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In-flight identification of an aircraft’s dynamic model can benefit adaptive control 

schemes by providing estimates of aerodynamic stability derivatives in real time.  

This information is useful when the dynamic model changes severely in flight such 

as when faults and failures occur.  Moreover a continuously updating model of the 

aircraft dynamics can be used to monitor the performance of onboard controllers.  

Flight test data was collected using a sum of sines input implemented in closed loop 

on a twin engine, fixed wing, Unmanned Aerial Vehicle. This data has been used to 

estimate a complete six degree of freedom aircraft linear model using the recursive 

Fourier Transform Regression method in frequency domain.  The methods 

presented in this paper have been successfully validated using computer simulation 

and real flight data.  This paper shows the feasibility of using the frequency domain 

Fourier Transform Regression method for real time parameter identification.  

 

 

 

I. Introduction 

  

Aircraft system identification involves the determination of a dynamic model from in flight measurements.  

Since the general behavior aircraft dynamic models is known, the problem is becomes one of parameter 

estimation.  If an aircraft can be sufficiently instrumented and all necessary quantities measured, the 

process can be done in real-time.  Many methods of real-time system identification1,2,3 have been 

researched.  The Fourier Transform Regression (FTR) method is one such method which has been verified 

to provide accurate results by multiple sources. The FTR method estimates aircraft aerodynamic derivatives 

by using a recursive least square method in the frequency domain. 

 In this paper, we present results from recursive system identification for a fixed wing UAV 

(Unmanned Aerial Vehicle) using the FTR method. The UAV under consideration (GT Twinstar) is fixed 

wing UAV made from resellient Styrofoam material with a wing span of 4.7 feet maintained by the UAV 

Research Facility at the Georgia Institute of Technology. GT Twinstar is intended to be a test vehicle for 

implementation and analysis of fault tolerant control methods and metrics based adaptive control.  The 

purpose of this paper is to develop and validate a linear model for GT Twinstar using the recursive 

frequency domain FTR method. The system identification methods presented in this paper are conducive to 

real time implementation. The results from this effort assert the feasibility of implementing the FTR 

method in real time for online parameter identification. 

 

II. The Georgia Tech Twinstar Unmanned Aerial Vehicle 

 

The Twinstar, produced by Multiplex, is a commercially available multi-engine model-scale 

aircraft5. The Twinstar is made from highly resellient Styrofoam material and is an ideal candidate for fault 

tolerant control work. This vehicle has been designed such that it will be easy to produce faults in flight 
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[ ]/

T

a c
x u w q p rθ β φ=      (1b) 

The longitudinal and lateral-directional dynamics of the state-modeled aircraft can be assumed to 

be decoupled for a symmetric fixed wing aircraft, and therefore the eight-state system can be decoupled 

into two four state systems for the longitudinal and lateral dynamics. The system identification model used 

for the estimation purpose is shown in Equations 2 and 3. The FTR method requires the knowledge of the 

left hand side (state time derivatives) of equation 1a. To improve the performance of our estimation, we use 

use the measurement of specific force directly from the accelerometers. These are denoted as , ,  

respectively.   0 0 00 00 00 0 1 0
0
0     (2) 

0000 1 0 0 0 0      (3) 

 

Measurements are available for body specific force,  body angular velocity, and airspeed. We use these 

measurements to estimate the angle of attack 2 , , and the sideslip angle asin  /
. All measurements are corrected for biases and trims. 

 

ii. Stability Coefficient Approach 

The stability coefficient approach begins by computing aircraft force and moment coefficients4 

from flight measurements by using Equations 4 and 5. 

( )xxX Tma
Sq

C −=
1

        (4a) 

( )zzZ Tma
Sq

C −=
1

        (4b) 

( ) ( )[ ]Txzzxym MrpIprIIqI
cSq

C −−+−+= 221
    (4c) 

Sq

ma
C

y

Y =         (5a) 

( ) ( )[ ]Tyzxzxl LqrIIrpqIpI
Sbq

C −−++−=
1

   (5b) 

( ) ( )[ ]Txyxzzn NpqIIqrpIrI
Sbq

C −−+−−=
1

   (5c) 

It is noted that the terms LT, MT, and NT represent the applied moments due to thrust about each 

axis.  For most single engine aircraft LT and NT are zero because the line of action of the thrust coincides 

with the roll axis.  However since the multi-engine aircraft to be used in this study has wing-mounted 

engines and utilizes differential thrust as a control input these terms could in fact may be quite large and 

must remain. 

Using linear expansions of the aircraft states and controls these expressions can then be modeled 

as shown in Equations 6 and 7. 
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By equating the measured coefficient values to the linear state expansions the stability and control 

coefficients (
X

C
α

,
qXC , etc.) can then be determined via parameter estimation since they are the only 

unknowns remaining.  For this study there are nine longitudinal and twelve lateral stability coefficients.  In 

this form each force or moment equation is independent and therefore this model allows flexibility for 

parameter estimation in that the entire system need not be included if only certain coefficients are desired, 

but rather just the individual equations in which the desired coefficients appear.   

 

IV. System Identification 

In this study we use the Recursive Fourier Transform Regression (FTR)9,10 method for parameter 

identification. 

i. Least Squares Parameter Estimation 

FTR method is an extension of the Least Squares Parameter identification method in frequency 

domain. Least squares parameter estimation attempts to estimate unknown coefficients by performing a 

best-fit linear regression with measured data assuming a linear plant model.  Dynamic systems governed by 

linear, or linearizable, equations for which the full state can be measured, or otherwise observed, are ideal 

candidates for plant identification via the least squares method.  The aircraft dynamic model presented in 

Equation 1 is an example of such a system.  Consider a linear model (equation 13) given where the rows of 

X contain measured data for each data point k and the rows of z contain the system outputs for each data 

point k. The vector θ are the unknown parameters. It is assumed that the parameters remain constant over 

the entire data set. 

θXz =              (8) 

The least squares cost function is then given by Equation 14. 

( ) ( )θθθ XzXzJ
T −−=

2
1)(            (9) 

The parameter estimate which minimizes this cost function is found by minimizing the above cost 

function: 

( ) 1ˆ T T
X X X zθ

−
=             (10) 

The equation error variance is then given by Equation 16, where k is the number of rows of X, 

equations and np is the number of parameters to be estimated. 

( ) ( ) ( )( ) 11ˆ ˆ ˆ( )
T

T

p

Cov z X z X X X
k n

θ θ θ
−

= − −
−

         (11) 

 

 

 

 

ii. Fourier Transform Regression 

 Fourier Transform Regression (FTR) 9, 10 is a method developed in frequency domain for 

recursive parameter identification.  FTR attempts to arrive at a least squares fit of the data in a recursive 

fashion in the frequency domain. 
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The Fourier transform of an arbitrary signal x(t) is given by:   

 

[ ]( ) ( ) ( ) dj t
F x t x x t e t

ωω
∞ −

−∞
≡ ≡ ∫ .         (12) 

 

The signals of interest in this study are collected via a data sampling system so the discrete version 

of the Fourier transform is required.  The discrete Fourier transform is given by Equation 9. 

 
1

0

( ) ( )
N

j i t

i

i

X x t e
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−
− Δ
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≡∑             (13) 

 
Let Δ  denote the sampling interval, and N the total number of data points, then the Euler 

approximation of the Fourier transform in equation 8 is given by:   

 

( ) ( )x X tω ω≈ Δ              (14) 

 

This approximation is suitable if the sampling rate (1/Δt) is much higher than any of the 

frequencies of interest (ω).  This is the case in this study, as will be shown in this paper, so therefore no 

correction terms are needed.  The discrete version of the Fourier transform can be propagated in a recursive 

manner, for a data point index k, the Fourier transform can be propagated as follows:  

 X .              (15) 

 

This recursive implementation greatly facilitates real time implementation.     

Consider a standard regression problem with complex data, where  denotes the dependent variable, 

 denotes the independent variables, ̃ denotes the regression error in the frequency domain, and Θ 

denotes the unknown parameters containing the aerodynamic derivatives and the actuator effectiveness 

parameters appearing in matrix A and B in equation 1. 

   ̃ (16)  

 

Referring to equation 13, The matrix of dependent and independent variables is given as: 

   1 12 2 ̃ 1̃ 2̃
(17)  

 

Where 1..m denote the frequency band of interest over which the Fourier transform is to be 

calculated. Fourier transform can be calculated in a recursive manner as described in equation 11. For the 

purpose of this paper, we note that  denotes the Fourier transform of the state vector,  denotes the Fourier 

transform of the inputs. The dependent variable z should be considered as the left hand side of equation 2 

and 3. Where measurements are available (for example the specific forces), they are directly used. If a 

derivative of a state signal is required, it can be easily calculated by multiplying the Fourier transform of 

the state with . FTR method attempts to minimize the following cost function in the least squares sense: 

 

 12 (18)  

The least squares estimate for the parameter vector Θ is given by: 

 

 (19)  
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where  denotes the complex conjugate transpose operator. The standard deviation of the estimates can be 

found by taking the square root of the covariance matrix: 

 

 Θ Θ Θ Θ Θ  
(20)  

 

where the equation error covariance  can be estimated  as follows: 

 

 Θ Θ . (21)  

where m is the number of frequencies over which the Fourier transform has been calculated, and  is the 

number of unknown parameters. 

The FTR method has the following compelling advantages: 

 

� FTR does not require any tuning parameters (as opposed to EKF, UKF based methods), 

� Trim condition and zero biases can be inherently removed from affecting the estimation by 

omitting the zero frequency, similarly, high frequency content can be omitted to alleviate noise 

effects, 

� No starting values of parameters are necessary, although starting information can be used.  

� FTR has inherent memory through recursive Fourier transform 

 

On the other hand, a forgetting factor is necessary for discounting old data when aircraft dynamics change. 

It should be noted that FTR assumes accurate full state knowledge and is only applicable to linear 

equations. 

 

 

III. Data Processing 

 

ii. Filters 

Filters are used for reducing noise from the data as well as eliminate undesired or unnecessary 

frequency content from a signal. A fourth-order Butterworth filter is used in this study.  The Butterworth 

filter design has been selected because its frequency response is as flat as mathematically possible in the 

pass-band, which is desirable since any artificial alterations to the frequency profile in the region of interest 

of a signal would affect the subsequent system identification results.  The order of the filter has been 

chosen to match the system type to ensure adequate roll-off in the stop-band.  It is noted that the aircraft 

dynamic model is a composed of two decoupled fourth-order systems, a longitudinal model and a lateral-

directional model. 

The Butterworth filter is an infinite impulse response filter and therefore its discrete 

implementation is given by the difference equation in Equation 12, where x is the raw signal, y is the 

filtered signal, K-1 is the filter order, and a and b are the filter coefficients. 

0 00

1 K K

n i n i j n j

i j

y b x a y
a

− −
= =

⎛ ⎞
= −⎜ ⎟

⎝ ⎠
∑ ∑       (12) 

Real-time implementation of the filter is straightforward, but it is important to note that the last K 

samples of both the raw and filtered signals must be retained in memory to do so.   

 

iii. Data Analysis 

Data analysis prior to system identification serves to identify three characteristics of the system 

response: frequencies present, time required to isolate dominant frequencies, and variability of frequency 

content with time.   

A custom spectrogram tool was designed and then implemented for analyzing the time frequency 

content of data used for system identification.  The spectrogram tool utilizes the finite Fourier transform 

methods already presented in this paper and can operate on both real-time and batch-stored data signals. 

Using this tool, it was determined that the frequency range of interest lies between 0 and 3 Hz. 
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IV. Recursive Parameter Identification Results 

 

In this section we describe the results from recursive parameter identification using FTR method. 

The purpose of this paper is to assess the feasibility of using FTR for real time parameter identification 

onboard the Twinstar. For that purpose, flight data was used for system identification in a recursive fashion 

in MATLAB post-flight.   

 

A. Data Gathering 

 

In order to ensure fast convergence a series of optimized inputs has been suggested in [9]. We excite the 

elevator, aileron, and the rudder channel using a sum of sines input. Phase angles are optimized so that the 

three inputs are orthogonal and optimized to have rich inputs without having high amplitude peaks. The 

specific inputs used are presented in Figure 7. Injecting such a sequence of inputs while in flight is termed 

as a system identification maneuver. An interesting point to note is that since GT Twinstar is a UAV these 

inputs were performed under closed loop condition. That means, the UAV was in active control when these 

inputs were injected onto the control surfaces. This allowed us to maintain flight velocity and retain 

stability in presence of external disturbances. It should be noted however, that the input deflection used for 

the purpose of gathering system identification data are much larger than nominal input deflections required 

by the autopilot to maintain steady level flight. 

 

 
Figure 7:  Flight-test system identification inputs, units are scaled within -1 and 1 

 

B. System Identification Results 

 

The time-domain least squares parameter estimation algorithm results are presented first.  Figures 

8 and 9 show the comparison of estimated model output with measured data.  The time domain least 

squares estimation serve to validate the linear model and to set nominal parameter values. 
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Figure 8: Longitudinal time-domain parameter estimate model match compared with measured 

flight test data 

 

 

 
Figure 9: Lateral-directional time-domain parameter estimate model match compared with 

measured flight test data 
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 The FTR method results are now presented.  Both the longitudinal and lateral-directional 

dimensional stability derivatives of the aerodynamic forces and moments were estimated.  Figures 10-14 

show the real-time parameter estimates as they converge over time and the associated 2  variance.  It 

should be noted that the system identification maneuver starts after around 0.5 seconds into the flight. 

Considering this, it is seen that parameters begin to converge withing 2 seconds of starting the system 

identification maneuver.   Additionally, the numeric values of the aerodynamic derivatives at the end of the 

run are summarized in table 2 for both the longitudinal and lateral equations.  The estimated values fall 

within a tolerable region of the values estimated from batch processed data using least squares estimation, 

which are also given in the table. 

 

 
Figure 10: FTR stability derivative estimates from flight test data, pitching moment 

 

 
Figure 11: FTR stability derivative estimates from flight test data, vertical force 
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Figure 12: FTR stability derivative estimates from flight test data, lateral force 

 

 
Figure 13: FTR stability derivative estimates from flight test data, rolling moment 
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Figure 14: FTR stability derivative estimates from flight test data, yawing moment 

Table II: Final values of parameter estimates using FTR with flight test data . 

Parameter Name Estimated 

Value (FTR) 

Standard deviation (2-

sigma) 

Estimated value using 

batch processing Least 

squares 

Mα -4.94 2.43 -4.46 

Mq -2.62 0.40 -2.54 

Mδe -26.88 1.04 -26.13 

Zα -140.33 10.96 -114.77 

Zq -9.28 1.79 -12.28 

Zδe -50.76 4.70 -55.42 

Yβ -21.02 0.77 -20.23 

Yp 0.58 0.15 0.72 

Yr -0.38 0.14 -0.24 

Yδa 0.97 0.80 1.3 

Yδr 4.37 0.30 4.42 

Lβ -20.25 1.31 -19.95 

Lp -6.01 0.26 -5.85 

Lr 4.77 0.24 5.22 

Lδa -45.43 1.36 -44.73 

Lδr 0.15 0.50 0.64 

Nβ 14.26 1.04 13.24 

Np -1.02 0.20 -1.18 

Nr -0.50 0.19 -0.57 

Nδa 1.8823 1.08 2.34 

Nδr -9.11 0.40 -9.09 
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C. Frequency domain validation 

 

 Since frequency-domain data is the core of the FTR method, the frequency content of the 

estimated model was compared to the frequency content of the measured data to ensure a match of the 

estimated model to the actual dynamics.  This is achieved by comparing the measured data and the model 

output in the frequency domain as a function of frequency. Figures 15 and 16 show the absolute value of 

the discrete Fourier transform coefficients, and as can be seen the model match is close over all 

frequencies. Furthermore, the results confirm the expectation that maximum activity occurs in the 0.5 to 2 

Hz frequency band. 

 

 
Figure 15: Frequency content of FTR estimated model compared to measured data, longitudinal 
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Figure 16: Frequency content of FTR estimated model compared to measured data, lateral-

directional 

 

D. Validation in time domain using data not used for flight test 

The parameter estimates obtained using the recursive FTR method were validated in time domain 

for data not used for system identification and the match was found satisfactory.  



 14

 
Figure 17: Longitudinal equations time domain validation using data not used for system 

identification, 

 
Figure 18: Lateral equations time domain validation using data not used for system identification, 

 

V. Conclusion 

  

In this paper, optimized multi sine inputs were used for gathering rich system identification data. 

Recursive implementation of FTR method with a recursive Butterworth filter was used for parameter 

identification Our results indicate satisfactory parameter convergence and good time domain as well as 

frequency domain match. Our results also validated the assumption that a simple linear model is sufficient 

for capturing the behavior of the GT Twinstar. It should be noted however, that heavy damage or extremely 

aggressive maneuvers could lead to build up of nonlinear effects. 
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The method used in this paper was analyzed for computational requirements and it was found that 

it would be possible to implement this method in real time on the AFI FCS 20 autopilot. These results 

indicate the feasibility of using the FTR method for real time parameter on a fixed wing twin engine UAV. 
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