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Abstract

Recently, real-time image data processing is a popular research area for hyperspectral remote sensing. In particular,

target detection surveillance, which is an important military application of hyperspectral remote sensing, demands

real-time or near real-time processing. The massive amount of hyperspectral image data seriously limits the

processing speed. In this article, a strategy named spatial-spectral information extraction (SSIE) is presented to

accelerate hyperspectral image processing. SSIE is composed of band selection and sample covariance matrix

estimation. Band selection fully utilizes the high-spectral correlation in spectral image, while sample covariance

matrix estimation fully utilizes the high-spatial correlation in remote sensing image. To overcome the inconsistent

and irreproducible shortage of random distribution, we present an effective scalar method to select sample pixels.

Meanwhile, we have implemented this target detection algorithm based on the SSIE strategy on the hardware of a

digital signal processor (DSP). The implementation of a constrained energy minimization algorithm is composed of

hardware and software architectures. The hardware architecture contains chips and peripheral interfaces, while

software architecture contains a data transferring model. In the experiments, we compared the performance of

hardware of DSP with that of Environment for Visualizing Images software. DSP speed up the data processing and

also results in more effective in terms of recognition rate, which demonstrate that the SSIE implemented by DSP is

sufficient to enable near real-time supervised target detection.
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1. Introduction
Hyperspectral remote sensing is a new multi-dimensional

information acquisition technology combining image

and spectral technologies for monitoring and detecting

chemical substances, anomalies, and camouflaged

objects, as well as their visual surveillance. Due to the

high spectral resolution of hyperspectral remote sensing

image, the amount of data that can be processed in

hyperspectral image processing is high compared to that

in a typical image processing. Some applications of

hyperspectral images require real-time processing or

near real-time processing. The computational complex-

ity that comes with the enormous amounts of data

involved limits hyperspectral image superiority. Digital

signal processor (DSP) is quite suitable for hyperspectral

image processing, and such a processor is optimized for

performing multiply-accumulation operations. However,

the capability of DSP is limited by the memory space,

arithmetic logic units, and the clock speed of chip.

When the architecture of DSP is fixed, an effective way

to accelerate processing speed is to use or develop new

processing methods such as parallel and distributed

algorithms. In this article, an effective strategy named

spatial-spectral information extraction (SSIE) to reduce

redundant information from spatial and spectral dimen-

sions is introduced. This strategy has improved the

computing capability of DSP, and has acquired better

detecting results than the algorithm in popular Environ-

ment for Visualizing Images (ENVI) software package.

After using SSIE strategy, the hardware accelerator

based on DSP has met the requirements of real-time

processing system.
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A real-time system requires its hardware and software

to perform the assigned work within the specified time

while the system has the ability of detecting and reacting

to internal and external errors in a controlled fashion

[1]. However, in many applications of the hyperspectral

image real-time processing, the processing time is often

too long. There are three ways to improve the hyper-

spectral image processing speed.

The first way is to apply the high-performance proces-

sors or complex hardware architectures. A recent develop-

ment in the area of image processing is the introduction

of fully programmable graphics processing units (GPU).

Tarabalka and Haavardshlom [2] have implemented the

anomaly detection in hyperspectral image using multivari-

ate normal mixture models on GPU. The experiment has

shown that the GPU provides a significant speedup of the

algorithm compared to the CPU implementation. The

GPU enables real-time execution of the algorithm on a

hyperspectral data stream with high spatial and spectral

resolution, with acceptable detection performance and a

significant margin on computing time [2]. Although real-

time Principal Component Analysis (PCA) calculation [3],

near real-time endmember extraction [4], Pixel Purity

Index (PPI) [5], and Automatic Morphological End-

member Extraction algorithms [6] have been implemented

on GPU, Field Programmable Gate Arrays (FPGA) or DSP

is always chosen as main processor in the space missions

and Unmanned Air Vehicle (UAV) instruments. Reconfig-

urable FPGA can include dual core PowerPC processors

thereby providing a flexible hardware and software

co-design architectures to meet the on-board processing

challenges of these missions. Reconfigurable FPGA tech-

nologies also provide in-flight flexibility and the ability to

update processing algorithms as needed post-launch [7].

Wang and Chang [8] studied an FPGA implementation of

the causal constrained energy minimization (CEM) for

hyperspectral target detection, and the experiment showed

that the data’s correlation matrix is calculated in a causal

manner that only needs data samples up to the sample at

the time it is processed. One of major difficulties with

implementing the algorithm in real time is the computa-

tion of the inverse of a matrix. They use systolic arrays

architecture in conjunction with the CORDIC algorithm

to implement the computation of a matrix inverse [8]. In

addition, SVM classifiers [7], PPI algorithm [5], and paral-

lel independent component analysis algorithm [9] have

also been implemented on FPGA. Some other hardware

structures are also suitable for real-time processing, such

as a massively parallel Beowulf cluster [5].

Another way is to develop real-time algorithms to im-

prove the execution efficiency of processors. Wu et al.

[10] re-designed N-finder algorithm (N-FINDR) in a

real-time processing fashion, and four versions of real-

time N-FINDR were developed. Experiment results

demonstrated that the correlation and covariance matri-

ces can be calculated and updated in a causal manner, so

the real-time processing requirement was met [10]. Du

and Ren [11] presented a real-time constrained linear

discriminant analysis (CLDA) approach to implement

target detection and classification. In fact, both of CLDA

and target-constrained interference-minimized filter are

based on a similar principle, and their only difference is

the use of covariance and correlation matrices. The

CLDA algorithm is difficult to implement in a real-time

fashion, and then modified versions are presented to

avoid the data whitening process. Experiment results

demonstrate that the entire real-time simulation takes a

Sun Ultra10 440-MHz workstation only about 50 s [11].

The last way is to ameliorate data processing strategy.

An appropriate strategy can make real-time processing

easy to implement. Acitoet al. [12] presented a complexity-

aware algorithm architecture for real-time enhancement

and detection of local anomalies. The algorithm is actually

a data processing strategy. The key of the proposed archi-

tecture is an efficient procedure for updating the local

background parameter estimates [12]. Parket al. [13] pro-

posed real-time target detection architecture as an efficient

solution for hyperspectral image processing. Data parti-

tioning is the main strategy to reduce complexity algorithm

for high-throughput applications [13].

In this article, a near-real-time data processing strategy

named SSIE is introduced and implemented on the TI

TMS320DM642 DSP. The remainder of this article is

organized as follows: the following section introduces tar-

get detection algorithm and describes the near-real-time

data processing strategy. Section 3 focuses on introducing

the hardware implementation of SSIE. Section 4 assesses

the performance of the data processing strategy by some

experiments. Finally, the article ends with conclusion

section.

2. Near-real-time processing strategy of target
detection algorithm
2.1 Target detection algorithm

Target detection includes supervised target detection,

unsupervised target detection, and change detection. In

this article, we focus on the supervised target detection

problem.

Spectral matched filters such as CEM are one of the

most useful supervised target detection algorithms. CEM

is suitable when the spectrum for targets of interest is

known but the background is unknown. This concept is

based on the extraction of some signals at the specific

direction and the suppression of other signals. It designs

a finite impulse response filter vector w so that the filter

output energy is minimized, subject to a constraint that

the output of desired target vector d is constant,where,

w= {w1, w2, . . ., wL}
T, and wTd= 1,let input be xi,
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detection statistic be yi, then yi=wTxi= xi
Tw. So, the

average output energy would then be
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where R is the self-correlation matrix of sample set, xi is

the pixel vector, and n is the number of pixels in the ori-

ginal hyperspectral images. Obviously, removing the

mean from X will result in R replaced by covariance

matrix
P

. So, filter algorithm is boiled down to a mini-
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Solve this problem by Langrage multiplying operator.

The solution is CEM operator [14], namely

w� ¼
R�1d

dTR�1d
ð3Þ

If we apply the CEM operator to every pixel in the

image, the detection result will be

y ¼ DCEM xð Þ ¼ w�Tx ¼
R�1d

dTR�1d

� �T

x

¼
xTR�1d

dTR�1d
ð4Þ

2.2 Near-real-time data processing strategy

An effective method to improve the speed of hyperspectral

image processing is to reduce the amount of redundant in-

formation. The key to target detection is calculating co-

variance matrix or correlation matrix, which take up

majority of the whole computing amount in target detec-

tion. In this article, we introduce anSSIE strategy to fast

near-real-time data processing by taking advantage of high

spatial and spectral correlations in hyperspectral image.

2.2.1 Spatial and spectral correlations of hyperspectral image

Spatial correlation is the correlation from pixel-to-pixels

at every spectral band, and spectral correlation is the cor-

relation among bands at the same spatial location [15].

1. Spatial correlation analysis

Let r (l, k) be correlation function between f (x, y) and

f (x + l, y + k), where l represents the varying value in the

direction of row and k represents the varying value in

the direction of column, f (x, y) be grayscale function,

spatial correlation function is defined as follow

r l; kð Þ ¼ ∬ f x; yð Þf xþ l; yþ kð Þdxdy ð5Þ

After doing normalization and discretization for spatial

correlation function, Equation (5) would then be

R l; kð Þ ¼

P
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where M and Nare the image sizes, uf is the average of

image’s grayscale, and uf is given by

uf ¼
1

M � N

X

M

x¼1

X

N

y¼1

f x; yð Þ ð7Þ

If k= 1 and l= 1, R (1, 1) is the correlation coefficient

between two adjacent pixels.Since an image is a two-

dimensional signal, correlation coefficient of adjacent

rows or columns is valuable to demonstrate the spatial

correlation in total image.So, the correlation coefficient

of adjacent rows at every band can be represented as

Rx 1ð Þ ¼ R 1; 0ð Þ

¼
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Similarly, the correlation coefficient of adjacent col-

umns at every band can be represented as

Ry 1ð Þ ¼ R 0; 1ð Þ

¼
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2. Spectral correlation analysis

Let f (x, y) be grayscale function, g (x, y) the standard

image, and h (l, k) cross-correlation function between f

(x, y) and g (x, y). So,the spectral cross-correlation func-

tion is defined as follows:

h l; kð Þ ¼ ∬ f xþ l; yþ kð Þg x; yð Þdxdy ð10Þ

After doing normalization and discretization for spectral

cross-correlation function, Equation (10) would then be
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If k= 0 and l= 0, h (0, 0) is cross-correlation

coefficient.
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After analyzing spatial and spectral correlations, we

know that these high correlations will cause to redun-

dant information.

2.2.2 Band selection

Band selection maps dimensional data into lower dimen-

sion while preserving the main features of the original

data. For specific targets, bands known to carry little or

no information should be removed from spectral

analysis.

Some common methods of band selection are PCA,

Isometric Feature Mapping [16], Diffusion map, Locally

linear embedding [17], Local Tangent Space Alignment

[18], and so on. However, these methods need complex

calculation, which is not suitable for real-time proces-

sing. There are some straightforward methods of band

reduction in [19]. One option is the rather primitive step

of averaging two or more adjacent bands and forming

a smaller number of lower spectral resolution bands

subset. Actually, the selection of band subsets in this

fashion cannot represent all of the spectral features of

the specific target. The shape of an absorption feature or

the presence of combinations of absorption features at

the specific wavelength can represent a target’s spectral

feature. So, we developed averaging adjacent bands for

band selection to join the bands representing absorption

features into the band subset.

As shown in Figure 1, the new method of band selec-

tion is presented as follows:

1. Remove bands that carry little or no information

about the specific target. For example, bands at

atmospheric absorption and bands with low SNR

should be removed. The key of band selection is

spectrum analysis. The level of SNR is decided by

the hyperspectral image sensor, so it is easy to know

by parameters of sensor. At the same time, the band

wavelengths at the atmospheric absorption are easy

to know by prior parameter of sensor. These bands

are preliminarily set by people.

2. Analyze the specific target’s spectral absorption

features and preserve the band at the minimum

reflectance and several bands at the left and the

right sides of the minimum. The number of bands at

the left or right side of the minimum is decided by

the type of targets, different targets have different

spectral features and the number of spectral bands is

also different. Some targets having obvious features

need fewer bands, but some need more bands.

3. Select band at every step of two or more adjacent

bands from the remaining bands to form a band

subset.

4. Combine the bands at absorption feature and the

band subset to form a new bands subset.

After band reduction, a new hyperspectral image is

generated to represent the major information of original

data. In Section 2.3, we will analyze the change of com-

puting complexity, and in Section 4.2.1 we will assess

the actual effect of band selection.

2.2.3 Sample covariance matrix estimation

2.2.3.1 Small sample covariance matrix estimation

Covariance matrix computing is the most time-

consuming component in target detection, so a simple

and effective computing method is very important for

real-time processing. Remote sensing image usually has

high spatial correlation, and a small number of pixels

can still capture the major statistics [20]. So, using a por-

tion of pixels for correlation matrix R or covariance

matrix
P

calculation is a commendable method to re-

duce computation complexity.

From the previous spatial correlation analysis, we have

found that a pixel has a similar statistical distribution to

the pixels in its neighborhood. Furthermore, this similar-

ity is determined by spatial resolution and homogeneous

background in hyperspectral image. So, we can select a

portion of pixels as a sample to represent total pixels to

compute the statistics. The spatial resolution is higher,

and the number of samples can be smaller. If the num-

ber of pixels in the original data is N and the number of

bands is L, the minimum number of pixels which are

used to estimate the covariance matrix is L. If the num-

ber of pixels in the sample is less than the number of

bands, w* in Equation (3) can be affected by the so-

called singularity problem.

2.2.3.2 The singular problem of small sample inverse

covariance matrix estimation Singularity problem is

common in the problem of hyperspectral classification.

Sufficient training pixels for each spectral class must be

available to allow reasonable estimates to be obtained of

the elements of the class conditional mean vector and

covariance matrix. For an L-dimensional hyperspectral

space, the covariance matrix is symmetric of size L×L,

the minimum number of independent training pixels

required is (L+ 1)[21]. Swain and Davis [22] recommend

as a practical minimum that 10L training pixels per

spectral class be used, with as many as 100L per class if

possible.

In the target detection problem, we try to reduce the

computation of covariance matrix using a portion of pix-

els as a sample to estimate background statistics. How-

ever, this method will bring the same problem as

hyperspectral classification. Fortunately, it is different

with classification that inverse covariance matrix in tar-

get detection will weaken the main information of back-

ground without targets. So, it is an effective method to

avoid singularity matrix that the mean component in
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every band is added in the covariance matrix. The esti-

mated covariance matrix
P

M is shown in Equation (12)
X

M ¼
X

þm�I ð12Þ

where I is a scaled identity matrix whose size is L×L,

and the whole of bands’ mean vector m= {m1,m2,m3,. . .,

mL}, especially,

mj ¼
1

N

X

N

i¼1

xi;j; j ¼ 1; 2; . . . ; Lð Þ ð13Þ

where N is the number of pixels in the original image,

and L is the number of bands.

Similarly, the estimated correlation matrix RM ¼

Rþm�I , so, Equation (4) would then be

yCEM xð Þ ¼
xTRM

�1d

dTRM
�1d

¼
xT Rþm�Ið Þ

�1
d

dT Rþm�Ið Þ
�1
d

ð14Þ

2.2.3.3 The method of selecting pixels to form the sample

It is difficult to make a rule for selecting pixels for the

estimation of population covariance matrix. In general,

these pixels should include the main information in the

image. We present an effective method to extract these

pixels in order to form a representative sample. The

image shown in Figure 2 has 216 × 216 pixels and 193

bands. The location of pixels selected to form a sample

is shown in Figure 3.

Different objects are located at different locations in

an image, and the probability of difference is larger when

pixels are farther apart. Pixels should try to represent

the information at all locations. So, we put all the pixel

vectors into a column, and select a pixel vector after sev-

eral pixels apart to form a sample set. The distribution

of location for every pixel is shown in Figure 3a. Al-

though this sample set could represent all of the

information in the original image, the method will be-

come invalid when the length of adjacent pixel’s interval

in the sample set is several times the number of pixels at

every column. Also, it is not a good choice when the

sample size is small. So, we try to utilize the spectral in-

formation to increase the veracity of the sample.

Owning to a hypothesis that statistics used to compute

covariance matrix or correlation matrix in target detection

algorithms cannot include target information [23], we try

to search for several pixels that is not from targets but

form different geographic objects in the original image.

A matched filter is an L-dimensional vector d that is

applied to a pixel vector X to produce a scalar dTX

which emphasizes the signal while suppressing the back-

ground clutter [24]. Then we will make the scalar dTX

Figure 1 Illustration of the method of band selection.

Figure 2 The hyperspectral remote sensing image used in this

study.
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as the standard of selecting pixels. If dTXis small, the

difference between the pixel vector X and the target vec-

tor d is large. Figure 3b shows the location for 5L pixels

that make dTX larger. It is clearly shown that these pix-

els were mainly selected from similar objects. If the

background is homogeneous, the sample will only repre-

sent one or two objects. So, it is difficult to represent

the population’s statistics.

After sorting the pixels by the value of dTX in descend-

ing order, we can select a pixel after several pixels apart

to form a sample set. The distribution of location for

every pixel is shown in Figure 3c. It is shown that these

pixels are irregularly distributed in the whole of image.

Although it is like the random distribution whose loca-

tion is unpredictable, these locations are decided by the

number of pixels in the sample. This rule can ensure that

the sample would represent the total image’s statistics.

After discussing the rule of selecting pixels, the calcu-

lating workflow of sample covariance matrix is shown in

Figure 4.

The process flow of sample covariance matrix calcula-

tion is presented as follows:

1. Determine the number of pixels in the sample,

which is then used to compute the population’s

covariance matrix by the requirement for

recognition rate. Generally, higher number of pixels

selected to compute the covariance matrix will

result in a higher recognition rate. Ten times

number of bands is an appropriate number of

pixels.

2. Select pixels as the sample from the original data on

the basis of pre-designed rule. After sorting the

pixels by the value of dTX in descending order, we

can select a pixel after several pixels apart to form a

sample set. The rule can select pixels that can

represent the statistics of population.

3. Compute the covariance matrixes in every pixel

vector and accumulate these covariance matrixes.

The result of this accumulation is the estimated

covariance matrix for all pixels. Note that a

covariance matrix is the symmetrical matrix, so

there is only a triangle matrix to be calculated for

very pixel vector.

4. Do a normalization and inverse operation for the

estimated covariance matrix.

2.3 Assessment of the fast processing strategy

Figure 5 shows the whole workflow of target detection

algorithm. The key accelerating components are band

selection and sample covariance matrix calculation. We

will assess the calculated amount after using fast proces-

sing strategy, so it will be clearly found that the strategy

reduces the computing complexity.

Let L be the number of bands in original data, and N

be the number of pixels, so the number of multiplication

is NL2. After band selection, αL is the number of bands

in the band subset, where 0≤α≤ 1, and the number of

multiplication is (αL)2N. The number of multiplication

is decreased by (1 – α2)NL2.

The number of multiplication is (αL)N by the pre-

designed rule for selecting pixels. And, after pixel selec-

tion, the number of pixels which are used to compute

sample covariance matrix is βL, where 1≤ β≤ (N/L), so

the number of multiplication will be βα2L3. The number

of multiplication reduced is (N – βα2L)L2 – (αL) N. Let

speed-up ratio be a, then a=NL/(βα2L2+αN), where

N »L, and 0≤ βα2≤ 1, so a will be a very large number.

Multiplication is time-consuming for DSP, so the SSIE

strategy will reach a high-speed-up ratio compared with

no processing strategy.

3. DSP implementation
3.1 Hardware architecture

Our experiments are conducted on the TMS320DM642

DSP, which is a high-performance digital media processor.

The TMS320DM642 device is based on the second-

generation high-performance, advanced velocity very-

long-instruction-word architecture applications [25].

Figure 6 shows the workflow of hardware system. The

computer sends hyperspectral image data to the DSP by

Ethernet interface, and DSP runs the algorithm program

Figure 3 Location of pixels selected to compute covariance matrix.
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to process image data. Then, DSP sends the processed

target image to the computer by Ethernet interface. Data

stream is continually exchanged by Ethernet interface

whose transmitting speed can reach 100 Mbps, so the

real-time processing is easy to implement on this

platform.

3.2 Software architecture

To implement the communication between PC and DSP,

we use of Network Developer’s Kit (NDK) to establish

TCP/IP stack on DSP [26]. For designing the software

architecture, we aim at establishing a fast, simple channel

to transmit data between PC and DSP. In this system, PC

as a server performs several functions, such as initializing

socket environment, reading local document and sending

it by Ethernet, and receiving and saving the processed

target image. Meanwhile, DSP as a client performs such

functions as initializing the DM642 chip, configuring, and

initializing the network environment, receiving and send-

ing data, and executing target detection algorithm. Figure 7

shows the structure of the software system.

3.3 Implementation of fast processing strategy on DSP

As shown in Figure 5, the key components of the whole

processing strategy are band selection and sample covari-

ance matrix estimation. Band selection is implemented on

PC, where a server is responsible for selecting feature

bands. The server is operated by user, so it is convenient to

decide which bands are preserved. Meanwhile, covariance

matrix estimation is implemented on DSP which is the cli-

ent of NDK. First, pixels are sampled from the image on

server by the pre-designed rule, and the sample set is sent

Figure 4 Illustration of the method of covariance matrix calculation.
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to DSP to compute sample covariance matrix. Then the

original data are sent to DSP to execute target algorithm.

Finally, the result of target detection is sent to PC from

DSP. For the hyperspectral image with BSQ format, a

socket transfers one band data by the TCP/IP protocol.

In the following experiments, ENVI is run on a PC

platform with an Intel Pentium 1.6 GHz processor and

256 MB of RAM. An algorithm with the strategy of SSIE

is run on the platform of DSP which is a 550-MHz pro-

cessor with 32 MB of SDRAM.

4. Experimental results
4.1 Hyperspectral data

In order to compare the CEMalgorithm’s performance on the

hardware of DSP with that in the software of ENVI 4.6 ver-

sion, a hyperspectral image has been selected for experiment.

To evaluate the results of target detection well, we use a

synthetic hyperspectral images. Figure 2 shows the hyper-

spectral image that is used in the subsequent experiments.

The scene is a 193-band image with 320× 320 pixels and

was collecting over a farmland. As shown in Figure 8a, 15

simulated targets are embedded in the image. We also

selected a region with 12 simulative targets and with

216× 216 pixels in Figure 8b to assess the performance of

the previous theory.

As shown in Figure 9a, the first column is five targets

that each one was made of 1 pixel, similarly, the second

column is 1 × 2 pixels, and the third column is 2 × 2 pixels.

The first row is three targets made of pure pixels, but the

second row is three targets made of 80% target spectral

signal (labeled “S”) and 20% background spectral signal

(labeled “BKG”), similarly, the rest of rows are targets

Figure 6 Illustration of the workflow of hardware system.

Figure 5 Illustration of the workflow of complete target detection algorithm.
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made of different fraction of target and background spec-

tral signal. The section Additional file 1: Table S1 lists the

location of simulative targets,where Pk
i,j is the pixel value,

and k is the label of target, i is the location in the column

while j is the location in the row of original image.

Figure 9b is the simulative target’s spectrum. The feature

bands subsets are labeled with red dashed ellipse on the

spectrum.

We will analyze the correlation of original data based

on the previous theory in Section 2.2.1. The correlation

analyzing results is showed in Figure 10 as follows.

As shown in Figure 10a, the minimum correlation co-

efficient of adjacent rows in every band is 0.8166 and the

maximum is 0.9802, while the minimum correlation co-

efficient of adjacent columns in every band is 0.8208 and

the maximum is 0.9779. This indicates that the pixels in

the hyperspectral image are highly correlated to their

neighboring pixels in both X and Y directions.

Correspondingly, as shown in Figure 10b, only 11

pairs of adjacent bands have a correlation between

0.86 and 0.98, and the correlation of the others are

close to 1.00. Obviously, the hyperspectral image has

Figure 7 Illustration of the workflow of software system.

Figure 8 Original hyperspectral image scene. (a) A hyperspectral image scene containing 15 simulative targets, (b) target area containing 12

simulative targets.
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a strong spectral correlation, which indicates that the

remarkable redundant information exist in the hyper-

spectral image.

Band selection and sample covariance matrix estima-

tion are presented in this article to carry out spatial and

spectral redundancy information reduction.

4.2 Target detection based on CEM algorithm

4.2.1 Performance of band selection

The performance of band selection method with feature

absorption described in Section 2.2.2 is assessed in the

following work. In Figure 8, the target region containing

12 simulative targets as shown in Figure 8b is processed

with CEM algorithm on CPU-based ENVI software and

DSP hardware platform. After bands selection, bands of

hyperspectral image are reduced from 193 to 42, where

the bands at feature absorption have been preserved and

the bands at atmosphere absorption have been removed.

As shown in Figure 11, though targets are all recognized,

the background is better suppressed and noise is reduced

after preserving feature absorption bands on DSP. Com-

pared with two-dimensional image, three-dimensional is

Figure 9 Hyperspectral image scene embedded simulated targets. (a) The synthetic hyperspectral image scene, (b) the simulated target’s spectrum.
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more clearly shown that targets are easy to be distinguished

from background and the background is suppressed well in

the image. Calculated amount always increases with the

bands’ number in a forth power relation [27]. So, it has sig-

nificantly improved processing speed after bands selection.

4.2.2 Performance of sample correlation matrix estimation

on a DSP platform

In this section, the method proposed in Section 2.2.3 is

verified. The original data are the target region contain-

ing 12 simulative targets and 42 bands, as shown in

Figure 8b. We will compare the results on the condition

of the different number of pixels used to estimate correl-

ation matrix. In particular, we use correlation matrix in-

stead of covariance matrix to whiten the data. So, the

following experiments focus on sample correlation

estimation.

As shown in Figure 12, the correlation matrix is sensi-

tive when the number of sample pixels is less than 10

times of the number of bands L (Indexes III and IV).

When the number is larger than 10L (Indexes I and II in

Figure 12), detection results have no obvious difference.

Figure 10 Spatial and spectral correlation analysis results. (a) Spatial correlation analysis, (b) Spectral correlation analysis.

Figure 11 Analysis of band selection with feature absorption. (a) The processed result without bands selection on ENVI software, (b) the

processed result after bands selection on ENVI software, (c) the processed result without bands selection on DSP platform, (d) the processed

result after bands selection on DSP platform.
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When the number of sample pixels is less than L, the

background will flood targets, owing to the fact that sam-

ple correlation matrix is not a full-rank matrix (Indexes

V in Figure 12). In Section 2.2.3.2, a method to solve the

singular problem is provided, and the experiment result

is shown in Figure 13.

As shown in Figures 12 and 13, we can see that the

fewer the number of sample pixels, the more noise the

background has. Correspondingly, processing time is ob-

viously reduced after executing sample correlation

matrix estimation. The results are shown in Table 1.

4.2.3 Performance comparison between ENVI processing

and DSP processing

In this section, comparison of processing results be-

tween ENVI and DSP is presented. The original data

Figure 12 Analysis of correlation matrix estimation.

Figure 13 The solution for singular problem of small sample inverse covariance matrix estimation. (a) Covariance matrix is singular, (b) a

method making covariance matrix nonsingular.
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containing 15 simulative targets and 193 bands are

shown in Figure 8a.

As shown in Figure 14, ENVI’s CEM implementation

could only recognize 12 targets (obj. 5a, b, c cannot be

discriminated from background) and targets are heavily

disturbed by the background. Some ground objects such

as two strip objects in the top right of image are incor-

rectly detected.

Though details of the specific steps to implement

ENVI’s CEM are not available, it is known that target

detection algorithm is implemented for all bands and all

pixels in a hyperspectral image.

After extracting SSIE strategy on DSP, it is clearly shown

that background is obviously suppressed and noise is re-

markably reduced in Figure 14. However, as the number

of pixels selected to calculate correlation matrix decreases,

the impact from noise cannot be ignored.

For illustrative purposes, a comparison of our pro-

posed DSP design with the algorithm on ENVI has been

performed in terms of computation time and recognition

rate. The execution time is shown in Table 2.

After executing the band selection on DSP, Table 2

shows that the speedup rate is 18.89 compared with pro-

cessing on ENVI. Due to the removal of some bands with

low SNR and the preservation of some bands at absorp-

tion features, 14 targets are recognized (obj. 5a cannot be

discriminated from background), so the recognition rate is

improved accordingly from 80.0 to 93.3%.

After executing the covariance matrix estimation, the

speedup rate is 90.56 when the number of pixels calcu-

lating matrix is 100, and 14 targets are still recognized.

The three-dimensional views show that obj.5a, b, c can

be discriminated from noise in the background.

Compared with all pixels and all bands calculating the

matrix in ENVI, the SSIE strategy implemented on DSP

significantly improved the processing time.

4.2.4 Assessment of experimental results

This section provides an assessment of previous experi-

mental results. The CEM algorithm in ENVI software is

Table 1 Execution time on the platform of DSP

Index I II III IV V

Pixels 46656 420 210 42 21

Processing time (s) 14.721 1.602 1.532 1.512 1.502

Figure 14 Analysis of SSIE strategy.

Table 2 Execution time comparison between ENVI and DSP

Platform ENVI DSP DSP

Pixels 102400 102400 100

Bands 193 20 20

Processing time (s) 183.2 9.694 2.023

Recognition rate (%) 80.0 93.3 93.3
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time-consuming, and the background has a significant ef-

fect on targets. After using SSIE strategy, the processing

time is reduced and recognition rate is improved on DSP.

ENVI is run on the CPU, which has a higher clock

speed and larger memory than the DSP. However, com-

paring with CEM in ENVI package, the CEM algorithm

using SSIE strategy on DSP reaches a high-speed-up

rate. In addition, the processing results on DSP are su-

perior to that on ENVI, because the background is sup-

pressed better and targets are easier to be discriminated.

5. Conclusions
In this article, we present a real-time DSP system imple-

mentation for hyperspectral target detection. This sys-

tem is suitable for UAV or satellite platform, which

require data automatically processed.

The implementation involves the SSIE strategy and the

hardware architecture of DSP. The fundamental purpose

of SSIE is to reduce the redundant information and im-

prove the SNR of original hyperspectral data. Band se-

lection preserving feature absorption takes advantage of

the high-spectral correlation in spectral image to reduce

the redundant information of spectral dimension, while

sample covariance matrix estimation takes advantage of

the high-spatial correlation in remote sensing image to

reduce the redundant information of spatial dimension.

For sample covariance matrix estimation, we present a

method that making the scalar dTX as the standard of

selecting pixels to form a consisted and reproducible sam-

ple set. The SSIE strategy decreases the image data and sig-

nificantly improves the speed of target detection algorithm.

We have used TI TMS320DM642 DSP to implement

the CEM algorithm and SSIE strategy, and compared its

performance to a CPU-based implementation. After

using the SSIE strategy, the DSP provides a significant

speedup of CEM algorithm compared to CPU imple-

mentation. The speed-up rate reaches 90.56 on DSP. In

addition, CEM algorithm using SSIE strategy on DSP is

more effective to recognize targets than that algorithm

in ENVI running on a computer. Fourteen targets in 15

simulative targets are recognized on DSP, but only 12

targets are recognized in the same image on ENVI.

To solve the singular problem of small sample inverse

covariance matrix estimation, a method of adding band

mean value to covariance matrix is provided. Though

it can solve the singular problem, the background infor-

mation reduced the detection accuracy. This is a valu-

able issue in the future direction.

Finally, it can be noted that target algorithms based on

SSIE strategy can be used in many platforms such as

GPU, FPGA, and ASIC. The SSIE strategy reduces the

computational complexity to ensure real-time processing

of hyperspectral images, while the DSP platform

implements data processing automatically on the un-

manned device.

Additional file

Additional file 1: Table S1. Mixed panel pixels for simulative targets.
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