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Abstract—Spatial Crowdsourcing (SC) is a novel platform that
engages individuals in the act of collecting various types of
spatial data. This method of data collection can significantly
reduce cost and turnover time, and is particularly useful in
environmental sensing, where traditional means fail to provide
fine-grained field data. In this study, we introduce hyperlocal
spatial crowdsourcing, where all workers who are located within
the spatiotemporal vicinity of a task are eligible to perform the
task, e.g., reporting the precipitation level at their area and time.
In this setting, there is often a budget constraint, either for every
time period or for the entire campaign, on the number of workers
to activate to perform tasks. The challenge is thus to maximize
the number of assigned tasks under the budget constraint, despite
the dynamic arrivals of workers and tasks as well as their co-
location relationship. We study two problem variants in this
paper: budget is constrained for every timestamp, i.e. fixed,
and budget is constrained for the entire campaign, i.e. dynamic.
For each variant, we study the complexity of its offline version
and then propose several heuristics for the online version which
exploit the spatial and temporal knowledge acquired over time.
Extensive experiments with real-world and synthetic datasets
show the effectiveness and efficiency of our proposed solutions.

Index Terms—Crowdsourcing, Spatial Crowdsourcing, Mobile
Crowdsensing, Online Task Assignment, Budget Constraints.

I. INTRODUCTION

With the ubiquity of smart phones and the improvements of

wireless network bandwidth, every person with a mobile phone

can now act as a multimodal sensor collecting and sharing

various types of high-fidelity spatiotemporal data instanta-

neously. In particular, crowdsourcing for weather information

has become popular. With a few recent apps, such as mPING1

and WeatherSignal2, individual users can report weather condi-

tions, air pollutions, noise levels, etc. In fact, Dorminey in [6]

regards crowdsourcing as “the future of weather forecasting”.

Through our collaboration with the Center for Hydrome-

teorology and Remote Sensing (CHRS)3 at the University of

California, Irvine, we have developed a mobile app, iRain4,

to perform spatial crowdsourcing for precipitation informa-

tion. Unlike other weather crowdsourcing apps, iRain allows

CHRS researchers to request rainfall information at specific

locations and times where their global satellite precipitation

1http://mping.nssl.noaa.gov/
2http://weathersignal.com
3http://chrs.web.uci.edu/
4https://play.google.com/store/apps/details?id=irain.app

estimation technologies5 fail to provide real-time, fine-grained

data. Individual iRain users around those locations can re-

spond to those requests by reporting rainfall observations,

e.g., heavy/medium/light/none, and they can also issue rainfall

information requests by “subscribing” to regions of interest.
In general, spatial crowdsourcing (SC) [10] offers an effec-

tive data collection platform where data requesters can create

spatial tasks dynamically and workers are assigned to tasks

based on their locations. Figure 1 depicts the architecture of

iRain. A requester issues a set of rainfall observation tasks

to the SC-server (Step 1) where each task corresponds to

a specific geographical extent, e.g., a circle. The workers

continuously update their locations to the SC-server when they

become available for performing tasks (Step 0). Subsequently,

the SC-server crowdsources the tasks among the workers in the

task regions and sends the collected data back to the requester

(Steps 2, 3).
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Fig. 1: Hyperlocal spatial crowdsourcing framework.

One major difference from existing SC paradigms [11], [10],

[8], [17], [18], [20] is that workers in our paradigm do not

need to travel to the exact task locations, e.g., to the centers

of the circular regions, and are eligible to perform tasks as long

as they are in close spatiotemporal vicinity of the tasks, e.g.,

enclosed in the circular regions6. We denote this new paradigm

as Hyperlocal Spatial Crowdsourcing. The reason is twofold.

Without requiring the workers travel physically, our paradigm

lowers the threshold for worker participation and will poten-

tially yield faster response. Furthermore, the requested data,

e.g., rainfall or temperature, exhibits spatiotemporal continuity

5http://hydis.eng.uci.edu/gwadi/
6Tasks that require workers to physically travel to task locations, e.g., taking a picture

of an event, are not considered in our problem setting.XXX-X-XXXX$XX.00 c©2016 IEEE
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in measurement. Therefore, observations obtained at nearby

locations, e.g., within certain distance to the task location, and

close to the requested time, are sufficient to fulfill the task. For

example, workers B and C in Figure 1 are both eligible to

report precipitation level at University of Southern California

(USC), and worker A who becomes available 5 minutes later

is also qualified. The acceptable ranges of space and time can

be specified by data requesters, from which the SC-server can

find the set of eligible workers for each task.

The SC-server operates to maximize fulfilled tasks for

revenue. However, it cannot assign every task to all eligible

workers due to practical considerations, e.g., to avoid high

communication cost for sending or receiving task notifications

and worker irritation after receiving too many task notifica-

tions. Furthermore, it is not necessary to select many workers

for overlapping tasks. For example in Figure 1, the observation

of worker A can be used for precipitation tasks at both USC

and Los Angeles downtown (shown in two circles).

The goal of our study is to maximize the number of

assigned tasks on the SC-server where only a given number of

workers can be selected over a time period or during the entire

campaign, i.e., under “budget” constraints. When tasks and

workers are known a priori, we can reduce the task assignment

problem to the classic Maximum Coverage Problem and its

variants. However, the main challenge with SC comes from the

dynamism of the arriving tasks and workers, which renders an

optimal solution infeasible in the online scenario. In Figure 1,

the SC-server is likely to activate worker D and either worker

B or C for the two tasks, respectively, without knowing that

a more favorable worker A is qualified for both tasks and will

arrive in the near future. Previous heuristics in literature [18],

[17], [10] do not consider the vicinity of tasks in space and

time or the budget, thus cannot be applied to Hyperlocal SC.

The contributions of this paper are as follows: 1) We provide

a formal definition of Hyperlocal Spatial Crowdsourcing,

where the goal is to maximize task coverage under budget

constraints. We study two problem variants, i.e., given a budget

constraint for each time period or for the entire campaign.

We show both variants are NP-hard in the offline scenario. 2)

When a budget is specified for each time period, we propose

three heuristics for the online setting, i.e., Basic, Temporal,

and Spatial. The temporal heuristic favors the tasks which

will soon expire, while the spatial heuristic favors the tasks

that may not co-locate with future workers. 3) When a budget

is specified for the entire campaign, we devise an adaptive

strategy based on the contextual bandit to dynamically allocate

the total budget to a number of time periods. Our strategy

strikes a balance between exploitation and exploration and

captures the arriving patterns of workers and tasks. 4) We

conduct extensive experiments with real-world and synthetic

datasets. The empirical results confirm that our online solu-

tions are efficient and increase the task coverage by 40% over

the baseline approaches.

The remainder of this paper is organized as follows. Section

II reviews the related work. Section III provides notations

for Hyperlocal SC problem. In Section IV and V, we study

two problem variants and their online solutions. We report

our experimental results in Section VI, provide discussion in

Section VII, and conclude the paper in Section VIII.

II. RELATED WORK

There have been extensive studies regarding task assign-

ment in generic crowdsourcing. However, only recently spatial

crowdsourcing (SC) has gained popularity in both research

community (e.g., [21], [17], [10]) and industry (e.g., TaskRab-

bit, Gigwalk [13]). A recent survey in [18] distinguishes SC

from related fields, including generic crowdsourcing, participa-

tory sensing, volunteered geographic information, and online

matching. Research efforts on SC have focused on different

aspects, such as scalable task assignment [1], [10], task

scheduling [5], trust [11], and privacy [17]. In [10], Kazemi

and Shahabi proposed task assignment problem whose goal is

to maximize the number of assigned tasks, and Alfarrarjeh et

al. [1] scaled out the assignment algorithm in a distributed

setting. The trust issues in SC have been studied in [11],

where one solution is having tasks performed redundantly by

multiple workers. Recently in [3], Cheng et. al. study reliable

task assignment in SC is to maximize both the confidence of

task completion and the diversity quality of the tasks. However,

the trust and reliability of workers is beyond the scope of our

work; if there are multiple reports for one task, the SC-server

will simply send all available reports to the task requester.

Several works [14], [21] studied the problem of selecting

workers with budget constraints. However, those studies focus

on offline participant selection problem while our focus is to

propose online solutions. Furthermore, the problem settings in

those studies differ from ours in several aspects. Sensing tasks

in [14] are represented by non-overlapping regions while tasks

in our study can overlap spatially thus more challenging for

optimization. Zhang et. al. [21] studied the problem of select-

ing a minimum number of workers to minimize the overall

incentive payment while satisfying a probabilistic coverage

requirement; however, in our problem, the number of workers

to be selected is constrained by a predefined budget.

Our work is also related to the problem of matching workers

with tasks [8], [20]. In particular, He et. al. [8] studied the

problem of task allocation that maximizes the reward of the

SC platform given a time constraint for each worker. Xiao et.

al. [20] proposed a task assignment problem that minimizes the

average makespan of all assigned tasks. Unlike those studies,

SC workers in our setting need not to travel to task locations.

Furthermore, our aim is different from the aforementioned

studies, which is to maximize task coverage.

III. PRELIMINARIES

We first introduce concepts and notations used in this

paper. A task is a query of certain hyperlocal information,

e.g., precipitation level at a particular location and time. For

simplicity, we assume that the result of a task is in the form of

a numerical value, e.g., 0=rain,1=snow,2=none7. Specifically,

7Remote sensing techniques based on satellite images cannot differentiate between
rain and snow.



every task comes with a pre-defined region where any enclosed

worker can report data for that task. In this paper, we define

each task region as a circular space centered at the task

location; however, task region can be extended to other shapes

such as polygon or to represent geography such as district, city,

county, etc. Moreover, each task also specifies a valid time

interval during which users can provide data. More formally,
Definition 1 (Task): A task t of form <l, r, s, δ> is a query

at location l, which can be answered by workers within a

circular space centered at l with radius r. The parameter δ
indicates the duration of the query: it is requested at time s
and can be answered until time s+ δ.
We refer to s+δ as the “deadline” of task t. A task expires if it

has not been answered before its deadline. Figure 2a shows the

regions of six tasks, t11, t
2
1, ..., t

6
1. All tasks expire at time period

2 (i.e., they can be deferred to time period 2), represented by

the dashed circles in Figure 2b. A worker can accept task
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Fig. 2: Graphical example of worker-task coverage (δ = 2). Subscripts represent time
periods while superscripts mean ids.

assignments when he is online.
Definition 2 (Worker): A worker w of form <id, l>, is

a carrier of a mobile device who can accept spatial task

assignments. The worker can be uniquely identified by his

id and his location is at l.
Intuitively, a worker is eligible to perform a task if his location

is enclosed in the task region. In Figure 2a, w1
1 is eligible to

perform t11, t
2
1 and t31 while w2

1 is qualified for t11, t
4
1, t

5
1 and t61.

Furthermore, a worker’s report to one task can also be used

for all other unexpired tasks whose task regions enclose the

worker. As in Figure 2b, w1
2 is eligible to perform t51 and t61,

which are deferred from time 1.
Let Wi = {w1

i , w
2
i , ...} denotes the set of available workers

at time si and Ti = {t1i , t
2
i , ...} denotes the set of available

tasks including tasks issued at time si and previously issued

un-expired tasks. Below we define the notions of worker-task

coverage and coverage instance sets.
Definition 3 (Worker-Task Coverage): Given wj

i ∈ Wi, let

C(wj
i ) ⊂ Ti denotes the task coverage set of wj

i , such that

for every tki ∈ C(wj),

si < tki .(s+ δ) (1)

||wj
i .l − tki .l||2 ≤ tki .r (2)

We also say the worker wj
i covers the tasks tki ∈ C(wj

i ). An

example of a coverage in Figure 2a is C(w1
1) = {t11, t

2
1, t

3
1}.

Definition 4 (Coverage Instance Set): At time si, the cov-

erage instance set, denoted by Ii is the set of worker-task

coverage of form <wj
i , C(wj

i )> for all workers wj
i ∈ Wi.

Time Coverage Instance Sets

1 {(w1

1
,<t1

1
, t2

1
, t3

1
>), (w2

1
,<t1

1
, t4

1
, t5

1
, t6

1
>)}

2 {(w1

2
,<t5

1
, t6

1
>)}

TABLE I: The coverage instance set of the example in Figure 2.

The coverage instance sets for the example in Figure 2 are

illustrated in Table I. For simplicity, we first assume the utility

of a specific task assignment is binary within the task region

and before the deadline. That is, assignment to any worker

within a task region before the deadline has utility 1, i.e. 1

successful assignment, and 0 otherwise. As a result, task t51
and t61 being answered by worker w2

1 at time 1 is equivalent

to it being answered by w1
2 at time 2.

Again, the goal of our study is to maximize task assignment

given a budget, despite the dynamic arrivals of tasks and

workers. Now, we formally define the notion of a budget.

Definition 5 (Budget): Budget K is the maximum number

of workers to select in a coverage instance set.

In practice, budget K can capture the communication cost the

SC-server incurs to push notifications to selected workers (Step

3 in Figure 1), or the rewards paid to the workers.

IV. FIXED BUDGET

The first variant of the maximum task coverage problem is

when a budget constraint is given for each time period. We

first study the problem complexity for the offline scenario and

then propose heuristics for the online scenario.

A. Offline Scenario

Problem 1 (Fixed-budget Maximum Task Coverage): Given

a set of time periods φ = {s1, s2, ..., sQ} and a budget Ki

for each si, the fixed-budget maximum task coverage (fMTC)

problem is to select a set of workers Li at every si, such that

the total number of covered tasks |
⋃Q

i=1

⋃
w

j

i
∈Li

C(wj
i )| is

maximized and |Li| ≤ Ki.

We prove in our technical report [16] that the fMTC

problem is NP-hard by a reduction from the maximum cover-

age with group budgets constraints problem (MCG) [2]. The

greedy algorithm is shown in [2] to provide 0.5-approximation

for MCG. For example, the greedy solution in Figure 2c is

{w1
1, w

1
2}. However, the approximation ratio only holds in the

offline scenario where the server knows apriori the coverage

instance set for every time period.

B. Online Scenario

In the online scenario where workers and tasks arrive

dynamically, it becomes more challenging to achieve the

global optimal solution for Problem 1. Since the server does

not have prior knowledge about future workers and tasks, it

tries to optimize task assignment locally at every time period.

However, the optimization within every time period, similar

to the maximum coverage problem (MCP) [7], is also NP-

hard. A greedy algorithm [7] was proposed to achieve an

approximation ratio of 0.63, by choosing a set which contains

the largest number of uncovered elements at each stage. The

results in [7] showed that the greedy algorithm is the best-

possible polynomial time approximation algorithm for MCP.



Below we propose several greedy heuristics to solve the online

fMTC problem, namely Basic, Spatial and Temporal.

1) Basic Heuristic: The Basic heuristic solves the online

fMTC problem by using the greedy algorithm [9] for every

time period. At each stage, Basic selects the worker that covers

the maximum number of uncovered tasks, depicted in Line 10

of Algorithm 1. For instance, in Figure 2a, w2
1 is selected at

the first stage. At the beginning of each time period, Line 4

removes expired tasks from the previous time period. Line

5 adds unassigned, unexpired tasks to current task set. Line

12 outputs the covered tasks Ci per time period which will

be used as the main performance metric in Section VI. The

algorithm terminates when either running out of budget or all

the tasks are covered (Line 9).

Algorithm 1 BASIC ALGORITHM

1: Input: worker set Wi, task set Ti, budgets Ki

2: Output: selected workers Li

3: For each time period si
4: Remove expired tasks U ′

i−1 ← Ui−1

5: Update task set Ti ← Ti ∪ U ′

i−1

6: Remove tasks that do not enclose any worker T ′

i ← Ti

7: Construct worker set Wi, each w
j

i contains C(wj

i )
8: Init Li = {}, uncovered tasks R = T ′

i

9: While |Li| < Ki and |R| > 0
10: Select w

j

i ∈ Wi − Li that maximize |C(wj

i ) ∩R|
11: R ← R− C(wj

i ); Li ← Li ∪ {wj

i }
12: Ci ←

⋃
w

j
i
∈Li

C(wj

i )

13: Keep uncovered tasks Ui ← T ′

i − Ci

Basic can achieve fast task assignment by simply counting

the number of tasks covered by each worker (Line 10).

However, it treats all tasks equally without considering the

spatial and temporal information of each task, i.e., location and

deadline. For example, a task located in an “worker-sparse”

area may not be assigned in the future due to lack of nearby

workers and thus should be assigned with higher priority at

the current iteration. Similarly, tasks that are expiring soon

should be assigned with higher priorities. Consequently, the

priority of a worker is high if he covers a larger number of high

priority tasks. Below we introduce two assignment heuristics

that explicitly model the task priority given its spatial and

temporal characteristics .

2) Temporal Heuristic: One approach to prioritizing tasks

is by considering their temporal urgency. The intuition is that

a task which is further away from its deadline is more likely

to be covered in the future, and vice versa. As a result, near-

deadline tasks should have higher priorities to be assigned than

others. Consequently, a worker who covers a large number of

soon-to-expire tasks should be preferred for selection. Based

on the above intuition, we model the priority of a worker wj
i

based on the remaining time of each task his covers as follows

priority(wj
i ) =

∑

tk
i
∈C(wj

i
)∩R

1

tki .(s+ δ)− i
(3)

The Temporal heuristic adapts Basic by selecting the worker

with maximum priority at each stage. For instance, given two

workers w1
1 and w2

1 at time s1, where C(w1
1) = {t11, t

2
1}

and C(w1
1) = {t31}. Suppose both t11 and t21 expire in 5

time periods and t31 expires in 2 time periods. The Temporal

heuristic chooses w2
1 over w1

1 as their priorities are 0.5 and 0.4,

respectively. To implement Temporal, Line 10 in Algorithm 1

can be updated to select the worker with maximum priority

defined as in Equation 3. We will empirically evaluate all

heuristics in Section VI.

3) Spatial Heuristic: To maximize task assignment in the

long term, we also consider the “popularity” of a task location

as an indicator of whether the task can be assigned to future

workers. Accordingly, we can spend the budget for the current

time period to assign those tasks which can be only covered

by existing workers. The “popularity” of a task region can

be measured using Location Entropy [4], which captures the

diversity of visits to that region. A region has a high entropy

if many workers visit with equal probabilities. In contrast,

a region has a low entropy if there are only a few workers

visiting. We define the region entropy of an given task as

follows.

For task t, let Ot be the set of visits to the task region

R(t.l, r). Let Wt be the set of distinct workers that visited

R(t.l, r), and Ow,t be the set of visits that worker w made to

R(t.l, r). The probability that a random draw from Ot belongs

to Ow,t is Pt(w) =
|Ow,t|
|Ot|

. The region entropy of t is computed

as follows

RE(t) = −
∑

w∈Wt

Pt(w)× logPt(w) (4)

For efficient evaluation, RE(t) can be approximated by ag-

gregating the entropies of 2D grid cells within the task region

R(t.l, r) and the cell entropies can be precomputed using

historical data. Since any worker located inside R(t.l, r) can

perform task t, t is likely to be covered in the future as long as

one grid cell inside R(t.l, r) is “popular” among workers. An

illustrative example of the computation of the region entropy

of a task using pre-computed cell entropies can be found in

our technical report [16]. With the region entropy of every

task covered by worker wj
i , his priority can be calculated as

follows

priority(wj
i ) =

∑

tk
i
∈C(wj

i
)∩R

1

1 +RE(tki )
(5)

Note that the constant 1 is needed to avoid division by zero.

Consequently, the Spatial heuristic greedily selects the worker

with maximum priority at each stage. Line 10 in Algorithm 1

can be modified to reflect the spatial priority of each worker.

V. DYNAMIC BUDGET

The second problem variant we study is more general, where

a budget constraint is given for the entire campaign. This

relaxation often results in higher task coverage. For example,

in Figure 2, if budget 1 is given at every time period, we

select w1
1 and w1

2 and obtain the coverage of 5. However,

the dynamic-budget variant yields higher coverage of 6 by

selecting w1
1 and w2

1 at time 1. Below we study the problem



complexity in the offline scenario and propose adaptive budget

allocation strategies for the online scenario.

A. Offline Scenario

Problem 2 (Dynamic-budget Maximum Task Coverage): The

dynamic-budget maximum task coverage problem (dMTC), is

similar to fMTC, except the total budget K is specified for

the entire campaign, i.e.,
∑Q

i=1 |Li| ≤ K.

In the offline scenario where the server is clairvoyant about

the future workers and tasks, we prove the dMTC problem is

NP-hard in our technical report [16]. This can be shown by a

reduction from the maximum coverage problem (MCP) [7].

B. Online Scenario

The challenge of the online dMTC problem is to allocate

the overall budget K over Q time periods (K ≥ Q) optimally,

despite the dynamic arrivals of workers and tasks. Below we

introduce several budget allocation strategies. Once a budget is

allocated to a particular time period, we can adopt previously

proposed heuristics, i.e., Basic, Spatial, Temporal, to select the

best worker.

The simplest strategy, namely Equal, equally divides K to

Q time periods; each time period has K/Q budget and the

last time period obtains the remainder. However, Equal may

over-allocate budget to the time periods with small numbers

of tasks. Another strategy is to allocate a budget to each time

period proportional to the number of available tasks at that

time period, i.e.,
|Ti|
|T | K, where |T | is the total number of tasks.

However, |T | is not known a priori. Furthermore, we may

still over-allocate budget to any time period with large |Ti|, if

none of the tasks can be covered by any workers (or all the

tasks can be covered by 1 worker). We cannot allocate budget

optimally without looking at the coverage instance set at each

time period.
1) Adaptive Budget Allocation: To maximize task assign-

ment, we need to adaptively allocate the overall budget and

consider the ”return” of selecting every worker, i.e., the

worker priority, given the dynamic coverage instance set at

every time period. We define the following two notions.

Delta budget, denoted as δK , captures the current status of

budget utilization, compared to a baseline budget strategy

{Kbase[t], t = 1, . . . , Q}, e.g., the Equal strategy . Given a

certain baseline {Kbase[t]}, δK is the difference between the

cumulative baseline budget and the actual budget spent up to

time period si. Formally, at any time period si,

δK =

i∑

t=1

(Kbase[t])−Kused (6)

A positive δK indicates budget is under-utilized, and vice

versa. Another notion is delta gain, denoted as δλ, which

represents the return of a worker currently being considered

(λl) compared to the ones selected in the past (λl−1). Formally,

δλ = λl − λl−1 (7)

where λl is the gain of the current worker, calculated by any

previously proposed local heuristic, i.e., as |priority(wj
i )|.

λl−1 is the average gain of previously added workers, i.e.,

λl−1 = 1
l−1

∑l−1
t=1 λt. A positive δλ indicates the current

worker has higher priority than the historical average, and vice

versa.

Based on the contextual information δK and δλ at each stage

of worker selection, we examine all available workers at the

currently time period and decide whether to allocate budget

1 to selecting any worker. Intuitively, when both δK and δλ
are positive, i.e., the budget is under-utilized and a worker

has higher priority, the selection of the considered worker is

favored. When both are negative, it may not be worthwhile to

spend the budget. The other cases when one is positive and

the other is negative are more complex, as we would like to

spend budget on workers with higher priority but also need

to save budget for future time periods in case better worker

candidates arrive.

Our solution to the sequential decision problem is inspired

by the well-know multi-armed bandit problem (MAB), which

has been widely studied and applied to decisions in clinical

trials, online news recommendation, and portfolio design. ε-
greedy, which achieves a trade-off between exploitation and

exploration, proves to be often hard to beat by other MAB

algorithms [19]. Hence, we propose an adaptive budget allo-

cation strategy, based on contextual ε-greedy algorithm [12].

We illustrate our solution in Figure 3.

Fig. 3: Adaptive budget allocation based on contextual ε-greedy.

At each stage of the local heuristic, a binary decision to

make is whether to allocate budget 1 to activate the current

worker with the highest priority. The contextual ε-greedy

algorithm allows us to specify an exploration-exploitation

ratio, i.e., ε, based on the worker’s context, i.e., δK and δλ.

As depicted in Figure 3, an εi-greedy algorithm is used to

determine whether to select the current worker based on his

δK and δλ. For each case, a YES decision is made with 1− εi
probability and a NO decision with εi probability. By default

we set ε1 = 1 and ε4 = 0 to reflect NO and YES decisions,

respectively, as discussed before. When δK and δλ have

different signs, the decision is not as straightforward as the

other cases and thus we set ε2 = ε3 = 0.5 to allow YES and

NO decisions with equal probabilities. The pseudocode of our

adaptive algorithm can be found in our technical report [16].

2) Historical Workload: Previously our solution is simpli-

fied by considering {Kequal[t]} as the baseline budget strategy.

Since human activity exhibits temporal patterns, understanding

those patterns may help guide budget allocation. Therefore we

propose to compute a baseline budget strategy with historical

data that captures the expected worker/task patterns.

Musthag et al. [13] show the time-of-day usage patterns of

workers in mobile crowdsourcing applications. The activity



Name #Tasks #Workers MTD 8 |si|

Foursquare 89,968 45,138 (90/km2) 16.6km 1 hour

Gowalla 151,075 6,160 (35/km2) 3.6km 1 day

TABLE II: Summaries of real-world datasets.

peaks are between 4 to 7 pm when workers leave their

day jobs. Similar patterns are observed in Foursquare and

Gowalla data sets in Figure 4. Figure 4a shows the hourly

count of check-ins present three peaks, i.e., during lunch and

morning/afternoon commute. In Figure 4b, we can observe

peak check-in activities during weekends.
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Fig. 4: Daily and weekly human activity patterns.

With historical worker and task information, we can lever-

age the optimal budget allocation strategy in the recent past

and use it as the baseline strategy in Equation 6. We pro-

pose to learn the budget allocation of previous time periods,

namely workload, using the greedy algorithm for the offline

dMTC problem. To guide future budget allocation decisions,

the previous workload Kprev[] will be used as the baseline

in Equation 6. We will empirically evaluate our proposed

solutions in the next section.

VI. PERFORMANCE EVALUATION

A. Experimental Methodology

We adopted real-world datasets from location-based appli-

cations, summarized in Table II, which have been used in [18],

[17], [10] to emulate spatial crowdsourcing (SC) workers and

tasks [15]. We consider Gowalla (or Foursquare) users as

SC workers and the venues as tasks. The Gowalla dataset

contained check-ins for 224 days in 2010, including more than

100,000 spots (e.g., restaurants), within the state of California.

By considering each day as a unit time period, all the users

who checked in during a day are available workers for that

time period in our setting. Foursquare dataset contains the

check-in history of 45,138 users to 89,968 venues over 384

hours in Pittsburgh, Pennsylvania. We considered each hour

as a unit time period for this dataset.

We generated a range of datasets by utilizing real-world

worker/task spatial distributions and varying their arrival rate.

For arrival rate, we only needed to generate task count per

time period as the worker counts can be obtained from

Gowalla (mean=991) and Foursquare (mean=291). CONST,

POISSON (default), ZIPFIAN and COSINE distributions with

mean=1000 were adopted to generate the number of available

tasks for every time period. The distributional parameters and

their figures can be found in our technical report [16]. For

8MTD: Mean Travel Distance [17]

example, Go-POISSON uses Gowalla for the spatial distribu-

tions and the worker arrival rate (Fig. 4b) and POISSON for

the task arrival rate.

In all of our experiments, we varied the total number of

time periods Q ∈ {7, 14, 28, 56} and the task duration δ ∈
{1, 2, 3, 4, 5, 6, 7, 8, 9, 10}. We varied the budget K ∈
{28, 56,..., 3556} and the task radius r ∈ {1, 2, 3, 4, 5, 6,

7, 8, 9, 10} km9. For Foursquare, Q ∈ {24, 48, 72, 96} and

K ∈ {24, 48,..., 3048} because we modeled a time period as

one hour. Default values are shown in boldface. For Zipfian

decrease function, skew parameter s is set to 1. In fixed-budget

experiments, we set a budget for each time period to K/Q. All

measured results are aggregated over 224/Q runs for Gowalla,

and 384/Q runs for Foursquare.

We evaluated our solutions in terms of task coverage and

relative improvement measured by the coverage difference

divided by the coverage of the baseline approach.

B. Offline Solutions

We compared the offline solutions to the two problem vari-

ants, fMTC (Section IV-A) and dMTC (Section V-A), using

the greedy algorithm. Figure 5a illustrates the results for Go-

POISSON by varying the budget. As expected, higher budget

yields higher coverage. However, the higher the budget, the

smaller the relative improvement as shown in Figure 5b. This

effect can be explained by the diminishing return property.

That is, the coverage differences between the algorithms are

small with high budgets.
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Fig. 5: Performance of offline solutions with Go-POISSON.

We also evaluated the offline solutions by varying task

duration δ. As expected, Figure 5c shows that longer δ results

in higher coverage. Also, the improvement of DynamicOff

over FixedOff is larger when δ increases. The reason is that

when tasks can be deferred to a wider range of future time

periods, dynamic budget allocation becomes more effective.

In Figure 5d, when r increases, every task can be covered by

more workers, which yield higher coverage.

9The choices of r and δ values are defined by the CHRS experts.



We do not observe much difference between fixed budget

and dynamic budget for Go-POISSON since the worker/task

arrivals are stable. However, when there are peaks in arrival

rate, such as in Go-ZIPFIAN, DynamicOff shows more ad-

vantage over FixedOff (by up to 110% at δ = 1 in Figure

6). Unlike the result in Figure 5c, Figure 6a shows large

improvements at δ = 1. The reason is that under the spiky

workload, FixedOff uses a fixed amount of budget to the time

periods with high spikes while DynamicOff can allocate more

budget to those time periods to cover more tasks.
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Fig. 6: Performance of offline solutions with Go-ZIPFIAN.

C. Online Solutions

The Performance of Heuristics: We evaluated the perfor-

mance of the online heuristics from Section IV, Basic, Spatial

and Temporal. Figures 7a shows the relative improvements of

Spatial and Temporal over Basic on Go-POISSON. Spatial

and Temporal yield 12% and 5% higher coverage than Basic

at K = 28 and their performance converges as K increases. In

addition, Figure 7b shows the results by varying task duration

δ. As expected, the improvements of Spatial and Temporal

are higher at larger δ while all techniques perform similarly

at δ = 1. Similar trends can be observed when increasing the

task radius r. Due to the superior performance, we will adopt

Temporal from now on.
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Fig. 7: Performance of heuristics in the fixed-budget scenario.

Adaptive Budget Strategy: We evaluated the performance

of the adaptive algorithms in Section V-B1. EqualB refers to

the algorithm that divides the budget equally to time periods

and runs Basic local heuristic, whereas AdaptB and AdaptT

adopt adaptive budget allocation with Basic and Temporal,

respectively. Figures 8a and 8b show the improvements of

AdaptT over AdaptB and EqualB by varying task duration

δ. As expected, the higher δ, the larger improvements. Par-

ticularly, AdaptT improves EqualB by up to 12%. As AdaptT

outperforms AdaptB, we hereafter show only the results of

AdaptT.
Furthermore, to show the effectiveness of the adaptive

algorithms in handling highly skew data, we evaluated AdaptT
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Fig. 8: Performance of AdaptT in the dynamic-budget scenario.

on Go-ZIPFIAN and Fo-ZIPFIAN. Figures 8c and 8d show

the results by varying r. AdaptT obtains up to 36% and 40%

improvements at r = 1, correspondingly.

We also evaluated our algorithms on the iRain dataset,

which includes 1,355 workers and 385 tasks. Since the original

dataset is small, we generated a synthetic dataset with similar

spatial distributions of workers and tasks. We discretized the

entire space into 200x200 grid. For each time instance, we

randomly generated workers and tasks within the grid cells

proportional to the dataset density. The worker/task locations

are randomly distributed within each cell. Table III summa-

rizes the results. We observe a small improvement of AdaptT

over EqualB, e.g., by 6%. The reason is that each task can

only be performed by less than two workers on average.

r EqualB AdaptT δ EqualB AdaptT

1 8932 9396 1 18564 19251

5 24819 25321 5 24620 25112

10 26859 27442 10 24819 25274

TABLE III: Task coverage of AdaptT with iRain-POISSON, K=56, Q=28.

Historical Workload Improvement: We evaluated the

performance of the workload strategy on real-world workload

data. Figures 9a and 9b show the results by varying K on Go-

POISSON and Go-CONST, respectively. AdaptTW, which uses

historical optimal workload as the baseline budget strategy,

marginally improves AdaptT on Go-POISSON. The reason is

that POISSON distribution introduces much randomness to

the workload, which makes it challenging to benefit from

historical data in AdaptTW. On the other hand, AdaptTW

improves AdaptT by 7% with Go-CONST.

Runtime Measurements: Figure 10 shows the run time

performance of our online algorithms by varying the number

of tasks per time period. We observe that with the increase in

the number of tasks, the runtime increases linearly. In addition,

EqualB and AdaptT are shown to be very efficient (i.e., less

than ten seconds), while the run time of AdaptTW is much

higher (i.e., over 100 seconds) due to the overhead in learning

the optimal budget allocation in the recent past.
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Fig. 9: Performance of AdaptTW with real-world data (Q = 7).
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VII. DISCUSSION

Unlike Mobile Crowdsourcing, our model does not consider

individual worker mobility, i.e. the worker’s trajectory. The

reason is that the workers in our setting do not need to travel

to the locations of tasks and thus minimizing individual travel

distance is not our objective. Furthermore, a worker’s trajec-

tory within the task region, or the intersection of several task

regions, does not affect his eligibility to perform the task(s).

The effect takes place only when he leaves or joins the region.

In fact, our Spatial heuristic (Section IV) considers worker

population mobility by prioritizing tasks whose locations are

not likely to be visited by many workers in the future.

As for future work, we will study the following extensions.

First, we plan to incorporate continuous utility functions where

the utility of a task assignment depends on the distance

between the worker and the task. The intuition is that a task

assigned to a nearby worker may yield higher utility than

assigned to another worker farther from the task location.

Second, we will consider non-uniform activation cost of the

workers, which represents the reputation or the compensation

demand of each worker. Our local heuristics and adaptive

budget strategy should be adjusted to reflect the weight of

each worker. Finally, we will formulate a multi-objective

optimization problem to avoid repetitive activations of the

same workers. We will minimize worker overload, which may

result in either low quality responses or rejected tasks since the

worker may feel annoyed or stressed by repetitive requests.

VIII. CONCLUSION

We introduced hyperlocal spatial crowdsourcing, where

tasks can be performed by workers within their spatiotemporal

vicinity and the number of assigned tasks can be maximized

without exceeding the budget for activating workers. We

studied two problem variants, i.e., fMTC with a given budget

for each time period and dMTC with a given budget for

the entire campaign. We showed that both variants are NP-

hard to solve offline and proposed several local heuristics

and dynamic budget allocation for the online scenario which

utilize the spatial and temporal properties of workers/tasks. We

conducted extensive experiments and concluded that AdaptTW,

which merits the temporal local heuristic and dynamic budget

allocation with workload baseline, is the superior technique.
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