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Abstract. In this paper, we present an on-line semi-supervised algo-
rithm for real-time separation of speech and background noise. The
proposed system is based on Nonnegative Matrix Factorization (NMF),
where fixed speech bases are learned from training data whereas the noise
components are estimated in real-time on the recent past.

Experiments with spontaneous conversational speech and real-life non-
stationary noise show that this system performs as well as a supervised
NMF algorithm exploiting noise components learned from the same noise
environment as the test sample. Furthermore, it outperforms a supervised
system trained on different noise conditions.

1 Introduction

Isolating speech from environmental noise remains a challenging problem, espe-
cially in the presence of highly non-stationary noise such as background speech
or music. On the other hand, a great variety of applications could benefit from
a robust separation of speech, such as telephony, automatic speech recognition
or hearing aids. In the case of telephony, additional constraints have to be taken
into account, since usually only one microphone is available and the separation
has to be performed in a real-time, on-line framework with a very small latency
between audio input and output, in order to preserve natural communication.

One of the most popular approaches for single-channel source separation is
Nonnegative Matrix Factorization (NMF) [3]. It has been shown efficient for
speech separation [14,13], when both speech and noise models where learned
prior to the separation. In [9], a variant of this algorithm is used, in which only
one source is learned, the other being estimated from the mixture. However, this
estimation requires off-line processing, where the whole signal is known.

Some studies have considered adapting the NMF algorithm to an incremental,
on-line framework. In [11], pattern learning from large amounts of audio data
using an on-line version of (convolutive) NMF is discussed. In [1], NMF is used
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to decompose a sequence formed by the new observation and the basis vectors,
which are supposed to encompass the past observations. The approach of [12]
and [6] first optimizes the activations for each coming observation, with fixed
basis vectors, and then updates the bases based on the past activations. Still, we
are not aware of a study on speech separation using on-line NMF algorithms.

In this work, we exploit a simple sliding window approach, where a classic
NMF decomposition is performed on the recent past and the noise components
are adapted in real-time to the current conditions. We test this semi-supervised
on-line NMF method on a speech separation task with realistic data. Results
show that the obtained system performs as well as a supervised NMF trained on
the same noise environment, with a setting allowing for real-time capabilities.

After presenting the general NMF method in Section 2, we outline the pro-
posed on-line NMF algorithms in Section 3. Then, experiments are detailed in
Section 4, before drawing some conclusions.

2 Nonnegative Matrix Factorization (NMF) for Source
Separation

Given a matrix of nonnegative data V ∈ R
m×n
+ , NMF aims at finding the two

nonnegative matrices, W ∈ R
m×r
+ and H ∈ R

r×n
+ , which minimize the error

D(V,WH), where D is some divergence measure. In our audio source sepa-
ration application, V is the original magnitude spectrogram. The columns of
W then represent characteristic spectra of the recording and H contains the
corresponding ‘activation’ values of these basis spectra.

Many algorithms for performing this optimization rely on multiplicative up-
date rules, in order to maintain the nonnegativity of the matrices W and H. For
example, with the generalized Kullback-Leibler divergence:

DKL(X,Y) =
∑

i,j

xi,j log
xi,j

yi,j
− xi,j + yi,j , (1)

the update rules proposed by [5] are as follows:

W←W ·
V

WHHT

1HT
(2)

H← H · W
T V

WH

WT
, (3)

where X ·Y and X
Y denote element-wise operations and 1 is a matrix of ones.

Assuming that each source is described by a set of columns of W with corre-
sponding rows in H, separated signals can then be reconstructed as follows. Let
Wk be the sub-matrix containing the columns of W corresponding to a source k,
and let Hk be the according activation sub-matrix. The magnitude spectrogram
of the isolated source Vk is obtained by the Wiener-like equation:

Vk = V · WkHk

WH
. (4)

This spectrogram is then inverted using the phase of the original mixture.
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3 On-Line NMF

In this paper, on-line NMF refers to a sliding window method which decomposes
the spectrum of the recent past into matrices W and H as detailed above. The
sliding window contains the recent past spectra of the signal. Once a new frame
is received, the sliding window is shifted by one frame. The activation matrix
H is also shifted and the new column is initialized randomly. The matrices are
then updated using a fixed number of NMF iterations. By using a sliding window
approach, context information (in particular, the activations of the older frames)
is available for this update so that a low number of iterations is sufficient.

3.1 On-Line Supervised NMF

In order to exploit the NMF decomposition for a practical source separation
task, one needs to determine the source corresponding to each part of the de-
composition. For our supervised algorithm, we assume that the sources which
are to be separated are known in advance. This can correspond, for example, to
the case of a teleconference, where several known people can talk simultaneously.
We can then perform a learning of the characteristics of each isolated source.
Hence, a spectral basis matrix is created for each considered source, using the
(unsupervised) NMF decomposition of the learning data, as in [8].

For the separation phase, the W matrix is built by concatenating the basis
matrices of the isolated sources. This matrix is kept constant and only the acti-
vation matrix H is updated using eq. (2). This particular case is straightforward
to implement in an on-line system. This is because the update rule for each
column h:,t of H can be rewritten as:

h:,t ← h:,t ·
WT v:,t

Wh:,t

WT1:,t
. (5)

Thus, each column of the activation matrix can be updated independently of
the others, using only the current observation spectrum v:,t. The obtained fac-
torization is then equivalent to an off-line version of supervised NMF.

3.2 On-Line Semi-supervised NMF

In the semi-supervised version of the on-line NMF algorithm, we consider that
one source is unknown (modeling for example noise, or a new speaker). Thus,
the spectral basis matrix W is no longer fully determined in advance. In the
separation phase, the columns corresponding to the unknown source are initial-
ized randomly, and updated with each new frame, following eq. (2). The other
columns are kept constant.

With this semi-supervised algorithm, it is no longer possible to process each
frame independently of the others, since the two matrices W and H depend on
each other. Thus, the length of the sliding window — and thus of the amount of
context information considered — does have an impact on the decomposition.
Intuitively, a meaningful estimation of the ‘noise spectral basis’, i.e. the non-
constant part of W , requires a whole sequence of observations.
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3.3 Real-Time Implementation

For a real-time implementation of the on-line semi-supervised NMF, another im-
portant parameter is the delay parameter. It denotes the position in the sliding
window of the frame to be output. If this parameter is equal to 0, only the past
context is used for the NMF decomposition. By increasing this value, later ob-
servations can be considered. Moreover, the precision of the activations depends
not only on the estimation of the matrix W (which can be controlled by the
length of the sliding window), but also on the number of iterations that have
been used for computation, which increases with the delay parameter.

The total latency L introduced by the system (neglecting computation time)
is then determined by the frame size s and the delay parameter d, thanks to
the relation: L = (d + 1)s. Note that the delay parameter is not relevant for
the supervised algorithm, since the sliding window can be limited to the single
current frame. Our implementation of the systems exploits the openSMILE [4]
framework, which allows for an efficient incremental processing of audio data.

4 Experimental Evaluation

4.1 Experimental Settings

We evaluate the system on speech that was artificially mixed with real-life noise.
Speech was taken from the Buckeye database [7], which contains recordings of
interviews. The speech is highly spontaneous and contains a variety of non-
linguistic vocalizations. Thus, we believe that this corpus is better suited for
evaluation of speech separation in real-life conditions than, e. g., the popular
TIMIT corpus of read speech, which is characterized by lower variation. We
subdivided the Buckeye recording sessions, each of which is approximately 10 min
long, into turns by cutting whenever the subject’s speech was interrupted by the
interviewer, or by a silence of more than 0.5 s length. Only the subject’s speech
is used. In these experiments, we only exploit turns of at least 3 s.

The test signals were then corrupted using noise recordings from the official
corpus provided for the 2011 PASCAL CHiME Challenge [2]. These contain
genuine recordings from a domestic environment obtained over a period of several
weeks in a house with two small children. The noise is highly instationary due
to abrupt changes such as appliances being turned on/off, impact noises such as
banging doors, and interfering speakers [2]. All these data are publicly available1.
The noise mixed with the speech was randomly drawn from the six hours of noise
recordings in the database. We intentionally do not scale speech or noise to attain
a distribution of noise levels corresponding to a real-life environment.

The sampling rate of the recordings is 16 kHz and the tested systems employ
32 ms analysis frames, with a 50 % overlap. In our experiments, we used 12
randomly chosen segments of speech, between 3 s and 20 s long. For each speech
sample, a training sequence is created by concatenating 20 other speech segments
from the same speaker, yielding lengths between 1.5 min and 5.5 min.
1 http://spandh.dcs.shef.ac.uk/projects/chime/PCC/datasets.html

http://spandh.dcs.shef.ac.uk/projects/chime/PCC/datasets.html
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We constructed two different noise training sequences for supervised NMF.
The first was created by concatenating 1024 short segments (0.5 s) drawn from
diverse locations in the CHiME noise recordings. Hence, this training sequence
contains most of the noise sources that can be found in the database. In order to
assess the generalization property of the system to different types of noise, we also
constructed another 17 min training sequence, composed of noise recordings from
the SiSEC 2010 noisy speech database2 as well as some extract of the SPIB noise
database3 and some street noise from the soundcities website4. These sequences
are referred to as matched and mismatched training noise.

Several speech separation systems are tested here. All of them exploit constant
basis components for speech, previously learned from the training sequence. The
first two systems exploit the on-line supervised NMF algorithm presented in
subsection 3.1, with noise components learned respectively from the matched and
mismatched training noise. For these systems, the numbers of NMF components
for speech and noise are equal to cs = cn = 50, which has been empirically found
satisfactory for the speaker separation task. All the training processes use 256
iterations. The other system uses the on-line semi-supervised NMF algorithm
of subsection 3.2, with cs = 50 speech components. The tested values of the
different parameters are displayed in Table 1. This values were chosen to maintain
a limited computational complexity.

Table 1. Tested values of the parameters for the on-line semi-supervised NMF system

Parameter Tested Values
cs number of speech components {50}
cn number of noise components {1,2,4,8,12,16}
� sliding window length {2,4,6,8,12,16,20,25,30}
d delay {0,1,2,3,4,5,6,7}
n number of optimization iterations {1,2,4,8,16,32,64}

Several evaluation criteria were computed from the separated speech: the
Source to Distortion Ratio (SDR), the Source to Interference Ratio (SIR) and
the Source to Artifact Ratio (SAR) [10]. For comparison of the on-line approach,
we consider an ‘optimal’ off-line version of the semi-supervised NMF algorithm,
which outperforms supervised NMF on our test data. For this system, 256 it-
erations are used and the number of noise components was chosen from the
set cn ∈ {1, 2, 4, 8, 12, 16, 20, 25, 30, 35, 40, 45, 50}. The value cn = 30 is selected,
maximizing the average SDR in the test database. This optimal SDR is equal to
5.2 dB, which represents the best result that can be achieved with basic NMF
speech separation algorithms on our test data.
2 http://sisec2010.wiki.irisa.fr/tiki-index.php?
page=Source+separation+in+the+presence+of+real-world+background+noise

3 http://spib.rice.edu/spib/select_noise.html
4 http://www.soundcities.com

http://sisec2010.wiki.irisa.fr/tiki-index.php?page=Source+separation+in+the+presence+of+real-world+background+noise
http://sisec2010.wiki.irisa.fr/tiki-index.php?page=Source+separation+in+the+presence+of+real-world+background+noise
http://spib.rice.edu/spib/select_noise.html
http://www.soundcities.com
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4.2 Results

The results obtained by the supervised NMF systems are displayed in Fig. 1.
It can be observed that for both systems, the SIR increases with the number
of iterations. However, this reduction of the interferences is at the cost of more
artifacts, since the SAR concurrently decreases. The optimal trade-off is here
realized for a single iteration, yielding a 4.2 dB SDR, against 0.6 dB for the
original corrupted speech. Although the optimal number of iterations may be
dependent on the data; this shows that a very small number of iterations is
sufficient for a satisfactory separation. Thus, the obtained complexity is very
low, achieving a real-time factor of 2 % on a 3.4 GHz, 64 bits CPU.

Fig. 1. Average source separation criteria (dB) for the supervised NMF systems, trained
on the matched and mismatched noise

Our results also show the importance of an adequate noise model for the sep-
aration. Indeed, the supervised NMF systems are outperformed by the off-line
semi-supervised algorithm, whose noise spectra seem to fit the observations even
better, probably since they are estimated directly on each test sample. Further-
more, whereas the SARs of both supervised systems are roughly equivalent, the
‘matched’ noise training induces significantly higher SIRs (by over 2 dB) and
thus a better separation quality.

Fig. 2 to 4 present a few of the numerous results of the on-line semi-supervised
NMF system. The best SDR is equal to 4.4 dB that is slightly better than the
result obtained with the supervised NMF, even with the ‘matched’ noise training.
This shows the efficiency of the proposed method to adapt the noise model to
the environment in an on-line framework.

The best score is obtained with the parameters cn = 8, � = 20, d = 0 and
i = 1 (see Table 1). Contrarily to the supervised case, Fig. 2 shows a degradation
of the SIR when the number of iterations increases. This can be due to an
‘overfitting’ phenomenon, where the updated components tend to model speech
as well as noise. One can see in Fig. 3 that, with a larger sliding window, the SIR
decreases while the SAR is improved. This can be explained by the fact that the
adaptation to the environment is then a bit less precise, but it is more robust to
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Fig. 2. Criteria (dB) as a function of i
for constant cn = 8, � = 20 and d = 0

Fig. 3. Criteria (dB) as a function of �
for constant cn = 8, d = 0 and i = 1

Fig. 4. Criteria (dB) as a function of cn

for constant l = 20, d = 0 and i = 1
Fig. 5. Criteria (dB) as a function of d
for constant cn = 8, � = 20 and i = 1

the overfitting phenomenon. The number of noise components seems to have the
opposite influence (Fig. 4). Hence, the values cn = 8 and � = 20, corresponding
to a sliding window of 336 ms, here constitute a reasonable trade-off.

The delay parameter has only a small influence, as shown in Fig. 5. Thus,
the value d = 0 can be chosen so as to minimize the latency of the system.
Furthermore, the best-performing setting has a relatively low complexity, since
only one iteration is performed for each frame. The real-time factor then is 20 %,
on the aforementioned CPU. Therefore, the system is fully real-time capable.

5 Conclusion

We presented a method for on-line speech separation exploiting a sliding window
version of the semi-supervised Nonnegative Matrix Factorization algorithm. An
extensive experimental study has been conducted, testing numerous parameter
combinations. Our results show that this system performs similarly to (and even
slightly better than) a supervised algorithm in which the noise components are
learned from the same environment as the test samples. Furthermore, the optimal
setting yields a system which is real-time capable on a recent PC.

Among the future works for further improvements of the system can be the in-
troduction of regularization terms such as priors [14] or sparsity and continuity



Real-Time Speech Separation by Semi-supervised NMF 329

constraints, in order to obtain more meaningful components in both learning
and separation phases without considerably affecting the complexity. The use of
a small-order Nonnegative Matrix Deconvolution algorithm [8] could also be ex-
plored, although at the cost of increased latency and computational complexity.
Finally, the observed behavior depending on the number of iterations motivates
introduction of relaxation [3] into the multiplicative update algorithm.
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