University Library
Strickhofstrasse 39
CH-8057 Zurich
www.zora.uzh.ch

Year: 2019

Real-Time Speech Recognition for IoT Purpose using a Delta Recurrent

Neural Network Accelerator

Gao, Chang ; Braun, Stefan ; Kiselev, Ilya ; Anumula, Jithendar ; Delbruck, Tobi ; Liu, Shih-Chii

Abstract: This paper describes a continuous speech recognition hardware system that uses a delta recur-
rent neural network accelerator (DeltaRNN) implemented on a Xilinx Zynq-7100 FPGA to enable low
latency recurrent neural network (RNN) computation. The implemented network consists of a single-
layer RNN with 256 gated recurrent unit (GRU) neurons and is driven by input features generated either
from the output of a filter bank running on the ARM core of the FPGA in a PmodMic3 microphone setup
or from the asynchronous outputs of a spiking silicon cochlea circuit. The microphone setup achieves 7.1
ms minimum latency and 177 frames-per-second (FPS) maximum throughput while the cochlea setup
achieves 2.9 ms minimum latency and 345 FPS maximum throughput. The low latency and 70 mW
power consumption of the DeltaRNN makes it suitable as an IoT computing platform.

DOI: https://doi.org/10.1109/iscas.2019.8702290

Posted at the Zurich Open Repository and Archive, University of Zurich
ZORA URL: https://doi.org/10.5167/uzh-184188
Conference or Workshop Item
Accepted Version

Originally published at:
Gao, Chang; Braun, Stefan; Kiselev, Ilya; Anumula, Jithendar; Delbruck, Tobi; Liu, Shih-Chii (2019).
Real-Time Speech Recognition for IoT Purpose using a Delta Recurrent Neural Network Accelerator. In:
2019 IEEE International Symposium on Circuits and Systems (ISCAS), Sapporo, Japan, 26 May 2019 -
29 May 2019. Institute of Electrical and Electronics Engineers, 1-5.
DOI: https://doi.org/10.1109/iscas.2019.8702290

Accepted for publication at the 2019 IEEE International Symposium on Circuits and Systems (ISCAS)

Real-time Speech Recognition for IoT Purpose

using a Delta Recurrent Neural Network Accelerator

Chang Gao, Stefan Braun, Ilya Kiselev, Jithendar Anumula, Tobi Delbruck and Shih-Chii Liu

Institute of Neuroinformatics, University of Zurich and ETH Zurich, Zurich, Switzerland

Email: [chang, sbraun, kiselev, anumula, tobi, shih]@ini.uzh.ch

Abstract—This paper describes a continuous speech recogni-
tion hardware system that uses a delta recurrent neural network
accelerator (DeltaRNN) implemented on a Xilinx Zynq-7100
FPGA to enable low latency recurrent neural network (RNN)
computation. The implemented network consists of a single-layer
RNN with 256 gated recurrent unit (GRU) neurons and is driven
by input features generated either from the output of a filter
bank running on the ARM core of the FPGA in a PmodMic3
microphone setup or from the asynchronous outputs of a spiking
silicon cochlea circuit. The microphone setup achieves 7.1 ms
minimum latency and 177 frames-per-second (FPS) maximum
throughput while the cochlea setup achieves 2.9 ms minimum
latency and 345 FPS maximum throughput. The low latency and
70 mW power consumption of the DeltaRNN makes it suitable
as an IoT computing platform.

Index Terms—deep learning, speech recognition, Internet-of-
Things, edge computing, cochlea, RNN, FPGA

I. INTRODUCTION

Deep neural networks are currently the state-of-the-art al-

gorithms for solving many machine learning tasks. Recurrent

Neural Networks (RNNs) with gated units, such as the Long

Short-Term Memory (LSTM) [1] and Gated Recurrent Unit

(GRU) [2], are useful for solving tasks with long sequences

such as speech recognition. Deploying these networks on

mobile platforms require hardware implementations that are

energy efficient. Hardware accelerators for deep neural net-

works (DNNs) show better energy efficiency numbers than

their implementations on CPUs and GPUs [3]. Network archi-

tectures on mobile platforms and embedded systems, also face

the constraint of reduced memory, memory bandwidth, and

computing resources. A reduced memory footprint is critical

for the intended network running on these platforms.

Proposed methods to reduce memory footprint of networks

include quantization, pruning, and the use of special weight

matrices. Quantization of weights or activations help to re-

duce external memory bandwidth requirement and area of

arithmetic units [3]–[6]. Special hardware modules such as

multipliers that are based on Look-Up Tables (LUTs) [7]

or multiplexers [8] can be used for networks with low bit

precision parameters thereby reducing the hardware area.

Various training methods have been proposed for reducing

the bit precision of the parameters while maintaining close to

This work was partially supported by the European Union’s Horizon 2020
research and innovation program under grant agreement No 644732, the Swiss
National Science Foundation, HEAR-EAR, 200021 172553, and the Samsung
Institute of Advanced Technology.

the accuracy of the full precision network [9]–[12]. Training

methods to prune connections with small weight values also

help to create networks with small number of parameters,

e.g. [3], [13]. The use of Toeplitz-like weight matrices, such as

circulant matrices, also helps to reduce the on-board memory

requirements [14], [15].

Other methods of reducing computation cost and therefore

memory accesses include the delta network where neurons

of an RNN layer are updated only when their activations

change by a threshold across two timesteps [16], [17]. This is

particularly useful with natural signals such as speech where

the input does not change quickly over time. Reducing neuron

updates also leads to reduced memory fetches of the weight

parameters and increased energy efficiency of the hardware.

This paper describes a real-time continuous speech recog-

nition system that uses the DeltaRNN accelerator to reduce

updates of recurrent network activations [18]. The accelerator

can be interfaced to either the output of a PmodMic3 micro-

phone or the output of a spiking silicon cochlea system. The

features are obtained by either applying a log filter bank on the

microphone outputs or by creating spike count features from

a silicon spiking cochlea [19]. Unlike previous studies that

generated offline cochlea features [20] this work uses online

generated features [21]. The implementation of this automatic

speech recognition (ASR) system using a spiking sensor is an

extension to the deep network studies described in [22], [23].

Section II describes the input audio feature extraction

methods and the training algorithms. Section III describes the

system architecture and Section IV presents the results of the

recognition task and system measurements.

II. CONTINUOUS SPEECH RECOGNITION

The speech recognition system maps input speech to output

digit labels. It is based on a recurrent network model trained

in an end-to-end fashion using the Connectionist Temporal

Classification (CTC) cost function [24]. The input speech

signal is binned into t = 1, ..., T frames and then converted

into D-dimensional audio features xt ∈ RD. For each frame t,

a neural network with parameters θ, computes the probability

distribution Pt(y|x1:t, θ) of the output labels y ∈ RV+1. The

output labels consist of 12 classes: V = 11 digit labels (’zero’,

’oh’, ’1’, ..., ’9’) and the CTC blank label. For decoding, we

select the most probable label ŷt for every frame t as the

output label.

1

Time (ms)

Frame 0

Frame 1

Frame 2

Frame 3

Frame 4

Frame 5

Frame 6

Frame 7

0 25 35 9565

OverlapFrame Stride

5010

Fig. 1: Frame size, stride and overlap.

A. Processing Microphone Audio

1) Real-Time Normalization & Feature Extraction: Audio

frames are created using a frame size of 25 ms and a stride of

10 ms with a 15 ms overlap between adjacent frames.

As shown in Fig. 1, every 8 frames of an audio sequence

are normalized by the mean and standard deviation computed

over these frames. Log filter bank features are then obtained

from this normalized sequence by applying the Hamming

window function, computing the Fourier transform, calculating

the power spectrum and finally using 40 triangular filters.

2) Training: The end-to-end model consists of a recurrent

layer with 256 unidirectional delta-GRUs [16] with 0.25

delta threshold. The recurrent layer is followed by a 200-

dimensional fully connected (FC) layer with a ReLU non-

linearity and a 12-dimensional FC output layer. During train-

ing, dropout with probability 0.5 is applied on the 200-

dimensional FC layer. The Adam optimizer is used with a

learning rate of 1e-4. The L1 cost factor [16] is set to 0.01. Be-

fore each forward pass, weights, biases, inputs and activations

of the delta-GRU layer are quantized into 16-bit Q8.8 fixed-

point numbers with Pow-2 rounding [12] following Eq. 1

which describes how a parameter P in floating-point format

is quantized to Pq in Qm.f format.

Pq =
rnd[max(min(P × 2f , 2m+f−1 − 1),−2m+f−1 + 1)]

2f
(1)

where the rnd function rounds the argument to the nearest real

integer.

The model is trained on the original TIDIGITS dataset

[25] and an augmented dataset. The original dataset has 7h

training data and 7h test data. For augmentation, both speed

perturbations and noise injection are applied. Each utterance

is scaled at 90%, 100% and 110% of the original speed; and

then mixed with a randomly selected noise segment from the

CHiME-4 [26] background recordings (bus, cafe, pedestrian

area, street junction) at a randomly selected signal-to-noise

ratio (SNR) of [0 : 5 : 50]dB. The augmented dataset has 80h

noisy audio data and is split into a 72h training set and a 8h

test set. Data augmentation is useful to obtain high accuracy

during real-world operation of the system which is evaluated

by testing the model on a new test dataset NT that is created

by the authors. The NT dataset has 220 utterances from 11

subjects in the authors’ department and is recorded by a Trust

Input Encoding
Unit

DeltaRNN Accelerator

NZVL

MxV Controller

MxV Unit
Activation
Pipeline

NZIL

ADDR

W

Input

DDR3

Output

On-chip
BRAMScheduled

NZVL

x(t)

h(t-1)

h(t)

M(t)

Multiplier
Reuse

Fig. 2: DeltaRNN architecture.

Mico mono USB microphone. Moreover, the model is trained

on both normalized and unnormalized frames so that we

can compare the effectiveness of the real-time normalization

method during test.

B. Spiking Cochlea

1) Silicon Cochlea: The Dynamic Audio Sensor (DAS)

spiking cochlea [19] is a binaural silicon cochlea with 64

channels tuned for frequencies on a log spacing from 100 Hz

to about 20 kHz. The sensor models the functionality of the

basilar membrane, inner hair cells and spiral ganglion cells of

the biological cochlea. The asynchronous output spikes can be

streamed to a computer using the USB port on the DAS PCB

or to an external processing device via 40-pin parallel AER

CAVIAR connector.

2) Dataset: The recordings were done using a subset of

the augmented TIDIGITS dataset without speed scaling and

utterances are mixed with a randomly selected SNR from [0,

5, 10] dB. We used only a subset because of the extensive

time needed to record from the cochlea. The files are played

through loud speakers placed about 3 m from the DAS PCB

and in a normal office room with reverberation T60 = 0.2. The

recorded dataset is called TIDIGITS_das.

3) Feature Extraction: We generate spike count features by

binning spikes within a time window of 5 ms, with no overlap

between consecutive windows [21]. Only spikes from one ear

and from one out of the 4 neurons of each frequency channel

of the DAS cochlea are used for the feature generation.C The

time bin length of the spike counter is programmable for a

range of 1 – 16383 µs with 1 µs resolution. 8-bit counters are

used to count the spikes of each channel and formatted in 16-

bit Q8.8 number to be transferred to DeltaRNN by an AXIS

interface.

4) Training: The same network architecture for the micro-

phone audio is used on the spike features except that the input

vector dimension becomes 64, the delta threshold of the GRU

layer is set to 0 and there is no quantization in the forward

pass. Recurrent layer weights are quantized after training on

the GPU and before inference on the FPGA.

III. SYSTEM ARCHITECTURE

A. Delta Recurrent Neural Network Accelerator

The DeltaRNN accelerator consists of 4 main modules,

Input Encoding Unit (IEU, Matrix-Vector Multiplication Unit

(MxV), MxV Controller and Activation Pipeline (AP) as

shown in Fig. 2. IEU computes the absolute difference between

2

DDR3

DeltaRNNARM CPU

Filter

Bank

PmodMIC3
GPIO

Zynq-7100 SoC

SPI Master

DMA 0 DMA 1

UART

FIFO

GPIO-to-

AXIS

Converter

S
P
I

A
u
d
io

F
C
 o

u
tp

u
ts

R
N

N
 I

n
p
u
ts

R
N

N
 I

n
p
u
ts

F
C
 O

u
tp

u
ts

PC

FC

Layer

(a)

DeltaRNN

Cochlea
AMS1c

GPIO

Zynq-7100 SoC

Cochlea
Interface

PCARM CPU

DDR3

DMA 0

F
C
 o

u
tp

u
ts

F
C
 o

u
tp

u
ts

UART

FC
Layer

(b)

Fig. 3: System architecture of the microphone setup (a) and

of the DAS cochlea setup (b).

input vectors of the current and the previous timesteps and

stores results in a delta vector (DV). Below-threshold elements

of the DV are then zero-out. MxV with its controller executes

MxV on the DVs and weight matrices (W) fetched from the

on-chip BRAM. MxV accumulation results are finally sent

to AP to compute non-linear functions including LUT-based

sigmoid and tanh, element-wise multiplication and addition.

RNN activations are transferred to both IEU and DRAM.

The IEU uses current activations to calculate DVs of the next

timestep. The ARM core fetches activations from DRAM to

calculate FC layers and the softmax function [18].

B. System Integration

1) Microphone Setup: In the microphone setup architecture

shown in Fig. 3a, an SPI master core is used to receive

20 kHz audio samples from the PmodMic3. Audio samples are

transferred to the ARM core through DMA0 to compute filter

bank features, which are then fed to the DeltaRNN accelerator

through DMA1. The ARM core computes FC layers and

softmax function using DeltaRNN outputs to generate final

classification results that are then sent to a PC through the

serial port. There are two clock domains in this setup: CLK0

for the DeltaRNN is set at either 1 MHz or 100 MHz depending

on the required latency or throughput while the other modules

on the FPGA are driven by CLK1 that is fixed at 100 MHz to

avoid high latency of data transfer among modules. As shown

in Fig. 4a, the setup is implemented on a Zynq Mini-Module

Plus (MMP) board and the PmodMic3 is connected to GPIO

pins on the baseboard.

It takes 4 steps (normalization, feature extraction, GRU,

FC) for the microphone setup to generate classification results.

The setup supports the following two modes. Low Latency

Mode (LL): After normalization of a frame batch (8 frames),

remaining steps are executed in sequence for every single

frame. A new classification result is generated per frame to

achieve relatively low latency; however, the RNN compu-

tations on the frames are not pipelined. High Throughput

Mode (HT): After normalization, the 8 frame vectors in a

batch are concatenated into a single vector to be processed

by the remaining steps. In this way, computation of a batch

is pipelined in DeltaRNN so that relatively higher throughput

can be achieved but with increased latency.

2) Cochlea Setup: Figure 3b shows the architecture of

cochlea setup, in which the cochlea interface is implemented to

(a) (b)

Fig. 4: Demo setup with PmodMIC3 (a) and with DAS cochlea

(board on the right) (b).

TABLE I: PER and LER of the microphone setup models

(NORM and AUG denote the normalization and augmentation

methods respectively). The results of each model are from the

epoch that gives the best LER NT.

PER T LER T PER AT LER AT PER NT LER NT

None 13.17% 4.42% - - 14.29% 4.49%

NORM 6.99% 2.35% - - 17.86% 5.12%

AUG - - 13.31% 5.18% 17.24% 4.00%

Both - - 6.19% 2.31% 3.45% 0.67%

count the asynchronous events from the DAS. Spike counter

features are transferred directly to DeltaRNN and the GRU

layer activations are sent to the ARM CPU through DMA0 to

carry out the same classification steps as in the microphone

setup. There is only one clock domain at 100 MHz for all

modules in the cochlea setup. Figure 4b shows the setup is

implemented on the same board which is interfaced to the

cochlea board through a AER CAVIAR connector.

IV. EXPERIMENTAL RESULTS

A. Accuracy

Accuracy of 4 models for the microphone setup are evalu-

ated on the original TIDIGITS testset (T), augmented testset

(AT) and the new testset (NT). Each of the 4 models is

trained for 100 epochs with or without real-time normalization

or augmentation. Results in Table I show that the real-time

normalization method helped to reduce the Phrase Error Rate

(PER) and the Label Error Rate (LER) on the testsets of both

the original dataset and the augmented dataset. When training

the model with the combination of the normalization method

and augmentation, the best error rates are achieved on both T

and NT testsets. This model also shows the best performance

over the other models in real-world demonstrations. Error rates

of the model trained on the cochlea dataset TIDIGITS_das

are shown in Table II. The higher error rates could be attributed

to two reasons. One, the difficulty in using spikes from

cochlea [22]. Two, the error rates in the case of cochlea are

evaluated on a noisy test set rather than the clean test set (T)

as in the case of the microphone setup. A previous work [22]

reports 18% LER on recognizing single digits trained on N-

TIDIGITS, a spike dataset recorded by a silicon cochlea,

suggesting that it is more difficult to get similar error rates

for continuous speech recognition using these features.

3

TABLE II: PER and LER of the model trained on the

TIDIGITS_das dataset. The results are from the epoch that

gives the best LER.

PER LER

TIDIGITS_das 47.13% 21.28%

TABLE III: End-to-end latency breakdown and throughput in

frame-per-second (FPS) of the microphone setup.

Platform Mic LL Mic LL Mic HT Mic HT

CLK0 (MHz) - 1 100 1 100

Batch Size - 1 1 8 8

NORM (ms) ARM 1.56 1.57 1.38 1.38

FE (ms) ARM 2.60 2.64 20.91 20.91

GRU (ms) DeltaRNN 0.43 0.01 0.47 0.01

FC (ms) ARM 2.88 2.88 23.00 23.00

Hardware (ms) ARM+DeltaRNN 7.47 7.10 45.76 45.30

Hardware FPS ARM+DeltaRNN 133.9 140.8 174.8 176.6

Framing (ms) - 95 95 95 95

Total (ms) ARM+DeltaRNN 102.47 102.10 140.76 140.30

TABLE IV: End-to-end latency breakdown of the cochlea

setup with DeltaRNN running at 100 MHz.

Platform Cochlea

CLK0 (MHz) - 100

Batch Size - 1

GRU (ms) DeltaRNN 0.02

FC (ms) ARM 2.88

Hardware (ms) ARM+DeltaRNN 2.90

Hardware FPS ARM+DeltaRNN 344.8

Framing (ms) - 5

Total (ms) ARM+DeltaRNN 7.90

B. Latency and Throughput

Table III shows the latencies of the 4 steps of the micro-

phone pipeline and the effective throughput of the hardware.

The total system latency is given by the sum of the hardware

latency and the framing latency. To run this system in real-

time, the hardware throughput should be higher than 100

FPS given the 10 ms frame stride. Since the system steps

are not pipelined from end to end, the hardware FPS is the

reciprocal of the hardware latency. The maximum hardware

throughput of 176.6 FPS is achieved in HT mode with CLK0 =

100 MHz and the processing by the DeltaRNN of the 8 frames

in 0.01 ms 1. In real-world demonstrations, the LL mode at

1 MHz is used to reduce power consumption. Table IV shows

the latency and throughput numbers of the cochlea setup.

Lower latency is achieved by the cochlea setup without feature

extraction on ARM. Spike features generated by the counters

of the cochlea interface are fed to the DeltaRNN through

an AXIS port and the latency of the interface is negligible.

The cochlea setup achieves hardware latency of 2.90 ms and

hardware throughput of 344.8 FPS.

1DeltaRNN throughput is throttled by the throughput of the DMA at
100 MHz

TABLE V: System power breakdown (*measured by a wall

plug power meter)

Setup Mic LL Mic LL Cochlea

CLK0 (MHz) 1 MHz 100 MHz 100 MHz

Baseboard + Fan + Mic* 8.1 W 8.1 W 8.1 W

ARM 1.58 W 1.59 W 1.58 W

FPGA 0.07 W 2.86 W 2.78 W

DAS ASIC - - 22 mW

Static Power 0.25 W 0.29 W 0.29 W

Wall Plug Power* 11.6 W 13.7 W 13.7 W

C. System Power Measurements

Power measurements are shown in Table V. The total power

consumption of the Zynq-7100 SoC and the baseboard is

measured by using a wall plug power meter. The power of the

cochlea ASIC is extracted from [19]. Other power numbers

are estimated using the Xilinx Power Estimator with 0.5

switching rate. The minimum wall plug power of 11.6 W is

achieved by the Mic LL setup running at 1 MHz. At this clock

frequency, the FPGA consumes only 70 mW, which includes

20 mW from the DeltaRNN, 20 mW from BRAM blocks and

30 mW from other modules. The hardware power efficiency

of the Mic LL setup is 11.5 FPS/W while the cochlea

setup achieves 25.2 FPS/W. The main bottleneck of the power

efficiency is the relatively low throughput of ARM core and the

excessive power of the baseboard. Considering only the FPGA

in Mic LL setup at 1 MHz, the power efficiency is 33 kFPS/W

at 0.07 W; while an Nvidia GTX 1080 achieves 2 kFPS/W at

48 W measured by running the same demo in PyTorch 1.0.1

with CUDA 10 and CuDNN 7.4.2. An Intel Core i7-5820K

CPU is used for feature extraction in the measurement.

V. CONCLUSION

This paper presents a real-time continuous ASR delta RNN-

based hardware system that can be interfaced to either PMOD

microphones or the DAS spiking cochlea. The DeltaRNN

accelerator on FPGA consumes only 70 mW and can process

each feature frame in microseconds therefore, this system is

suitable for IoT applications. For better ASR accuracy of

the system in real-world conditions, the training dataset was

augmented with noise samples of different SNRs. The paper

also describes the first online ASR hardware DNN system that

is interfaced to the DAS. The system allows one to prototype

ASR networks which can then be made into a low-power ASIC

with either a front-end filter bank for voice activity detection

(VAD) or word recognition as in [27], [28] or an ultra low-

power spiking cochlea [29] for VAD [8]. The DeltaRNN can

also be added to the real-time portable wireless acoustic multi-

microphone platform [30] useful for source separation and

ASR.

VI. ACKNOWLEDGEMENT

We gratefully acknowledge the Robotics and Technology

of Computers Lab, University of Seville for providing the

baseboard for Zynq MMP.

4

REFERENCES

[1] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural

Comput., vol. 9, no. 8, pp. 1735–1780, Nov. 1997. [Online]. Available:
http://dx.doi.org/10.1162/neco.1997.9.8.1735

[2] K. Cho, B. van Merriënboer, Ç. Gülçehre, D. Bahdanau, F. Bougares,
H. Schwenk, and Y. Bengio, “Learning phrase representations
using RNN Encoder–Decoder for statistical machine translation,” in
Proceedings of the 2014 Conference on Empirical Methods in Natural

Language Processing (EMNLP), Oct. 2014, pp. 1724–1734. [Online].
Available: http://www.aclweb.org/anthology/D14-1179

[3] S. Han, J. Kang, H. Mao, Y. Hu, X. Li, Y. Li, D. Xie, H. Luo, S. Yao,
Y. Wang et al., “ESE: Efficient speech recognition engine with sparse
LSTM on FPGA,” in Proceedings of the 2017 ACM/SIGDA International

Symposium on Field-Programmable Gate Arrays. ACM, 2017, pp. 75–
84.

[4] A. X. M. Chang and E. Culurciello, “Hardware accelerators for recurrent
neural networks on FPGA,” in 2017 IEEE International Symposium on

Circuits and Systems (ISCAS), ser. ISCAS ’17, 2017.

[5] M. Lee, K. Hwang, J. Park, S. Choi, S. Shin, and W. Sung,
“FPGA-based low-power speech recognition with recurrent neural
networks,” CoRR, vol. abs/1610.00552, 2016. [Online]. Available:
http://arxiv.org/abs/1610.00552

[6] Y. Guan, H. Liang, N. Xu, W. Wang, S. Shi, X. Chen, G. Sun, W. Zhang,
and J. Cong, “FP-DNN: An automated framework for mapping deep
neural networks onto FPGAs with RTL-HLS hybrid templates,” in 2017

IEEE 25th Annual International Symposium on Field-Programmable

Custom Computing Machines (FCCM), April 2017, pp. 152–159.

[7] D. Shin, J. Lee, J. Lee, and H. Yoo, “14.2 dnpu: An 8.1tops/w reconfig-
urable cnn-rnn processor for general-purpose deep neural networks,” in
2017 IEEE International Solid-State Circuits Conference (ISSCC), Feb
2017, pp. 240–241.

[8] M. Yang, C. Yeh, Y. Zhou, J. P. Cerqueira, A. A. Lazar, and M. Seok, “A
1µW voice activity detector using analog feature extraction and digital
deep neural network,” in 2018 IEEE International Solid - State Circuits

Conference - (ISSCC), Feb 2018, pp. 346–348.

[9] A. Mishra, E. Nurvitadhi, J. J. Cook, and D. Marr, “WRPN: Wide
reduced-precision networks,” in International Conference on Learning

Representations, 2018.

[10] I. Hubara, M. Courbariaux, D. Soudry, R. El-Yaniv, and Y. Bengio,
“Binarized neural networks,” in Advances in Neural Information Pro-

cessing Systems 29, D. D. Lee, M. Sugiyama, U. V. Luxburg, I. Guyon,
and R. Garnett, Eds. Curran Associates, Inc., 2016, pp. 4107–4115.

[11] J. Ott, Z. Lin, Y. Zhang, S. Liu, and Y. Bengio, “Recurrent neural
networks with limited numerical precision,” CoRR, vol. abs/1608.06902,
2016.

[12] E. Stromatias, D. Neil, M. Pfeiffer, F. Galluppi, S. B. Furber, and
S.-C. Liu, “Robustness of spiking deep belief networks to noise and
reduced bit precision of neuro-inspired hardware platforms,” Frontiers

in neuroscience, vol. 9, p. 222, 2015.

[13] S. Han, H. Mao, and W. J. Dally, “Deep compression: Compressing
deep neural network with pruning, trained quantization and huffman
coding,” CoRR, vol. abs/1510.00149, 2015. [Online]. Available:
http://arxiv.org/abs/1510.00149

[14] Z. Wang, J. Lin, and Z. Wang, “Accelerating recurrent neural networks:
A memory-efficient approach,” IEEE Transactions on Very Large Scale

Integration (VLSI) Systems, vol. 25, no. 10, pp. 2763–2775, Oct 2017.

[15] S. Wang, Z. Li, C. Ding, B. Yuan, Q. Qiu, Y. Wang, and Y. Liang, “C-
lstm: Enabling efficient lstm using structured compression techniques
on fpgas,” in Proceedings of the 2018 ACM/SIGDA International

Symposium on Field-Programmable Gate Arrays, ser. FPGA ’18.
New York, NY, USA: ACM, 2018, pp. 11–20. [Online]. Available:
http://doi.acm.org/10.1145/3174243.3174253

[16] D. Neil, J. Lee, T. Delbrück, and S. Liu, “Delta networks for
optimized recurrent network computation,” in Proceedings of the 34th

International Conference on Machine Learning, ICML 2017, Sydney,

NSW, Australia, 6-11 August 2017, 2017, pp. 2584–2593. [Online].
Available: http://proceedings.mlr.press/v70/neil17a.html

[17] P. O’Connor and M. Welling, “Sigma delta quantized networks,” arXiv

preprint arXiv:1611.02024, 2016.

[18] C. Gao, D. Neil, E. Ceolini, S.-C. Liu, and T. Delbruck, “DeltaRNN: A
power-efficient recurrent neural network accelerator,” in Proceedings of

the 2018 ACM/SIGDA International Symposium on Field-Programmable

Gate Arrays, ser. FPGA ’18. New York, NY, USA: ACM, 2018, pp. 21–
30. [Online]. Available: http://doi.acm.org/10.1145/3174243.3174261

[19] S. Liu, A. van Schaik, B. A. Minch, and T. Delbruck, “Asynchronous
binaural spatial audition sensor with 2× 64× 4 channel output,” IEEE

Transactions on Biomedical Circuits and Systems, vol. 8, no. 4, pp.
453–464, Aug 2014.

[20] M. Abdollahi and S.-C. Liu, “Speaker-independent isolated digit recog-
nition using an AER silicon cochlea,” in Proceedings of the Biomedical

Circuits and Systems Conference (BIOCAS), 2011, pp. 269–272.
[21] J. Anumula, D. Neil, T. Delbruck, and S.-C. Liu, “Feature representa-

tions for neuromorphic audio spike streams,” Frontiers of Neuroscience,
2018.

[22] D. Neil and S. Liu, “Effective sensor fusion with event-based sensors
and deep network architectures,” in 2016 IEEE International Symposium

on Circuits and Systems (ISCAS), May 2016, pp. 2282–2285.
[23] I. Kiselev, D. Neil, and S.-C. Liu, “Event-driven deep neural network

hardware system for sensor fusion,” in 2016 IEEE International Sym-

posium on Circuits and Systems (ISCAS), 2016, pp. 2495–2498.
[24] A. Graves, S. Fernández, F. Gomez, and J. Schmidhuber, “Connection-

ist temporal classification: labelling unsegmented sequence data with
recurrent neural networks,” in Proceedings of the 23rd international

conference on Machine learning. ACM, 2006, pp. 369–376.
[25] R. G. Leonard and G. Doddington, “Tidigits speech corpus,” Texas

Instruments, Inc, 1993.
[26] E. Vincent, S. Watanabe, A. A. Nugraha, J. Barker, and R. Marxer, “An

analysis of environment, microphone and data simulation mismatches in
robust speech recognition,” Computer Speech & Language, 2016.

[27] K. Badami, S. Lauwereins, W. Meert, and M. Verhelst, “Context-aware
hierarchical information-sensing in a 6µW 90nm CMOS voice activity
detector,” in 2015 IEEE International Solid-State Circuits Conference -

(ISSCC) Digest of Technical Papers, Feb 2015, pp. 1–3.
[28] M. Price, J. Glass, and A. P. Chandrakasan, “A scalable speech rec-

ognizer with deep-neural-network acoustic models and voice-activated
power gating,” in 2017 IEEE International Solid-State Circuits Confer-

ence (ISSCC), Feb 2017, pp. 244–245.
[29] M. Yang, C. Chien, T. Delbruck, and S. Liu, “A 0.5v 55 µW 64 × 2

channel binaural silicon cochlea for event-driven stereo-audio sensing,”
IEEE Journal of Solid-State Circuits, vol. 51, no. 11, pp. 2554–2569,
Nov 2016.

[30] I. Kiselev, E. Ceolini, D. Wong, A. d. Cheveigne, and S.-C. Liu,
“WHISPER: Wirelessly synchronized distributed audio sensor platform,”
in 2017 IEEE 42nd Conference on Local Computer Networks Workshops

(LCN Workshops), Oct 2017, pp. 35–43.

5

