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ABSTRACT

This paper describes a powerful, scalable,
reconfigurable computer called the PARTS engine. The
PARTS engine consists of 16 Xilinx 4025 FPGAs, and
16 one-megabyte SRAMs.  The FPGAs are connected
in a partial torus— each associated with two adjacent
SRAMs.   The SRAMs are tightly coupled to the
FPGAs so that all the SRAMs can be accessed
concurrently. The PARTS engine fits on a  standard
PCI card in a personal computer or workstation.

The first application implemented on the PARTS
engine is a depth from stereo vision algorithm that
computes 24 stereo disparities on 320 by 240 pixel
images at 42 frames per second. Running at this speed,
the engine is performing approximately 2.3 billion

RISC-equivalent operations per second, accessing
memory at a rate of 500 million bytes per second and
attaining throughput of over 70 million point ×
disparity measurements per second.

1. INTRODUCTION

This paper describes a powerful, scalable,
reconfigurable computer called the PARTS engine. The
acronym PARTS stands for “Programmable And
Reconfigurable Tool Set.”  Like most reconfigurable
computers, the PARTS engine can be optimized to
perform specialized computations efficiently, for
example real-time video or audio processing.

The PARTS engine brings together several critical
requirements for high-performance computations: high

Figure 1: The PARTS engine.



computational density, high memory bandwidth, and
high I/O bandwidth.  Arranged in a regular partial
torus, computations can be easily relocated to any site
in the array.  This flexibility makes it easy to mix and
match varied computations across the array.  Using the
locally distributed memory and relatively large FPGAs
arranged in a uniform torus configuration, the PARTS
engine has attained over 2.3 billion RISC-equivalent
operations per second, and memory bandwidth of 500
MB/sec.  With improved bus performance, the PARTS
architecture is expected to achieve over 10 billion
RISC-equivalent instructions and 2 GB/sec of memory
access.  The PARTS engine can attain I/O bandwidth of
2 GB/sec over external connectors.

The first large-scale application of the PARTS engine
is an implementation of the Woodfill and Zabih census
stereo-correspondence algorithm [ZabWoo94]. The
stereo algorithm takes in pairs of stereo images as
input, and produces images of scene depth as output.
At present, the implementation performs census
transforms and computes 24 stereo disparities (depth
values) on 320 by 240 images at 42 frames per second.

This paper describes the architecture of the PARTS
engine and introduces the recent census stereo-
correspondence algorithm.  Later sections show how
this algorithm has been mapped onto the PARTS
architecture and describe its operation.

1.1 Related work

A variety of reconfigurable engines have been
developed in recent years.  The PAM computer utilizes
a fixed-size mesh of 16 FPGAs with global memory on
a TURBOchannel adapter [Vuille95].  The Splash-2
processor uses a one-dimensional array of FPGA
elements with a crossbar on a VME bus [Arnold93].
The CHAMP-1 and CHAMP-2 engines are also
configured in a one-dimensional array with crossbar
global interconnect on a VME Bus [Box94].  The
Virtual Computer from VCC consists of a two-
dimensional array of FPGAs and interconnect chips,
with memory located at the edges of the array [Cass93].
Giga-Ops makes modules containing pairs of FPGAs
and RAM that mount on a VL-bus card, utilizing
several buses to communicate globally [Giga96].

The real-time stereo vision community has primarily
relied on special purpose hardware. Nishihara has
developed FPGA-based stereo vision systems on custom

boards using his Laplacian-of-Gaussian Sign-
Correlation algorithm [Nishih93].  These systems have
tended to compute selectable, sparse depth
measurements. A stereo vision algorithm based on
normalized correlation was implemented on a PAM
board [Fauger93]. Using the metric of points × disparity-
measures per second (PDS), this system achieved
theoretical performance of 7.4 million PDS (15 PDS for
left-right and right-left correspondence).  Kanade et al.
[Kanade96] at CMU describe a system believed to be the
world's fastest in 1995. This system is composed of five
VME boards, including three custom boards built up
from discrete components as well as a C40 DSP-array
board, and a real-time OS board.  It attains 30 hertz
performance on 200 by 200 images doing sum-of-
absolute-differences correlation. It uses a multi-camera
technique and performs 30 million PDS.  By
comparison, the reconfigurable PARTS engine
computing stereo depth as described below currently
performs 77 million PDS.

2. ARCHITECTURE OF THE PARTS
RECONFIGURABLE COMPUTER

The PARTS engine combines a homogeneous array of
Xilinx FPGAs with tightly-coupled local SRAM to
maximize memory bandwidth.  One of the major
objectives in building PARTS was to create a
homogeneous computer with a minimum number of
edge-conditions and heterogeneous resources.  Proper
handling of edge conditions usually entails special case
mechanisms.  Heterogeneous resources create
contention and bottlenecks for those resources.  By
distributing resources evenly throughout the PARTS
engine, for example SRAM resources, overall
throughput can be improved for general-purpose
computation. A homogeneous architecture also has the
benefit of translation invariance, whereby an FPGA
configuration can be translated to any of the FPGAs in
the array.

The PARTS engines have utilized a variety of Xilinx
chips ranging from the 4005H to the 4028EX.  The
4028EX engines approach half a million Xilinx gates
in capacity on a single PCI board.  A PCI host could
contain two or three PARTS boards, resulting in a
million configurable Xilinx gates in a single standard
personal computer.



Figure 2: Architecture of the PARTS engine array.

2.1 Toroidal topology for minimal edge
effects

The PARTS engine consists of a 4x4 extensible, two-
dimensional array of computing elements, shown in
Figure 2.  In addition there  is a PCI-bus interface chip,
a clock control chip, and a datapath chip.  All of these
chips are Xilinx FPGAs. The latter three chips
coordinate the flow of signals to the array.  The array
itself has horizontal connections that wrap around the
edge of the board.

The top and bottom connectors have 50-pins that are
suitable for extending the array, closing the torus, or
adding peripheral devices.  Closing the torus involves
attaching short 1-cm long jumper cables between
adjacent connectors.  Multiple PARTS boards can be
daisy-chained together to form larger tori, extending
the PARTS engine to 4 x 8, 4 x 12, etc. Special
applications can attach other ribbon cables and
peripheral devices that need special controls or signal
conditioning.

Current designs have pipelined data
paths between array chips,
including paths through jumpers,
that run at 33 MHz.  Limited
testing has been done at speeds of
up to 50 MHz with success,
confirming the ability of the
PARTS engine to provide high-
bandwidth communication for real-
time data intensive algorithms.

2.1.1 Superpin Buses

The array not only has nearest-
neighbor mesh connections, but
also a set of 8 “superpin”
connections on each side of each
computing element [HauBor94]. The
superpin connections make it
possible to go from one chip to the
next using a single connection
between adjacent pins.  Thus it is
possible to construct soft “pipeline
buses” or token rings or other

distribution networks without using many of the
routing resources on the computing elements.  So far
the superpins have been used mainly for local
interconnections between neighboring chips.  When
used for local communication, superpins are slower
than regular pins and can consume additional routing
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Figure 3: Superpin buses are shown between each
pair of adjacent chips in lines.



resources in the array chips.  New applications might
make use of pipelined busing using the superpin

interconnections.  Figure 3 shows how the superpins
are configured in the toroidal topology of the PARTS
engine.

Figure 4: Block diagram of the control chips for the
PARTS engine.

2.2 Standard PCI bus

The host computer talks directly over the PCI bus to a
Xilinx 4013E-2 on the PARTS engine.  This chip,
called PCI-32, controls all 32-bit accesses and is the
master chip for the PARTS engine.  The design for this
chip has been adapted from the Xilinx PCI design.
While the datapath chip controls data communications
between the array and the PCI bus, it also connects
directly to the 64-bit extension of the PCI bus.  The
datapath chip is programmed by the PCI-32 chip and
can be reconfigured dynamically as applications
require.  The current design uses a non-burst interface
for the PCI bus. A burst interface is being designed to
run at 33 MHz which should be capable of 130 MB/sec.

2.3 Distributed local SRAM

Graphics and video applications are large consumers of
memory bandwidth.  A single channel of video can

consist of 30 MB/sec of data or more.  If an application
needs to save intermediate results, memory bandwidth
requirements can be many times this number. In many
applications, such as stereo vision, two or more source
channels and a destination channel are needed;
memory bandwidth requirements can grow
correspondingly.

To satisfy this demand for memory bandwidth, the
PARTS engine is designed so that each FPGA can
control its own SRAM memory locally.  Each memory
is 8 bits wide and can operate at 33 MHz, providing a
peak external memory bandwidth of over 500 MB/sec.

2.4 Bootstrapping for flexibility on
PARTS engine

The PARTS engine requires a 3-level bootstrapping
process to completely configure the board. This
multistage process is useful because it provides run-
time flexibility in programming and accessing the
array.

Referring to Figure 4, the first bootstrapping step is to
program the PCI-32 chip, which controls the entire
PARTS engine. This chip can be programmed either
with a Xilinx Xchecker cable connected to the PARTS
engine, or with a serial PROM. The Xchecker method
makes it easy to modify a PCI design, download it, and
test the design  from a host PC.  Once the design of the
PCI-32 chip is complete, a serial PROM is configured
to program the PCI-32 chip automatically on power-up.

The second bootstrapping step is to configure the clock
control and datapath chips.  The clock control chip
distributes all clock and control signals to each chip in
the array, while the datapath chip handles the data I/O
to the array and also the 64-bit PCI bus extension.
Both of these chips are programmed by the PCI-32
chip.

Once the clock control and datapath chips are
configured, the third step of the bootstrapping process
is to use the clock control chip to configure the rest of
the array.  It passes configuration data to the array
directly, sending 16 bits at a time,  one bit to each of
the 16 array chips.  Once the array chips are
programmed, the clock control chip manages the clock
distribution to the array, along with any strobe or
control signals.  This three-step bootstrapping approach
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maintains maximum flexibility for the PARTS engine
while preserving a fast reconfiguration time of <50
msec for the array chips and <150 msec for the whole
engine.

2.5 Commercial tools for

configuring the PARTS engine

The development of new applications on the PARTS
engine has been predominantly limited by the speed of
designing configurations using the current tool set
Designs have been developed so far using commercial
schematic capture tools from Viewlogic to design each
FPGA, followed by place and route using the Xilinx
toolset.  Place-and-route times of four hours for each
chip have not been uncommon.

The Xilinx floorplanner tool has been very useful for
improving the performance of the PARTS control
chips.  The floorplanning process permits the grouping
of locally-related elements together to provide for
shorter communications paths and reduced routing
bottlenecks.  By preserving the hierarchy of the design
it is possible to maintain the structure down to the
layout level, and improve the resulting time delays
relative to a fully automatic placement.  It is not
uncommon for a floorplanned design to produce twice
the speed and density of an automatically placed
design.

3. THE CENSUS STEREO ALGORITHM

The initial application developed on the PARTS engine
is a census stereo disparity algorithm.  The census
stereo disparity algorithm takes a pair of images as
input and produces a dense depth map as output.

Sample input images and results are shown in Figure 5.
Darker objects are farther away, while bright objects
are closer.

The census stereo algorithm is a novel stereo
correspondence algorithm developed at Interval, and is
described in some detail in [ZabWoo94] and in
[Zabih94]. The problem of stereo correspondence
involves taking a stereo pair of images, and

determining for each pixel in one

image, the corresponding pixel in the other. If stereo
images are taken from two cameras oriented with
parallel principal axes, perpendicular to the line that
connects them, then points that are infinitely far away
will appear at the same relative position in both images,
while points that are nearby will have a considerable
horizontal translation from one image to the other.
Thus by determining correspondence between points in
the two images, this shift (or horizontal disparity) can
be measured, and in turn the depth of scene elements
can be estimated. The images captured by the cameras
are said to be in standard form if the following three
conditions are met: the imaging surfaces of the two
cameras lie on the same plane; the principal axes are
perpendicular to the image planes; and the scanlines of
both cameras are parallel to the line between the two
cameras. Ignoring lens distortion effects, for two
images in standard form, for each pixel on one image,
there is a unique scanline upon which the
corresponding pixel must lie in the other image. If the
images are not in standard position, or if there are
significant lens distortion effects, the input images can
be warped to be in effectively standard form. Without
loss of generality, standard form is assumed for the
remainder of the analysis.

3.1 The census transform for robust
correspondence

Figure 5: A stereo pair, and a resulting depth image.



One problem that makes determining stereo
correspondence difficult is that the images come from
distinct cameras and from distinct viewpoints, and
hence corresponding regions in the two images may
have differing absolute intensities resulting from
distinct internal gains and biases, as well distinct
viewing angles. A second difficulty in stereo
correspondence is that wherever there is a discontinuity
in depth in a scene, image regions corresponding to
either side of the depth discontinuity will have distinct
disparities. An image window overlapping this depth
discontinuity will match two half windows in the other
image at different places. Assuming that the majority of
pixels in such a region fall on one side of the depth
discontinuity, the depth estimate should agree with the
majority, and not have the result skewed by the
minority opinion.

The census algorithm attempts to address both of these
difficulties by taking an approach to determining
correspondence based on non-parametric statistics.
Rather than parametrically comparing intensity values
across images, the census algorithm performs a
transform on the input images based on intra-image
comparisons and then uses the transformed images, the
results of the intra-image comparisons, to determine
correspondence. This non-parametric approach
ameliorates the above difficulties in that it compares
the intra-image intensity structures from both images.
In the case of noise pixels, or pixels coming from a
minority sub-window, the discrepancies are weighted
by how they change the relative orderings, and not at
all by the magnitude of the discrepancies.

3.2 The census transform

The census transform lies at the heart of the census
algorithm. The transform maps each pixel and its
surrounding neighborhood into a vector of Boolean
variables, each denoting the ordering relation between
the center pixel and a neighboring pixel, shown in
Figure 6. The dissimilarity between two such Boolean
vectors can be measured using the number of elements
that differ between the two vectors, i.e., the Hamming
distance. Thus two pixel regions with nearly the same
intensity structure will have nearly the same census
transform, and the Hamming distance between their
two representative census transformed values will be
small. The number of pixels in the comparison set can
vary from perhaps 8 to 64. As the window gets larger,
more information can be taken into account, but the

effects at discontinuities are worsened. The first step to
computing stereo disparity using the census algorithm
is to apply the census transform to the left and right
input images.

3.3 Stereo disparity computation

The goal of stereo disparity computation is to determine
which pixels correspond between the two images of a

stereo pair.  Assuming standard form, for each pixel in
one image, there is a corresponding scanline in the
other image on which the corresponding pixel will lie
(unless it is occluded). Using this fact, the disparity for
a given pixel can be estimated by determining the best
matching pixel lying within a fixed search window on
its associated scanline. In order to effectively compare
matching pixels using census transforms, Hamming
distances are summed over a small local area.  Given
the transformed census images, the best matching pixel
P’ for a given pixel P is determined to be the one with

Figure 6: The census transform.  For a neighborhood
around each pixel (5x5 in this example), determine if the
neighbor intensity is greater than the central pixel.  If so,

assign a 1 to the census vector, else assign a zero.
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the minimal summed Hamming distance between P and
P’.  The result of this computation is, for each pixel, the
index, or disparity, of the best matching pixel.

4. IMPLEMENTATION OF THE CENSUS
ALGORITHM

The census algorithm is well suited to the PARTS
engine in that the algorithm is very uniform and
extremely computationally intensive.  In order to
perform this large amount of computation, the
algorithm is manually mapped onto the PARTS engine
by evaluating the memory, the computation, and the
inter-chip communication needed to perform the stereo
disparity algorithm on real-time video. Debugging has
been performed with canned image sequences sent over
the PCI bus from disk.  At present, live video sources
are sent over the PCI bus with images coming from
video frame-grabbers.  In the future, digital cameras
will send video data directly through the connectors on
the top of the board.  The disparity algorithm on the
PARTS engine produces real-time video in which
brightness corresponds to proximity of scene elements
to the video cameras, as shown in Figure 5.

Summing Hamming distances requires considerable
memory bandwidth, while routing census vectors
requires considerable communication bandwidth.
Camera pixels can be conveniently assumed to arrive at
about 12.5 MHz, while the PARTS engine is capable of
interfacing with its bus and external SRAM at 33 MHz.
The current design uses a strobe signal for pixel data on
every other clock cycle.  This two-phase convention
allows two data transfers and two external SRAM
accesses per pixel.

4.1 Data flow

The census stereo algorithm can be implemented in a
fully systolic fashion, given the assumption of standard
form. This data flow is shown in Figure 7. As pixels
from the left and right cameras come into the system,
they are immediately fed into two parallel census
transform units. Coming out of the two census units are
two streams of census vectors. Immediately the
Hamming distance of these two vectors, the zero-
disparity Hamming distance can be computed. By
delaying one census vector an additional cycle, the
Hamming distance for disparity two can be computed.
This step is repeated for 24 disparities in the current

implementation. This structure is similar to pipelined
VLSI correlators [VonHer91]. Thus 24 summed
Hamming distances are computed concurrently for each
pixel.  The final output of the computation for each
pixel is the disparity with the minimum summed
Hamming distance.

4.2 Multiplexing communication

The communication between each stage of the
correlation pipeline includes two census vectors, an
index, a summed Hamming distance and a couple of
bits of control information. This adds up to more than
the 43 pins available to provide such communication on
the North-South axis. Given the regimen of two clock
cycles per incoming pixel, communication can be
duplexed. Hence, 86 bits can be communicated by
multiplexing the outputs and inputs on these North-
South 43 pin connections. This approach is similar to
the method used in the Virtual Wires machine

Figure 7: Dataflow for the census algorithm.
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[Babb93].  This multiplexing will be simplified by the
Xilinx EX chips with their strobed I/O registers and
multiplexed I/O pins.

4.3 Memory use

A census transform requires several scanlines of data in
order to form the census vector for a pixel in one cycle.
The computation  needs access to several pixels from
each of these scanlines on each cycle.  This translates to
several bytes of memory read, and one write per
transform per pixel. Assuming that an array chip uses
both adjacent SRAMS, the most bandwidth the external
SRAM can provide is four bytes per pixel.  For
reasonably sized census transforms, this bandwidth is
not enough, dictating that the census transform must be
implemented using on-chip SRAM.

Figure 8: Dataflow for the census algorithm on the
PARTS engine.

Summing Hamming distances requires reading and
writing data every cycle.  However, since switching
from reading to writing external SRAM costs a clock

cycle, it is not possible to switch during the active
pixels in a scanline. The current design uses only eight
of the FPGAs for correlation. Each correlation FPGA
uses two SRAMs, one for reading, and one for writing.
Every few scanlines, the roles of these memories swap.

4.4 Mapping to the PARTS architecture

Given the constraints regarding which block needs to
use which memory and which chip needs to
communicate what to which other chip, the choices of
how to lay out the computation become quite limited. In
the current configuration left and right pixel
information comes in from the PCI bus on column A.
The census transform is applied to one pixel of this
data in the top two chips of column A. The other byte
of data is shipped sideways to column C where it has
the census transform performed on it in the top two

chips of column C. The top chips
of columns A and C spit out
census data at double speed over
the 16 wires available on the left
and right of the top chip in
column B. The top chip in
column B performs 3 stages of
the correlation algorithm, using
SRAM on both sides of it. From
here on data flows down through
the rest of column B and is
cabled over to the top of column
D. Each chip in this path
computes 3 stages of the
correlation path. Finally, the
bottom chip in column D passes
the result to the bottom of
column C. The result is passed
up to the central bus, where it is
read from the host processor.
Figure 8 shows this datapath.  A
total of four array chips are used
for census transforms, eight are
used for correlation, two for
communication, and two remain
unused.

4.5 Performance

In order to characterize the amount of computation
performed by the system, we use the notion of RISC-
equivalent instructions, i.e., the number of arithmetic
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operations, loads and stores that a RISC machine would
perform in order to produce the same result.  Loop
overhead is ignored in this analysis.  For a pair of
images, the stereo computation involves performing a
census transform at each pixel in each image, followed
by a search over a fixed search window at each pixel.
The census transform involves comparing the center
pixel with a given number of other pixels surrounding
it.

The search for the best disparity is restricted to N
possible disparities for each pixel. The computation for
each pixel involves pairing the transformed census
pixel for one image, and each of N transformed pixels
for the other image and computing the minimum
summed Hamming distance over the N pairs.  Our
current implementation performs two 32-bit census
transforms and a 24-disparity search at 42 frames per
second, which is approximately 2,320,000,000 RISC
equivalent operations per second. The computation also
requires 500 MB/sec of data loaded or stored.  A design
incorporating a burst-mode PCI interface should
achieve 225 frames per second using approximately
12,400,000,000 RISC equivalent operations per second
and 2,690 MB/sec of memory loaded or stored. Higher
resolution images can also be used at correspondingly
lower frame rates.

4.6 Power consumption

Since the current configuration drives 43
communication pins and 56 memory pins on each
correlation chip at 33 MHz, the whole PARTS engine
can consume considerable power. The PCI specification
allows for up to 5 amps power consumption on the bus.
The current design consumes 4.5 amps at 5 volts in
steady-state with 24 disparities at resolution of 320 x
240 pixels.

5. CONCLUSIONS

This paper has shown that general-purpose,
reconfigurable machines with toroidal topology,
distributed memory and wide bandwidth I/O are
capable of solving challenging applications at real-time
speeds.  Although actually designing and debugging
software to run on contemporary FPGAs is currently
tedious and difficult, such machines can provide
exceptional computational power.
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