
974
IEICE TRANS. COMMUN., VOL.E99–B, NO.5 MAY 2016

INVITED PAPER Special Section on Internet Architectures and Management Methods that Enable Flexible and Secure Deployment of Network Services

Real-Time Streaming Data Delivery over Named Data Networking

Peter GUSEV†a), Zhehao WANG†, Jeff BURKE†, Lixia ZHANG††, Nonmembers, Takahiro YONEDA†††,
Ryota OHNISHI†††, and Eiichi MURAMOTO†††, Members

SUMMARY Named Data Networking (NDN) is a proposed future In-

ternet architecture that shifts the fundamental abstraction of the network

from host-to-host communication to request-response for named, signed

data–an information dissemination focused approach. This paper describes

a general design for receiver-driven, real-time streaming data (RTSD) appli-

cations over the current NDN implementation that aims to take advantage

of the architecture’s unique affordances. It is based on experimental de-

velopment and testing of running code for real-time video conferencing, a

positional tracking system for interactive multimedia, and a distributed con-

trol system for live performance. The design includes initial approaches to

minimizing latency, managing buffer size and Interest retransmission, and

adapting retrieval to maximize bandwidth and control congestion. Initial

implementations of these approaches are evaluated for functionality and

performance results, and the potential for future research in this area, and

improved performance as new features of the architecture become available,

is discussed.

key words: named data networking, information centric networking, video-

conferencing, real-time, low-latency, congestion control

1. Introduction

Supporting real-time streaming data (RTSD) dissemination

with low latency is an important capability for modern net-

works. Videoconferencing, teleconferencing, live media

broadcasting (i.e., future television and radio), streaming of

sensor data, and control systems are examples of applications

that require data to be distributed as it is produced (real-time)

with minimal delay (low-latency). This paper discusses is-

sues related to designing and building these types of appli-

cations, using Named Data Networking (NDN), a proposed

future Internet architecture, with benefits unique to the capa-

bilities of the architecture. The advantages and challenges of

using NDN and other information-centric networking (ICN)

architectures for content distribution and, more recently, sup-

porting the Internet of Things (IoT) have been widely dis-

cussed. However, how these architectures can support RTSD

applications is relatively unexplored.

From the perspective of application developers, this pa-

per describes a general approach to receiver-driven RTSD

Manuscript received January 4, 2016.
Manuscript revised January 22, 2016.
†The authors are with the Center for Research in Engineering,

Media and Performance, University of California, Los Angeles,
USA.
††The author is with the Department of Computer Science, Uni-

versity of California, Los Angeles, USA.
†††The authors are with the Advanced Research Division, Pana-

sonic Corporation, Kadoma-shi, 571-8501 Japan.
a) E-mail: peter@remap.ucla.edu

DOI: 10.1587/transcom.2015AMI0002

Fig. 1 NDN-RTC as deployed for real-time streaming of the NDN Com-

munity Meeting 2015∗.

that emerged from the development of several applications

using NDN, including 1) a real-time videoconferencing ap-

plication, as shown in Fig. 1; 2) a positional tracking data

provider; and 3) a simple multimedia control system. These

applications were built using the current open source NDN

implementation and the NDN project team’s testbed, which

do not yet support all envisioned architectural features, in-

cluding hop-by-hop congestion control which is critical to

RTSD applications. By providing an initial design and

implementation examples based on the currently available

toolset, this paper aims to promote discussion of design is-

sues related to RTSD applications over NDN, and to inform

the ongoing design and implementation of the architecture

itself.

1.1 Challenges of Real-Time Streaming Data

Though the current Internet is widely used for real-time

streaming (in web-based videoconferencing, for example),

the IP architecture’s host-to-host model complicates the

deployment of scalable, ubiquitous, and secure real-time

streaming, with data consumed and produced by many nodes

with intermittent and/or multi-path connectivity. Further-

more, typical streaming security models over IP are based

on the notion of host-to-host sessions, making them brittle

in the face of the intermittent, multi-path connectivity en-

countered in modern wireless networks, and complicating

∗https://www.caida.org/workshops/ndn/1509

Copyright © 2016 The Institute of Electronics, Information and Communication Engineers

GUSEV et al.: REAL-TIME STREAMING DATA DELIVERY OVER NAMED DATA NETWORKING

975

important applications such as mobile conferencing or ve-

hicular sensing†. Also, current RTSD approaches over IP

tend to treat real-time and historical data differently, e.g.,

using sender-driven WebRTC for real-time communication

and receiver-driven HTTP-DASH for recorded video, which

complicates application development.

Looking forward to future applications, the architec-

tural limitations mentioned above make it difficult to achieve

streaming designs that enable consumer-side content selec-

tion with low latency and scalability, as will be required for

important emerging use cases, such as navigable video and

progressive, on-demand delivery of virtual and augmented

reality content–both of which make ongoing content selec-

tion and adaptation based on user interaction.

This paper is organized as follows: Section 2 describes

architectural affordances and generalized design objectives

for RTSD over NDN; it also outlines related work. Section 3

proposes a receiver-driven approach for RTSD over NDN,

which is expanded in Sect. 4 via specific application use

cases. Initial evaluation results are discussed in Sect. 5.

Finally, the paper is concluded and future work is presented

in Sect. 6.

2. NDN Affordances & Opportunities

NDN shifts the “thin waist” of a network from the host-

centric communication model of IP to a data-centric, in-

formation dissemination model. It is a prominent example

of ICN [1]. Communication over NDN employs two types

of packets: Interest and Data. An application wishing to

consume data sends Interests for named Data packets to re-

trieve from the network. Each forwarding node that receives

these Interests forwards them to the next hop based on a

longest-prefix match against its name-based Forwarding In-

formation Base (FIB). It also stores the incoming interface

from which it received the Interest in a Pending Interest Ta-

ble (PIT), where it also aggregates duplicate Interests. When

an Interest reaches a node with matching Data, whether an

original producer, in-path cache, or any other source, the

hop-by-hop state in the PIT is used to return the matching

Data–along the original path back to the requesting node(s).

Each Data packet is signed, providing an important building

block for data-centric security. For a complete description

of the architecture, please see [2], [3].

Within a research context, NDN has been applied to

applications in live and prerecorded video streaming [4],

lighting control [5], streaming sensor data [6], “big data”

distribution in science [7], file sharing [8], [9], mobile

health [10], building management [11], IoT [12], vehicular

networking [13], and other areas.

NDN also addresses many of the significant challenges

of designing and deploying large-scale RTSD applications

that are encountered over IP. The following affordances mo-

tivated the research team’s initial application development:

†While these issues are not unique to RTSD, real-time ap-
plications’ requirements make it difficult to solve these problems
effectively at the application layer.

• Consumer scalability. Through its intrinsic multicast

support, as a result of architectural features such as Inter-

est aggregation and Data caching, NDN can enable RTSD

applications to scale in the number of consumers based on

network capacity rather than producer capacity, if the work

required at the producer for each new consumer is appro-

priately limited by the application design.†† Leveraging

this benefit, constrained producers, such as mobile phones,

could provide real-time data streams to a large number of

consumers, provided there was efficient multicast delivery

and sufficient cache capacity upstream of the producers.

• Producer scalability. Redundancy and scalability of pro-

ducers can be achieved by leveraging name-based forward-

ing to distribute Interests to one or more producers trans-

parently. For example, multiple nodes can capture and

stream the same live video feed and listen for the same

Interests, enabling hot failover. No action at the consumer

side is required to switch from a normal to failover opera-

tion. More generally, different hosts can provide different

subsets of content (e.g., different bitrates) transparently to

the requesters, even in real-time streaming.

• Random access. Through name engineering, NDN-based

RTSD applications can also support efficient random ac-

cess to content–in time and other dimensions. For ex-

ample, a namespace design expressing both temporal and

spatial characteristics of data can enable augmented re-

ality applications that must navigate real-time streams in

both time and space. Related techniques are preliminarily

explored in [15].

• Per-packet verification. NDN’s per-packet signatures

enable applications to achieve these advantages (above)

while still being able to verify trust in individual data ob-

jects based on their signatures, using schemes such as [16].

By performing trust chain verification asynchronously and

caching the results, applications can offer fast-start op-

tions without the equivalent of TLS/SSL session overhead,

while HMACs and other techniques can provide computa-

tionally efficient alternatives to asymmetric cryptography

for confidentiality.

• Storage friendliness with access control. It is important

to note that host-to-host session semantics and security

can also be achieved as a special case in NDN. However,

by using broadcast encryption or similar techniques, even

access-controlled content can be stored (and cached) ef-

ficiently, as discussed in preliminary work such as [17].

Furthermore, data in RTSD can be made available for

historical access through techniques such as including a

timestamp component in the namespace at design time.

Then, objects can simply be stored in a repository when

they are generated, and accessed by consumers based on

the time component in the name.

††This was demonstrated in [14] for streaming video playout over
NDN using one NDNVideo [4] producer to supply 1000 consumers
connected to the NDN testbed.

976
IEICE TRANS. COMMUN., VOL.E99–B, NO.5 MAY 2016

2.1 Related Work

The research team’s approach has been informed by previous

work over both ICN and IP architectures, the most relevant

of which is described here.

2.1.1 RTSD over ICN

One of the earliest attempts of RTC over an ICN network

was made in [18]. This work described the general feasi-

bility of low-latency communication over ICN and its pro-

posed advantages over IP in terms of security and scalability.

Some important insights into RTSD application design were

discussed, namely, a) constructible names, which allow con-

sumers to generate exact Interest names for the future data

based on packet names of previously received data, and b)

Interest pipelines to minimize delay. These ideas were fur-

ther elaborated in the NDN team’s Audio Conference Tool

(ACT) [19], which also explored rendezvous protocols for

managing participants in a conference. ACT uses a data

delivery namespace for audio transmission and a multicast

namespace to support conference announcement and boot-

strapping. The first fully functional videoconferencing ap-

plication was NDN-RTC [20], later versions of which are

discussed in Sect. 4. It demonstrated that high-definition

audio-video multiparty conferencing is viable on the current

NDN testbed, and provided a platform to explore challenges

of minimizing latency, Interest expression patterns, error

correction, and buffer control.

2.1.2 IP-Based Streaming

Media streaming, for both conversational and playout appli-

cations, is a well-studied area for the IP architecture. How-

ever, current IP-based streaming work, such as the buffer-

based rate adaptation of [21], assumes a host-to-host unicast

approach to streaming that is not applicable to a general

NDN design, especially given the aim to leverage the ar-

chitecture’s unique affordances. In the interest of space, all

such approaches are not surveyed here. Of more direct rel-

evance are previous receiver-driven approaches developed

to leverage multicast, such as Receiver-driven Layered Mul-

ticast (RLM), introduced in [22], extended in a variety of

other work, and surveyed later in [23]. In RLM, a sender

employs layered coding and sends different data layers to

separate multicast groups. This allows heterogeneous re-

ceivers to subscribe selectively to specific groups in order

to utilize bandwidth efficiently. While receiving one stream,

receivers conduct join experiments that try to subscribe to

a higher bitrate stream, switching to that stream if they are

successful. Because congestion detection is challenged by

interference between receivers’ join experiments, a shared

learning technique was introduced in which receivers col-

lectively share knowledge about successes and failures of

join experiments and synchronize future attempts. However,

this approach increased convergence time as the number of

receivers grew. In [24], receivers coordinate through the use

of synchronization points, special packets in a sender’s data

stream. Neither approach significantly reduced complexity;

together, they suggest the need for congestion management

support at the network layer to enable successful multicast

distribution.

2.1.3 Congestion Control

The RLM approach ultimately faced difficulties due to the

lack of network-layer congestion support, instead trying to

solve congestion problems on an end-to-end basis. This sug-

gests that network-supported congestion control is a key

affordance of the NDN architecture for RTSD applications.

As described in [25], the NDN architecture aims to pro-

vide hop-by-hop flow control, which makes receiver-driven

multicast approaches viable. Network-layer approaches also

provide an opportunity to support fair use of resources by

concurrent consumers, a long-standing design objective in

the Internet architecture [26].

At the time the applications were developed, the open

source implementation of NDN did not yet provide these

mechanisms. In order to provide running software suitable

for experimentation, the design presented here follows an

end-to-end approach that will be revised as new network-

layer mechanisms become available. Effort on congestion

control is ongoing by the NDN team, and related work such

as [27] proposes specific mechanisms for how routers can

control the transmission quantity of the Interests according

to the utilization of the link. In the network-supported case,

a stream consumer can respond to congestion and other vary-

ing network conditions more effectively using feedback from

the network such as congestion NACKs.

Before such support is available, the designs described

in this paper perform receiver adaptation based solely on lo-

cal estimates of available bandwidth. Related work includes

[28], [29], which present consumer-driven congestion con-

trol mechanisms that control the number of Interests in the

network based on AIMD [30]. However, these methods can-

not maintain high throughput and low-latency transmission

at the same time [31]. Therefore, another approach to esti-

mating available network bandwidth on the consumer side is

proposed in Sect. 3.5.1.

3. Designing RTSD over NDN

RTSD applications require protocols to minimize latency for

retrieval of newly produced data, provide both jitter toler-

ance and loss tolerance, and adapt to available bandwidth

to meet the applications’ throughput objectives and avoid

congestion. Furthermore, to leverage NDN as previously

discussed, the design follows a receiver-driven approach

with storage-friendly data naming.

To incorporate the affordances of NDN, the research

shifts the perspective of application design from one of com-

munication to one of information distribution, as suggested

by the NDN architects. Ideally, the NDN network should be

GUSEV et al.: REAL-TIME STREAMING DATA DELIVERY OVER NAMED DATA NETWORKING

977

considered a “black box” that makes a best effort to deliver

Data packets matching the Interests expressed to it. Thus,

the design of RTSD producers must determine:

1. what name should be given to each new data object;

2. how each object should be signed and, optionally, en-

crypted, and how corresponding keys should be made

available;

3. how the data generation pattern should be modified based

on current network conditions and/or client needs.

The design of RTSD consumers must determine:

4. the names of data that must be fetched;

5. what keys are needed to verify and decrypt the retrieved

data;

6. what Interest expression pattern should be used to meet

performance objectives under the current producer and

network conditions.

This paper addresses Questions #1, #4, and #6, which

enables development of and testing fully functional RTSD

applications over the existing NDN implementation. Sec-

tion 3.2 covers #1 and #4 by generalizing application names-

pace and providing insights into the namespace design pro-

cess. Sections 3.3 and 3.4 address #6, discussing the asyn-

chronous processes of Interest expression and Data buffer-

ing, to address how to achieve low-latency retrieval and loss

tolerance. Section 3.5 discusses bandwidth adaptation.

Without producer adaptation (#3), the range of avail-

able network conditions is assumed or manually adapted

based on testbed conditions. While per-packet verification

is included in the driver applications, a security design ad-

dressing Questions #2 and #5 fully is left for future work,

which is expected to incorporate the recently published ap-

proaches for schematized trust [16] and name-based access

control [17].

In the remainder of this section, a specific design ap-

proach to address these requirements is described, and an-

swers to these design questions are provided. The discussion

assumes familiarity with the NDN architecture (readers are

encouraged to review the references provided above). Note

that the design is based on the current NDN architecture

and its open source implementation [32], the implications of

which are discussed further below.

3.1 Application Architecture

The design answers the questions above, using the general

application architecture given in Fig. 2.

A producer generates data in the form of Application

Data Units (ADU generation), marshals it into named Data

packets (Segmenter), and stores them in an application-level

cache (Cache), which responds to incoming Interests. The

local Pending Interest Table (PIT) stores unanswered Inter-

ests until data is produced or they time out.

The consumer’s Interest Pipeline issues Interests to the

network for data as needed. The Data Buffer module receives

Fig. 2 NDN consumer and producer conceptual design.

Data packets and reassembles the ADUs, passing them to

ADU processing for use by the application. To ensure RTSD

objectives are met, the consumer monitors network perfor-

mance by examining when Data packets return relative to

the Interest that requested them, tracking timeouts and, in

the future, handling congestion NACKs, in order to adjust

to network conditions. It must also accommodate jitter in

delivery timing via the buffer and packet losses via recov-

ery techniques, such as Forward Error Correction (FEC) or

retransmitted Interests.

In the design, Data processing and Interest expression

are asynchronous, coordinated through signaling between

the Data Buffer and Interest Pipeline components. Further

signaling between ADU processing and the Interest Pipeline

provides high-level control Interest expression (initiation,

pause, restart, etc.).

3.2 Namespace Design for RTSD

NDN application protocol design starts with a namespace.

Effective namespace designs describe the data in a way that

makes sense to the application and considers how this data

can be efficiently fetched†. The namespaces described in

subsequent sections were iteratively developed through de-

sign, implementation and testing. Where possible, they aim

to describe the data being made available by the producer,

rather than naming messages as done in protocol design for

host-to-host communication in IP. This avoids unnecessary

session semantics and promotes storage friendliness, while

not precluding name or data encryption for security. In NDN,

only data that is requested traverses the network. Therefore,

a superset of the data needed for any one access pattern can

be published without penalty. This enables producers to

name the data they have, and for consumer applications to

employ the best access pattern for their needs.

†Further, names must take into account forwarding and security

978
IEICE TRANS. COMMUN., VOL.E99–B, NO.5 MAY 2016

Fig. 3 Generalized RTSD namespace design.

A typical RTSD application namespace is illustrated

in Fig. 3. Consumers start with well-known prefixes and

then discover the specific names that they need in order to

fetch data from the stream. This is done at several stages

of retrieval. First, a consumer obtains a root prefix cor-

responding to a particular data source or context using an

application-specific mechanism. For example, the producer

prefix /com/company/rtc/alice could be supplied by an

end-user, search engine, or local discovery mechanism†.

Once the producer prefix is identified, a metadata object with

a well-known name is fetched for that prefix, using Interest

selectors to obtain the latest version. The corresponding ob-

ject, e.g., /<root>/_meta/<version>, is an application-

specific manifest describing the available streams and op-

tions available under that prefix. In a typical design, the pro-

ducer may have several data streams (stream0, stream1

in Fig. 3)–for example, for audio and video or for distinct sen-

sors connected to an acquisition device. Each stream may

have several quality levels, shown as bitrates for simplicity

in Fig. 3. Both relations are represented as siblings in the

name tree.

Application conventions, along with metadata from

the manifest, are then used to construct the longer prefix

where samples are published, such as /com/company/rtc/

alice/main_camera/high_quality/samples/. The

consumer then employs the techniques described in

Sect. 3.3.2 to fetch the latest data available under current

network conditions from that stream prefix.

The producer supports data access using multiple meth-

ods. For example, because a sequentially numbered sample

namespace does not allow consumers of archived data to

retrieve data easily for a certain time, a producer could pro-

vide an index namespace with child objects, correspond-

ing to timestamps, that provide pointers into the segment

concerns, though these issues are not addressed in this paper.
†NDN provides mechanisms that can be used for dynamic

namespace discovery, such as the NDN sync primitive [33], which
we employ in several of our implementations.

namespace, as done in NDNVideo [34] and shown in Fig. 3.

Furthermore, given the latency requirements, RTSD produc-

ers should name sample-level data to facilitate consumers

quickly beginning to render for a given stream, which may

have different implications for different data types. For ex-

ample, the NDN-RTC real-time video conferencing appli-

cation, described in Sect. 4, uses a namespace design that

distinguishes between key and delta frames, to enable con-

sumers to issue different numbers of simultaneous Interests

depending on the frame type.

3.3 Interest Expression Control

To yield a continuous stream of data, once it knows the names

to retrieve, an RTSD consumer must issue multiple simul-

taneous Interests. It tracks the number of in-flight Interests,

those issued but not answered, with the Interest pipeline

mechanism. Three important observations can be made. 1)

As long as the Interest lifetime is sufficiently long, there is

no penalty for Interests that arrive before data is produced.

2) Data is assumed to be generated at a known sampling

rate, available to the consumer via metadata or per-packet

timestamps, which enables the consumer to compare the

delay in production to the delay in arrival without clock syn-

chronization. 3) Pipeline size, the time period covered by

in-flight Interests multiplied by segment size, corresponds

to the bandwidth-delay product of the data stream being

fetched.

The Interest pipeline is characterized by its size in In-

terests, λp , and the number of interests that the Interest

pipepline must issue, λs to keep λp interests in flight. At

initialization, λs = λp . As the consumer controls λp , it can

adjust the number and expression pattern of in-flight Inter-

ests by such techniques as Interest bursting and withholding,

as shown in Fig. 4.

3.3.1 Consumer-Producer Synchronization

By definition, RTSD applications must retrieve the latest data

as soon as it is generated, so consumers should issue Interests

early enough so that they arrive upon data’s production or

earlier††. The design contains a producer-side PIT that holds

arrived Interests and is checked immediately when data is

produced (see Fig. 2), which is discussed further in Sect. 4.2.

The notion of RTT for NDN networks is generalized

by introducing data retrieval delay (DRD), the consumer-

observed time between when an Interest is expressed and

the corresponding Data packet is received. For example,

in the case of two RTSD consumers fetching the latest data

from one producer (see Fig. 5), only one consumer’s Interest

reached the producer; the other consumer’s (C2) Interests

are aggregated in the PIT of the router (R) and retrieve data

from R’s cache. Nevertheless, both consumers C1 and C2

††Note that while intermediate hops may aggregate duplicate In-
terests from multiple consumers, at least one will reach the producer
for each data segment.

GUSEV et al.: REAL-TIME STREAMING DATA DELIVERY OVER NAMED DATA NETWORKING

979

Fig. 4 Interest expression pattern adjustments.

Fig. 5 Data Retrieval Delays in 1-to-2 RTSD fetching scenario: C2 expe-

riences smaller DRD value when it starts fetching after theC1 and receives

cached data from the R.

receive the latest data with minimum latency, even though

the DRD values for them may differ.

Further, the delay between an Interest’s arrival and the

availability of corresponding data is defined as its generation

delay, dgen, which impacts the effective DRD measured by

the consumer: DRD′ = DRD + dgen. Conceptually, dgen

should be kept small, to avoid arriving after the Data is

produced, which would increase the playback latency for the

consumer.

3.3.2 Retrieving the Latest Data

An RTSD consumer must achieve the goals of keeping DRD′

minimal while fetching the latest data as soon as possible.

Several designs are possible. For example, interests for

uniquely named Data could be issued, requiring the producer

to create new packets on the fly, but this limits scalability

severely, especially if done for every packet. Or, Data can be

named sequentially, and consumers can issue Interests with

“rightmost child” and “fresh” selectors, using Data packet

Fig. 6 Increased latency experienced at the consumer as a result of cache

presence.

freshness values to expire old data†. However, in practice,

this is insufficient. For example, the rightmost child selector

provides the latest child as known by each hop, potentially

returning data older than would be available if the Interest

propagated further, as shown in Fig. 6. In high-rate RTSD

publishers, many Interests and Data need to be in-flight si-

multaneously, and using selectors alone may not return each

available segment reliably; further, selectors are not the ar-

chitecturally preferred method for retrieving sequential data.

Thus, the consumer should stream real-time data from

the producer by using exact, sequential names. The de-

sign combines knowledge of the producer sample rate with

the use of selectors at bootstrapping to determine the latest

sequence number, and then issues exact name requests for

streaming. Observe that whether an in-path cache or pro-

ducer responds, the consumer is not able to achieve playback

latency lower than the fastest path between the consumer and

the producer. In the scenario illustrated by the Fig. 5, Con-

sumer C2 achieves playback latency no less than L2 + L3,

even though effective DRD is shorter (L3).

The approach is summarized as follows: 1) The pro-

ducer names data sequentially, and provides the sampling

rate–the data generation rate–in stream-level or segment-

level metadata. 2) To bootstrap real-time retrieval, a con-

sumer issues Interests with rightmost child selectors to get

latest samples as known by the nearby router, and learn se-

quence numbers and sampling rate from the metadata of the

received packets. After that, it expresses Interests with exact

names at a rate faster than the sampling rate. If Data packets

arrive at the same rate Interests are issued, the data in these

packets must be from router caches. 3) When Data packets

arrive at the same rate as the sampling rate, the consumer

assumes it is receiving the data that is being generated in real-

time. Thus, the consumer can determine data freshness by

comparing the consecutive data packet arrival pattern with

the Interest expression pattern used to retrieve the data and

the producer’s sampling rate (see Fig. 7).

Real-time data is detected by observing that it arrives

no faster than the producer-defined sampling rate, while

†See [35] for more information on selectors and other details
presented here.

980
IEICE TRANS. COMMUN., VOL.E99–B, NO.5 MAY 2016

Fig. 7 Getting the latest data: arrival patterns for the stale and the latest

data.

stale data can be retrieved at a higher rate. To differentiate

the real-time data from stale data, the consumer performs

stability estimation. Inter-arrival delay, Darr , is monitored

for consecutive samples, and once it is stabilized around the

sample period, T , the data flow is considered stable, and

the consumer is retrieving real-time data. An example is

provided in Sect. 4.1.3.

3.3.3 Latency Minimization

To implement the approach described in the previous sec-

tion, the consumer tracks the producer’s sample period, T

(calculated using the sampling rate provided in the packet

metadata) and the estimated DRD, DRDest , defining net-

work Interest demand as follows:

λd = ⌈
DRDest

T
⌉ (1)

where DRDest is calculated using effective DRD (DRD′)

and generation delay, received in the packet metadata:

DRDest = DRD′ − dgen. Interest demand defines the mini-

mal number of in-flight Interests necessary for the consumer

to retrieve real-time data with steady flow. The consumer

adjusts the Interest pipeline size, λp , to match with the cur-

rent Interest demand. As can be seen from Eq. (1), Interest

demand may change depending on network conditions (mea-

sured by DRDest) or the producer data generation pattern

(sample period T). Therefore, the consumer needs to track

the current Interest demand for the network and adjust its

Interest pipeline size, λp , accordingly. Having too many

Interests in the pipeline will lead a majority of them to time

out while waiting for data. Having too few will cause the

consumer to fall behind in fetching real-time data.

The current design uses a two-phase process to deter-

mine the Interest pipeline size for the current network condi-

tions. During the chasing phase, the consumer aims to fast

forward to the latest data the network can offer by issuing

bursts of Interests (see Fig. 4(a)) until the consumer detects

the arrival of data at the target sampling rate. At this point,

the consumer is fetching data with minimal delay, although

the value of λp may be larger than necessary at this time.

During the adjusting phase, the consumer reduces λp (In-

terest withholding), shortening the pipeline until stale data

begins to arrive, at which point the previous value of λp is

restored. More generally, the consumer attempts to set λp
as follows:

minimize
λd

DRD′(λp)

subject to E(Darr (t) |Iexp (t)) = T
(2)

where Darr (t) describes the pattern of data arrival at the

consumer over time, and Iexp (t) describes the Interest ex-

pression pattern. At the completion of bootstrapping, after

the adjusting phase, the effective DRD′ will be close to the

actual network DRD. Thus, the consumer will receive the

latest data with minimal latency by maintaining λp in-flight

Interests.

3.4 Network Jitter Mitigation and Loss Recovery

The RTSD consumer must also provide a buffer for Data

packets, which, as in IP streaming, aims to mitigate the im-

pact of network latency variations and, potentially, packet

loss on application performance. Sizing of the buffer must

balance the target latency, acceptability of dropped samples,

and volatility of network performance in an application-

specific manner. The current buffer design supports two

packet loss recovery mechanisms–Interest retransmission

and Forward Error Correction (FEC)–and leaves the exact

buffer sizing up to the individual application.

The buffer design is shown in Fig. 8. The total buffer

size (in milliseconds), S, is the sum of the playable size,

Spl , and the reserved size, Sr . These contain the assem-

bled, “ready-to-be-rendered” content and sufficient space to

accommodate the Interest pipeline, λp ∗ T , respectively.

The consumer issues Interests to keep Spl as close as

possible to the target playable size, Stpl = α ∗ jitter + β ∗

DRDest . The first component accommodates the jitter [36]

observed over a long observation window, by using α ≈ 1 as

a conservative parameter. The second component is NDN-

specific: it allows the consumer to avoid buffer underflows

in case of sudden data path changes, by adjusting β. How-

ever, larger values of β increase overall playback latency.

These values need to be tuned based on application-specific

tradeoffs.

Packet loss detection is realized by setting a deadline for

packet arrival after expressing an Interest. Once a consumer

detects loss, it can take one of the two recovery strategies:

packet recovery using FEC parity data or Interest retrans-

mission. At the retransmission checkpoint (PRTX in Fig. 8),

the consumer checks multi-segment samples for complete-

ness and attempts to recover incomplete samples using FEC

data if it is available. Otherwise, Interest retransmission is

performed.

The retransmission pointer is PRTX = γ ∗ DRDest ,

GUSEV et al.: REAL-TIME STREAMING DATA DELIVERY OVER NAMED DATA NETWORKING

981

Fig. 8 Data buffering and retransmission design for NDN RTSD appli-

cations.

where γ ∈ (0,min(1, β)] can be adjusted by the consumer

depending on its understanding of current network condi-

tions. The most conservative case, when γ = 1, covers

worst-case scenarios, when the original Interest was lost on

the way to the data source. Note that in future optimizations,

late-arriving FEC data could be applied all the way up until

playback, and retransmission could be triggered earlier.

3.5 Adaptation for Bandwidth Maximization and Conges-

tion Control

For some RTSD applications, such as live video stream-

ing and interactive videoconferencing, maximizing through-

put during communication is important. At the same time,

to maintain real-time communication, it is crucial to avoid

growing packet queues in the routers and consequent packet

losses. Therefore, the rate adaptation mechanism, which

adapts to the actual available network bandwidth, is critical.

3.5.1 Congestion and Data Source Change Detection

An adaptive rate control mechanism for real-time video

streaming in NDN [31] was proposed previously. As a

method for the consumer to maintain real-time communica-

tion and best available throughput, the mechanism controls

the sending rate of the Interests in order to control throughput

of Data packets according to available network bandwidth.

This means that the time interval between consequent Interest

expressions is adaptively adjusted to the appropriate value,

by estimating available bandwidth using two indicators. The

first is the variation of DRD′, and the second is the packet

loss ratio. In order to avoid increasing the queuing delay

in the router, the mechanism quickly decreases the Interest

sending rate if indicators yield worsened conditions. During

normal conditions, the mechanism increases the Interest rate

to keep good throughput.

However, in multi-consumer scenarios, sudden changes

in the data retrieval path may occur and cause changes of

effective DRD. In order to distinguish between retrieval path

changes and network congestion, the algorithm keeps track

of the average DRD values for equal adjacent time intervals.

By comparing these values, the consumer is able to make

an educated decision about changed conditions. When the

retrieval path changes, the difference of average DRD values

in adjacent intervals will be conspicuously larger than in the

case of network congestion.

4. Real-Time Streaming Data Use Cases

We developed, evaluated, and used three NDN RTSD ap-

plications implementing aspects of the design described in

the previous section. The primary driver was NDN-RTC,

a videoconferencing library designed to provide real-time,

conversational multimedia communication over NDN. Also,

we developed NDN-opt, an NDN data publisher for an open

source, scalable multi-person tracking system and Ananke,

a real-time control system for live multimedia performance.

4.1 NDN-RTC: Real-Time Videoconferencing

NDN-RTC is a real-time videoconferencing application us-

ing NDN [20]; here, we relate the specifics of that application

design to the more general approach of the previous section.

4.1.1 Producer

The implementation of NDN-RTC producer is straightfor-

ward. It encodes acquired media data, slices it into smaller

packets where necessary, FEC data, names the packet, and

adds them to an application-level cache that handles Interests

asynchronously.

Namespace design. The NDN-RTC namespace (see

Fig. 9) follows the approach described in Sect. 3.2. A hier-

archy of streams and different bitrates is named at the media

stream and media thread levels. Different frame types, Key

and Delta, are published as siblings on the packet_type level.

Sequential frame numbering (level frame) uses NDN naming

conventions for segment numbering [37] and enables con-

sumers to establish a pipeline of Interests to use exact names

to fetch data that is yet to be produced. FEC data is published

at the data_type level.

4.1.2 Consumer

Conceptually, the consumer must: 1) choose the most appro-

priate stream from those provided by the producer; 2) fetch

and reassemble incoming segments into frames, reordering if

necessary; 3) mitigate the impact of jitter and packet loss; and

4) decode frames and play them out. The NDN-RTC con-

sumer implements these features across three modules that

directly follow the general design described in Fig. 2. The

Interest Pipeline holds in-flight Interests for future data. Its

properties are adjusted using feedback from the Data Buffer

module, which reorders and assembles incoming Data seg-

ments into ADUs, e.g., frames, and initiates retransmissions

when necessary. The variable λs , described in Sect. 3.3, is

used for signaling between the two asynchronous compo-

nents. Once ADUs are assembled, they are passed via a

982
IEICE TRANS. COMMUN., VOL.E99–B, NO.5 MAY 2016

Fig. 9 NDN-RTC namespace.

Fig. 10 NDN-RTC consumer state diagram.

queue to the ADU Processing, where in NDN-RTC handles

video and audio decoding and rendering.

Consumer state machine. The NDN-RTC consumer

implements the state machine shown in Fig. 10. Each media

fetching thread starts in the Inactive state until the user selects

a stream to fetch. Then, to initiate bootstrapping, an Interest

with the “rightmost child” selector is issued as part of the

issue RM transition on the state diagram. The consumer

stays in the WaitInitial state until the data arrives, or it times

out and is reissued. NDN-RTC extracts necessary metadata

from the object and initiates the chasing phase represented

by the Chasing state on the diagram. Arrival of the latest data

triggers the transition to the Adjust state, described below,

where frame rendering first begins to deliver data to the end

user.

Once the adjustment phase has been completed and the

Interest pipeline size, λp , corresponds to the current Interest

demand, λd , the consumer switches to the Fetching state.

During Fetching, the consumer monitors the buffer level

and the stability estimator, transitioning to Adjusting mode

Fig. 11 Video frame fetching timeline in NDN-RTC.

in either of two cases: a) low buffer level or b) stale data

begins to arrive. This approach helps the consumer to react

to changing network conditions. Periodically, the consumer

enters the Challenge state in order to start requesting data

from higher bitrate streams for bandwidth estimation and

rate control.

Frame fetching. A primary extension of NDN-RTC

from the general design is to handle multi-segment objects.

The consumer issues a bundle of Interests for each frame as il-

lustrated in Fig. 11. The number of segments in a given frame

is not known ahead of time. Thus, the consumer maintains

estimators M (specifically, Mkey and Mdelta) for this value

for the different frame types. The actual number of segments

comprising a given frame, N , is delivered in each segment

as metadata. If N > M , the consumer issues more Interests;

if N < M , some Interests may go unanswered. (The latter is

preferred over the additional round-trip penalty.)

4.1.3 Latency Minimization and Interest Expression Con-

trol

Interest pipeline. During bootstrapping, the consumer aims

to catch up with the producer’s data production and fetch the

latest data. It initializes λp using current Interest demand

as in Eq. (1), and transitions through the Chasing and Adjust

states as described in the previous section. The following

equations are used for adjusting the Interest pipeline:

- Interest bursting: λip = 2 ∗ λi−1
p

- Interest withholding: λip =
3
4
λi−1
p

After each Interest pipeline adjustment, the consumer

waits for some period of time, called the detection period,

to detect the impact of the previous action by measuring the

network’s output (data arrival pattern and DRD′). No new

Interest pipeline adjustments are made until the detection

period is expired.

Latest data detection. The consumer monitors packet

inter-arrival delay, Darr , during the chasing phase in order

to differentiate the latest data from stale data. As discussed

in the previous section, we observe that 1) stale data arrives

in bursts, following Interest bursting pattern, thus Darr value

fluctuates widely; 2) latest data arrival is more stable, Darr

fluctuations are minimal; 3) during latest data arrival, Darr

stabilizes around producer’s sample period, T . To detect

GUSEV et al.: REAL-TIME STREAMING DATA DELIVERY OVER NAMED DATA NETWORKING

983

latest data, the NDN-RTC consumer estimates Darr attenu-

ation during the chasing phase by comparing average values

of Darr over two consecutive non-overlapping windows (at-

tenuation windows). Once Darr has stabilized, its average

value is compared to producer’s sample period T in order

to confirm that the data arrives at producer’s sampling rate.

The following stability estimator is used:

ŝ =




1, if (
m1

m2
≤ θ1) and (1 −

|m1−T |
T
≤ θ2).

0, otherwise.
(3)

where:

m1 =
1

N

i∑

k=i−N

Dk
arr m2 =

1

N

i−N∑

k=i−2N

Dk
arr

m1 is a running average of the last N values of Darr , and

m2 is a running average of the N values of Darr before that.

The attenuation coefficient, θ1, similarity, θ2, and attenuation

window, N , are pre-defined constants. The first condition of

the stability estimator in Eq. (3) checks for Darr attenua-

tion, while the second condition checks that Darr stabilized

around the producer’s sampling period, T . The latter is a

simple way to check whether arriving data packets follow

the producer’s publishing pattern, thus representing the lat-

est data; more sophisticated estimators could be used in the

future. The state change from Chasing to Adjust is made

after estimator reports latest data arrival for K consecutive

times. The next section discusses actual values of θ1, θ2, N

and how this estimator performs in practice.

4.1.4 Buffer Management and Loss Recovery

The NDN-RTC consumer sizes the buffer and handles loss

recovery according to the ideas explained in Sect. 3.4 with

α = 1 and conservative parameters, β = 2 and γ = 1†.

The consumer checks whether all segments for a frame have

been received at the retransmission checkpoint. If not, it

attempts to recover it using FEC data. If it fails, the consumer

retransmits Interests for the missing segments. With β = 2

and γ = 1, the consumer is guaranteed to have at least

DRDest milliseconds to receive the missing segment.

4.1.5 Adaptive Rate Control

To achieve the rate control described in Sect. 3.5, the pro-

ducer generates and delivers multiple bitrate video streams.

Additionally, the consumer shifts to the Challenge state from

the Fetching state, and estimates an available network band-

width with a variation of DRD. Then, the consumer selects

the appropriate bitrate of the video stream and fetches it. The

consumer employs the following basic design:

• In the Challenge state, the consumer fetches two video

†These values were established empirically to provide reason-
able quality of experience in the face of loss, over many test runs
on both the NDN testbed and in isolated tests.

streams of different bitrates at the same time. One is

“current media,” which the consumer plays back, and the

other is “additional media,” which is a higher bitrate than

“current media.”

• According to the algorithm proposed in [31], the consumer

estimates available bandwidth while referencing DRD of

two media steams, and controls the sending rate of Inter-

est packets based on the bandwidth estimation. However,

the consumer only controls the Interest packet for “addi-

tional media,” because the expression timing of the Interest

packet for “current media” should not be changed.

• If a bandwidth estimate is above the bitrate of “additional

media,” the consumer stops fetching “current media,” and

switches to fetching “additional media” only.

• Bandwidth estimation is an ongoing process, so the con-

sumer is able to detect when available bandwidth is less

than the bitrate of “current media.” In this case, it instantly

switches to fetch a lower bitrate media stream.

The current design assumes that different media streams

(“current” and “additional” media) follow the same path in

the network and originate from the same producer. To cover

other cases, the algorithm should be upgraded to perform

per-stream bandwidth estimation measurements.

4.2 OpenPTrack: Real-Time Positional Tracking

OpenPTrack is an open source positional tracking system that

uses networks of 3D imagers (such as the Microsoft Kinect)

to detect and track people in real-time [38]. It is designed for

use in interactive applications in education, arts, and culture.

To drive interactivity, it must provide real-time streaming po-

sitional data to one or more network clients. Currently, the

system supports UDP, WebSockets, and NDN for dissemi-

nation. NDN’s receiver-driven, connectionless approach is

a good fit for this application, and its storage friendliness

provides an easy path towards storage and retrieval of histor-

ical data in future applications. UCLA REMAP developed

a straightforward RTSD publisher and consumer prototype

for OpenPTrack, NDN-opt, in 2014-15, based on what had

been learned from NDN-RTC (Fig. 12). It was used in lieu

of other middleware to support six interactive undergraduate

thesis projects exhibited at the end of 2015 (Fig. 13). These

browser-based projects were written in HTML5/Javascript,

and successfully used a Javascript-based NDN-opt consumer

library to retrieve positional tracking data from a C++ pub-

lisher module compiled into OpenPTrack.

In this project, we employed RTSD ideas developed for

NDN-RTC to achieve low-latency data delivery. In devel-

oping this RTSD application, the need in application-level

cache and PIT was reinforced. Additionaly, an approach for

dynamic namespaces was demonstrated.

4.2.1 Producer

As in NDN-RTC, the NDN-opt producer is straightforward.

984
IEICE TRANS. COMMUN., VOL.E99–B, NO.5 MAY 2016

Fig. 12 A three-imager OpenPTrack system being demonstrated live at

UCLA’s Royce Hall; real-time tracks are shown in the projection.

Fig. 13 Student interactive media project using NDN-opt to provide real-

time person tracking data to a browser-based immersive experience via

NDN.

Via the host framework for OpenPTrack, the Robot Oper-

ating System (ROS), the NDN-OPT publisher receives a

callback when new person tracking data is generated. Track-

ing data is expressed as NDN objects with Javascript Object

Notation (JSON) payloads, containing timestamps and loca-

tion coordinates, named sequentially. Data is produced at

approximately 60 Hz.

Figure 14 illustrates the data namespace. While streams

and bitrates in an NDN-RTC do not change during opera-

tion, the NDN-opt namespace is dynamic and may add or

remove uniquely identified track components during opera-

tion, as people enter and leave the tracked space. The track

hint child in the namespace provides the consumer with a

list (manifest) of current tracks under a well-known name.

Tracking hint objects provide the IDs of currently active

tracks, and are published periodically with the producer’s

current timestamp. Track IDs extracted from hint_payload

can be used to express Interests for actual tracking data under

the tracks namespace.

Note that just as NDN-RTC, which sometimes must

request additional segments for unusually large frames, con-

sumption is also a two-step process here. Track hints provide

a list of streams dynamically for the consumer to retrieve.

Fig. 14 NDN-opt namespace.

4.2.2 Consumer

The consumer aims to acquire tracking data with minimal de-

lay once it learns the track ID from the hint packets. Hint data

fetching is accomplished by having the consumer express In-

terest with everything older than or equal to the timestamp

of the last hint excluded and the right-most-child selector.

As described in the previous section, the consumer aims

to deliver Interests before the corresponding Data is pro-

duced. This application-level PIT holds interests received

at the application level, since there is no mechanism in the

current NDN implementation for the forwarder to notify the

application that newly produced data had been previously

solicited. The authors’ first implementation did not have an

application-level PIT, and data bursts were often observed

on the consumer side. Fewer bursts were observed after

introducing an application-level PIT, which reduced the per-

centage of data arrival intervals that were larger than 100

,ms. Since the application-level PIT makes application-level

caches more usable, it is now implemented in the NDN

Common Client Libraries [39]. In the future, the forwarder

implementation may provide a similar mechanism and ap-

plication API directly.

As in the NDN-RTC design, an Interest pipeline that

maintains a series of Interests for the next few Data packets

is maintained. The pipeline issues an Interest for the next

sequence number when data is received and the sequence

number is within the current pipeline. NDN-opt uses a

loss recovery approach based on retransmission only, as the

preliminary version could tolerate larger latencies (100–200

milliseconds).

4.3 Ananke: Distributed Control System for Live Perfor-

mance

Another example of RTSD is a distributed media-cue control

system for an interactive performance, Los Atlantis, which

was rehearsed and performed at the UCLA School of Theater,

Film and Television from April-June 2015 (Fig. 15).

We used this opportunity to demonstrate the viability

GUSEV et al.: REAL-TIME STREAMING DATA DELIVERY OVER NAMED DATA NETWORKING

985

Fig. 15 Performance environment controlled by Ananke via NDN, with

TouchDesigner in the foreground.

of RTSD techniques to emulate push-style control.

The specifics of the performance required multiple in-

dependent nodes, represented by a rolling tower with a laptop

and a projector, which could receive cues to initiate or sup-

press video projection processing. A media cue was repre-

sented as a Data packet, and each node ran an NDN consumer

application, which maintained outstanding Interests for the

next cue. Namespace designed during this project, allowed

for easy and flexible one-to-many control and customization

of individual nodes.

During each individual performance of Los Atlantis,

the actors guided the audience to experience unique, evolv-

ing sets of video and audio content, based on choices made

by the specific audience (both in the performance space and

experiencing the performance online). Unlike a more tradi-

tional performance, wherein cues can be called as a reaction

to choreographed movements and scripted spoken words, the

dynamic nature of Los Atlantis was well-suited for NDN.

NDN’s name-based forwarding enabled a straightfor-

ward mapping between network communication and the pro-

jection control software (TouchDesigner), which represents

data flow processing internally as a hierarchically structured

set of named operators. It was trivial to expose this names-

pace to network manipulation via NDN, which allowed for

easy, customizable and scalable control over the group of

nodes. This was crucial for the performance, which con-

tinued to change during the rehearsal process and run, and

relied on continuously shifting relationships with media con-

tent stored online.

As can be seen from Fig. 16, a cue_control sub-

namespace was used to publish cues. A timestamp name

component allowed consumers to exclude older cues and

fetch only the latest data. A parallel sub-namespace pro-

vided access points to the projection software tuning. Every

component (i.e. nodeA, nodeB, etc.) can have a hierarchical

name identical to TouchDesigner’s operator name, with a

last component added to denote the property of the operator.

The payload carries actual value for the property. By in-

jecting a timestamp component in the hierarchy, consumers

Fig. 16 Ananke namespace.

at different nodes were able to fetch only the latest changes

posted by the producer. With the support of data storage,

this enabled a powerful “re-play” mechanism for the entire

process.

5. Evaluation

This section describes initial evaluation results of the design

concepts described above, as implemented in the NDN-RTC

library and tested with experimental runs of the ndncon tool

[40] (Fig. 17), a desktop application built on top of NDN-

RTC [20]. Unless noted, all tests use the NDN Platform

version 0.4 on MacOS X (Intel Core i7, 16 GB RAM), with

UDP tunnels.

5.1 Consumer/Producer

Two tests demonstrated basic consumer and producer scala-

bility. During the first, two consumers and a producer were

configured in the topology illustrated by Fig. 18(a). The pro-

ducer was started, and then each consumer was launched in

succession. As can be seen from the results (see Fig. 19(a)),

even though the bandwidth through Face 2 increased when

consumer C2 started to fetch the stream at approximately

18 seconds, Face 1 throughput stayed unchanged. During

the second test, hot failover was demonstrated between two

routers†. The topology shown in Fig. 18(b) was used, and

measurements were made of throughput over each node’s

faces. The consumer was configured to forward Interests to

both routers. Approximately 100 seconds after the producer

and consumer were both started, router R1 was shut down.

As seen in Fig. 19(b), Data packets continued to flow from

router R2; the transition did not cause any interruption in

†Synchronization of multiple producers is not yet available in
the implementation.

986
IEICE TRANS. COMMUN., VOL.E99–B, NO.5 MAY 2016

Fig. 17 Screenshot of ndncon - NDN-RTC demonstration application;

real-time remote video in the foreground.

Fig. 18 Network topologies for evaluating consumer scalability and

failover.

playback or packet loss at the consumer.

5.2 RTSD Performance Evaluation

Additional tests were conducted to evaluate NDN-RTC’s

latency minimization, loss recovery, and bandwidth utiliza-

tion under simple conditions. For these tests, the topol-

ogy, shown in Fig. 20, was used: two clients (consumer-

producer), CP1,CP2, connected to a router, R. Except

where noted, each consumer-producer pair established bidi-

rectional audio-video communication at a 1000 Kbps video

bitrate and a 100 Kbps audio bitrate, with video T=1/30 sec

and audio T=1/50 sec. The network shaping tool, tc was

Fig. 19 Results of test runs on topologies in Fig. 18.

Fig. 20 Basic evaluation topology.

used to vary latency, loss ratio, and bandwidth on both links.

5.2.1 Latency Minimization

Interest pipeline adjustment. Six tests, with different start-

ing pipeline sizes, were conducted to learn more about the

bootstrapping process. The duration of the chasing period

was measured along with other parameters. Table 1 summa-

rizes these tests. As described in Sect. 3.3.3, in the adjusting

phase, the consumer decreases λp until it starts acquiring

stale data, at which point it restores the last value of λp and

switches to the Fetching phase. This “Backoff period” of re-

ceiving stale data during the adjusting phase was measured

for each condition and shown in the table. During bootstrap-

ping, the consumer adjusts its pipeline size, λp , to match the

current Interest demand value (for the tested network con-

ditions of round-trip latency 100 ms and producer rate 30

FPS, Interest demand corresponds to 4). Thus, the initial

value, λ0
p , directly affects how fast the consumer is able to

switch to the Fetching phase, sets its pipeline size, λ
f inal
p ,

and starts rendering media for the user. As λp is adjusted,

the effective DRD′ measured by the consumer changes as

well. By the end of the bootstrapping, the resulting DRD′

should be close to the actual network DRD value. Figure 21

illustrates the sample bootstrapping process for Test Run #1;

in it, first two white areas represent chasing and back-off

GUSEV et al.: REAL-TIME STREAMING DATA DELIVERY OVER NAMED DATA NETWORKING

987

Table 1 Bootstrapping test results.

Test

run

Varied

parameter
Results

λ0
p

Resulting

DRD′

Chasing

period

(ms)

Backoff

period

(ms)
λ
f inal
p

1 30 110 700 1600 4

2 15 110 700 1500 4

3 5 140 1100 0 5

4 4 110 2000 400 4

5 3 110 2500 2000 4

6 2 110 3800 0 4

Fig. 21 Darr and DRD′ during consumer bootstrapping process; the

grey area shows the detection of the latest data arrival.

periods respectively.

As can be seen from the results, larger initial sizes

of the Interest pipeline yielded more aggressive consumer

behavior and, thus, shorter chasing periods. Initializing the

pipeline with less than the actual Interest demand required

more time for the consumer to bootstrap. The best result,

with shortest chasing and back-off durations, as well as best

DRD′ accuracy, was achieved when λ0
p was initialized with

the current Interest demand estimation, as in Eq. (1).

Latest data detection. The chasing phase must be

completed before data can be rendered for the user; thus,

its duration directly affects QoE [41] and should be kept as

small as possible. A series of experiments was conducted

in order to explore how parameters of the stability estimator

introduced in Sect. 4.1.3 impact the duration of the chasing

period. Three groups of parameters for the implemented

estimator were defined (given in Eq. (3)), representing dif-

ferent thresholds of what is considered “stable” enough to

terminate chasing:

- Low: θ1 = 0.6, θ2 = 0.5, N = 3, K = 4

- Medium: θ1 = 0.3, θ2 = 0.7, N = 10, K = 4

- High: θ1 = 0.1, θ2 = 0.95, N = 30, K = 4

In order to simulate different network conditions, la-

tency was varied on links L1 and L2, and the chasing pe-

riod was measured for one of the consumers. Figure 22

shows how the estimator with the highest precision required

longer chasing periods–i.e., more time to detect the latest

data arrival–whereas lower precision provided faster chasing,

and thus shorter playback startup times. However, the low

precision estimator was observed to yield false latest data de-

tection in more complex (multi-hop) topologies. Overall, the

chasing period duration increases as link latency increases,

Fig. 22 Chasing period duration measured for different stability estimator

parameters, for various link latencies.

at least according to these tests.

5.2.2 Loss Recovery

The authors compared packet loss recovery for 1000 and

8000 byte data payloads, corresponding to the approximate

amount of application data that can be expected to fit in the

MTU of the underlying transport (1500 bytes for UDP on

the Internet) and in the maximum NDN segment size (8800

bytes). All of the previous tests used a maximum payload

size of 1000 bytes, with the intention of enabling each packet

to fit in a single MTU. The benefit from larger segment sizes

should be to decrease the number of Interests and Data pack-

ets and name overhead. The maximum segment size directly

impacted the consumer’s ability to recover packets. As can

be seen from Fig. 23, a consumer with a larger segment size

suffered more under lossy link conditions, and was unable

to start playback at all for 5% and 10% loss ratios. Fig-

ure 24 shows the performance of FEC and retransmission for

packet loss recovery under different conditions for the two

segment sizes. This revealed an FEC implementation is-

sue. For an 8000 byte payload and 1000 Kbit/s video stream,

most frames fit into a single segment. The FEC algorithm as

implemented provided a parity segment for that frame that

was unsuitable for recovery†. Thus, the consumer resorted

to Interest retransmissions. For such situations, two correc-

tions may be made in the future: 1) to handle one-segment

media samples as special cases, and publish a copy of media

samples under the parity namespace, or 2) to use a more

advanced FEC approach across frames.

The poor performance independently of FEC in the

8000 byte payload configuration is likely caused by the fol-

lowing: For segments larger than MTU of the underlying

transport, the NFD forwarder performs fragmentation and

assembly, and uses retransmissions for lost packets. How-

ever, NFD’s default retransmission timers are large relative to

latency in this application and likely not suitable for RTSD–

causing the losses observed at the consumer, as complete

segments are rarely delivered on-time. In the future, this

could be addressed by using small segments or providing re-

quired retransmission behavior at a lower layer of the stack.

†Currently, NDN-RTC uses a basic implementation of Reed-
Solomon Forward Error Correction applied per frame.

988
IEICE TRANS. COMMUN., VOL.E99–B, NO.5 MAY 2016

Fig. 23 Percentage of rendered frames to requested frames depending on

loss link ratio per 1000 and 8000 bytes of payload.

Fig. 24 Percentage of lost frames, frames recovered using FEC and re-

transmission schemes to the total number of rendered frames.

5.2.3 Bandwidth Utilization

In order to show the basic feasibility of a rate adaptation

mechanism in NDN-RTC, average throughputs were mea-

sured on the consumer side, and the network bandwidth effi-

ciency of a bottleneck link was evaluated. In this evaluation,

a bottleneck link was simulated using a network emulator

with a limited throughput of 4000 Kbit/s on the link L2 (see

Fig. 20). Tests were unidirectional with CP1 as a producer

and CP2 as a consumer. CP1 produced three bitrate video

streams (200 Kbit/s, 1000 Kbit/s and 3000 Kbit/s), with a

segment size 1000 bytes, and 20% of FEC data. CP2 boot-

strapped with fetching the lowest bitrate stream.

Figure 25 shows the result of the average throughputs

for CP2. In this figure, CP2 shifted to the Challenge state

at Second 2, and started to estimate an available network

bandwidth. From Second 2 to Second 8, CP2 fetched both

the lowest bitrate media stream as “current media” and the

middle bitrate media stream as “additional media” at the

same time. In this network condition, available bandwidth

Fig. 25 Average throughput (each link delay is 0 ms, bandwidth of L2 is

4000 Kbit/s).

Table 2 Bandwidth utilization depending on network latency.

Round-trip link delay

(ms)

Bandwidth utilization

(%)
0 81.3

50 73.0

100 68.4

150 63.8

was enough for fetching the middle bitrate media stream,

and CP2 started fetching middle bitrate media stream around

Second 8. After that, CP2 started to probe bandwidth for

a higher bitrate stream. Eventually, CP2 kept throughput

around 3500 Kbit/s and continued to fetch the middle bitrate

stream.

Next, bandwidth utilization was evaluated depending

on link delay, which was varied from 0 ms to 150 ms. Ta-

ble 2 summarizes these results. As can be seen, bandwidth

efficiency was affected by increasing network latency. This

is because the ARC algorithm reaction grows proportion-

ally to the network delay, and errors in DRD estimation vary

greatly. Thus, the consumer becomes more conservative and

underutilizes the link.

6. Conclusions and Future Work

This paper describes an initial design for receiver-driven,

real-time streaming data dissemination over NDN. It is based

on experimental development and testing of running code for

real-time video conferencing, data dissemination from a po-

sitional tracking system, and a distributed control system

for live performance, each of which has been deployed in

real-world experiments. It also describes specific evalua-

tions of functionality and performance. The design includes

initial approaches to namespace definition, minimizing la-

tency, managing buffer size and lost recovery, and adaptive

retrieval to maximize bandwidth and control congestion.

The design efforts explored dimensions that were ex-

pected to be important in NDN RTSD applications, including

1) the ability to operate without direct producer-consumer

coordination, through loosely coupled, asynchronous Inter-

est expression and Data buffering; 2) packet loss mitigation

GUSEV et al.: REAL-TIME STREAMING DATA DELIVERY OVER NAMED DATA NETWORKING

989

by both forward error correction and retransmission; and 3)

congestion control and rate adaptation based on end-to-end

measurement, which should be improved significantly when

NDN’s hop-by-hop congestion control implementation be-

come available.

Significant future work remains, which can be summa-

rized by returning to the design questions presented earlier.

1. How should the producer name each new data object?

Further work on namespace design is needed to explore

how to express other types of data, such as geographically

or spatially organized information and layered coding of

media.

2. How should the producer sign and, optionally, encrypt

each data object, and make the corresponding keys avail-

able? An important next phase is to use a schematized

trust model for per-packet signing [16] and extend NDN-

RTC to include encryption support by using name-based

access control [17]. Applying these newly developed se-

curity solutions to specific applications has been proven

the best way to gain deeper an understanding on their

usability and naming requirements.

3. How can the producer modify its data generation pattern

based on current network conditions and/or consumer

needs? While a pure receiver-driven approach to RTSD

has been pursued so far, producers in some applications

may have the ability to adjust their data generation based

on feedback. One question is what is the best way to

gather consumer feedback, whether one can derive ade-

quate feedback indirectly from observing Interests arrival

patterns, or more explicit negotiation strategies may be

needed.

4. What is the best way for the consumer to learn the names

of data that it wants? Each stage of namespace discovery

provides open challenges, including development of the

best mechanisms to discover streams available within a

certain application context and to request the latest data

available from the network in low-latency, high-rate data

streams. What application and network-layer features are

necessary to prioritize certain named data objects (such

as a base layer in scalable video coding) over others also

remains an open question.

5. What keys must the consumer fetch to verify and decrypt

the retrieved data? Recent work in schematized trust and

name-based access control can provide standard mecha-

nisms for each consumer to request the keys that it needs

based on the data it wishes to verify and/or decrypt. How-

ever, specific security designs for RTSD applications re-

main to be developed.

6. What Interest expression pattern should be used to meet

the consumer’s performance objectives under the current

network conditions? Given the receiver-driven nature

of the design, many areas of future work fall under this

question, including error correction versus retransmission

tradeoffs in practical applications and stream prioritiza-

tion. Notably, given that the NDN architecture is still

under development, there is a unique opportunity to co-

ordinate application-level approaches to both congestion

control and latency minimization with planned and poten-

tial future architectural capabilities, such as hop-by-hop

flow control.

This work aimed to demonstrate that NDN provides fun-

damental advantages over IP for RTSD applications. In the

design, no specialized infrastructure is required to scale the

number of simultaneous producers or consumers for a given

namespace, and NDN’s intrinsic multicast support provides

a significant gain in bandwidth efficiency. Furthermore, as

demonstrated by the rate adaptation approach, random ac-

cess to different versions of the same stream is achieved

simply by changing the namespace being accessed. Finally,

supporting historical data access to RTSD streams is triv-

ial, by placing data objects in persistent storage as they are

created, and using an index namespace to enable fetching to

start from any arbitrary point in time. While there remains

much to be done, NDN offers great promise for supporting

future real-time applications.

Acknowledgements

This work is supported by the U.S. National Science Foun-

dation (award CNS-1345318 and others). Initial work on

NDN-RTC was also supported by the Cisco University Re-

search Program. The authors thank Jiachen Wang for his

assistance in testing NDN-RTC and Dave Oran for contin-

ued feedback on this research. Daisuke Ando implemented

the FEC algorithm for NDN-RTC.

References

[1] B. Ahlgren, C. Dannewitz, C. Imbrenda, D. Kutscher, and B. Ohlman,

“A survey of information-centric networking,” IEEE Commun. Mag.,

vol.50, no.7, pp.26–36, 2012.

[2] L. Zhang, A. Afanasyev, J. Burke, V. Jacobson, K. Claffy, P. Crowley,

C. Papadopoulos, L. Wang, and B. Zhang, “Named data networking,”

ACM SIGCOMM Comp. Commun. Rev., vol.44, no.3, pp.66–73,

2014.

[3] V. Jacobson, D.K. Smetters, J.D. Thornton, M.F. Plass, N.H. Briggs,

and R.L. Braynard, “Networking named content,” Proc. 5th Interna-

tional Conference on Emerging Networking Experiments and Tech-

nologies, CoNEXT’09, pp.1–12, 2009.

[4] D. Kulinski, J. Burke, and L. Zhang, “Video streaming over named

data networking,” IEEE COMSOC MMTC E-letter, vol.89, no.4,

2013.

[5] J. Burke, P. Gasti, N. Nathan, and G. Tsudik, “Securing instrumented

environments over content-centric networking: The case of lighting

control and NDN,” 2013 IEEE Conference on Computer Communi-

cations Workshops (INFOCOM WKSHPS), pp.394–398, 2013.

[6] J. Burke, P. Gasti, N. Nathan, and G. Tsudik, “Secure sensing over

named data networking,” 2014 IEEE 13th International Symposium

on Network Computing and Applications, pp.175–180, 2014.

[7] C. Fan, S. Shannigrahi, S. DiBenedetto, C. Olschanowsky, C.

Papadopoulos, and H. Newman, “Managing scientific data with

named data networking,” Proc. Fifth International Workshop on

Network-Aware Data Management, NDM’15, pp.1–7, 2015.

[8] A. Afanasyev, Z. Zhu, Y. Yu, L. Wang, and L. Zhang, “The story

of chronoshare, or how ndn brought distributed secure file sharing

back,” NDN, Technical Report, NDN-0029, 2015.

http://dx.doi.org/10.1109/mcom.2012.6231276
http://dx.doi.org/10.1109/mcom.2012.6231276
http://dx.doi.org/10.1109/mcom.2012.6231276
http://dx.doi.org/10.1145/2656877.2656887
http://dx.doi.org/10.1145/2656877.2656887
http://dx.doi.org/10.1145/2656877.2656887
http://dx.doi.org/10.1145/2656877.2656887
http://dx.doi.org/10.1145/1658939.1658941
http://dx.doi.org/10.1145/1658939.1658941
http://dx.doi.org/10.1145/1658939.1658941
http://dx.doi.org/10.1145/1658939.1658941
http://named-data.net/publications/e-letter-july13_page6/
http://named-data.net/publications/e-letter-july13_page6/
http://named-data.net/publications/e-letter-july13_page6/
http://dx.doi.org/10.1109/infcomw.2013.6970725
http://dx.doi.org/10.1109/infcomw.2013.6970725
http://dx.doi.org/10.1109/infcomw.2013.6970725
http://dx.doi.org/10.1109/infcomw.2013.6970725
http://dx.doi.org/10.1109/nca.2014.34
http://dx.doi.org/10.1109/nca.2014.34
http://dx.doi.org/10.1109/nca.2014.34
http://dx.doi.org/10.1145/2832099.2832100
http://dx.doi.org/10.1145/2832099.2832100
http://dx.doi.org/10.1145/2832099.2832100
http://dx.doi.org/10.1145/2832099.2832100
http://named-data.net/publications/story_of_chronoshare/
http://named-data.net/publications/story_of_chronoshare/
http://named-data.net/publications/story_of_chronoshare/

990
IEICE TRANS. COMMUN., VOL.E99–B, NO.5 MAY 2016

[9] W. Shang, Z. Wen, Q. Ding, A. Afanasyev, and L. Zhang, “Ndnfs:

An ndn-friendly file system,” NDN, Technical Report, NDN-0027,

2014.

[10] K.C. Claffy, J. Polterock, A. Afanasyev, J. Burke, and L. Zhang, “The

first named data networking community meeting,” ACM SIGCOMM

Computer Communication Review, vol.45, no.2, pp.32–37, 2015.

[11] W. Shang, Q. Ding, A. Marianantoni, J. Burke, and L. Zhang, “Se-

curing building management systems using named data networking,”

IEEE Netw., vol.28, no.3, pp.50–56, 2014.

[12] M. Amadeo, C. Campolo, A. Iera, and A. Molinaro, “Named data

networking for IoT: An architectural perspective,” 2014 European

Conference on Networks and Communications (EuCNC), pp.1–5,

2014.

[13] G. Grassi, D. Pesavento, G. Pau, R. Vuyyuru, R. Wakikawa, and L.

Zhang, “VANET via named data networking,” 2014 IEEE Confer-

ence on Computer Communications Workshops (INFOCOM WK-

SHPS), pp.410–415, 2014.

[14] P. Crowley and J. DeHart, “Named data networking presentation and

demonstration,” China-America Frontiers of Engineering Sympo-

sium, National Academy of Engineering, China, May 2013.

[15] Z. Wang, Z. Qu, and J. Burke, “Project matryoshka: Ndn multiplayer

online game (poster),” NDN Community Meeting, Los Angeles, CA,

Sept. 2014.

[16] Y. Yu, A. Afanasyev, D. Clark, K. Claffy, V. Jacobson, and L. Zhang,

“Schematizing trust in named data networking,” Proc. 2nd Inter-

national Conference on Information-Centric Networking, ICN’15,

pp.177–186, 2015.

[17] Y. Yu, A. Afanasyev, and L. Zhang, “Name-based access control,”

Tech. Rep. NDN-0034, NDN Project, Oct. 2015.

[18] V. Jacobson, D.K. Smetters, N.H. Briggs, M.F. Plass, P. Stewart, J.D.

Thornton, and R.L. Braynard, “VoCCN: Voice-over content-centric

networks,” Proc. 2009 Workshop on Re-Architecting the Internet,

ReArch’09, pp.1–6, 2009.

[19] Z. Zhu, S. Wang, X. Yang, V. Jacobson, and L. Zhang, “ACT:

audio conference tool over named data networking,” Proc. ACM

SIGCOMM Workshop on Information-Centric Networking, ICN’11,

pp.68–73, 2011.

[20] P. Gusev and J. Burke, “NDN-RTC: Real-time videoconferencing

over named data networking,” Proc. 2nd International Conference on

Information-Centric Networking, ICN’15, pp.117–126, 2015.

[21] T.-Y. Huang, R. Johari, N. McKeown, M. Trunnell, and M. Watson,

“A buffer-based approach to rate adaptation,” Proc. 2014 ACM Con-

ference on SIGCOMM, SIGCOMM’14, pp.187–198, 2014.

[22] S. McCanne, V. Jacobson, and M. Vetterli, “Receiver-driven layered

multicast,” ACM SIGCOMM Comput. Commun. Rev., vol.26, no.4,

pp.117–130, 1996.

[23] B. Li and J. Liu, “Multirate video multicast over the Internet: An

overview,” IEEE Netw., vol.17, no.1, pp.24–29, 2003.

[24] L. Vicisano, J. Crowcroft, and L. Rizzo, “TCP-like congestion con-

trol for layered multicast data transfer,” Proc. IEEE INFOCOM’98,

the Conference on Computer Communications, Seventeenth Annual

Joint Conference of the IEEE Computer and Communications Soci-

eties, Gateway to the 21st Century, pp.996–1003, 1998.

[25] C. Yi, A. Afanasyev, I. Moiseenko, L. Wang, B. Zhang, and L. Zhang,

“A case for stateful forwarding plane,” Comput. Commun., vol.36,

no.7, pp.779–791, 2013.

[26] V. Jacobson, “Congestion avoidance and control,” ACM SIGCOMM

Comput. Commun. Rev., vol.18, no.4, pp.314–329, Aug. 1988.

[27] G. Carofiglio, M. Gallo, and L. Muscariello, “Joint hop-by-hop

and receiver-driven interest control protocol for content-centric net-

works,” Proc. Second Edition of the ICN Workshop on Information-

Centric Networking, ICN’12, pp.37–42, 2012.

[28] G. Carofiglio, M. Gallo, and L. Muscariello, “ICP: Design and evalu-

ation of an interest control protocol for content-centric networking,”

2012 Proc. IEEE INFOCOM Workshops, pp.304–309, 2012.

[29] S. Salsano, A. Detti, M. Cancellieri, M. Pomposini, and N. Blefari-

Melazzi, “Transport-layer issues in information centric networks,”

Proc. Second Edition of the ICN Workshop on Information-Centric

Networking, ICN’12, pp.19–24, 2012.

[30] D.-M. Chiu and R. Jain, “Analysis of the increase and decrease

algorithms for congestion avoidance in computer networks,” Comput.

Netw. ISDN Syst., vol.17, no.1, pp.1–14, June 1989.

[31] T. Yoneda, R. Ohnishi, E. Muramoto, and J. Burke, “Consumer-

driven adaptive rate control for real-time video streaming in named

data networking,” Internet Conference 2015, IC2015, pp.23–32, Oct.

2015.

[32] “NFD: Named data networking platform,” http://named-data.net/

codebase/platform/, Jan. 2016.

[33] Z. Zhu and A. Afanasyev, “Let’s ChronoSync: Decentralized dataset

state synchronization in named data networking,” 2013 21st IEEE

International Conference on Network Protocols (ICNP), pp.1–10,

2013.

[34] D. Kulinski and J. Burke, “NDNVideo: Random-access live and

pre-recorded streaming using ndn,” Tech. Rep., UCLA, Sept. 2012.

[35] “NDN packet format specification 0.2-alpha-3 documentation,”

http://named-data.net/doc/ndn-tlv/index.html, Jan. 2016.

[36] “ETSI TR 101 329-7: Telecommunications and Internet protocol har-

monization over networks (TIPHON) release 3; End-to-end quality

of Service in TIPHON systems; Part 7: Design guide for elements of

a TIPHON connection from an end-to-end speech transmission per-

formance point of view,” Tech. Rep., European Telecommunications

Standards Institute, 2002.

[37] Y. Yu, A. Afanasyev, Z. Zhu, and L. Zhang, “Ndn technical memo:

Naming conventions,” Tech. Rep., UCLA, July 2014.

[38] M. Munaro, A. Horn, R. Illum, J. Burke, and R.B. Rusu,

“OpenPTrack: People tracking for heterogeneous networks of color-

depth cameras,” In IAS-13 Workshop Proceedings: 1st Intl. Work-

shop on 3D Robot Perception with Point Cloud Library, Padova,

Italy, pp.235–247, July 2014.

[39] J. Thompson and J. Burke, “Ndn common client libraries,” NDN,

Technical Report, NDN-0024, Revision 1, Sept. 2014.

[40] “NdnCon GiHub Repository,” https://github.com/remap/ndncon,

Sept. 2014.

[41] F. Dobrian, A. Awan, D. Joseph, A. Ganjam, J. Zhan, V. Sekar, I.

Stoica, and H. Zhang, “Understanding the impact of video quality on

user engagement,” Commun. ACM, vol.56, no.3, pp.91–99, 2013.

Peter Gusev joined the UCLA Center for Re-

search in Engineering, Media and Performance

(REMAP) in July 2013 as a staff researcher. He

focuses primarily on Named Data Networking

(NDN), and is leading the development of NDN-

RTC, a real-time conferencing library, and nd-

ncon, a real-time conferencing application. In

addition to NDN, Peter has contributed to a wide

range of interactive audiovisual projects. His

experience includes mobile development, video

streaming, embedded programming, computer

vision, web design and interactive augmented and virtual reality projects.

Peter holds masters’ degrees from Bauman Moscow State Technical Univer-

sity (computer science) and Wroclaw University of Technology (business

information systems). Center for Research in Engineering, Media and Per-

formance, University of California, Los Angeles.

http://named-data.net/publications/techreports/ndn-tr-27-ndnfs/
http://named-data.net/publications/techreports/ndn-tr-27-ndnfs/
http://named-data.net/publications/techreports/ndn-tr-27-ndnfs/
http://dx.doi.org/10.1145/2766330.2766336
http://dx.doi.org/10.1145/2766330.2766336
http://dx.doi.org/10.1145/2766330.2766336
http://dx.doi.org/10.1109/mnet.2014.6843232
http://dx.doi.org/10.1109/mnet.2014.6843232
http://dx.doi.org/10.1109/mnet.2014.6843232
http://dx.doi.org/10.1109/eucnc.2014.6882665
http://dx.doi.org/10.1109/eucnc.2014.6882665
http://dx.doi.org/10.1109/eucnc.2014.6882665
http://dx.doi.org/10.1109/eucnc.2014.6882665
http://dx.doi.org/10.1109/infcomw.2014.6849267
http://dx.doi.org/10.1109/infcomw.2014.6849267
http://dx.doi.org/10.1109/infcomw.2014.6849267
http://dx.doi.org/10.1109/infcomw.2014.6849267
http://www.naefrontiers.org/Symposia/CAFOE/28070/28015/37549.aspx
http://www.naefrontiers.org/Symposia/CAFOE/28070/28015/37549.aspx
http://www.naefrontiers.org/Symposia/CAFOE/28070/28015/37549.aspx
https://www.caida.org/workshops/ndn/1409/slides/ndncomm2014_zwang_poster.pdf
https://www.caida.org/workshops/ndn/1409/slides/ndncomm2014_zwang_poster.pdf
https://www.caida.org/workshops/ndn/1409/slides/ndncomm2014_zwang_poster.pdf
http://dx.doi.org/10.1145/2810156.2810170
http://dx.doi.org/10.1145/2810156.2810170
http://dx.doi.org/10.1145/2810156.2810170
http://dx.doi.org/10.1145/2810156.2810170
http://named-data.net/publications/techreports/ndn-0034-nac/
http://named-data.net/publications/techreports/ndn-0034-nac/
http://dx.doi.org/10.1145/1658978.1658980
http://dx.doi.org/10.1145/1658978.1658980
http://dx.doi.org/10.1145/1658978.1658980
http://dx.doi.org/10.1145/1658978.1658980
http://dx.doi.org/10.1145/2018584.2018601
http://dx.doi.org/10.1145/2018584.2018601
http://dx.doi.org/10.1145/2018584.2018601
http://dx.doi.org/10.1145/2018584.2018601
http://dx.doi.org/10.1145/2810156.2810176
http://dx.doi.org/10.1145/2810156.2810176
http://dx.doi.org/10.1145/2810156.2810176
http://dx.doi.org/10.1145/2619239.2626296
http://dx.doi.org/10.1145/2619239.2626296
http://dx.doi.org/10.1145/2619239.2626296
http://dx.doi.org/10.1145/248157.248168
http://dx.doi.org/10.1145/248157.248168
http://dx.doi.org/10.1145/248157.248168
http://dx.doi.org/10.1109/mnet.2003.1174174
http://dx.doi.org/10.1109/mnet.2003.1174174
http://dx.doi.org/10.1109/infcom.1998.662909
http://dx.doi.org/10.1109/infcom.1998.662909
http://dx.doi.org/10.1109/infcom.1998.662909
http://dx.doi.org/10.1109/infcom.1998.662909
http://dx.doi.org/10.1109/infcom.1998.662909
http://dx.doi.org/10.1016/j.comcom.2013.01.005
http://dx.doi.org/10.1016/j.comcom.2013.01.005
http://dx.doi.org/10.1016/j.comcom.2013.01.005
http://dx.doi.org/10.1145/52325.52356
http://dx.doi.org/10.1145/52325.52356
http://dx.doi.org/10.1145/2342488.2342497
http://dx.doi.org/10.1145/2342488.2342497
http://dx.doi.org/10.1145/2342488.2342497
http://dx.doi.org/10.1145/2342488.2342497
http://dx.doi.org/10.1109/infcomw.2012.6193510
http://dx.doi.org/10.1109/infcomw.2012.6193510
http://dx.doi.org/10.1109/infcomw.2012.6193510
http://dx.doi.org/10.1145/2342488.2342493
http://dx.doi.org/10.1145/2342488.2342493
http://dx.doi.org/10.1145/2342488.2342493
http://dx.doi.org/10.1145/2342488.2342493
http://dx.doi.org/10.1016/0169-7552(89)90019-6
http://dx.doi.org/10.1016/0169-7552(89)90019-6
http://dx.doi.org/10.1016/0169-7552(89)90019-6
https://www.internetconference.org/ic2015/PDF/ic2015-paper01.pdf
https://www.internetconference.org/ic2015/PDF/ic2015-paper01.pdf
https://www.internetconference.org/ic2015/PDF/ic2015-paper01.pdf
https://www.internetconference.org/ic2015/PDF/ic2015-paper01.pdf
http://named-data.net/codebase/platform/
http://named-data.net/codebase/platform/
http://dx.doi.org/10.1109/icnp.2013.6733578
http://dx.doi.org/10.1109/icnp.2013.6733578
http://dx.doi.org/10.1109/icnp.2013.6733578
http://dx.doi.org/10.1109/icnp.2013.6733578
http://named-data.net/publications/techreports/trstreaming/
http://named-data.net/publications/techreports/trstreaming/
http://named-data.net/doc/ndn-tlv/index.html
http://named-data.net/doc/ndn-tlv/index.html
http://www.etsi.org/deliver/etsi_tr/101300_101399/10132907/02.01.01_60/tr_10132907v020101p.pdf
http://www.etsi.org/deliver/etsi_tr/101300_101399/10132907/02.01.01_60/tr_10132907v020101p.pdf
http://www.etsi.org/deliver/etsi_tr/101300_101399/10132907/02.01.01_60/tr_10132907v020101p.pdf
http://www.etsi.org/deliver/etsi_tr/101300_101399/10132907/02.01.01_60/tr_10132907v020101p.pdf
http://www.etsi.org/deliver/etsi_tr/101300_101399/10132907/02.01.01_60/tr_10132907v020101p.pdf
http://www.etsi.org/deliver/etsi_tr/101300_101399/10132907/02.01.01_60/tr_10132907v020101p.pdf
http://named-data.net/publications/techreports/ndn-tr-22-ndn-memo-naming-conventions/
http://named-data.net/publications/techreports/ndn-tr-22-ndn-memo-naming-conventions/
http://www.dei.unipd.it/~munaro/media/Munaro_3DRP2014.pdf
http://www.dei.unipd.it/~munaro/media/Munaro_3DRP2014.pdf
http://www.dei.unipd.it/~munaro/media/Munaro_3DRP2014.pdf
http://www.dei.unipd.it/~munaro/media/Munaro_3DRP2014.pdf
http://www.dei.unipd.it/~munaro/media/Munaro_3DRP2014.pdf
http://named-data.net/publications/techreports/ccltechreport/
http://named-data.net/publications/techreports/ccltechreport/
https://github.com/remap/ndncon
https://github.com/remap/ndncon
http://dx.doi.org/10.1145/2428556.2428577
http://dx.doi.org/10.1145/2428556.2428577
http://dx.doi.org/10.1145/2428556.2428577

GUSEV et al.: REAL-TIME STREAMING DATA DELIVERY OVER NAMED DATA NETWORKING

991

Zhehao Wang is a graduate student in

Computer Science at UCLA and researcher at

REMAP. He focuses on Named Data Network-

ing as an application developer, but has also con-

tributed to a number of other cross-disciplinary

projects. His research interests include computer

networking, computer systems and architecture,

and algorithms. Zhehao Wang received his un-

dergraduate degree in 2014. Center for Research

in Engineering, Media and Performance, Univer-

sity of California, Los Angeles.

Jeff Burke is Assistant Dean for Tech-

nology and Innovation at the UCLA School of

Theater, Film and Television (UCLA TFT). He

holds an M.F.A. in Film, Television and Digi-

tal Media and an M.S. in Electrical Engineer-

ing from UCLA. He has produced, managed,

programmed and designed experimental perfor-

mances, short films, new genre art installations

and new facility construction internationally for

more than 15 years, incorporating research that

explores the intersections of the built environ-

ment, computer networks, and storytelling. In 2004, Burke co-founded

UCLA TFT’s Center for Research in Engineering, Media and Performance

(REMAP), a collaboration with the Henry Samueli School of Engineering

and Applied Science, which combines research, artistic production and com-

munity engagement. From 2006–2012, he was area lead for participatory

sensing at the NSF Center for Embedded Networked Sensing. He is Co-PI

and application team lead for the Named Data Networking (NDN) project.

Center for Research in Engineering, Media and Performance, University of

California, Los Angeles.

Lixia Zhang is the Jonathan B. Postel Pro-

fessor of Computer Science at the University of

California, Los Angeles. She received a PhD de-

gree in computer science from MIT and joined

Xerox Palo Alto Research Center as a member

of research staff. Her work at Xerox PARC in-

cluded analysis of TCP traffic dynamics, reliable

multicast, and designs of Internet integrated ser-

vices support. Professor Zhang joined the fac-

ulty of UCLA Computer Science Department in

1995. Her research at UCLA started with Adap-

tive Web Caching (AWC), the design of a global scale web caching system,

funded by DARPA and the Internet Distance Map Service funded by NSF.

From 1998 to 2010 much of her group’s research focus was on the resiliency

and security issues in the global routing system and Domain Name System

(DNS), and the system challenges in deploying cryptographic protections

in global scale open systems such as the Internet. Since 2010, Lixia Zhang

has been leading a multi-campus research project on the development of

a new Internet architecture called Named Data Networking (NDN) funded

by NSF. Department of Computer Science, University of California, Los

Angeles.

Takahiro Yoneda received a B.S in Sci-

ence and Technology from Ritsumeikan Univer-

sity in 2000 and an M.S. in Information Science

from Nara Institute of Science and Technology

in 2002. In 2002, he joined in Matsushita Elec-

tric Industrial Co. Ltd., currently known as the

Panasonic Corporation. He is engaged in re-

search for network congestion control, and de-

velopment of video conference systems. Ad-

vanced Research Division, Panasonic Corpora-

tion, Osaka, Kadoma city.

Ryota Ohnishi received a B.E. in Electrical

and Electronic Engineering form Kyoto Univer-

sity in 2010 and an M.E. in Informatics from

Kyoto University in 2012. In the same year,

he joined the Panasonic Corporation, and since,

has engaged in research and development of net-

working technology. Advanced Research Di-

vision, Panasonic Corporation, Osaka, Kadoma

city.

Eiichi Muramoto joined Matsushita Elec-

tric Industrial Co. Ltd. in 1991. He received

an M.S. degree from the School of Information

Science at Japan’s Advanced Institute of Science

and Technology in 2000 (company dispatched).

He is currently working on networking for the

Panasonic Corporation. He is also a member of

the WIDE project. Advanced Research Division,

Panasonic Corporation, Osaka, Kadoma city.

