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Many enterprises that participate in dynamic markets need to make product pricing and inventory resource
utilization decisions in real time. We describe a family of statistical models that addresses these needs by

combining characterization of the economic environment with the ability to predict future economic conditions
to make tactical (short-term) decisions, such as product pricing, and strategic (long-term) decisions, such as
level of finished goods inventories. Our models characterize economic conditions, called economic regimes,
in the form of recurrent statistical patterns that have clear qualitative interpretations. We show how these
models can be used to predict prices, price trends, and the probability of receiving a customer order at a given
price. These “regime” models are developed using statistical analysis of historical data and are used in real
time to characterize observed market conditions and predict the evolution of market conditions over multiple
time scales. We evaluate our models using a testbed derived from the Trading Agent Competition for Supply
Chain Management, a supply chain environment characterized by competitive procurement, sales markets, and
dynamic pricing. We show how regime models can be used to inform both short-term pricing decisions and
long-term resource allocation decisions. Results show that our method outperforms more traditional short- and
long-term predictive modeling approaches.
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1. Introduction
To seek competitive advantage, firms are employing
increasingly sophisticated automated decision support
systems. These advanced decision support systems
often involve designing software agents that can act
rationally on behalf of their users or assist the users in
a variety of application areas. Examples include pro-
curement (Sandholm 2007), scheduling and resource
management (Collins et al. 2002), and personal infor-
mation management (Berry et al. 2006, Mark and
Perrault 2006). Software agents have the advantage
of being able to analyze many more possibilities in
shorter time frames than their human counterparts but
are often limited in their ability to make strategic deci-
sions. In this paper we present computational meth-
ods for a software agent that considers long-term

expected profit implications when making short-term
tactical decisions, such as setting current prices and
quantities of products to sell in a given time frame.

We look at a complex and critical part of the sup-
ply chain relating to product pricing decisions in an
auction based dynamic pricing environment where
customer demand is stochastic. We are particularly
interested in multicommodity supply chain environ-
ments that are constrained by capacity and materi-
als availability and where market conditions may be
characterized qualitatively, for example, by oversup-
ply or scarcity. Such environments exist in business-
to-business (B2B) exchanges where several suppliers
compete for business from customers for commodi-
tized manufactured parts (Kaplan and Sawhney 2000).
Given the rapid increase in implementations of
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technology assisted market based mechanisms, in the
near future such environments are likely to develop
for more complex products.

One of the innovative and unique characteristics of
our approach is to make pricing decisions based not
only on current demand but also on anticipated future
demand and other hidden factors, which are aggre-
gated by assessing the “economic regimes” and their
expected future transitions. Economic regimes char-
acterize market conditions by detecting distinguish-
able statistical patterns in historical market data. They
capture overall market conditions, such as scarcity or
oversupply, and provide valuable indications such as
price trend and price distribution predictions over a
planning horizon. In this work, we focus on observ-
able pricing data as a surrogate for a range of typi-
cally hidden variables that affect pricing decisions of
buyers and sellers in a market.

In previous research (Ketter et al. 2009) we proposed
the use of economic regimes and showed how to iden-
tify them from historical data. However, we did not
address whether regime predictions can be made for
new unseen environments. Further it was not clear
how managerial decisions such as pricing, sales quota,
and profits could benefit from the knowledge of eco-
nomic regime forecasts. These issues are addressed in
this paper, where we present new methods to identify
economic regimes in real time and to predict future
regime transitions and related future price distribu-
tions and price trends. Our computational approaches
are lightweight, i.e., designed to operate with mini-
mal computational burden so that they can respond to
requests in real-time.

Further, we develop a model that uses regime pre-
dictions to set sales quotas for current and future sales
with the objective of maximizing profit over time. Our
approach is tested by embedding our computational
methods in a software agent that operates in the Trad-
ing Agent Competition for Supply Chain Manage-
ment (TAC SCM; Collins et al. 2010b). Experimental
results show that our approach performs better than
traditional predictive modeling methods.

Although predictions about the economic environ-
ment are commonly made at the macroeconomic level
(Osborn and Sensier 2002), to our knowledge, such
predictions are rarely done for microeconomic envi-
ronments and represent a novel contribution of this
research. In addition, systemic use of these forecasts
for decision making is also a unique contribution of
this research. Our previous work (Ketter et al. 2009)
focused on using economic regimes for their explana-
tory power, whereas this paper focuses on their pre-
dictive power. This distinction is central to the current
debate on explanatory versus predictive modeling
(Shmueli 2010).

Economic regimes can be used to support decisions
in both procurement and sales markets. In the procure-
ment market, we may have little or no control over
the availability of parts, but we can control the usable
supply to a certain degree. Prices increase when there
is scarcity. Scarcity of parts commonly results from
excess demand, which tends to occur when demand
for associated products is high. This is precisely why
prediction of regimes is important. If we can predict
an increase in prices of finished products, then we may
decide to acquire parts early, thereby reducing cost of
material and increasing our profit margin.

The approach we present is applicable also to com-
modity markets for items such as cotton, oil, or
semiconductor chips, where fast changing market con-
ditions and high price volatility are common. For
example, the procurement risk management process at
Hewlett-Packard (Nagali et al. 2008) uses probabilistic
estimates of future price, demand, and supply to fore-
cast a range of future market scenarios, which are in
turn used to evaluate potential procurement contracts.
This process has saved Hewlett-Packard hundreds of
millions of dollars in the procurement of flash memory
alone. Although Nagali et al. (2008) do not describe
their price prediction model in detail, the regime-
based model we describe in this paper produces a
probabilistic estimate of future prices that could be
used in such a system. Our results show that even
though a market may be constantly changing, there
are some underlying dominant patterns or economic
regimes that characterize market conditions.

The paper is organized as follows. In §2 we review
relevant literature. Section 3 describes the founda-
tions of our economic regime approach. It shows how
to make real-time predictions about future economic
regimes and price distributions and how economic
regimes can support strategic and tactical sales deci-
sions. Section 4 describes our testbed, the TAC SCM.
In §5 we present experimental results using the TAC
SCM testbed. Finally, we conclude with directions for
future research.

2. Background and Literature Review
Pricing of products to retailers or distributors is a
key aspect of supply chain management for any
profit maximizing firm. Most studies (e.g., Cachon
and Netessine 2004, Kleindorfer and Wu 2003) look
at this issue in a single supplier and single buyer set-
ting because of analytical complexity and tractability
issues. Although dynamic pricing is seen as a poten-
tially superior approach (Elmaghraby and Keskinocak
2003, Swaminathan and Tayur 2003), the market
power, and thus the power to set prices, is still assu-
med to be with the supplier or manufacturer. How-
ever, information systems researchers have started
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looking at the potential of dynamic pricing through
auction based approaches to provide incentives for
supply chain coordination (e.g., Fan et al. 2003). Our
approach is based on the assumption that competitive
markets where manufacturers compete for customers’
business will eventually lead to dynamic pricing, in
which prices will emerge from interactions between
manufacturers and their customers.

Various methods to predict prices have been used,
such as in first price sealed bid reverse auctions for
IBM PCs (Lawrence 2003) and PDAs on eBay (Ghani
2005) or in predicting ending prices for a multi-unit
online ascending auction (Bapna et al. 2008). Dynamic
forecasting of auction bidding prices is becoming
increasingly popular because of the massive use of
online auctions (Wang et al. 2008). Short-term price
prediction has been the focus of several studies where
prices move primarily because of demand-side con-
straints, such as in the electricity market (Nogales
et al. 2002). Specific methods for price prediction in
TAC SCM are covered later in §4.1.

Although approaches to price prediction vary con-
siderably, it is widely recognized that predictions
need to exploit the information available in the mar-
ket and to take its structure into account (Muth 1961).
However, as Gray and Spencer (1990) note, demand
side price movements are intrinsically linked with
supply side movements. Massey and Wu (2005) show
that the ability of decision makers to correctly iden-
tify the onset of a new regime can mean the differ-
ence between success and failure. Furthermore, they
found strong evidence that individuals pay inordi-
nate attention to the signal (price in our case) and
neglect the aspects of the system that generate the sig-
nal (regime dynamics). This results in a tendency to
over- or underreact to market conditions.

Several researchers have identified the existence and
cyclic nature of economic regimes in consumer mar-
kets. For example, Ghose et al. (2006) empirically
analyze the degree to which used products canni-
balize new product sales for books on Amazon.com
and show that product prices go through different
regimes over time. Similarly, Pauwels and Hanssens
(2002) analyze how strategic windows of change alter-
nate with long periods of stability in mature eco-
nomic markets.

In this paper we develop computationally efficient
methods to identify and predict economic regimes that
can be used by decision makers or by autonomous
computational agents to make pricing decisions in a
complex supply chain environment. Our method is
able to detect and forecast a broad range of market
conditions. Regression based approaches (including
nonparametric variations) assume that the functional
form of the relationship between dependent and inde-
pendent variables has a consistent structure across the

range of market conditions. In contrast, our approach
models variability in market conditions and does not
assume a functional relationship; this allows detection
of changes in relationship between prices and sales
over time.

3. Economic Regimes for Real-Time
Prediction of Price Distributions

We now describe the details of our approach. Any
economic decision process should account for prevail-
ing and future market conditions because these chang-
ing conditions affect an organization’s strategies for
procurement, production planning, and pricing. These
market conditions can be broadly defined as scarcity,
balanced, and oversupply. A scarcity condition exists
when demand exceeds product supply in the market,
a balanced condition when demand is approximately
equal to supply, and an oversupply condition when
supply exceeds demand. When there is scarcity, firms
have pricing power and may price more aggressively.
In balanced situations, prices have some spread, so
firms have a range of options for maximizing expected
profit. In oversupply situations, prices are lower and
firms should primarily control costs and therefore
either price based on costs or conserve resources for
better market conditions.

As indicated earlier, we assume that observable
prices act as signals of the underlying true state of
the economy, and we use them to estimate future
regimes, from which we can then estimate price trends
and price distributions. Our regime model is a Hier-
archical Hidden Markov Model (HHMM; Fine et al.
1998). A HHMM allows for the existence of hidden,
as well as observable, parameters. Price is an observ-
able parameter whose changes drive a hidden “state”
(economic regime) of the economy.

Overall, the computational approaches we present
are able to

1. identify the current economic regime using price
history and real-time data;

2. estimate future regimes of the market, specifi-
cally regime distributions, price density, price trends,
and probability of receiving orders at a given
price; and

3. make dynamic decisions on what products to sell
and at what price using the predictions.

3.1. Background
We focus our work on an exchange marketplace that is
characterized by several competing firms offering sev-
eral identical products; because the products are iden-
tical, customers’ buying decisions are only based on
price. We assume that during each discrete plan-
ning period (which we call “day”) each firm decides
whether or not to offer a product and set an appro-
priate price for each product that is offered. Such
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decisions require projecting future customer demand
along with a given firm’s inventory levels, production
capacity, and other necessary resources.

For simplicity, we aggregate price data for differ-
ent goods. Because prices may have different ranges
for different products, we normalize them by dividing
the price of a good by the nominal cost of its com-
ponents and the variable assembly cost. We assume
prices are dynamic and change every day according
to market conditions. We define the normalized price
for good g on day d as npd1g = priced1g/4nominal_cost ·

4Cg5+ qassembly_costg5. where Cg is the set of compo-
nents in product g. In the following, for simplicity of
notation, we use np instead of npd1g , unless there is
ambiguity.

We briefly summarize the theory of economic
regimes (Ketter et al. 2009) as a foundation for the rest
of this paper. Instead of assuming a given distribution
for prices, we approximate an arbitrary price distri-
bution by fitting a Gaussian mixture model (GMM;
Titterington et al. 1985) to historical normalized price
data. The demand characteristics in electronic mar-
ketplaces have been found to be fractal; that is, the
short-term demand pattern has much larger variation
than does the long-term time-averaged demand pat-
tern (Gupta et al. 1997). This means that although
there are periods of no or little demand, there will be
periods when demand will be extremely high. The
pricing strategy needs to take this into account. Typ-
ically, parameterized econometric models perform
poorly in these situations. In contrast, nonparametric
approaches do an excellent job in estimation but usu-
ally are computationally too expensive. In our testbed
and in many real-world trading scenarios, decisions
have to be made quickly and there is no time for
time consuming calculations. Therefore, we decided
to adopt a semi-parametric approach, and in particu-
lar the GMM, which can be computed efficiently and
uses less memory than other approaches do.1

We use the Expectation-Maximization (EM) algo-
rithm (Dempster et al. 1977) to determine the prior
probability, P4�i5, of each Gaussian component �i of
the GMM. The prior probabilities of these Gaussian
components determine the amplitude of a particular
Gaussian, and the sum over all Gaussians results in a
GMM which fits the underlying data. The density of
the normalized price can be written as

p4np5=

N
∑

i=1

p4np � �i5P4�i5 (1)

1 For a more detailed discussion of the choice and advantages of
the chosen modeling approach related to real-time adaptation and
decision making, please see the online appendix, available from the
Information Systems Research website at http://isr.journal.informs
.org/ecompanion.html.

where N is the number of Gaussians in the mixture
model and p4np � �i5 is the contribution of the ith
Gaussian to the normalized price density. The number
of Gaussians has to be chosen to balance two conflict-
ing requirements: too many Gaussians will overfit the
data and result in a model that does not generalize,
whereas too few will provide a crude and inaccurate
estimate.

Using Bayes’ rule we determine the posterior prob-
abilities for each Gaussian �i. We then define the
posterior probabilities of all Gaussians given the
normalized price np as the N -dimensional vector
E�4np5 = 6P4�1 � np51P4�2 � np51 0 0 0 1 P4�N � np57. For each
observed normalized price npj we compute the vector
of the posterior probabilities, E�4npj5, which is E� evalu-
ated at each observed normalized price npj . Intuitively,
the idea of a regime as a recurrent economic condi-
tion is captured by discovering price distributions that
recur across time periods in the market. We define
regimes by clustering price distributions over time
periods using the k-means algorithm. The clusters
found correspond to frequently occurring price dis-
tributions with support on contiguous ranges of np.
The center of each cluster is a probability vector that
corresponds to a regime Rk, for k = 11 0 0 0 1M , where
M is the number of regimes. Collecting these vectors
into a matrix yields the conditional probability matrix
P4� �R5. After we marginalize over all Gaussians �i we
obtain the density of the normalized price np depen-
dent on regime Rk as

p4np �Rk5=

N
∑

i=1

p4np � �i5P4�i �Rk50 (2)

The probability of regime Rk dependent on the nor-
malized price np can then be computed using Bayes’
rule as

P4Rk � np5 =
p4np �Rk5P4Rk5

∑M
i=1 p4np �Ri5P4Ri5

for k = 11 0 0 0 1M (3)

where M is the number of regimes. The prior prob-
abilities, P4Rk5, of the regimes are determined by a
counting process over historical data.

At any given time, one of the regimes Rk will typ-
ically have a higher probability than the others. Eco-
nomically, it is common to think in terms of three
dominant regimes (scarcity, balanced, and oversup-
ply); however, estimating a larger number of regimes
can generate additional insights into market con-
ditions, such as extreme oversupply and extreme
scarcity. We conducted several experiments varying
the number of regimes between 3 and 10 and discov-
ered that 3 and 5 regimes provide the best tradeoff in
terms of predictive and explanatory power (Shmueli
2010) and computational load. We use a five regime

C
o
p
yr
ig
h
t:

IN
F
O
R
M
S

ho
ld
s
co

py
rig

ht
to

th
is

A
rt
ic
le
s
in

A
dv

an
ce

ve
rs
io
n,

w
hi
ch

is
m
ad

e
av

ai
la
bl
e
to

su
bs

cr
ib
er
s.

T
he

fil
e
m
ay

no
t
be

po
st
ed

on
an

y
ot
he

r
w
eb

si
te
,
in
cl
ud

in
g

th
e

au
th
or
’s

si
te
.
P
le
as

e
se

nd
an

y
qu

es
tio

ns
re
ga

rd
in
g

th
is

po
lic
y
to

pe
rm

is
si
on

s@
in
fo
rm

s.
or
g.



Ketter et al.: Real-Time Tactical and Strategic Sales Management Guided by Economic Regimes
Information Systems Research, Articles in Advance, pp. 1–21, © 2012 INFORMS 5

model because the extreme cases (extreme oversup-
ply and extreme scarcity) represent qualitatively dis-
tinct market conditions and are therefore important
distinctions for decision making. Mathematical details
for computing both the optimal number of Gaussians
and of regimes are presented in Ketter et al. (2006),
Ketter (2007), Ketter et al. (2009), and in the online
appendix.

Next we present the computational machinery for
real-time predictions, before demonstrating its effec-
tiveness in the TAC SCM environment in §5.

3.2. Real-Time Prediction Methods
In this section, we describe three different regime pre-
diction methods. The first is based on exponential
smoothing, the second is a Markov prediction pro-
cess, and the last is a Markov correction-prediction
process. Each of these methods has different strengths
and should be used in different circumstances. The
exponential smoother is ideal to estimate the cur-
rent regime distribution because it makes predictions
using only information about the recent past, mak-
ing it more reactive to the current market condi-
tion. The Markov prediction process is appropriate for
short- and mid-term predictions, whereas the Markov
correction-prediction process is suited for long-term
predictions.

3.2.1. Exponential Smoother Price Prediction.
Using an estimate of the mean normalized price ˜npd1g

(or the actual mean of the normalized price npd1g if
available) for each good g on day d, we can compute
the price trend and use it to predict future prices. For
consistency with the TAC SCM case study we present
later, we use the term “day” to refer to a discrete plan-
ning period of arbitrary size and we use an estimate
of the mean price because the actual mean price is not
observable in many markets, including TAC SCM.

Because prices tend to be noisy and both mean
and trend vary over time, an exponential smoother
can be used to generate short-term predictions from
recent observations. Specifically, we use Brown lin-
ear exponential smoothing (Brown et al. 1961), which
uses two different smoothed series centered at differ-
ent points in time and a forecasting formula based on
an extrapolation of a line through the two centers. The
smoothed normalized mean price is computed using
˜np

′ and ˜np
′′, respectively, the singly-smoothed and

doubly-smoothed normalized mean price estimates,
as follows:

˜npd−1 = 2˜np′

d−1 − ˜np
′′

d−1 (4)

where

˜np
′

d−1 = � · ˜npd−1 + 41 −�5 · ˜np
′

d−2 (5)

˜np
′′

d−1 = � · ˜np
′

d−1 + 41 −�5 · ˜np
′′

d−2 (6)

The model can be initialized simply by setting both
smoothed series equal to the observed value at d = 1.
The parameter � ∈ 40115 provides computational sta-
bility in prediction between the two exponentially
smoothed time series. We determined the value of
� using a hill-climbing process to minimize predic-
tion error over a set of historical data and selected
�= 005. We will show later in §5.1 how we compute
a smoothed mean price estimate in TAC SCM where
the only information available is the minimum and
maximum price for the previous day.

We then compute the smoothed price trend as

˜trd−1 =
�

1 −�
· 4˜np

′

d−1 − ˜np
′′

d−15 (7)

Using the trend and the previous day’s smoothed
mean price ˜npd−1, we predict the daily smoothed
prices from the current day d for each day n over the
horizon h as

̂npd+n = ˜npd−1 + 41 +n5 ·˜trd−11 for n= 11 0 0 0 1h0 (8)

The predicted prices, ̂npd+n, over the planning hori-
zon h are used as input for the exponential smoother
regime prediction, which is described next. In contrast,
both Markov regime prediction methods (described
later) only use the previous day’s estimated price,
˜npd−1, as input and make predictions using Markov
transition matrices that are computed from histori-
cal data.

3.2.2. Exponential Smoother Regime Prediction.
The exponential smoother prediction process we
described yields estimates of future mean prices but
no information on price distributions. To obtain price
distributions we translate the estimates of future
prices to regime predictions and then we predict price
distributions from regimes (see §3.3). As we shall see
later in §5.3.2, doing so actually improves price pre-
dictions as well.

Using the predicted mean price ̂npd+n computed
with (8), we obtain the density of ̂npd+n dependent
on regime R̂k using (2), and the predicted probability
of regime R̂k dependent on the predicted normalized
price n days into the future, ̂npd+n, using (3). Note that
we use R̂k to denote a particular predicted regime Rk.

Because the regime information is obtained from
historical data, prices and corresponding regime prob-
abilities can be computed in advance and stored in
a table, reducing the subsequent real-time computa-
tions to a table lookup. This predictor is not as flexible
as the others we will describe next, because it does not
learn patterns in the data, but it is easy to compute.
We use the term “exponential smoother with regimes”
to describe this combination of using the exponential
smoother to predict prices and then a table lookup to
find the corresponding regime probabilities.
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3.2.3. Markov Regime Prediction. We model the
short-term prediction of future regimes as a Markov
prediction (Markov P ) process. The prediction is based
only on the most recent price ˜npd−1 and on historical
data. We first compute a Markov transition matrix for
regime transitions, T4rd+n � rd−15, by a counting process
using historical data. This matrix represents the pos-
terior probability of transitioning from regime rd−1 on
day d−1 to regime rd+n on day d+n, where r =Rk for
k = 11 0 0 0 1M , and M is the number of regimes. We use
EP4r̂d−1 � ˜npd−15 to indicate a M-dimensional vector of
the posterior probabilities of the predicted regimes r̂
on day d− 1.

We further distinguish between two types of
Markov predictions: (1) n-day and (2) repeated one-
day prediction. An n-day prediction computes a tran-
sition matrix for each of the n days in the future and
multiplies these matrices by the current day regime
estimates to predict regimes n days in the future.
The repeated one-day matrix instead assumes a sta-
ble transition matrix and multiplies itself n times
to produce the transition probabilities for n days in
the future.

The prediction of the posterior distribution of
regimes n days into the future, EP4r̂d+n � ˜npd−15, is done
recursively as follows:

1. n-day prediction. The n-day prediction is based
on training a separate Markov transition matrix for
each day in the planning horizon h; i.e., Tn4rd+n � rd−15,
for n= 11 0 0 0 1h.

EP4r̂d+n � ˜npd−15 = Tn4rd+n � rd−15 EP4r̂d−1 � ˜npd−15

for n= 11 0 0 0 1h0 (9)

2. Repeated one-day prediction. The repeated one-
day prediction is done by using the one-day predic-
tion matrix T14rd � rd−15 multiple times.

EP4r̂d+n � ˜npd−15 =

n
∏

T14rd � rd−15 EP4r̂d−1 � ˜npd−15

for n= 11 0 0 0 1h0 (10)

In a completely stable environment, n repeated
one-day Markov predictions would lead to the same
results as a single application of the appropriate
n-day prediction. In real environments, however, this
assumption is often violated because the environment
changes dynamically over time. When making predic-
tions far in the future, the repeated one-day method
reaches a stationary distribution where all transition
probabilities converge to the same values. This draw-
back can be avoided by using an n-day Markov pre-
diction matrix. Details can be found in the online
appendix.

The prior regime probability for the first day needs
to be assigned according to the market situation. For

instance, in TAC SCM we set the prior regime proba-
bility for the first day to 100% extreme scarcity, to rep-
resent the condition when the initial finished product
inventories are zero.

3.2.4. Markov Regime Correction-Prediction. For
long-term prediction of future regimes, we use a
Markov correction-prediction (Markov C-P ) process,
where the prediction part is similar to the Markov pre-
diction described above but taking into account the
entire real-time price history, ˜np11 0 0 0 1 ˜npd−1, instead
of a single day ˜npd−1. A Markov correction-prediction
process is better when the process depends on real-
time transitions in the immediate past beyond a sin-
gle day. Both Markov P and Markov C-P processes
depend on either one-day or n-day transition matri-
ces, which are learned offline from historical data. The
Markov C-P method is based on two distinct opera-
tions done in sequence:

1. A correction (recursive Bayesian update) of the
posterior probabilities of the regimes based on the his-
tory of prices starting from the first, ˜np1, until the
most recent on day d− 1 is given by

EP4r̂d−1 � 8˜np11 0 0 0 1 ˜npd−195

=
EP4˜npd−1 � r̂d−15 EP4r̂d−1 � 8˜np11 0 0 0 1 ˜npd−295

∑M
rd−1=1

EP4˜npd−1 � rd−15 EP4rd−1 � 8˜np11 0 0 0 1 ˜npd−295
0 (11)

2. A prediction of the posterior probabilities of re-
gimes n days into the future, EP4r̂d+n �8˜np110001˜npd−195,
is done recursively as in the Markov prediction case.
The n-day prediction is given by

EP4r̂d+n � 8˜np11 0 0 0 1 ˜npd−195

= Tn4rd+n � rd−15 EP4r̂d−1 � 8˜np11 0 0 0 1 ˜npd−195

for n= 11 0 0 0 1h0 (12)

The repeated one-day prediction is given by

EP4r̂d+n � 8˜np11 0 0 0 1 ˜npd−195

=

n
∏

T14rd � rd−15 EP4r̂d−1 � 8˜np11 0 0 0 1 ˜npd−195

for n= 11 0 0 0 1h0 (13)

Note that Equations (12) and (13) use a matrix mul-
tiplication, whereas Equation (11) uses an element
wise multiplication.

3.2.5. Computational Complexity of Economic
Regimes. The key computational requirements of the
regime model’s price predictions involve propagating
the hidden state density forward, called forward filter-
ing. Forward filtering has well-known computational
complexity results, with time complexity of O4M2T 5
and memory complexity of O4MT 5 (Khreich et al.
2010), where M is the number of regimes, and T is the
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number of time steps used for making a prediction.
For our Markov P process T is the number of forecast
steps, and for the Markov C-P process it is the entire
history plus the number of extrapolated steps. The
dependence on time reflects that the algorithm takes
the entire history of the sequence into account when
making predictions, whereas the quadratic depen-
dence on the regime state size is because of the matrix
multiplication used to propagate regime state prob-
abilities. These worst case results can potentially be
improved by limiting the data history the algorithm
processes before making predictions, which would
make regime prediction’s complexity results equiva-
lent to exponential smoothing. Exponential smoothing
has memory and time complexity O415 because the
algorithm only needs a fixed finite amount of previous
data to make predictions.

3.3. Price Distribution and Order
Probability Prediction

Using the predicted regime distribution, we can now
compute the predicted price distribution2 as follows:

p4̂npd+n � ˜npd−15

=

M
∑

i=1

p4np �Ri5P4R̂i1 d+n � ˜npd−15

=

N
∑

j=1

M
∑

i=1

P4�j �Ri5P4R̂i1 d+n � ˜npd−15
︸ ︷︷ ︸

P4�j1 d+n5

p4np � �j5

=

N
∑

j=1

P4�j1 d+n5p4np � �j51 for n= 11 0 0 0 1h1 (14)

where ̂npd+n is the predicted normalized price on day
d + n, P4R̂i1 d+n � ˜npd−15 is an element of the predicted
regime probability vector given by (9) or by (10), and
again M is the number of regimes and N the number
of Gaussians. After marginalizing over the regimes
we obtain new priors for the individual Gaussians �j
in the GMM. To obtain the predicted price distribu-
tion, we sample the updated model every day over
the planning horizon h with values over the whole
range of np. A detailed example for our testbed is pre-
sented in §5.2.

From the predicted price distribution we can com-
pute the predicted normalized price ̂npd for day d
as the median of the distribution. We can also use
the predicted distribution to construct the cumulative
density function CDF4np5 for normalized price np.
Given CDF4np5, the probability of a customer order,
P4order � np5, can be computed as P4order � np5 = 1 −

CDF4np5= 1 −
∫ np

0 p4np′5 dnp′.

2 We describe this using Markov prediction, but a similar equation
holds for the other prediction methods.

3.4. Using Economic Regimes for Strategic and
Tactical Decisions

We now discuss an approach that takes advantage
of our prediction models to maximize expected profit
over some period in the future. An agent or human
decision maker making sales decisions in markets that
are affected by price fluctuation needs to make two
broad decisions: (1) whether to sell or hold inventory
and (2) if the decision is to sell at least part of the
inventory, what price should it quote. Holding inven-
tory makes sense when higher prices are expected in
the future. At the other extreme, if the firm is hold-
ing a large inventory and the future economic out-
look looks bleak, it should sell down inventory to
liquidate it. The decision to hold a certain level of
inventory for the future is a strategic decision, and
setting the price for the current time period is a tacti-
cal decision.

3.4.1. Strategic Decision—Resource Allocation.
We first focus on a common set of information that is
typically available in a manufacturing environment:

—C is the set of all available component types.
Each component c is needed to produce some subset
of products Gc.

—G is the set of all products that can be man-
ufactured and sold. Each product’s components are
represented by the set Cg .

—For a day d within a planning horizon h,
expected customer demand is represented by a set Qd

of customer requests for quotes. We assume customers
ask for prices and will buy at the lowest quoted price.
Each q ∈ Qd specifies a product type gq , a lead time of
iq days, a volume vq , and a reserve price �q .

—For a day d within the planning horizon h, the
agent expects to have an inventory of raw materials
Id1 c for each component type c ∈C and an inventory of
finished goods consisting of Id1g for each type of good
g ∈G.

—On any given day d, there is an unsold inventory
I ′

d1g of good g and an expected uncommitted inventory
I ′

d1 c of parts of type c. This includes parts in current
inventory and parts that are expected to be delivered
by day d and excludes parts that are allocated to pro-
duce goods for outstanding customer orders.

On day d, the total demand Dd1g for a given
good g among Qd is the total of the requested quan-
tities among requests for good g, Dd1g =

∑

q∈Qd
vq . The

effective demand Deff
d1g4priced1g5 is the portion of total

demand with reserve prices �g ≥ priced1g . Note that
for computing effective demand and sales quantities
we must use non-normalized price rather than nor-
malized price np.

Our goal is to choose a sales quantity Ad1g for each
product g over each day of the planning horizon h
to maximize expected profit ê =

∑h
d=0
∑

g∈Gêd1gAd1g ,
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where êd1g is the discounted profit for day d and Ad1g

is the quantity of product the agent wishes to sell for
good g on day d. The discounted profit is computed as

êd1g = �d4priced1g − cost4Cg551 (15)

where �d is a discount term that can be seen as a
rough approximation of inventory holding and op-
portunity costs. It can also be used to encourage early
selling, as a hedge against future uncertainty. The
price priced1g for product g on day d will depend on
the demand Dd1g and the quantity of product Ad1g we
wish to sell, as well as other factors that we will dis-
cuss in §3.4.2.

We assume the daily production capacity is F , each
unit of good g requires yg production cycles, and
F commit
m is the factory capacity that is committed to

manufacture outstanding customer orders that are
due on or before a day m days in the future and
are not satisfiable by existing finished goods inven-
tory. Now we can define an optimization problem
that maximizes total profit ê by choosing appropriate
sales quotas Ad1g :

max ê =

h
∑

d=0

∑

g∈G

êd1gAd1g (16)

subject to ∀d1 ∀g1 Ad1g <Deff
d1g (17)

∀m ∈ 0 0 0 0 h1 ∀ c ∈C1
m
∑

d=0

∑

g∈Gc

Ad1g ≤ I ′

m1c +
∑

g∈Gc

I ′

m1g (18)

∀n ∈ 0 0 0 0 h1
∑

g∈G

yg

( n
∑

d=0

Ad1g − I ′

d1g

)

≤ nF − F commit
n 0 (19)

Equation (17) is the demand constraint. Equa-
tion (18) is the supply constraint over the planning
horizon, h, that restricts maximum supply that can
be created using the parts and the finished goods in
existing inventory. This may be conservative because
we are considering goods or their parts to be avail-
able at the time we propose to sell them, not when
we expect to ship them. The constraint also ensures
that every subset of product types that can share some
component is not overcommitted. Equation (19) is the
manufacturing constraint that restricts the sales quan-
tity to what is in the unsold inventory or can be man-
ufactured within the planning horizon.

To appropriately choose sales quotas Ad1g , we need
to set prices. For instance, in §5.2, we describe sev-
eral methods we use in TAC SCM to estimate price
distributions, which can in turn be used to estimate
P4order � price5 as described in the next section.

Because the quantity we expect to sell is just the
effective demand multiplied by the order probability
at the price we set, we can then express Ad1g as

Ad1g = P4order � priced1g5D
eff
d1g4priced1g50 (20)

Combining (15) with (20), the objective function (16)
becomes

maxê =

h
∑

d=0

∑

g∈G

�d4priced1g − cost4Cg55

· P4order � priced1g5D
eff
d1g4priced1g50 (21)

Note that even if we assume the order probabil-
ity and effective demand are linear, (21) is at least
cubic in priced1g . Because (21) is probably unsolvable
in real time, we focus on developing heuristics that
can be embedded in automated agents. An obvious
simplification is to assume that the partial deriva-
tive of the order probability function with respect to
price is large, much larger than the partial derivative
of profit with respect to price. This is equivalent to
saying that (most) sales occur very close to a “mar-
ket clearing price.” Then per-unit profit and effective
demand can be computed separately by substituting
an estimated clearing price priceclear

d1g for the actual sales
price into (21).3 We will show how to compute the
clearing price priceclear

d1g in the next section.

3.4.2. Tactical Decision—Sales Offer Pricing.
Once the strategic sales process has determined daily
sales quotas, we must set prices that will move those
quotas in expectation. This amounts to finding, for
each good, the value for priced1g that satisfies (20).
We call this priceoffer

d1g , and we estimate it by first estima-
ting the market clearing price priceclear

d1g and using it
to locate the predicted order-probability distribution
P4order � price5 as described in §3.3. The clearing price
for the current day is estimated by combining the
observed price (from the Price monitor module in Fig-
ure 3) with an offset �d1g that is computed by observ-
ing the market’s response to our offers, as follows.

We compute priceoffer
d1g by choosing a target order

probability P offer =Ad1g/D
eff
d1g4priceclear

d1g 5 and finding the
corresponding offer price priceoffer

d1g from (20) by solving
P offer = P4order � priceoffer

d1g 5. Assuming the market clears
once each day, the order volume Od1g is the number of
orders placed for good g in response to our offers on
the previous day. Market response to pricing decisions
is stochastic, so the number of orders received may be
higher or lower than our expected sales Ad1g . We then
compute a price that reflects the actual number of

3 This assumption can be partially relaxed by breaking sales
price distributions into discrete “chunks” with separate demand
constraints.
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orders priceorder
d−11g for the previous day by computing

a point P order = Od1g/D
eff
d−11g4priceclear

d−11g5 on an adjusted
probability curve P ′4order � price5, obtained by trans-
lating the original order probability function to pass
through the point 4priceoffer

d1g 1Od1g/D
eff
d−11g5. We then use

the translated probability function P ′4order � price5 to
compute priceorder

d−11g , as visualized in Figure 1.
The difference diff d−11g =priceorder

d−11g−priceoffer
d−11g

is then used each day to compute priceclear
d1g =

pricepred
d1g +�d1g where pricepred

d1g is the predicted market
price for product g, the unnormalized version of
the predicted mean price from (22), and �d1g is
updated daily using simple exponential smoothing
as �d1g = ��d−11g+41−�5diff d−11g for some appropriate
value of � ∈ 60117.

3.4.3. Computational Complexity of Resource
Allocation. An efficient algorithm for linear program-
ming is described by Karmarkar (1984). It has a worst-
case computational complexity of O4X305L5, where X
is the number of variables in the objective function,
and L is a function of the desired numerical accuracy.
The complexity is polynomial; the average case com-
plexity is typically much lower. The problem size for
our problem is also polynomial, dominated by inven-
tory constraints. With 16 products and a 20-period
planning horizon, we have 320 variables; a typi-
cal situation generates 15,000–30,000 constraints. The
maximum number of constraints is quadratic in the
planning horizon and in the average number of com-
ponents making up a product (4 in our case study),
and it is linear in the number of components in the
catalog (10 in our case study) and in the number of
products that share a component (which in our case
study ranges from 2 to 8). The actual number of rows
is typically less than 20% of the maximum because
we discard rows that do not add constraint.

Figure 1 Estimating Market Price, Given Order Volume O, Sales
Quota A, Effective Demand Deff, and an Order Probability
Function P for Each Day and Each Product

price

O

A

Deff

Deff

P
(o

rd
er

)

P
(order |price

)

P �(order |price)

priceorder priceoffer

For our experiments in TAC SCM we have used
lp-solve,4 which is less efficient than the Karmarkar
algorithm. On a modern 3 GHz 32-bit PC, the typical
solution time is less than one second, and we have not
exceeded eight seconds in more than 100,000 runs.

4. A Case Study: The Trading Agent
Competition for Supply Chain
Management (TAC SCM)

We have implemented and tested our approach
in an agent-based simulated market environment
(Swaminathan et al. 1998) in which agents must com-
pete with each other in both procurement and sales
markets while simultaneously managing inventories,
fulfillment, and a manufacturing process. The annual
Trading Agent Competition for Supply Chain Man-
agement (Collins et al. 2005, 2010b) is a competitive
agent-based simulation of an abstract supply chain
environment, where software agents make all the
decisions. TAC SCM simulates a market where six
autonomous agents compete to maximize profits over
a one-year life cycle for a set of computer models. The
simulation takes place over 220 virtual days, each last-
ing 15 seconds of real time, of which about 12 seconds
can be used for computation and the rest are needed
for communication and simulation server overhead.
TAC SCM agents earn money by selling computers
they assemble using parts that they must competi-
tively acquire from suppliers. Each agent has a finite
manufacturing capacity to allocate across a set of prod-
ucts. Each agent must pay to store raw materials and
finished-product inventory and must borrow money
to build its initial inventory. The agent with the high-
est bank balance at the end of the simulation wins.
TAC SCM is an abstract model of real markets, leav-
ing out many factors such as quality of products, mar-
keting strategies, long-term procurement contracts,
transportation costs, etc., but has the advantage of
enabling a systematic comparison of different strate-
gies and approaches.

Each agent in TAC SCM can produce 16 different
types of products, categorized into three market seg-
ments (low, medium, and high quality products).
Demand in each market segment varies randomly
during the simulation. Every day each agent receives
a set of requests for quotes (RFQs) from several poten-
tial customers. Each customer RFQ specifies the type
of product requested, along with quantity, due date,
reserve price, and penalty for late delivery. Each agent
may choose to bid on some or all of the day’s RFQs.
Customers accept the lowest bid that is at or below
their reserve price and notify the winning agent. The
agent must ship customer orders on time or pay a

4 http://sourceforge.net/projects/lpsolve.
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Figure 2 TAC SCM Scenario
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penalty for each day an order is late. Because the envi-
ronment is a competitive oligopolistic market, actions
of each agent significantly affect the markets and
hence other agents’ profits and strategies.

Organized competitions, such as TAC SCM (Collins
et al. 2010b) and Power TAC (Ketter et al. 2011),
along with many related computational tools are driv-
ing research into a range of interesting and complex
domains that are both socially and economically im-
portant (Bichler et al. 2010). Because such experimen-
tal platforms allow market structures to be evaluated
under a variety of real-world conditions and compet-
itive pressures, they can also be used to effectively
uncover potential hazards of proposed market designs
in the face of strategic behaviors on the part of the par-
ticipating agents. This can help policy makers in pol-
icy and regulation design. For instance, opportunities
for agents to manipulate the TAC SCM competition in
unintended ways were uncovered (Ketter et al. 2004),
and the simulation model was subsequently updated
to more accurately model realistic supplier behavior.

4.1. Price Prediction in TAC SCM
Typical approaches used for price forecasting in TAC
SCM are exponential smoothing and linear regression
methods (Benisch et al. 2006, Chatzidimitriou et al.
2008, Jordan et al. 2007, Podobnik et al. 2008). Some
researchers (Zhang et al. 2004) have applied a game
theoretic approach to set offer prices, using a variation
of the Cournot game for modeling the product mar-
ket. Others (He et al. 2006) use fuzzy reasoning to set
offer prices. The TacTex agent predicts the distribution
of prices using a weighted average of uniform densi-
ties between the low and high prices from the previ-
ous five days and predicts into the future by assuming
that the distribution of prices does not change (Pardoe
and Stone 2006). The Deep Maize agent uses a k-nea-
rest-neighbors approach to map current observable

indicators (prices, demand, etc.) to learned distribu-
tions of current and future prices. It employs both
offline and online learning that optimizes predictions
according to a logarithmic scoring rule. Deep Maize
uses tournament and self-play data and combines
them using an affine transformation (Kiekintveld et al.
2009). It determines the parameters of the affine trans-
formation by a brute-force search to find values that
minimize the scoring rule. The most recent version
of TacTex uses different machine learning techniques,
such as particle filtering, applied to historical data
and online adaptation to predict current and future
prices (Pardoe and Stone 2007). Finally, the Mertacor
agent uses a decision tree machine learning technique
to predict current and future prices (Chatzidimitriou
and Symeonidis 2009).

In competitive oligopolistic markets with dynamic
pricing, such as TAC SCM, it is also important to
model “order probability”—the probability of win-
ning a customer order at a given price. In TAC SCM,
this probability is typically either estimated by linear
interpolation from the minimum and maximum daily
prices (Pardoe and Stone 2004), using a linear cumula-
tive density function (CDF; Benisch et al. 2004) to esti-
mate the relationship between offer price and order
probability, or using a reverse CDF and factors such
as quantity and due date (Ketter et al. 2004). The first
two approaches provide a rough approximation of
the real order probability function; the last approach
requires the agent to deal with sparse high dimen-
sional matrices that have to be updated every day
during the game. Our approach of economic regimes
circumvents these problems by using only observed
market prices and quantities.

5. Evaluation in TAC SCM
We have implemented our approach to drive sales
decisions in an agent for the TAC SCM scenario in
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Figure 3 Integrating a Regime Model Into Agent Sales Decision Processing. Links Connecting the Components Affected by the Regime Model Are
Dashed
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order to evaluate its performance. Our experimental
agent uses a regime model to compute price distribu-
tions and price trends and to estimate order proba-
bility. Figure 3 shows a schematic view of the major
elements the agent decision processing that leads to
making offers at specific prices.

The key elements of this process are the regime
model and its training data, described in §3, and
the sales quota optimizer, described in §3.4.1. The
final output is offer prices, computed as described in
§3.4.2. Cost basis and inventory status information are
derived from a procurement module, and production
capacity data are produced by a production schedul-
ing module.

5.1. Real-Time Regime Identification in TAC SCM
In TAC SCM, agents are informed each day of the min-
imum and maximum order prices for each product on
the previous day, but they cannot observe sales vol-
ume or the distribution of prices. As a crude approxi-
mation for the mean price one can use the mid-range

Figure 4 Min, Max, Mean, Mid-Range, and Smoothed Mid-Range Normalized Prices of Computers Sold Every Day in a Sample Run (Left);
Real-Time Identification of Daily Regime Probabilities (Right)
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normalized price, the price midway between the
observed minimum and maximum. However, because
observations of minimum and maximum prices are
subject to noise, some of these observations may be
outliers and not representative of the true price
distribution.

Figure 4 (left) illustrates an example where daily
mid-range prices do not always accurately estimate
mean prices. The mean was computed after the simu-
lation when all data are available. We observe a spike
in the maximum price (especially on day 86, 87, 93,
and 110) that biases the mid-range price. To lower
the impact of sudden price changes, we smooth the
minimum and maximum prices using a Brown linear
exponential smoother (Brown et al. 1961) with � =

005 to obtain the smoothed minimum ˜np
min
d−1 and max-

imum ˜np
max
d−1 normalized prices, from which we com-

pute the smoothed mid-range normalized price ˜npd−1
as their average. With a slight abuse of notation in
the description of TAC SCM, we use ˜npd for the mid-
range price instead of the mean price.

C
o
p
yr
ig
h
t:

IN
F
O
R
M
S

ho
ld
s
co

py
rig

ht
to

th
is

A
rt
ic
le
s
in

A
dv

an
ce

ve
rs
io
n,

w
hi
ch

is
m
ad

e
av

ai
la
bl
e
to

su
bs

cr
ib
er
s.

T
he

fil
e
m
ay

no
t
be

po
st
ed

on
an

y
ot
he

r
w
eb

si
te
,
in
cl
ud

in
g

th
e

au
th
or
’s

si
te
.
P
le
as

e
se

nd
an

y
qu

es
tio

ns
re
ga

rd
in
g

th
is

po
lic
y
to

pe
rm

is
si
on

s@
in
fo
rm

s.
or
g.



Ketter et al.: Real-Time Tactical and Strategic Sales Management Guided by Economic Regimes
12 Information Systems Research, Articles in Advance, pp. 1–21, © 2012 INFORMS

Figure 5 Predicted Price Density (Left) and Predicted Price Trend (PT) (Right) Using the Repeated One-Day Markov Matrix for Simulation
3,717@tac3 from Day 115 to Day 135
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Figure 4 (right) shows the corresponding regime
probabilities computed in real time during the simula-
tion. The regimes are indicated as EO (Extreme Over-
supply), O (Oversupply), B (Balanced), S (Scarcity),
and ES (Extreme Scarcity). The graph shows that dif-
ferent regimes are dominant at different time points
and that there are brief intervals during which two
regimes are almost equally likely. We have reported
a correlation analysis of the market parameters to
regimes and more details on regime identification and
other regime evaluation measures in Ketter et al.
(2006), Ketter (2007), and Ketter et al. (2009).

5.2. Prediction of Price Distribution and Trend
To obtain a predicted price distribution we sample
the price densities defined in (14) every day over the
planning horizon h with values for np between 0 and
1.25 because in TAC SCM reserve prices range up to
125% of nominal component prices. The samples are
placed into J = 126 price bins starting from np = 0
to np = 1025 in 0.01 increments. Each bin j contains
the count of samples with the corresponding price,
np4j5= 4j −15 ·0001. These counts are then normalized
to obtain a probability. For instance, the mean of the
distribution of the predicted normalized prices on day
d+n can be computed as

E6̂npd+n7 =

J
∑

j=1

p4̂npd+n4j5= np4j5 � ˜npd−15 · np4j51

for n= 11 0 0 0 1h0 (22)

To predict price trends we use also the 10%, 50%,
and 90% percentile of the predicted price distribution,
which are interpolated from the discretized cumula-
tive distribution.

Figure 5 (left) shows the forecast price density using
the repeated one-day Markov matrix. The dashed

curve represents the price density for the first fore-
cast day, the thick solid line shows the price density
for the last forecast day, and the thin solid curves show
the forecast for the intermediate days. As expected, the
predicted price density broadens as we forecast fur-
ther into the future, reflecting a decreasing certainty
in the prediction. Figure 5 (right) shows the real mean
price trend for this example along with forecast price
trends, including the mean Markov prediction; the
10%, 50%, and the 90% Markov density percentiles;
and the exponential smoother.

Figure 6 (left) shows the forecast price density based
on an n-day Markov prediction for the same simu-
lation run presented above. We observe that the pre-
dicted price density shows significantly less variance
as compared to using the repeated one-day Markov
prediction. Figure 6 (right) shows the relative price
trend for this example. The increased certainty in pre-
diction is reflected by the reduced width of the prob-
ability envelope, represented by the 10% and 90%
percentile contours. Note that the downward shift in
actual prices, Figure 6 (right), is captured by the shift
of the predicted future price distribution toward lower
prices in Figure 6 (left).

The exponential smoother predictor in this example
does not fare well5 because the exponential smoother
puts too much weight on recently observed prices.
In this case, prior to the prediction day the prices were
increasing. The exponential smoother predictor takes
the recent slope and extrapolates it into the future,
whereas our Markov prediction method is able to
learn patterns in the data and therefore does much
better in predicting future changes.

5 It is usually better than shown here for near-term predictions, but
this example shows one of the advantages of our method.
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Figure 6 Predicted Price Density (Left) and Predicted Price Trend (PT) (Right) Using the n-Day Markov Prediction for Simulation 3,717@tac3 from
Day 115 to Day 135
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5.3. Prediction Accuracy
We now demonstrate the accuracy of the predictions
made by our method by using it with historical data.

For our experiments, we used data from 28 runs,
18 used for training and 10 for testing (for details,
please see the online appendix), played during the
semifinals and finals of TAC SCM 2005. The mix of
agents changed during the simulation runs, with a
total of 12 agents in the semifinals and 6 in the finals.
Because supply and demand vary in each market seg-
ment (low, medium, and high) independently of the
other segments, our method is applied independently
in each market segment.

5.3.1. Prediction of Regime Distribution. To
determine how well the probability distribution
of the predicted regime R̂ matches the one of the
actual regime R, we use the Kullback-Leibler (KL)
divergence (Kullback and Leibler 1951, Kullback 1959).
This measures the difference between two probability
distributions in bits; smaller divergence values corre-
spond to more accurate predictions. We calculate the
KL divergence as

KL4 EPR̂� EPR5=

M
∑

i=1

EPR̂4ri5 log
(

EPR̂4ri5

EPR4ri5

)

(23)

by summing over the regimes ri. The KL divergence
can be interpreted in terms of how much additional
data are needed to achieve optimal prediction perfor-
mance. The precision of these data is given by the
number of bits in the KL-divergence measure. For
example a one bit difference would require an addi-
tional binary piece of information (Shannon 1948) such
as “Were yesterday’s bids all satisfied?” If the differ-
ence between two distributions is zero then the pre-
dictions are optimal in sense that the predicted and
actual distributions match.

If the time-dependent distribution of a Markov
process, in our case EPR̂, converges to a limit, Eç =

limm→�8 EPR̂9
m then Eç is called the stationary distribu-

tion. When the stationary distribution exists it is char-
acterized by the fix-point equation Eç = Tn · Eç. There
are several ways to compute the stationary distribu-
tion, ç, which involve solving the eigenvalue problem
specified in the above equation (for details consult the
online appendix).

We introduced the n-day Markov matrix because
we hypothesized that the n-day Markov matrix will
take longer to reach the stationary distribution of its
Markov process than the one-day Markov matrix, and
therefore it will deliver a better prediction perfor-
mance. We prove this hypothesis empirically by cal-
culating the stationary distribution Eç for the one-day
and each n-day Markov matrices and comparing it
with the Markov predicted regime distribution, using
again the KL-divergence between EP4R̂5 and Eç.

In Figure 7 we show the KL-divergence for a
GMM with 16 components and five regimes in the
low market segment using a one-day Markov matrix
(left) and an n-day Markov matrix (right) over the
planning horizon. Points represent the KL-divergence
between the Markov predicted regime distribution
and the actual distribution, KL4 EPR̂Markov

� EPR5, and dia-
monds represent the KL-divergence between the dou-
ble exponentially smoothed predicted distribution and
the actual distribution KL4 EPR̂ExpS

� EPR5. Pluses represent
the KL-divergence between the Markov predicted
regime distribution and the stationary distribution
KL4 EPR̂Markov

� Eç5. The figure shows that the one-day
Markov matrix converges to the stationary distribu-
tion of the Markov process much faster than the n-day
Markov matrices, as hypothesized.

The KL-divergence measures range from 0.28 bits
(current day), to 0.80 bits (20 days), to 0.95 bits
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Figure 7 KL-Divergence Between Predicted, Actual, and Stationary Regime Distribution Using a Repeated One-Day (Left) vs. n-Day (Right) Markov
Matrix, Computed Using Five Regimes on a GMM with 16 Components for the Low Market Segment Over the Testing Set
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(40 days) of information when using the repeated one-
day Markov matrix and from 0.28 bits (current day),
to 0.66 bits (20 days), to 0.81 bits (40 days) of informa-
tion when using the n-day Markov matrix, as opposed
to the exponential smoother predictions, which range
from 0.09 bits (current day), to 3.55 bits (20 days),
to 12.62 bits (40 days). A KL-divergence less than or
close to one is typically acceptable (Zhang and Cheung
2005), meaning that obtaining more information in
the estimation procedure will not produce significant
gains. We only show values of KL-divergences up to
four because we want to highlight the differences for
small values. The current day exponential smoother
predictions are approximately 1.14 times better than
the repeated one-day and n-day Markov predictions.
On the other hand at 20 and 40 days, the exponen-
tial smoother predictions are approximately 6.73 and
3,259 times worse than the repeated one-day Markov
predictions and 7.42 and 3,591 times worse than the
n-day Markov predictions.

The KL-divergence values calculated using the
n-day Markov matrix are always smaller than the
repeated one-day Markov matrix, significantly so in
the long term. This indicates a better fit between the
predicted and the actual regime probabilities for the
n-day Markov matrix. As a consequence the n-day
Markov matrix should be used instead of the repeated
one-day Markov matrix for strategic decision making.
The best estimate for the short term (current day up
to four days into the future) is given by the exponen-
tial smoother, which should be used to generate price
densities for the short term and sales offer prices for
the current day, i.e., for tactical decision making.

5.3.2. Comparison of Price Prediction Methods.
We compute the price density, p4̂npd+n5,6 for the next

6 For simplicity of notation here we leave out the dependence on
historical normalized prices.

n days into the future, where p4̂npd5 is the distribu-
tion of normalized prices on day d. We calculated the
expected mean price using (22) and tracked differ-
ent contours (10%, 50%, and 90%) of the price den-
sity curve. We calculated the root mean square error,
RMSE4̂npn1npn5, between the predicted normalized
prices, ̂npn, and the actual normalized price, npn, over
a prediction interval of n days in the planning hori-
zon h, averaged across days and runs, to determine
the accuracy of the price prediction as

RMSE4 Ênpn1 Enpn5 =

√

√

√

√

∑NG
i=1
∑ND−n

d=1 4 Ênp
n1 i

d − Enp
n1 i

d 52

NG · 4ND −n5
1

for n= 11 0 0 0 1h (24)

where ND is the number of days in a TAC SCM simu-

lation, NG is the number of simulation runs, and Ênp
n1 i

d

is the predicted price vector for run i for n days into
the future. In our experiments we chose a horizon
h= 40.

For these experiments we calculated the expected
mean price using our three prediction methods,
i.e., the exponential smoother with regimes (§3.2.2),
the Markov prediction (§3.2.3), and the Markov
correction-prediction (§3.2.4) methods.

We have implemented four different comparison
baselines, using approaches taken by successful TAC
SCM agents.

1. The first baseline is an exponential smoother pre-
dictor (Wang et al. 2008). In TAC SCM, exponen-
tial smoothing and linear regression methods are also
commonly used for price forecasting (Benisch et al.
2006, Kontogounis et al. 2006, Jordan et al. 2007,
Podobnik et al. 2008).

2. The second is a constant predictor used by the
Botticelli agent. The Botticelli predictor is based on
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Figure 8 RMS Error for Price Prediction Based on a Repeated One-Day (Left) vs. n-Day (Right) Markov Matrix; Three Regime-Based Prediction
Methods Are Compared to Four Baseline Methods, Exponential Smoothing, ARIMA, and Methods Used by Other Successful TAC SCM Agents
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a daily evaluation of the relation between the ratio
of offers won and an artificially constructed price
variable. Each day, the predictor collects information
about the ratio of offers won and the average offer
price over the past d days together with yesterday’s
minimum and maximum order price. The information
is combined into a data set with d + 2 observations
and two variables, ratio of offers won and “price.” The
price variable consists of the d average offer prices and
the two extreme order prices of yesterday. The ratio of
offers won is set equal to zero for yesterday’s maxi-
mum price and equal to one for yesterday’s minimum
price. The predictor then regresses the ratio of offers
won on the artificial price variable and uses the fitted
model to induce the current mean price at a predicted
offer probability of 50% (Benisch et al. 2004).

3. As a third baseline we implemented the heuristic
predictor used by TacTex, the most successful agent
of the TAC SCM tournament (Pardoe and Stone 2006).
This method predicts prices using a weighted average
of daily uniform densities between the low and high
prices from the previous five days. We use weights of
0.3 for the two most recent days, 0.2 for the middle
day, and 0.1 for the two oldest days. We predict future
prices by assuming that the distribution of prices does
not change. This method uses an information con-
straint in the current price level and relies completely
on local price stability for predictive power. It was
also used as a benchmark by the Deep Maize team to
test their predictions (Kiekintveld et al. 2009).

4. The fourth is a standard time-series Auto-Reg-
ressive Integrated Moving Average (ARIMA) model
(Box and Jenkins 1994, Enders 1995). After the
identification and estimation processes, we arrived

at an ARIMA(51110) model,7 which we used for
forecasting.

Figure 8 shows the RMS errors of our three predic-
tors, i.e., the two Markov predictors using a repeated
one-day matrix (left) versus the n-day matrix (right)
and the exponential smoother with regime lookup,
and compares them to the RMS errors of four base-
line methods, i.e., a simple exponential smoother, the
constant predictor used by Botticelli, the weighted
average prediction technique used by TacTex, and the
ARIMA model. An RMS error of 0.05 corresponds
to an average prediction error of 4% and an RMS
error of 0.25 corresponds to an average prediction
error of 20%. It is clear that the n-day Markov matrix
improves the overall price prediction compared to the
repeated one-day.

Results from our experiments show that although
the exponential smoother performs reasonably well
for short-term predictions, it is myopic, and even
the simple modification where exponential smooth-
ing utilizes regime information (described in §3.2.2)
improves performance. Further, for long-term predic-
tions the Markov price predictors (described in §§3.2.3
and 3.2.4) perform significantly better than not only
the exponential smoother with regime information but
also the constant predictor of Botticelli, the weighted
average predictor of TacTex, and the ARIMA model.
The TacTex predictor overall does well, even though
not as well as the two Markov predictors that outper-
form all the other methods after the first few days.
The ARIMA predictor shows inferior performance for

7 ARIMA(51110) model parameters: AR111 = 0046785, AR112 =

0015953, AR113 = 0, AR114 = 0, AR115 = 0015488, and �= 0000131.
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a planning horizon up to 10 days; after that its perfor-
mance is comparable to the Botticelli predictor. For the
first few days the simple exponential smoother pre-
dictor and the exponential smoother predictor with
regime lookup outperform all other methods, but they
do not work well for long term predictions, as we dis-
cussed earlier in §3.2. The prices produced by both
Markov P and Markov C-P are statistically similar to
the observed prices because pairwise student t-tests
failed to reject the null hypothesis of the equality
of predicted ̂npn and actual observed prices npn at
p = 0005.

The differences in prediction accuracy between the
baselines and the Markov regime predictions reflect
exactly the advantage of the regimes-based price pre-
diction methods over other alternative approaches.
In general, we would expect a richer model, such as
our regime model, to outperform a simpler model
based on regression or time-series prediction. Our
Markov prediction methods capture the rate of change
(acceleration and deceleration) in the Markov transi-
tion matrices and therefore are able to predict price
changes without having to assume a functional form,
as nonlinear statistical models have to do. Another
advantage of the regime model is that it has an intu-
itive qualitative interpretation, which can be used
directly by either automated agents or human decision
makers (Shmueli 2010).

The Markov C-P algorithm makes predictions
using price data over many days in the preceding
history. Implicitly it assumes that the price distribu-
tion follows a random walk, and thus its predictions
are a compromise between the predictions based on
any single previous day’s prices. When the change
in price is driven by short-term nonstationary trends,
it may be better to base predictions only on the
most recent price data because past prices could be
unrepresentative of the systematic trends the market

Figure 9 Success Rate of Price Trend Predictions Based on One-Day (Left) vs. n-Day (Right) Markov Matrix
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is undergoing. For example, if the prices are increas-
ing each day for 10 days, prediction using the last
day’s price would be better. However, the Markov
C-P algorithm is likely to be better when price fluc-
tuations are stochastic, as is the case in larger mar-
kets where no individual player makes a significant
impact alone.

5.3.3. Prediction of Price Trends. Aside from
daily prices, we assessed our ability to predict price
trends because they play a crucial role in sales plan-
ning. We computed the estimated price trend ̂trd+n for
every day n over the planning horizon h as follows:

̂trn = sgn4̂npd+n − ̂npd51 for n= 11 0 0 0 1h1 (25)

where sgn is the sign function, and ̂npd and ̂npd+n are
the predicted prices on, respectively, day d and day
d + n. Because the agent has access only to the min-
imum and maximum prices of the previous day, it
needs a one day forecast of the mid-range price to
estimate the price on the current day d. If ̂trn is pos-
itive, then the predicted prices are increasing; other-
wise, they are decreasing.

Figure 9 displays the success rate of price trend sign
prediction using a repeated one-day Markov matrix
(left) and an n-day Markov matrix (right). Because
the price trend is used for strategic decision mak-
ing, we calculated the success rate starting at d + 5.
As the figure demonstrates, the Markov correction-
prediction predicted the correct trend about 70% of
the time and dominated the exponential smoothing
approach. In general, the n-day Markov predictions
performed better than the repeated one-day Markov
matrix. In the figure we show the success rate using
the expected means of the distributions, computed
using Equation (22), as well as the medians of the
distributions.
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Figure 10 Daily Order Probability Estimation (Mean/Std) for the 10th,
25th, 50th, 75th, and 90th Percentile Using Different
Predictors
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5.3.4. Estimation of Order Probability. Because
we estimate the price trends from the accepted offers,
an inverse relationship with order probability can be
established. For example, on the normalized price
curve a price representing a CDF of 10% corresponds
to 90% order probability because there is 90% proba-
bility that a price at least as high as that price will be
accepted. To test our assertion, we determined, using
historical data, how many orders we would have won
on each day if we had bid using estimated prices.8

For our experiments we estimated 2,200 (10 simula-
tion runs each of 220 days) order probability curves
for a sample market. Figure 10 shows the results of
the experiments for the different predictors. The y-axis
shows the estimated order probability, and the bars
show the actual mean order probability and stan-
dard deviation. Our three predictors estimate the
daily order probability well; the exponential smoother
regime predictor tends to have larger standard devi-
ations. The large errors in the TacTex probability esti-
mates show the weakness of the linear approximation
they use. It is the ability of regime models to estimate
the whole price distribution instead of just the mean
prices that produces these good estimates of order
probabilities.

5.4. Agent Performance
The analysis presented so far demonstrates that our
approach performs well with historical data. How-
ever, to make decisions in real time, the methods have
to be dynamic and self-adjusting. We next evaluate
the performance of our approach when used by an

8 In TAC SCM, customers always accept the lowest bids.

agent that plays against five other agents in real time
in TAC SCM.

5.4.1. Experimental Setup. We implemented dif-
ferent prediction methods for short-term (tactical)
and long-term (strategic) predictions and tested them
in real time in our MinneTAC (Collins et al. 2009,
2010a) agent. The prediction methods we tested are
linear predictor, exponential smoother, exponential
smoother with regimes, Markov one-day predictor,
and Markov n-day predictor.

The agents we used for our experiments have
been obtained from the TAC SCM agent repository.9

We selected five of the finalists from the 2006 competi-
tion and an agent from the 2005 competition. The
agents are (1) TacTex, from the University of Texas at
Austin; (2) DeepMaize, from the University of
Michigan; (3) PhantAgent, from the Politechnica Uni-
versity of Bucharest; (4) Maxon, from Xonar Inc.;
(5) MinneTAC, from the University of Minnesota; and
(6) RationalSCM, from the Australian National
University.

Agent performance in TAC SCM is affected not
only by the set of competing agents but also by ran-
dom variations in supply, demand, and other mar-
ket parameters. To compare different variations of our
own agent without having to run a very large number
of simulation runs, we used a version of the sim-
ulation server (Sodomka et al. 2007) that supports
repeatable pseudo-random sequences of any individ-
ual market factor or combination of factors. The use
of this server removes the profit variability because of
agents facing different market conditions and enables
us to test multiple variations of our MinneTAC agent
under repeatable market conditions.

We ran NG = 23 simulations, each with a differ-
ent pseudo-random sequence, using the base version
of MinneTAC and then ran NG simulations with the
same market factors, each using a different version of
MinneTAC with different prediction models for tacti-
cal (order probability calculation when responding to
RFQs) and strategic decisions (price and price trend
prediction for sales quota and inventory holding deci-
sions). At the strategic level we used different price
prediction methods, namely an exponential smoother,
an exponential smoother with regimes, a Markov pre-
diction process with one-day, and a Markov predic-
tion process with n-day predictions. At the tactical
level we used two methods to calculate order prob-
ability, one based on a linear interpolation between
the estimated minimum and maximum daily prices,
the other an exponential smoother with economic
regimes.

9 http://www.sics.se/tac/showagents.php.
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Table 1 Experimental Results

Mean profit/standard deviation (in million)
Experiment no. of

strategic:
1 2 3 4 5

Tactical: ExpS Markov-P 1-day ExpS with regimes Markov-P 1-day Markov-P n-day

Agent: Linear Linear ExpS with regimes ExpS with regimes ExpS with regimes

TacTex-06 8.752/5.682 8.873/5.600 9.302/5.343 9.205/5.385 9.061/5.331
DeepMaize-06F 8.839/4.629 8.713/4.846 8.921/4.733 8.318/4.181 8.652/4.865
PhantAgent-06 8.049/5.422 7.991/5.384 8.029/5.425 8.173/5.437 7.953/5.247
Maxon-06F 4.243/4.516 3.767/4.288 4.214/4.628 4.019/4.181 3.945/4.396
MinneTAC 1.347/3.703 1.813/4.017 1.545/3.898 2.117/3.764 1.567/3.796
Rational-05 0.739/4.912 0.669/4.692 1.032/4.898 1.305/4.527 1.115/4.682

5.4.2. Real-Time Results. Our tests included five
sets of 23 simulations each, one set for each different
configuration of our MinneTAC agent using the same
23 pseudo-random sequences for each set.

As the primary measure of agent performance in
Table 1 we show the mean total profit per agent.
Table 1 shows that our MinneTAC agent always comes
in fifth when competing against this set of agents. The
performance of an agent depends upon its entire deci-
sion processes, which cover procurement, manufac-
turing, and sales. Our MinneTAC agent is somewhat
weaker than its competitors in the procurement and
manufacturing areas, but because our work is focused
on sales performance, we are only interested in the rel-
ative performance of our MinneTAC agent under dif-
ferent sales strategies. The results of the experiments
are as follows:

1. In the first experiment MinneTAC used a lin-
ear interpolation to determine the probability of order
and an exponential smoother to predict price trends.
The final mean profit is 1.347 million.

2. In the second experiment MinneTAC used again
a linear interpolation to determine the probability of
order and economic regimes (based on a repeated
1-day Markov prediction) to predict price trends. The
final mean profit was 1.813 million.

3. The third experiment used an exponential
smoother with regimes both to predict prices, and to
determine the order probability, median prices, and
price trends. It had a final mean profit of 1.545 million.

4. The fourth experiment used an exponential
smoother with regimes for tactical decisions (deter-
mination of order probability) and a repeated one-
day Markov predictor for strategic decisions (price
and price trend prediction). The final mean profit for
this experiment was 2.117 million, the best among the
tested configurations.

5. The fifth experiment used an exponential
smoother with regimes for tactical decisions and a
Markov n-day prediction to determine price trends.
Its final mean profit was 1.567 million.

We expected that the Markov n-day prediction
would outperform the repeated one-day Markov pre-
diction, as reported in §5.3.2, but the outcome of our
experiments shows the opposite. We attributed this to
our off-line use of a separately trained Markov matrix
for every day in the planning horizon; but because
of the limited time available in real time we used
only a 1, 10, and 20 day Markov prediction matrix.

Table 2 Summary of the Mathematical Notation Used in the Paper

Symbol Definition

np Normalized price
p4np5 Density of the normalized price
N Number of Gaussians of Gaussian Mixture Model (GMM)
p4np � �i 5 Density of np given ith Gaussian of the GMM
P 4�i 5 Prior probability of ith Gaussian of the GMM
P 4�i � np5 Posterior probability of ith Gaussian of GMM given np
E�4np5 N-dimensional vector of posterior probabilities of GMM
M Number of regimes
Rk kth regime, k = 11 0 0 0 1M
R̂k Predicted kth regime, k = 11 0 0 0 1M
P4� � r 5 Conditional probability matrix (N rows and M columns)
p4np � Rk 5 Density of normalized price np given regime Rk

P 4Rk � np5 Probability of regime Rk given normalized price np
EP 4rd+n � ˜npd−15 M-dimensional vector of probabilities of regimes on day

d + n given normalized price np on day d − 1
EP 4r̂d+n �˜npd−15 M-dimensional vector of probabilities of predicted regimes

on day d + n given normalized price np on day d − 1
P 4order � np5 Probability of order given normalized price np
˜np

min
1˜np

max Smoothed minimum and maximum normalized price
˜np Estimated mean normalized price
̂np Predicted mean normalized price
� Smoothing coefficient
C Set of all available component types
G Set of all goods (product types)
d Current day
Dd1 g Total customer demand for good g on day d

Deff
d1 g4price 5 Effective customer demand for good g on day d at

price price
ê Total profit
Ad1 g Allocated sales quota for good g on day d

F Daily production capacity of factory
Od1 g Orders placed on day d for goods g

h Planning horizon
ç Stationary distribution of a Markov process

C
o
p
yr
ig
h
t:

IN
F
O
R
M
S

ho
ld
s
co

py
rig

ht
to

th
is

A
rt
ic
le
s
in

A
dv

an
ce

ve
rs
io
n,

w
hi
ch

is
m
ad

e
av

ai
la
bl
e
to

su
bs

cr
ib
er
s.

T
he

fil
e
m
ay

no
t
be

po
st
ed

on
an

y
ot
he

r
w
eb

si
te
,
in
cl
ud

in
g

th
e

au
th
or
’s

si
te
.
P
le
as

e
se

nd
an

y
qu

es
tio

ns
re
ga

rd
in
g

th
is

po
lic
y
to

pe
rm

is
si
on

s@
in
fo
rm

s.
or
g.



Ketter et al.: Real-Time Tactical and Strategic Sales Management Guided by Economic Regimes
Information Systems Research, Articles in Advance, pp. 1–21, © 2012 INFORMS 19

We performed regime and price density predictions
for these three matrices, interpolating the missing
prices between them. This assumes that the interme-
diate prices are linearly related to each other, which
is not the case, because we actually expect prices to
flatten out further into the future. We have performed
an additional set of stylized experiments to explore
the relative prediction quality of n-day Markov pre-
dictions versus one-day predictions (please see the
online appendix for details). These show that the
n-day approach is clearly superior for long-horizon
predictions.

The results clearly show that mean profits increase
when regimes are used for the purpose of pricing
decisions. We conducted Wilcoxon signed rank test
(Gibbons 1986) to assess the statistical significance
because the data do not follow a normal distribution
(the state of the simulations is wildly influenced by
random number seeds resulting in many simulations
producing no positive profits by any agent). Note that
because the power of nonparametric tests is smaller
than parametric tests, p-values smaller than 0.10 are
considered adequate for statistical significance. The
result of the tests show that there is no statistical differ-
ence in profits between experiment 3 and experiment 5
as compared to experiment 1, but the profits are signif-
icantly higher in experiment 2 (p = 000523) and exper-
iment 4 (p = 000061) as compared to experiment 1.
We further tested the difference in profits between
experiment 4 and experiment 2 to see whether using
regimes at the tactical level is beneficial as com-
pared to using linear interpolation. The results indi-
cated that the profits are significantly higher in exper-
iment 4 (p = 000593) as compared to experiment 2. The
results show that the profit of our MinneTAC agent
always has the lowest standard deviation, which indi-
cates that our predictions are robust and stable.

The design of the simulation limits agents to about
12 seconds for each daily decision cycle, which must
be allocated among procurement, manufacturing, and
sales processes. The linear program described in §3.4.1
can require up to eight seconds but normally runs
much faster. All of the regime models described in
this paper run in a fraction of a second on mod-
ern desktop machines. Actual timings for a typical
game in the 2010 competition are (mean, standard
deviation) in seconds: exponential smoother regime
prediction (00172100023); Markov regime prediction
(00142100009); and LP solver (00186100083). The regime
predictors are not only fast but very consistent, as evi-
denced by the low standard deviations.

6. Conclusions and Future Work
We proposed a versatile computational method based
on both historical and observable data that can be used

for tactical and strategic economic decision making
by automated agents. The approach is based on fun-
damental economic principles, recognizing prevailing
and predicted economic environments, or regimes,
for making pricing and sales decisions. The compu-
tational process is completely data driven and no
explicit classification of the market structure (mono-
poly versus competitive, etc.) is needed. A regime
encapsulates a set of market parameters, with their
appropriate range tailored to a specific market con-
dition, thereby reducing the dimensionality of the
parameter space. This results in a fast computational
approach. Economic regimes provide comparatively
more degrees of freedom than ordinary regression
based approaches because the full price distribution
is available for decision making. Availability of com-
plete distributions and their trends allows a decision
maker to choose an appropriate level of risk and sup-
ports estimation of other useful metrics such as order
probabilities. Economic regimes are especially suited
to make predictions in nonstationary environments
where supply-demand relationship is highly dynamic.
Economic regimes also provide an opportunity for
niche learning; i.e., an agent is able to apply dif-
ferent approaches and actions when specific regimes
are dominant.

We presented three different algorithms for dyna-
mic identification of regimes and for prediction of
regime distribution over a planning horizon. Our
methods use knowledge of current and future regime
distributions to facilitate tactical decision making,
such as calculation of customer offer prices, and stra-
tegic decision making, such as allocation of resour-
ces over a planning horizon. Using the complete
price distribution, instead of point estimates of prices,
enables our approach to better account for price vari-
ance in decision making. Our choice of using only
price and its associated quantity information to esti-
mate regimes makes our approach applicable in real
world competitive environments. In a real world mar-
ket environment companies are able to observe com-
petitors prices but have no access to internal data,
such as costs, manufacturing capacity, and inventory
positions.

If one has access to additional information in the
real world, such as some simple measures of supply,
demand, or both, then it would also make sense to
incorporate these. An example could be to utilize the
aggregated daily demand and compare it with the
total available capacity of all manufacturers. A way
to enter this into the model is to make the Markov
transition matrices conditional on indicators of this
demand capacity balance.

In future, we intend to apply our method in other
domains where predicting price distributions may be
fruitful, including B2B domains such as computer
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chips and components, B2C domains such as Amazon
.com and eBay.com, and in financial applications.

A real B2B domain we are currently working with
is the Dutch Flower Auctions (DFA; Kambil and
van Heck 1998). We have established a cooperation
with the DFA and begun work to apply economic
regimes to the flower market. The DFA play a vital
role in maintaining the Netherlands’s leadership in
the flower industry; they serve as efficient centers
for flower exchange between suppliers and buyers.
In 2009, the DFA reported daily trades of more than
37.0 million cut flowers and 2.6 million potted plants,
generating over 3.81 billion Euros in annual sales.

In the DFA, bidders decide which and how many
flowers to bid on and at what price, and the auc-
tioneers set initial prices, reserve prices, minimum lot
sizes, and clock speeds. In the current practice, those
auctioneering parameters are set up in a static manner.
Realizing the opportunities offered by dynamic pric-
ing in maximizing revenue (Zhao and Zheng 2000),
and in order to increase the auction efficiency, we pro-
pose to move the auctioneer away from the current
practice of static starting price setup to dynamic pric-
ing using our method of economic regimes. Bidders
could also use economic regimes to predict different
market regimes and associated prices and align all
elements of the supply chain accordingly, especially
procurement and sales. An opportunistic buyer might
bid low for certain flowers in an oversupply situa-
tion because he could sell them up to some threshold
at a profit. On the other hand, if a scarcity situation
is predicted, then the buyer might start bidding for
certain flowers a few days earlier and store them in
cold storage until the price reaches the highest point,
e.g., Mother’s day.

Electronic Companion
An electronic companion to this paper is available as part
of the online version that can be found at http://isr.journal
.informs.org/.
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