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Abstract. Fetal mid-pregnancy scans are typically carried out accord-
ing to fixed protocols. Accurate detection of abnormalities and cor-
rect biometric measurements hinge on the correct acquisition of clearly
defined standard scan planes. Locating these standard planes requires a
high level of expertise. However, there is a worldwide shortage of expert
sonographers. In this paper, we consider a fully automated system based
on convolutional neural networks which can detect twelve standard scan
planes as defined by the UK fetal abnormality screening programme. The
network design allows real-time inference and can be naturally extended
to provide an approximate localisation of the fetal anatomy in the image.
Such a framework can be used to automate or assist with scan plane
selection, or for the retrospective retrieval of scan planes from recorded
videos. The method is evaluated on a large database of 1003 volunteer
mid-pregnancy scans. We show that standard planes acquired in a clin-
ical scenario are robustly detected with a precision and recall of 69 %
and 80%, which is superior to the current state-of-the-art. Furthermore,
we show that it can retrospectively retrieve correct scan planes with an
accuracy of 71% for cardiac views and 81% for non-cardiac views.

1 Introduction

Abnormal fetal development is a leading cause of perinatal mortality in both
industrialised and developing countries [11]. Although many countries have intro-
duced fetal screening programmes based on mid-pregnancy ultrasound (US)
scans at around 20 weeks of gestational age, detection rates remain relatively
low. For example, it is estimated that in the UK approximately 26 % of fetal
anomalies are not detected during pregnancy [4]. Detection rates have also been
reported to vary considerably across different institutions [1] which suggests that,
at least in part, differences in training may be responsible for this variability.
Moreover, according to the WHO, it is likely that worldwide many US scans are
carried out by individuals with little or no formal training [11].
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Biometric measurements and identification of abnormalities are performed
on a number of standardised 2D US view planes acquired at different locations
in the fetal body. In the UK, guidelines for selecting these planes are defined in
[7]. Standard scan planes are often hard to localise even for experienced sonogra-
phers and have been shown to suffer from low reproducibility and large operator
bias [4]. Thus, a system automating or aiding with this step could have signifi-
cant clinical impact particularly in geographic regions where few highly skilled
sonographers are available. It is also an essential step for further processing such
as automated measurements or automated detection of anomalies.
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Fig. 1. Overview of the proposed framework for two standard view examples. Given a
video frame (a) the trained convolutional neural network provides a prediction and con-
fidence value (b). By design, each classifier output has a corresponding low-resolution
feature map (c). Back-propagating the error from the most active feature neurons
results in a saliency map (d). A bounding box can be derived using thresholding (e).

Contributions: We propose a real-time system which can automatically detect
12 commonly acquired standard scan planes in clinical free-hand 2D US data.
We demonstrate the detection framework for (1) real-time annotations of US
data to assist sonographers, and (2) for the retrospective retrieval of standard
scan planes from recordings of the full examination. The method employs a
fully convolutional neural network (CNN) architecture which allows robust scan
plane detection at more than 100 frames per second. Furthermore, we extend
this architecture to obtain saliency maps highlighting the part of the image that
provides the highest contribution to a prediction (see Fig. 1). Such saliency maps
provide a localisation of the respective fetal anatomy and can be used as starting
point for further automatic processing. This localisation step is unsupervised and
does not require ground-truth bounding box annotations during training.

Related Work: Standard scan plane classification of 7 planes was proposed
for a large fetal image database [13]. This differs significantly from our work
since in that scenario it is already known that every image is in fact a standard
plane whilst in video data the majority of frames does not show standard planes.
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A number of papers have proposed methods to detect fetal anatomy in videos of
fetal 2D US sweeps (e.g. [6]). In those works the authors were aiming at detect-
ing the presence of fetal structures such as the skull, heart or abdomen rather
specific standardised scan planes. Automated fetal standard scan plane detection
has been demonstrated for 1–3 standard planes in 2D fetal US sweeps [2,3,8].
Notably, [2,3] also employed CNNs. US sweeps are acquired by moving the US
probe from the cervix upwards in one continuous motion [3]. However, not all
standard views required to determine the fetus’ health status are adequately
visualised using a sweep protocol. For example, visualising the femur or the
lips normally requires careful manual scan plane selection. Furthermore, data
obtained using the sweep protocol are typically only 2–5 s long and consist of
fewer than 50 frames [3]. To the best of our knowledge, fetal standard scan plane
detection has never been performed on true free-hand US data which typically
consist of 10,000+ frames. Moreover, none of related works were demonstrated
to run in real-time, typically requiring multiple seconds per frame.

2 Materials and Methods

Data and Preprocessing: Our dataset consists of 1003 2D US scans of con-
sented volunteers with gestational ages between 18–22 weeks which have been
acquired by a team of expert sonographers using GE Voluson E8 systems. For
each scan a screen capture video of the entire procedure was recorded. Addition-
ally, the sonographers saved “freeze frames” of a number of standard views for
each subject. A large fraction of these frames have been annotated allowing us
to infer the correct ground-truth (GT) label. All video frames and images were
downsampled to a size of 225× 273 pixels.

We considered 12 standard scan planes based on the guidelines in [7]. In
particular, we selected the following: two brain views at the level of the ventricles
(Vt.) and the cerebellum (Cb.), the standard abdominal view, the transverse
kidney view, the coronal lip, the median profile, and the femur and sagittal
spine views. We also included four commonly acquired cardiac views: the left
and right ventricular outflow tracts (LVOT and RVOT), the three vessel view
(3VV) and the 4 chamber view (4CH)1. In addition to the labelled freeze frames,
we sampled 50 random frames from each video in order to model the background
class, i.e., the “not a standard scan plane” class.

Network Architecture: The architecture of our proposed CNN is summarised
in Fig. 2. Following recent advances in computer vision, we opted for a fully
convolutional network architecture which replaces traditional fully connected
layers with convolution layers using a 1× 1 kernel [5,9]. In the final convolutional
layer (C6) the input is reduced to K 13× 13 feature maps Fk, where K is the
number of classes. Each of these feature maps is then averaged to obtain the

1 A detailed description of the considered standard planes is included in the
supplementary material available at http://www.doc.ic.ac.uk/∼cbaumgar/dwnlds/
miccai2016/.

http://www.doc.ic.ac.uk/~cbaumgar/dwnlds/miccai2016/
http://www.doc.ic.ac.uk/~cbaumgar/dwnlds/miccai2016/
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input to the final Softmax layer. This architecture makes the network flexible
with regard to the size of the input images. Larger images will simply result in
larger feature maps, which will nevertheless be mapped to a scalar for the final
network output. We use this fact to train on cropped square images rather than
the full field of view which is beneficial for data augmentation.
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Fig. 2. Overview of the proposed network architecture. The size and stride of the con-
volutional kernels are indicated at the top (notation: kernel size/stride). Max-pooling
steps are indicated by MP (2 × 2 bins, stride of 2). The activation functions of all con-
volutions except C6 are rectified non-linear units (ReLUs). C6 is followed by a global
average pooling step. The sizes at the bottom of each image/feature map refer to the
training phase and will be slightly larger during inference due to larger input images.

A key aspect of our proposed network architecture is that we enforce a
one-to-one correspondence between each feature map Fk and the respective
prediction yk. Since each neuron in the feature maps Fk has a receptive field
in the original image, during training, the neurons will learn to activate only if
an object of class k is in that field. This allows to interpret Fk as a spatially
encoded confidence map for class k [5]. In this paper, we take advantage of this
fact to generate localised saliency maps as described below.

Training: We split our dataset into a test set containing 20 % of the subjects
and a training set containing 80 %. We use 10 % of the training data as validation
set to monitor the training progress. In total, we model 12 standard view planes,
plus one background class resulting in K = 13 categories.

We train the model using mini-batch gradient descent and the categori-
cal cross-entropy cost function. In order to prevent overfitting we add 50 %
dropout after the C5 and C6 layers. To account for the significant class imbal-
ance introduced by the background category, we create mini-batches with even
class-sampling. Additionally, we augment each batch by a factor of 5 by taking
225× 225 square sub-images with a random horizontal translation and trans-
forming them with a small random rotation and flips along the vertical axis.
Taking random square sub-images allows to introduce more variation to the
augmented batches compared to training on the full field of view. This helps to
reduce the overfitting of the network. We train the network for 50 epochs and
choose the network parameters with the lowest error on the validation set.
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Frame Annotation and Retrospective Retrieval: After training we feed the
network with video frames containing the full field of view (225× 273 pixels) of
the input videos. This results in larger category-specific feature maps of 13× 16.
The prediction yk and confidence ck of each frame are given by the prediction
with the highest probability and the probability itself.

For retrospective frame retrieval, for each subject we calculate and record the
confidence for each class over the entire duration of an input video. Subsequently,
we retrieve the frame with the highest confidence for each class.

Saliency Maps and Unsupervised Localisation: After obtaining the cat-
egory yk of the current frame X from a forward pass through the network, we
can examine the feature map Fk (i.e. the output of the C6 layer) corresponding
to the predicted category k. Two examples of feature maps are shown in Fig. 1c.
The Fk could already be used to make an approximate estimate of the location
of the respective anatomy similar to [9].

Here, instead of using the feature maps directly, we present a novel method
to obtain localised saliency with the resolution of the original input images. For

each neuron F
(p,q)
k at the location p, q in the feature map it is possible calculate

how much each original input pixel X(i,j) contributed to the activation of this
neuron. This corresponds to calculating the partial derivatives

S
(i,j)
k =

∂F
(p,q)
k

∂X(i,j)
,

which can be solved efficiently using an additional backwards pass through the
network. [12] proposed a method for performing this back-propagation in a guided

manner by allowing only error signals which contribute to an increase of the
activations in the higher layers (i.e. layers closer to the network output) to back-
propagate. In particular, the error is only back-propagated through each neuron’s
ReLU unit if the input to the neuron x, as well as the error in the higher layer
δℓ are positive. That is, the back-propagated error δℓ−1 of each neuron is given
by δℓ−1 = δℓσ(x)σ(δℓ), where σ(·) is the unit step function.

In contrast to [12] who back-propagated from the final output, in this work we
take advantage of the spatial encoding in the category specific feature maps and
only back-propagate the errors for the 10 % most active feature map neurons, i.e.
the spatial locations where the fetal anatomy is predicted. The resulting saliency
maps are significantly more localised compared to [12] (see Fig. 3).

These saliency maps can be used as starting point for various image analysis
tasks such as automated segmentation or measurements. Here, we demonstrate
how they can be used for approximate localisation using basic image processing.
We blur the absolute value image of a saliency map |Sk| using a 25× 25 Gaussian
kernel and apply a thresholding using Otsu’s method [10]. Finally, we compute
the minimum bounding box of the components in the thresholded image.
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Fig. 3. Saliency maps obtained from the input frame (LVOT class) shown on the left.
The middle map was obtained using guided back-propagation from the average pool
layer output [12]. The map on the right was obtained using our proposed method.

3 Experiments and Results

Frame Annotation: We evaluated the ability of our method to detect standard
frames by classifying the test data including the randomly sampled background
class. We report the achieved precision (pc) and recall (rc) scores in Table 1. The
lowest scores were obtained for cardiac views, which are also the most difficult
to scan for expert sonographers. This fact is reflected in the low detection rates
for serious cardiac anomalies (e.g. only 35 % in the UK).

Table 1. Precision pc = TP/(TP + FP ) and recall rc = TP/(TP + FN) for the
classification of the modelled scan planes. Background class: pc = 0.96, rc = 0.93.

view pc rc view pc rc view pc rc

Brain (Vt.) 0.96 0.90 Lips 0.85 0.88 LVOT 0.63 0.63

Brain (Cb.) 0.92 0.94 Profile 0.71 0.82 RVOT 0.40 0.46

Abdominal 0.85 0.80 Femur 0.79 0.93 3VV 0.46 0.60

Kidneys 0.64 0.87 Spine 0.51 0.99 4CH 0.61 0.74

[2] have recently reported pc/rc scores of 0.75/0.75 for the abdominal stan-
dard view, and 0.77/0.61 for the 4CH view in US sweep data. We obtained com-
parable values for the 4CH view and considerably better values for the abdom-
inal view. However, with 12 modelled standard planes and free-hand US data

Table 2. % of correctly retrieved frames for each standard view for all 201 test subjects.

view % view % view %

Brain (Vt.) 0.95 Lips 0.77 LVOT 0.73

Brain (Cb.) 0.89 Profile 0.76 RVOT 0.70

Abdominal 0.79 Femur 0.75 3VV 0.66

Kidneys 0.87 Spine 0.77 4CH 0.78
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Fig. 4. Retrieved standard frames (RET ) and GT frames annotated and saved by
expert sonographers for two volunteers. Correctly retrieved and incorrectly retrieved
frames are denoted with a green check mark or red cross, respectively. Frames with no
GT annotation are indicated. The confidence is shown in the lower right of each image.
The frames in (b) additionally contain the results of our proposed localisation (boxes).

our problem is significantly more complex. Using a Nvidia Tesla K80 graphics
processing unit (GPU) we were able to classify 113 frames per second (FPS) on
average, which significantly exceeds the recording rate of the ultrasound machine
of 25 FPS. We include an annotated video in the supplementary material.

Retrospective Frame Retrieval: We retrieved the standard views from videos
of all test subjects and manually evaluated whether the retrieved frames corre-
sponded to the annotated GT frames for each category. Several cases did not
have GTs for all views because they were not manually included by the sonogra-
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pher in the original scan. For those cases we did not evaluate the retrieved frame.
The results are summarised in Table 2. We show examples of the retrieved frames
for two volunteers in Fig. 4. Note that in many cases the retrieved planes match
the expert GT almost exactly. Moreover, some planes which were not annotated
by the experts were nevertheless found correctly. As before, most cardiac views
achieved lower scores compared to other views.

Localisation: We show results for the approximate localisation of the respective
fetal anatomy in the retrieved frames for one representative case in Fig. 4b and
in the supplemental video. We found that performing the localisation reduced
the frame rate to 39 FPS on average.

4 Discussion and Conclusion

We have proposed a system for the automatic detection of twelve fetal standard
scanplanes from real clinical fetal US scans. The employed fully CNN architec-
ture allowed for robust real-time inference. Furthermore, we have proposed a
novel method to obtain localised saliency maps by combining the information
in category-specific feature maps with a guided back-propagation step. To the
best of our knowledge, our approach is the first to model a large number of
fetal standard views from a substantial population of free-hand US scans. We
have shown that the method can be used to robustly annotate US data with
classification scores exceeding values reported in related work for some standard
planes, but in a much more challenging scenario. A system based on our app-
roach could potentially be used to assist or train inexperienced sonographers. We
have also shown how the framework can be used to retrieve standard scan planes
retrospectively. In this manner, relevant key frames could be extracted from a
video acquired by an inexperienced operator and sent for further analysis to an
expert. We have also demonstrated how the proposed localised saliency maps
can be used to extract an approximate bounding box of the fetal anatomy. This
is an important stepping stone for further, more specialised image processing.
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