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Real-time Stereo Visual Servoing Control of an UAV having Eight-Rotors

Sergio Salazar, Hugo Romero, Jóse Gómez and Rogelio Lozano

Abstract—This paper presents a visual feedback control of a
small UAV using image-based visual servoing with stereo vision.
In order to control the orientation and the position of flying robot
with respect to an object or target well defined, we propose to use
a navigation system based on binocular vision system combined
with inertial sensors. This combination of sensors, allows us to
get a complete characterization of the state of aerial vehicle. It
means, using the stereo vision system we are able to estimate the
UAV 3D position, while from the inertial sensors we can obtain
the orientation of rotorcraft. Real time experiences are developed
to validate the performance of navigation system proposed.

Keywords Visual Servoing - Stereo Vision - UAV - Control.

I. INTRODUCTION

Small Unmanned Aerial Vehicles (UAV) have became impor-

tant platforms in several applications both in civilian field and

military field where the situational awareness can be drastically

augmented if one or more UAVs are deployed for collecting

data, surveillance and espionage. This segment of UAVs have

many advantages over other segments. The advantages with

respect to larger UAVs segment include portability, lower cost,

easier handling and operation which can be can performed by a

single person. Moreover, they can operate almost inadvertently

which makes them ideal for stealth missions. In comparison

with the smaller UAVs segment, the small UAVs are more

robust to perform outdoor missions under challenging weather

conditions. However, the small UAVs have a limited payload,

which is an important issue to consider in the choice of sensors

to be used in this segment of aerial vehicles. For these reasons,

nowadays many research groups are dedicated to developing

new UAV configurations, new control laws and new sensing

systems to measure and/or estimate the entire aerial vehicles

state and to know their surrounding environment.

A standar UAV navigation system combines an Inertial Mea-

surement Unit (IMU) with Global Positioning System (GPS),

ultrasonic sensors, laser scanners or radars to estimate the

entire state of aerial vehicle [13][17].Nevertheless, the standard

techniques based on GPS for navigation are not reliable in

urban or hostile environments, because the communication

signals with the satellites can easily be blocked or jammed,

which implies an erroneous location estimation of the flying

machine. Laser scanners and radars are used to estimate the

UAV position too, but mainly is applied to avoid obstacles with

high accuracy, unfortunately these kind of sensors are expensive

H. Romero, S. Salazar and R. Lozano are with LAFMIAA CINVESTAV,
Av. IPN 2508 Col. San Pedro Zacatenco 07360 Mexico, D.F.
sergio.salazar.cruz@gmail.com,
rhugo@uaeh.edu.mx,rlozano@hds.utc.fr
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Fig. 1. Eight-rotor rotorcraft whit a stereo vision system home made mounted.

and too heavy to be used in small size flying robots due to their

limited payload capacity.

An alternative sensing system is composed by IMU and vi-

sion system, it means the UAV is controlled using visual servo-

ing [15][7][21][6]. Visual servoing is the fusion of results from

many elemental areas including high-speed image processing,

kinematics, dynamics, control theory, and real-time computing.

The advantages of combining these two sensor modalities is

the complementary characteristics of vision system and inertial

sensors. On one hand, the inertial sensors have large measure-

ment uncertainty at slow motion and lower relative uncertainty

at high velocities. Inertial sensors can measure high velocities

and accelerations. On the other hand, cameras can track features

very accurately at low velocities.

Recently some works demonstrates several applications for

UAVs using visual systems in [8] a schema to calculate the pose

of UAV using two cameras is proposed, applying the unscented

Kalman filter (UKF). A vision systems which consists of one

off-the-shelf is used in [9] for landing an UAV, this system

apply an image processing followed by estimation and control

of a camera, other targets such as a landing pad is used in [10],

a method for attitude computation catadioptric images for UAV

is used in [11] with a catadioptric vision sensor.

The paper presents a stereo vision system to estimate the

UAV position, using a control approach for position. The con-

trol system decouple the rotational dynamics and translational

dynamics of this UAV configuration. It means one or two

cameras located in different places taking a photo of the same

scene through translating or rotating. A basic problem in stereo

vision is to perform 3D reconstruction of a world scene or

object from a pair of images. Stereo vision system is used to

compute the altitude and relative displacement of the eight rotor



rotorcraft with respect to a well know target.

This paper is organized as follows: Section II is devoted

to describe the stereo vision theory and tools. The 3D re-

construction method is presented in section III. The platform

architecture used in this experience is described in Section IV.

The mathematical nonlinear model using the Newton-Euler ap-

proach of the multi-rotor mini rotorcraft is presented in Section

V. In Section VI the control strategy to stabilize at hover the

multi-rotor platform is introduced. Finally, experimental results

and conclusions are presented in Section VII and Section VIII

respectively.

II. STEREO VISION

Visual servo stereo systems typically use one of two cameras

in two different configurations: robot mounted, or fixed in the

workspace. A stereo vision system must solve mainly two

problems. The first problem is known as correspondence, this is

to determine which item (points, lines, surfaces, etc.) from the

left (right) image corresponds to same item in the right (left)

image. The second problem is the reconstruction, it consists

in obtain some information about the 3D real world from the

stereo vision geometry and matched points from left and right

images. Figure 2 represents image-based visual servo structure.

Fig. 2. Basic scheme of epipolar geometry.

Projective and metric relationships in a stereo vision system

are based on the epipolar geometry. Under this geometry, the

left camera focus C, right camera focus C∗ and the real point

p form the entity Πe, which is called the epipolar plane. The

intersections of this epipolar plane with the two image planes

form the epipolar lines l and l∗ on the left image plane π
and right image plane π∗ respectively. While the base-line lb
connecting the two centers of projection (C,C∗) intersects
the image planes at the conjugate points e and e∗ which

are called epipoles. Assume that the 3D point p projects into
the left and right image planes as the points q = (γ, ρ, 1)
and q∗ = (γ∗, ρ∗, 1) respectively in homogeneous coordinates.
Then, a couple of corresponding points q → q∗ are related as
follows

q∗T Fq = 0 (1)

where q∗T denotes the transpose of q∗ and F is the fundamental

matrix which only depends of correlated points q → q∗. It is

a 3 × 3 homogeneous matrix with rank 2 having 7 degrees of
freedom, it means that one of its eigenvalues is equal to zero.

Furthermore, l∗ = Fq is the epipolar line onto right image
plane, consequently the corresponding point q∗ ∈ l∗. Similarly

l = FT q∗, with q ∈ l. These relationships are very advan-

tageous from computational cost point of view, because the

search of the corresponding point q∗ ( q ) is restricted only to
epipolar line l∗ ( l ) and not to the whole image π∗ (π).
In order to compute the matrix F, let Q and Q∗ be two

matrix containing the image point qi and its corresponding

image points q∗i respectively with i = 1, 2, . . . , n, then we can
set the follow matrix equation

Q∗TFQ =

⎡

⎢

⎢

⎢

⎣

γ∗
1 ρ∗1 1

γ∗
2 ρ∗2 1
...

...
...

γ∗
n ρ∗n 1

⎤

⎥

⎥

⎥

⎦

F

⎡

⎣

γ1 γ2 · · · γn

ρ1 ρ2 · · · ρn

1 1 · · · 1

⎤

⎦ = 0

(2)

rewritten the equation (2) we have

Af = 0 (3)

where

A =

⎡

⎢

⎢

⎢

⎣

γ1γ
∗
1 γ1ρ

∗
1 γ1 ρ1γ

∗
1 ρ1ρ

∗
1 ρ1 γ∗

1 ρ∗1 1
γ2γ

∗
2 γ2ρ

∗
2 γ2 ρ2γ

∗
2 ρ2ρ

∗
2 ρ2 γ∗

2 ρ∗2 1
...

γnγ∗
n γnρ∗n γn ρnγ∗

n ρnρ∗n ρn γ∗
n ρ∗n 1

⎤

⎥

⎥

⎥

⎦

(4)

and

f =
[

F11 F12 F13 F21 F22 F23 F31 F32 F33

]T

(5)

contains the coefficients of matrix F.

There exist several methods to compute the fundamental

matrix, which can be grouped into three categories: linear

methods, iterative methods and robust methods [3]. In order to

compute a robust fundamental matrix F we apply the RANdom

SAmple Consensus (RANSAC) approach which uses the 7-

points algorithm to compute a initial fundamental matrix F.

This approach uses Qi subsets (i = 1, 2, . . . ,ms), which

are composed by 7 pairs of correlated points qi,j → q∗i,j
(j = 1, 2, . . . , 7) [5].
The 7-points algorithm approach starts with a singular value

decomposition (SVD) of matrix A to solve the equation (3.

As matrix A is formed only with 7 correlated points it has

rank 7, then the right null space of matrix A is 2-dimensional.

Consequently, we have two matrix Gi,1 and Gi,2 . In order

to computes the initial fundamental matrix Fi we set a linear

convex combination as follows

Gi = μGi,1 + (1 − μ)Gi,2 (6)

where μ ∈ [0, 1]. Considering the rank property of the funda-
mental matrix we have

det (μGi,1 + (1 − μ)Gi,2) = 0 (7)



from the equation (7) we obtain a polynomial W (μ) of degree
3 with roots (μ1, μ2, μ3). Replacing the real part of μ1, μ2 and

μ3 in (6) we have three candidates matrices, but we choice

the candidate matrix with lower residual error as the initial

fundamental matrix Fi. Then all initial fundamental matrix are

evaluated considering the criteria of Sampson distance and the

initial fundamental matrix Fi with lower total error is retained

as a fundamental matrix Fr.

Using the estimate fundamental matrix Fr we remove all

the spurious correlated points. Once removed all the spurious

points, the robust fundamental matrix F is compute using the 8-

points method [16] which admits only one solution to equation

(3). Robust fundamental matrix will be used later in the 3D

reconstruction approach described later in III.

Another important matrix in the epipolar geometry theory is

the essential matrix E. In fact this matrix is a generalization

of fundamental matrix F. The essential matrix is obtained as

follows

E = K∗TFK (8)

where K and K∗ are the intrinsic parameter matrices of left

and right camera respectively. Essential has two equal singular

values and the third is zero. Essential matrix is a matrix with

rank 2, Clearly, the essential matrix can be used only with

a calibrated stereo ring. In order to compute the intrinsic

parameters K and K∗ from left and right cameras respectively

and the extrinsic parameters R̃, R̃∗, t and t∗ there exist several

camera calibration methods as proposed in [5], [22] which is

used in this case,employing the calibration information of each

camara . Let R̃ and R̃∗ be the rotation matrices and t and t∗

the translation vector for each camera.

III. 3D RECONSTRUCTION

As we mentioned above, the3D reconstruction is the second

problem to be dealt in a the stereo vision system. In this

subsection we present the euclidian 3D reconstruction approach

to solve this problem [14]. Fundamental matrix F ha ve been

computed using RANSAC approach and the set of correlated

points are available (gravity center and vertices of a rectangle).

In order to avoid the problem of having no intersection of

vectors
−→
Cq and

−−−→
C∗q∗ in the 3D space we apply a position

correction method to correlated image points qi → q∗i [5] [19].
Where qi = (γ, ρ, 1)

T
and q∗i = (γ∗, ρ∗, 1)

T
. Initially, the

correction algorithm takes the correlated points to the origin of

image plane, it means γ = ρ = γ∗ = ρ∗ = 0. The matrices
transformation to develop this translation are defined by

Ta =

⎡

⎣

1 0 −γ
0 1 −ρ
0 0 1

⎤

⎦ T∗
a =

⎡

⎣

1 0 −γ∗

0 1 −ρ∗

0 0 1

⎤

⎦

(9)

Using the matrice transformation Ta and T∗
a the initial

fundamental matrix is replaced by

Fn1 = T∗ −T
a FTa (10)

where Fn1 corresponds to fundamental matrix for the translated

coordinates. Now, the left and right epipoles of Fn1 are defined

by Fn1e = 0 and e∗T Fn1 = 0 respectively, with e =
(e1, e2, e3) and e∗ = (e∗1, e

∗
2, e

∗
3). Epipoles must be normalized,

it means we have to multiply the epipole e by the scale factor

1/(e2
1 + e2

2) and do the same for e∗ with the scale factor

1/(e∗21 + e∗22 ).
Then the fundamental matrix Fn1 once again is replaced by

Fn2 = R∗

aFn1R
T
a =

⎡

⎣

f̂ f̂∗d −f̂∗c −f̂∗d

f̂b a b

−f̂d c d

⎤

⎦ (11)

where a, b, c, d, f̂ and f̂∗ are a set of variables defining the

relationship between the matrix entries. Furthermore

Ra =

⎡

⎣

e1 e2 0
−e2 e1 0
0 0 1

⎤

⎦ R∗
a =

⎡

⎣

e∗1 e∗2 0
−e∗2 e∗1 0
0 0 1

⎤

⎦

(12)

Consider an epipolar line l passing through q = (0, t, 1)
T

and the epipole e =
(

1, 0, f̂
)

. Then l = q ⊗ e, so the squared

distance from this line to the origin is

d(q, l)2 =
t2

1 + (tf̂)2
(13)

The corresponding epipolar line l∗ is defined as

l∗ = Fn2 q =
(

−f̂∗ (ct + d) , at + b, ct + d
)T

(14)

The square distance of the epipolar line (14) from the origin

is given by

d (q∗, l∗) =
(ct + d)

2

(at + b)
2

+ f̂∗2 (ct + d)
2 (15)

therefore the total distance is

s(t) =
t2

1 + (tf̂)2
+

(ct + d)
2

(at + b)
2

+ f̂∗2 (ct + d)
2 (16)

the aim of this approach is to minimize the total distance,

then we find the minimum of (16) using its derivative. The

minimum occurs when
ds(t)

dt
= 0, then

ǫ(t) = t
(

(at + b)
2

+ f̂∗2 (ct + d)
2
)2

− (ad − bc)
(

1 + f̂2t2
)2

(at + b) (ct + d) = 0

(17)

We assess the cost function (16) at real roots of ǫ(t)
and we select the value tmin of t that gives the smallest
value of cost function. After that we evaluate the lines l =
(

tf̂ , 1, −t
)

and l∗ given in (14). We have to find the new

pair of corresponding points q̂ → q̂∗ related to these lines.
For a general line (al, bl, cl) the closest point is given by
(

−alcl, −blcl, a2
l + b2

l

)

.



Once obtained this new set of corresponding points, they are

transferred back to the original coordinates by replacing q̂ by
q̃ = T−1

a RT
a q̂ and q̂∗ by q̃∗ = T∗−1

a R∗T
a q̂∗.

The 3D point p̃ = (x̃, ỹ, z̃, sc)
T
related with the corre-

sponding image points q̃ → q̃∗ is computed using the SVD
decomposition of following matrix equation

⎡

⎢

⎢

⎣

γT3 − T1

ρT3 − T2

γ∗T∗
3 − T∗

1

ρ∗T∗
3 − T∗

2

⎤

⎥

⎥

⎦

⎡

⎢

⎢

⎣

x
y
z
sc

⎤

⎥

⎥

⎦

= 0 (18)

this matrix equation comes from the fact that q⊗Tp = 0. Then
the real point p expressed in homogeneous coordinates is

p =
p̃

sc
=

[

x̃

sc
,

f̃

sc
,

z̃

sc
, 1

]T

= [x, y, z, 1]
T

(19)

IV. SYSTEM CONCEPT

The platform is composed of an eight-rotor aircraft which

has 2 RABBIT microprocessor RCM3400 on board. This mi-

croprocessor has the following main features: module running

at 29.4 MHz, 512K flash memory, 4 PWM outputs, 6 serial

ports, 2 input capture channels. The microprocessor 1 runs

the control algorithm in real-time to control the attitude and

the altitud of the eight-rotor rotorcraft, therefore it reads the

information provided by the IMU sensor. The second one

microprocessor is used to compute the PWM level output to

control the lateral rotors, using the information provided by the

stereo vision system (x-y position). This information arrives to
this microprocessor by modem.

The stereo vision system is composed by two cameras

Logitech Pro5000 (webcam),this cameras are configured to

optimize light variations and color balancing , with an image

resolution of 320 × 240 pixels. The images captured by the
on-board cameras is sent to a PC on the ground through a

USB connection. The frames of the images are treated in the

computer devoted to vision. This computer obtains the 3D

information which is sent to microprocessor 2 by modem. The

vision algorithms are developed in C++ using OpenCV library,

18 frames per seconds in each camera are necessary to obtain

the result to calculate the 3D pose.

A Microbotics IMU is used to measure the angular rate, the

acceleration, and the direction of the earth magnetic field with

a sample rate of up to 50Hz. It is composed by 3-axis gyro
with range of ±300◦/sec, 3-axis accelerometer with range of
±6g and 3-axis magnetometer.

V. DYNAMICAL MODEL OF UAV

The aerial robot under consideration consists of a rigid cross

frame equipped with eight rotors as shown in Figure 4. ψ is

the yaw angle around the z axis, θ is the pitch angle around
the y axis, and φ is the roll angle around the x axis. In order to
avoid the yaw drift due to the reactive torques, the main rotors

are such that the right and left rotors rotate clockwise while

the front and rear rotors rotate counterclockwise. Similarly

the external lateral motors located on the same axis rotate in

Fig. 3. Architecture scheme use in the Eight-rotor rotorcraft.

opposite directions to avoid interacting with the roll and pitch

displacements.

M1 through M4 in Figure 4 are the front, right, rear and left

main motors respectively and they are devoted to stabilize the

UAV. While the lateral motors motors M5 through M8 follow

the same order of location and they perform the lateral displace-

ments. The speed relationships between speed of motors (main

and lateral) to perform angular and translational displacements

in 3D space are given in [18].

In order to model the dynamic system, we define a couple of

coordinate frames. Let I = {	i,	j,	k} be an external reference
set of axis, and let B =

{

	̄ı,	̄j, 	̄k
}

denote a set of coordinates

fixed to the rigid aircraft as is shown in Figure 4.

The dynamical model of the aircraft will be obtained using

the Newton-Euler approach [4]. The dynamical model can be

expressed by the following equations

ξ̇ = v

mv̇ = f̄ (20)

Ṙ = RΩ̂

JΩ̇ = −Ω × JΩ + τ

where υ = ξ̇ ∈ R3 is the body’s velocity in the frame I, R



Fig. 4. Eight-rotor rotorcraft scheme. Where fi is the force produced by
the motor Mi with i = 1, 2, . . . , 8 and fj with j = 9, 10, 11, 12 are the
additional forces produced by the lateral motors.

represents the rotation matrix. This rotation matrix represents

the orientation of body frame B with respect to the inertial

frame I. f̄ denotes the external force applied to center mass
mc with respect to inertial frame I. This vector includes
the gravitational force, the control inputs related with the

translational displacements and the drag forces [2][1]. τ denotes
the vector composed by the external torques applied to mc, it is

referred to frame B. The vector Ω ∈ R3 describes the angular

velocity and the matrix J ∈ R3×3 acts as the inertia matrix.

Let Ω̂ be the skew-symmetrical matrix of vector Ω, which is
defined as

Ω̂ =

⎛

⎝

0 −Ω3 Ω2

Ω3 0 −Ω1

−Ω2 Ω1 0

⎞

⎠

Rotational dynamics must be expressed in the body frame

B. Defining the attitude vector η = [ψ θ ψ]
T
as

η̇ = W−1
η Ω

where Wη represents the Jacobian matrix defined in [4]. Then

Ω =

⎡

⎣

φ̇ − ψ̇sθ

θ̇cφ + ψ̇cθsφ

ψ̇cθcφ − θ̇sφ

⎤

⎦ .

In this model, dynamical equation could be naturally sepa-

rated into translational and rotational subsystems. That couple

of subsystems will be present in next subsections.

A. Translational subsystem model

To develop the dynamical model of the flying machine we

consider the forces that come from three different sources:

inertia, air drag and gravity [2][4]. They are opposed to

translational and rotational motions.

Using the Newton-Euler approach the translational subsys-

tem can be expressed as

mv̇ = f̄

mξ̈ = Fp + Fd + Fg (21)

where Fp defines the force produced by the propeller system,

Fd is the vector of forces due to drag, Fg represents the gravity

force, m is the mass of the vehicle and ξ = [x, y, z]T is

the position with respect to I. The force Fp = [fx, fy, fz]
T

expressed in the frame B is given by

FB

p =

⎡

⎣

ux

uy

uz

⎤

⎦ =

⎡

⎣

f5 − f7

f6 − f8
∑4

i=1 fi +
∑12

j=9 fj

⎤

⎦ (22)

where the forces fi (i = 1, . . . , 8) are the forces generate for
the propeller Mi. While the forces fj (j = 9, . . . , 12) are the
additional lift forces acting over each main rotor [18]. It means

that the magnitude of those additional vectors is a function of

the incoming lateral air flow. Then the vector Fp with respect

to inertial frame is obtained by

Fp = RFB

p (23)

where R is the rotation matrix representing the orientation of

the rotorcraft from B to I. We use cθ to denote cos θ and sθ

for sin θ

R =

⎡

⎣

cψcθ cψsθsφ − sψcφ cψsθcφ + sψsφ

sψcθ sψsθsφ + cψcφ sψsθcφ − cψsφ

−sθ cθsφ cθcφ

⎤

⎦ (24)

Let Fd be the drag vector, as well is known the drag force

experienced by the UAV is related with the translational speed.

Then the drag vector is defined as

Fd = Kd η̇ (25)

where Kd = diag[kdx, kdy, kdz] is the matrix which contains
the translational drag coefficients [2]. Finally the gravity force

Fg acts only on the z − axis, then this force is represented by

Fg = m[ 0 0 g ]T = mg (26)

In order to model the additional lift forces fj (j =
9, 10, 11, 12) acting on the rotorcraft, we consider the control
input u, ux, uy . According to equation (22) we have

ux = f5 − f7 = ux1
− ux2

(27)

uy = f8 − f6 = uy1
− uy2

(28)

uz = u + f9 + f10 + f11 + f12 (29)

where ux1
and ux2

are the control inputs for the front motor and

the rear motor in x -axis respectively. uy1
and uy2

are defined

similarly for the left motor and right motor in y-axis. While u
is defined as follows

u = f1 + f2 + f3 + f4



Fig. 5. Analysis of the main and lateral thrusts.

with

fi = ki ω2
i , i = 1, . . . , 8

where ki > 0 is a parameter depending on the density of air,
the radius, the shape, the pitch angle of the blade and ωi is the

angular speed of the each motor “i” (Mi, i = 1, . . . , 8). There
exist additional forces f9 to f12 acting on each one of the four

main rotors, see Figure 5. These forces are due to the airflow

generated by the lateral rotors. It means that the magnitude of

vectors f9 to f12 are functions of the lateral air flow produced

by the corresponding lateral rotor. The induced wind speed in

a propeller is defined as follows

V =

(

f

2ρA

)
1

2

(30)

where f is the thrust generated by the propeller, ρ is the air
density and A is the propeller area [12]. In order to clarify the

notation we will use the subscripts p for the main rotor and
subscript s for the lateral rotor. The thrust f provided the main
rotor in combination with a lateral rotor can be expressed as

fp = 2ρApV̂ Vp (31)

where Vp is the induced wind speed in the main propeller and

V̂ is the total induced wind speed by the set of rotors, this is

given by

V̂ =
[

(Vs cos α + Vp)
2

+ (Vs sinα)
2
]

1

2

(32)

where α is the angle between the main rotor axis and the lateral
rotor axis. It is important to notice that without extra lateral

rotor Vs = 0, this implies that V̂ = Vp, and (31) becomes

fp = 2ρApV
2
p (33)

Introducing (32) into (31) with α = 90◦ we obtain

fp = 2ρApV
2
p

(

1 +
V 2

s

V 2
p

)
1

2

(34)

The additional nonlinear term
(

V 2
s /V 2

p

)

appearing in this

equation is related to the airflow produced by the corresponding

lateral rotor, which does not appear in (33). Nevertheless, this

extra term has an almost linear behavior mainly for large

values of Vs. In practice, we consider the parameter Vp as

constant at hover, since this parameter depends on the thrust

generated by the main rotor to stabilize the mini-helicopter. In

our experiment, we work in a region where the relationship
(

Vs

Vp

)

≤ 1 holds. It then follows

(

1 +
V 2

s

V 2
p

)
1

2

≤
√

2 (35)
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Fig. 6. Main thrust behavior with incoming lateral wind due to lateral propeller

The thrust behavior with respect to (Vs/Vp) is shown in
Figure 6. Figure 6a shows the region defined by Vs ≤ Vp where

the nonlinear model is approximated by a straight line with

slope m̄ = 0.64 which intercepts the vertical axis at yb = 0.77.
Figure 6b shows the nonlinear behavior of (35) when Vs > Vp

which is approximately a straight line with slope m̄ = 1 without
drift in the vertical axis.

The additional term in (34) will be compensated to effec-

tively decouple the translational and rotational displacements.

The force in each one of the four main rotors is affected

by the lateral thrust fs of the corresponding lateral rotor. The

lateral thrust in turn depends on the control actions ux and uy

applied to lateral motors. Considering identical lateral motors,

forces f9 to f12 can be expressed as follows

f9 = bux1
, f10 = buy2

, f11 = bux2
, and f12 = buy1

where b ≥ 0 is the approximate slope in Figure 6a. Then, the
force vector FB

b can be rewritten as follows

FB

b =

⎡

⎣

ux

uy

uz

⎤

⎦ =

⎡

⎣

ux

uy

u + bū

⎤

⎦ (36)

where ū = ux1
+ uy2

+ ux2
+ uy1

.

Introducing (23), (25) and (26) in (21), we obtain



mẍ = uxcθcψ − uy (cφsψ − cψsθsφ)

+uz (sφsψ + cφcψsθ) + kdxẋ

mÿ = uxcθsψ + uy (cφcψ + sθsφsψ)

−uz (cψsφ − cφsθsψ) + kdy ẏ

mz̈ = −uxsθ + uycθsφ − mg

+ uz cθcφ + kdz ż

This equation represents the translational dynamic of the

UAV.

B. Rotational subsystem model

In order to obtain a model with respect to rotational dynamic

of the rotorcraft, the Newton’s law about the rotation motion

is used. The sum of moments is given by

τp − τa − τg = JΩ̇ + Ω × JΩ (37)

where τp is the rotational moment produced by the main pro-

pellers with respect to body fixed frame, τa is the aerodynamic

friction torque and τg represents the gyroscopic torque. The

inertia matrix is represented by J and Ω is the angular speed

vector. Considering that the flying machine is symmetrical and

assuming that the coupling inertia is zero, the inertia matrix is

a diagonal matrix defined as follows

J = diag[ Ix, Iy, Iz ] (38)

where each term of this matrix is given in a general form by

I() = Ic() + IM() + Im() + Ib(). Right hand terms represent the

inertia due to carbon fiber cross, main motors, lateral motors

and to the battery. First, we will model the cross with tow

slender rods that intersect, the body frame axes are coincident

with the arms of the cross. x −axis points on the forward arm
and y − axis points on left arm. The inertia of the cross for
rotation with respect to intersection is

Icx = Icy =
3

4
mcr

2
c +

1

12
mcl

2

(39)

Icz =
1

2
mcr

2
c +

1

6
mcl

2

where mc is the mass of the rods, l = 2lc and rc is radius of

the cross pieces. In order to obtain the inertia coefficient of the

main motors, we will consider them as a cylinders of radius

rm, length hm and mass mm. They are located with a distance

lc from the interception point in the middle of each arm of the
cross. The inertia for the motors M1 and M3 located on the
x -axis is given by

IM1x = IM3x =
1

4
mmr2

m +
1

3
mmh2

m

IM1y = IM3y =
1

4
mmr2

m +
1

3
mmh2

m + mml2c (40)

IM1z = IM3z =
1

2
mmr2

m + mml2c

Now, the inertia coefficients for the motors M2 and M4

located on y-axis are given by

IM2x = IM4x =
1

4
mmr2

m +
1

3
mmh2

m + mml2c

IM2y = IM4y =
1

4
mmr2

m +
1

3
mmh2

m (41)

IM2z = IM4z =
1

2
mmr2

m + mml2c

Considering that the pair of lateral motors M5-M7 is located

on the x -axis and the pair M6-M8 on the y-axis. Then the

inertia coefficients for these motor are given by

Im5x = Im6y = Im7x = Im8y = 1
2mar2

a

Im5y = Im6x = Im7y = Im8x = δ
Im5z = Im6z = Im7z = Im8z = δ

(42)

where δ = 1
4mar2

a + 1
3mah2

a + mal2a. Furthermore, the param-
eters of the auxiliar motor are: radius ra, length ha, mass ma

and distance from the intersection point in the middle of each

arm of the cross to the center of mass of the auxiliar motors.

The inertia due to the battery is described by

Ibx = mb

(

b2
w + b2

h

12

)

+ mbl
2
0

Iby = mb

(

b2
a + b2

h

12

)

+ mbl
2
0

Ibz = mb

(

b2
w + b2

a

12

)

where ba, bw, bh are the battery dimensions, mb is its mass

and l0 represents the distance between the gravity center of the
battery and the origin of body frameB.
From the equations (39)-(43), the inertia about each axis is

computed by summation. It means

Ix = Icx +

4
∑

i=1

IMix +

8
∑

i=5

Imix + Ibx

Iy = Icy +
4

∑

i=1

IMiy +
8

∑

i=5

Imiy + Iby (43)

Iz = Icz +
4

∑

i=1

IMiz +
8

∑

i=5

Imiz + Ibz

τp is given by

τp =

⎡

⎣

τψ

τθ

τφ

⎤

⎦ +

⎡

⎣

0
τx

τy

⎤

⎦ = τ + ∆τx,y

where the terms on right hand side are

τ =

⎡

⎣

τM1
− τM2

+ τM3
− τM4

lc(f2 − f4)
lc(f1 − f3)

⎤

⎦

∆τx,y =

⎡

⎣

0
τm5

− τm7

τm6
− τm8

⎤

⎦ =

⎡

⎣

0
kalc(f5 − f7)
kalc(f8 − f6)

⎤

⎦ =

⎡

⎣

0
bux

buy

⎤

⎦



where τ is the generalized torque vector (yaw, roll and pitch
moments), ∆τx,y is the generalized torque vector produced by

lateral rotors mi in the axis x and y and ka is a relational

constant between the force and the torque in each rotor.

τ(·)i
∀i = 1, ...8 is the torque resultant by the rotor Mi (mi).

Using the second Newton’s law and neglecting the air friction

the following equation is obtained

IMiω̇i = −krω
2
i + τMi

where IMi is the angular moment of i rotor and kr is the

rotational coefficient. In hover mode this equation gives

τMi
= krω

2
i i = 1, ..., 8.

The torque due the aerodynamical friction τf could be

expressed

τf = kfΩ

where kf = diag[kfx, kfy, kfz] are the aerodynamical friction
coefficients. Finally the rotational dynamics is given as follows

τp − τf − τg = JWη η̈ + JẆηη̇ + Wη η̇ × JWηη̇

τ + ∆τx,y − τf − τg = JWη η̈ + C(η, η̇)η̇

JWη η̈ = τ + ∆τx,y − τf − τg − C(η, η̇)η̇

where C(η, η̇) is the Coriolis matrix.
Therefore the complete dynamical model representing the

eight-rotors rotorcraft is

mẍ = uxcθcψ − uy (cφsψ − cψsθsφ)

+uz (sφsψ + cφcψsθ) + kdxẋ (44)

mÿ = uxcθsψ + uy (cφcψ + sθsφsψ)

−uz (cψsφ − cφsθsψ) + kdy ẏ (45)

mz̈ = −uxsθ + uycθsφ − mg

+ uz cθcφ + kdz ż (46)

JWη η̈ = τ + ∆τx,y − τf − τg − C(η, η̇)η̇ (47)

VI. CONTROL STRATEGY

In this section we present a simple linear control law for the

attitude stabilization and position of the eight-rotor aircraft. We

are able to apply this kind of linear control strategy due to the

decoupling between the rotational dynamics and translational

dynamics of this UAV configuration. In order to further simplify

the analysis and since J is nonsingular, let us consider the

following linearizing control law

τ = τf + τg + C(η, η̇)η̇ + JWη (τ̃ + ∆τx,y) − ∆τx,y (48)

where

τ̃ = [τ̃ψ τ̃θ τ̃φ]
T

(49)

are the new inputs. Introducing (48) in (47) we have

η̈ = τ̃ + ∆τx,y (50)

Rewriting (44)-(47) gives

mẍ = uxcθcψ − uy (cφsψ − cψsθsφ)

+ (u + bū) (sφsψ + cφcψsθ) + kdxẋ (51)

mÿ = uxcθsψ + uy (cφcψ + sθsφsψ)

− (u + bū) (cψsφ − cφsθsψ) + kdy ẏ (52)

mz̈ = −uxsθ + uycθsφ − mg

+ (u + bū) cθcφ + kdz ż (53)

ψ̈ = τ̃ψ (54)

θ̈ = τ̃θ + bux (55)

φ̈ = τ̃φ + buy (56)

where ux and uy are the control inputs devoted to develop

lateral displacements, u is the main thrust acting on z -axis of

B, and τ̃ψ , τ̃θ and τ̃φ are the new angular moments (yawing

moment, pitching moment and rolling moment).

A. Attitude control

The control of the attitude can be obtained by using the

following PD controllers:

τ̃ψ = σa(−a1ψ̇ − a2(ψ − ψd)) (57)

τ̃θ = σa(−a3θ̇ − a4θ) − bux (58)

τ̃φ = σa(−a5φ̇ − a6φ) − buy (59)

where σp is a saturation defined as

σp(s) =

⎧

⎨

⎩

p if s > p
s if −p ≤ s ≤ p

−p if s < −p
(60)

Introducing (57) − (59) into (54) − (56), we obtain

ψ̈ = σa(−a1ψ̇ − a2(ψ − ψd)) (61)

θ̈ = σa(−a3θ̇ − a4θ) (62)

φ̈ = σa(−a5φ̇ − a6φ) (63)

where ai are positive constants such that the polynomials s2 +
ais + ai+1 are stable (for i = 1, ..., 6). In practice, the control
parameters ai for i = 1, . . . , 6, are chosen to obtain a critically
damped controller (See proof below).

B. Horizontal displacements and altitude control

Note that from (61) − (63) ψ, θ, φ → 0. For a time T large

enough ψ, θ and φ are arbitrarily small, therefore, (51), (52)
and (53) reduce to

mẍ = ux + kdxẋ (64)

mÿ = uy + kdy ẏ (65)

mz̈ = u − mg + bū + kdz ż (66)

Let us propose the following control inputs



ux = −mσb (b1ẋ + b2 (x − xd)) − kdxẋ (67)

uy = −mσb (b3ẏ + b4 (y − yd)) − kdy ẏ (68)

u = −mσb (b5ż + b6(z − zd)) + mg − bū − kdz ż (69)

then the translational dynamics (64)-(66) becomes

ẍ = −σb (b1ẋ + b2 (x − xd)) (70)

ÿ = −σb (b3ẏ + b4 (y − yd)) (71)

z̈ = −σb (b5ż + b6(z − zd)) (72)

where xd, yd and zd are the coordinates of the desired position

of the multi-rotor aircraft. As in (61)-(63), the control param-

eters bi for i = 1, . . . , 6, should be carefully chosen to obtain
a critically damped response for the translational dynamics.

The stability of the translational and rotational dynamics

in (61)-(63) and (70)-(72) is given next and is inspired from

[20]. This stability analysis is carried out in a continuous-

time framework. In practice the control algorithms have been

implemented in a microcontroller using the fastest sampling

rate.

The closed-loop system (61)-(63) and (70)-(72) can be rep-

resented as double integrators as follows

ẋ1 = x2 (73)

ẋ2 = ũ

The proposed control law has following structure

ũ = −σp(k̄1x1 + k̄2x2) (74)

then the candidate Lyapunov function is

V (x1, x2) =

k̄1x1+k̄2x2
∫

0

σp(t)dt +
1

2
k̄1x

2
2 (75)

for any constants k̄1 > 0 and k̄2 > 0 then

V̇ (x1, x2) = σp(k̄1x1 + k̄2x2)(k̄1ẋ1 + k̄2ẋ2)

+k̄1x2ẋ2 (76)

= −k̄2σ
2
p(k̄1x1 + k̄2x2)

note that V (x1, x2) is positive definite and V̇ (x1, x2) is nega-
tive definite, therefore the closed-loop system is asymptotically

stable.

VII. EXPERIMENTAL RESULTS

This section presents the real-time experimental results to

validate the performance of the rotorcraft during autonomous

hover flight. The control gains of equations (61)-(63) and

(70)-(72) were adjusted in practice to obtain an acceptable

system’s response, i.e. they were selected to obtain a fast

aircraft response but avoiding mechanical oscillations as much

as possible, they are shown in table I. The saturation values

used in the attitude and horizontal control law are shown in

table II. These parameters were also chosen in such a way that

the aircraft attitude remains very close to a desired point.

The control law presented in section VI assumes that the

rotational and translational dynamics were completely decou-

pled but in practice this does not exactly happens due to

unsymmetrical rotor structures. To compensate these modeling

errors we have trimmed the gains in the radio-control before

the experiments.

Parameter Value Parameter Value

ψ a1 3.2 x b1 2.3
a2 1.5 b2 1.2

θ a3 2.0 y b3 2.3
a4 0.3 b4 1.2

φ a5 2.0 z b5 3.1
a6 0.3 b6 1.8

TABLE I

CONTROLLER PARAMETERS VALUES

Parameter Saturation Value

Attitude control σa 150

Horizontal control σb 250

TABLE II

SATURATION PARAMETERS VALUES

The scene used to develop this experiment is composed of

a red rectangle that contains inside a smaller white rectangle.

The couple of rectangles have the same orientation, i.e. their

edges are parallels to each other, moreover they have the same

gravity center. This target is placed on a white background and

the dimension is well known. With this target configuration the

keypoints extraction is made easier, because the keypoints are

the vertices of rectangles. Then we have up to 8 points to work.

The initial position is taken as desired position in the x −
y plane. It set to xd = 0 cm, yd = 140 cm and z = 60
cm. The time elapsed between two consecutive frames acquired

is around 55 ms, which means that the image sample rate is
around 18 FPS.

In the experiment, the rotary flying machine was stabilized

in hover flight applying the proposed control law and using

the measures and estimations from the IMU and stereo vision

system. The desired values to attitude angles to develop a hover

flight is zero. As is shown in Figure 7 the control strategy for

stabilizing the attitude performed well because the angles are

very close to the origin. The estimated linear position in x − y

plane obtained from the stereo vision system is plotted in Figure

8. While the translational speeds are shown in Figure 9. For

security reasons the eight rotor rotorcraft altitude is controlled

in open loop using the radio transmitter. Figure 10 shows the

control signals applied to front and left lateral motors.
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Fig. 7. Attitude behavior of eight-rotor rotorcraft.

0 5 10 15 20 25 30 35 40 45 50
−50

−40

−30

−20

−10

0

10

20

30

40

50

Time [s]

x
 p

o
s
ic

ti
o

n
 [

c
m

]

0 5 10 15 20 25 30 35 40 45 50
0

50

100

150

200

250

300

Time [s]

y
−p

o
s
it
io

n

Fig. 8. Position behavior of eight-rotor rotorcraft using stereo vision.
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Fig. 9. Velocity behavior of eight-rotor rotorcraft using stereo vision.
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Fig. 10. Control signal applied to lateral motors. Top, control signal for lateral
front motor. Bottom, control signal for lateral left motor.



VIII. CONCLUSIONS

This paper presents a navigation system based on a semi

embedded stereo vision system together with an IMU. This

combination of measurement strategies has many advantages

because one works very well at low speeds (vision system)

and the other at high speeds (inertial sensors). On one hand the

visual system measurements are used to control the translational

dynamics, on the other hand the IMU is used to control the

rotational dynamics. Both work at different sample rate.

Due to mechanical and aerodynamic features of the mini

helicopter, the translational and rotational dynamics are almost

decoupled each other. Taking advantage of this property we

have obtained a simplified dynamical model of the rotorcraft.

This model is given by six independent double integrators

which have been stabilized using sature proportional-derivative

(sPD) control. The real-time experiments have shown an accept-

able performance of the flying machine applying the control law

and sensing system proposed.
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