
Real-Time Texture Synthesis By Patch-Based Sampling

Lin Liang, Ce Liu, Yingqing Xu,

Baining Guo, and Heung-Yeung Shum

bainguo@microsoft.com

March 2001

Technical Report

MSR-TR-2001-40

We present a patch-based sampling algorithm for synthesizing tex-

tures from an input sample texture. The patch-based sampling algo-

rithm is fast. Using patches of the sample texture as building blocks

for texture synthesis, this algorithm makes high-quality texture syn-

thesis a real-time process. For generating textures of the same size

and comparable (or better) quality, patch-based sampling is orders

of magnitude faster than existing texture synthesis algorithms. The

patch-based sampling algorithm synthesizes high-quality textures for

a wide variety of textures ranging from regular to stochastic. By

sampling patches according to a non-parametric estimation of the lo-

cal conditional MRF density, we avoid mismatching features across

patch boundaries. Moreover, the patch-based sampling algorithm re-

mains effective when pixel-based non-parametric sampling algorithms

fail to produce good results. For natural textures, the results of the

patch-based sampling look subjectively better.



Microsoft Research

Microsoft Corporation

One Microsoft Way

Redmond, WA 98052

http://www.research.microsoft.com

1



1 Introduction

Texture synthesis has a variety of applications in computer vision, graphics, and

image processing. An important motivation for texture synthesis come from tex-

ture mapping. Texture images usually come from scanned photographs, and the

available photographs may be too small to cover the entire object surface. In this

situation, a simple tiling will introduce unacceptable artifacts in the forms of visible

repetition and seams. Texture synthesis solves this problem by generating textures

of the desired sizes. Other applications of texture synthesis include various image

processing tasks such as occlusion fill-in and image/video compression.

The texture synthesis problem may be stated as follows: Given an input sample

texture Iin, synthesize a texture Iout that is sufficiently different from the given

sample texture, yet appears perceptually to be generated by the same underlying

stochastic process. In this work, we use the Markov Random Field (MRF) as

our texture model and assume that the underlying stochastic process is both local

and stationary. We choose MRF because it is known to accurately model a wide

range of textures. Other successful but more specialized models include reaction-

diffusion [17, 19], frequency domain [10], and fractals [5, 20].

In recent years, a number of successful texture synthesis algorithms have been

proposed in graphics and vision. Motivated by psychology studies, Heeger and

Bergen developed a pyramid-based texture synthesis algorithm that approximately

matches marginal histograms of filter responses [7]. Zhu et al. introduced a math-

ematical model called FRAME, which integrates filters and histograms into MRF

models and uses a minimax entropy principle to select feature statistics [24, 25].

Several texture synthesis algorithms are based on matching joint statistics of filter

responses. De Bonet’s algorithm matches the joint histogram of a long vector of fil-

ter responses [3]. Portilla and Simoncelli developed an iterative projection method

for matching the correlations of certain filter responses [14]. These methods, along

with many others in the literature [8, 21], represent two different approaches to tex-

ture synthesis. The first is to compute global statistics in feature space and sample

images from the texture ensemble [23] directly [7, 3, 14, 23]. The second approach

is to estimate the local conditional probability density function (PDF) and synthe-

size pixels incrementally [24].

The texture synthesis algorithm we propose follows the second approach. In

some earlier work, Zhu et al. explored this approach using the analytical FRAME

model and an accurate but expensive Markov chain Monte Carlo method [24].

More recently, Efros and Leung demonstrated the power of sampling from a lo-

cal PDF by presenting a non-parametric sampling algorithm that synthesizes high-

quality textures for a wide variety of textures ranging from regular to stochastic

[4]. Efros and Leung’s algorithm, while much faster than [24], is still too slow. In-

1



Figure 1: Texture synthesis example. Left: 192� 192 input sample texture. Right:

256 � 256 texture synthesized by patch-based sampling. The synthesis takes 0.02

seconds on a 667 MHz PC.

spired by a cluster-based texture model [13], Wei and Levoy significantly acceler-

ated Efros and Leung’s algorithm using tree-structured vector quantization (TSVQ)

[18]. However, this TSVQ-accelerated non-parametric sampling algorithm is still

not real-time. Another problem with [4] and [18] is that, for some textures, [4] is

a greedy algorithm that has a tendency to “slip” into a wrong part of the search

space and start to grow garbage. The TSVQ acceleration [18] further aggravates

this problem.

In this paper we show that high-quality texture can be synthesized in real-

time. A key ingredient of the algorithm we propose is a patch-based sampling

scheme that uses texture patches of the sample texture as building blocks for texture

synthesis. The advantages of patch-based sampling include

speed For synthesizing textures of the same size and comparable (or better) qual-

ity, our algorithm is orders of magnitude faster than existing texture synthesis

algorithms, including TSVQ-accelerated non-parametric sampling [18]. As

a result, high-quality texture synthesis is now a real-time process on a mid-

level PC.

quality The patch-based sampling algorithm synthesizes high-quality textures for

a wide variety of textures ranging from regular to stochastic. Like [4, 18],

ours is also a greedy algorithm for non-parametric sampling. However, the

patches in our sampling scheme implicitly provide constraints for avoiding

garbage. For this reason, our algorithm continues to synthesize high-quality

textures even when [4] and [18] cease to be effective. For natural textures,

the results of patch-based sampling look subjectively better.

Figure 1 shows an example produced by our algorithm. After spending 0.6 seconds

2



Figure 2: A patch-based sampling strategy. In the synthesized texture shown in (b),

the hatched area is the boundary zone. In the input sample texture shown in (a),

three patches have boundary zones matching the texture patch IR in (b) and the red

patch is selected.

analyzing the input sample, our algorithm took 0.02 seconds to synthesize this

texture on a 667 MHz PC.

The idea of using texture patches for texture synthesis has been used before.

Xu et al. have proposed a texture synthesis algorithm based on random patch past-

ing [22]. Praun has successfully adapted this patch-pasting algorithm for texture

mapping on 3D surfaces [15]. Unfortunately, these patch-pasting algorithm suffers

from the mismatching features across patch boundaries. The patch-based sampling

algorithm, on the other hand, avoids mismatching features across patch bound-

aries by sampling texture patches according to the local conditional MRF density.

Patch-based sampling includes patch pasting as a special case, in which the local

PDF implies a null statistical constraint.

Patch-based sampling is amenable to acceleration and the fast speed of our al-

gorithm is partially attributable to our carefully designed acceleration scheme. Our

scheme is based on a quality-first principle: we do not use acceleration techniques

that have a noticeably negative impact on the synthesized texture. The core compu-

tation in patch-based sampling can be formulated as a search for approximate near-

est neighbors (ANN). We accelerate this search by combining an optimized tech-

nique for general ANN search, a novel data structure called the quad-tree pyramid

for ANN search of images, and principal components analysis of the input sample

texture.

The patch-based sampling algorithm is easy to use and flexible. It can generate

tileable textures if so desired. It can be used for constrained synthesis as well. The

algorithm has an intuitive randomness parameter. The user can use this parameter

to interactively control the randomness of the synthesized texture.

3



The rest of the paper is organized as follows. In Section 2, we introduce patch-

based sampling and describe a patch-based sampling algorithm for texture synthe-

sis. In Section 3, we present texture synthesis results with an emphasis on the tex-

ture quality. Our acceleration techniques and texture synthesis speed are discussed

in Section 4, followed by conclusions and suggestions for future work Section 5.

2 Patch-Based Sampling

The patch-based sampling algorithm uses texture patches of the input sample tex-

ture Iin as the building blocks for constructing the synthesized texture Iout. In

each step, we paste a patch Bk of the input sample texture Iin into the synthesized

texture Iout. To avoid mismatching features across patch boundaries, we carefully

select Bk based on the patches already pasted in Iout, fB0; :::; Bk�1g. The texture

patches are pasted in the order shown in Figure 3. For simplicity, we only use

square patches of a prescribed size wB � wB .

2.1 Sampling Strategy

Let IR1
and IR2

be two texture patches of the same shape and size. We say that

IR1
and IR2

match if d(R1; R2) < Æ, where the d() represents the distance between

two texture patches and Æ is a prescribed constant.

Assuming the Markov property, the patch-based sampling algorithm estimates

the local conditional MRF (FRAME or Gibbs) density p(IRjI�R) in a non-parametric

form by an empirical histogram. Define the boundary zone �R of a texture patch

IR as a band of width wE along the boundary of R as shown in Figure 2. When

the texture on the boundary zone I�R is known, we would like to estimate the con-

ditional probability distribution of the unknown texture patch IR. Instead of con-

structing a model, we directly search the input sample texture Iin for all patches

having the known I�R as their boundary zones. The results of the search form an

empirical histogram 	 for the texture patch IR. To synthesize IR, we just pick

an element from 	 at random. Mathematically, the estimated conditional MRF

density is

p(IRjI�R) =
X

i

�iÆ(IR � IRi);
X

i

�i = 1;

where IRi is a patch of the input sample texture Iin whose boundary zone I�Ri

matches the boundary zone I�R. The weight �i is a normalized similarity scale

factor.

With patch-based sampling, the statistical constraint is implicit in the boundary

zone �R. A large boundary zone implies a strong statistical constraint. Generally

4



Figure 3: Texture synthesis by patch-based sampling. The grey area is already

synthesized. The hatched areas are the boundary zones. (a) The boundary zones

Ek
out and EBk

should match. (b), (c), and (d) are three configurations for boundary

zone matching. The overlapping boundary zones are blended together.

speaking, a non-parametric local conditional PDF such as in [4, 18] is faster to

estimate than the analytical FRAME model in [24]. On the down side, the non-

parametric density estimation is subject to greater statistical fluctuations, because

in a small sample texture Iin there may be only a few sites that satisfy the local

statistical constraints.

In practice, a more serious problem with existing non-parametric sampling

techniques [4, 18] is that they tend to wonder into the wrong part of the search

space and grow garbage in the synthesized texture. The patches in our sampling

scheme implicitly provide constraints for avoiding garbage.

2.2 Synthesizing Texture

Now we use the patch-based sampling strategy to choose the texture patch Bk, the

k-th texture patch to be pasted into the output texture Iout.

As Figure 3 (a) shows, only part of the boundary zone of Bk overlaps with the

boundary zone of the already pasted patches fB0, ..., Bk�1g in Iout. We say that

two boundary zones match if they match in their overlapping region. In Figure 3

(a), Bk has a boundary zone EBk
of width wE . The already pasted patches in

Iout also have a boundary zone Ek
out of width wE . According to the patch-based

sampling strategy, EBk
should match Ek

out.

5



Figure 4: The effect of the patch size on synthesized texture. (a) Input sample

texture of size 64� 64. (b) The synthesized texture when the patch size wB = 16.

(c) The synthesized texture when wB = 24. (d) The synthesized texture when

wB = 32. The randomness of the synthesized texture decreases as wB increases.

For the randomness of the synthesized texture Iout, we form a set 	B consist-

ing of all texture patches of Iin whose boundary zones match Ek
out. Let B(x;y) be

the texture patch whose lower left corner is at (x; y) in Iin. We form

	B = fB(x;y)jd(EB(x;y)
; Ek

out) < dmax; B(x;y) in Iing; (1)

where dmax is the distance tolerance of the boundary zones. From 	B we randomly

select a texture patch to be the k-th patch to be pasted. For a given dmax, the set

	B could be empty. In that case, we choose Bk to be a texture patch in Iin with

the smallest distance d(EBk
; Ek

out).

The patch-based sampling algorithm proceeds as follows.

a) Randomly choose a wB �wB texture patch B0 from the input sam-

ple texture Iin. Paste B0 in the lower left corner of Iout. Set k = 1.

b) Form the set 	B of all texture patches from Iin such that for each

texture patch of 	B , its boundary zone matches Ek
out.

c) If 	B is empty, set 	B = fBming where Bmin is chosen such that

its boundary zone is the closest to Ek
out.

6



Figure 5: The effect of different relative error �. (a) Input sample texture. (b) � = 0.

(c) � = 0:2. (d) � = 1:0.

d) Randomly select an element from 	B as the k-th texture patch Bk.

Paste Bk onto the output texture Iout. Set k = k + 1.

e) Repeat steps (b), (c), and (d) until Iout is fully covered.

f) Perform blending in the boundary zones.

The blending step uses feathering [16] to provide a smooth transition between ad-

jacent texture patches after Iout is fully covered with texture patches.

2.3 Implementation Details

Patch Size (wB): The size of the texture patch affects how well the synthesized

texture captures the local characteristics of the input sample texture Iin. A smaller

wB implies weaker statistical constraints and less similarity between the synthe-

sized texture Iout and the input sample texture Iin. Up to certain limit, a bigger

wB means better capturing of texture characteristics in the texture patches and thus

more similarity between Iout and Iin.

Figure 4 shows the effect of wB on the synthesized textures Iout. When wB =

16, the texture patches contain less structural information of the input sample tex-

7



Figure 6: Constrained texture synthesis. Left: A 256 � 256 texture. Middle: A

128 � 128 hole is created. Right: Result of constrained synthesis.

Figure 7: Boundary zone matching for tileable texture synthesis. The grey area

is the texture already synthesized. The hatched purple areas are the areas to be

matched. (a) Boundary zone matching for the last patch in a row. (b) Boundary

zone matching for the last row.

ture Iin. As a result, the synthesized textures Iout appears more random. For patch

size wB = 32, the synthesized texture Iout become less random and resembles the

input sample texture of Iin more.

For an input sample texture of size win�hin, the patch size wB should bewB =

�min(win; hin), where 0 < � < 1 is the randomness parameter of our system.

The intuitive meaning of wB is the scale of the texture elements in the input sample

texture Iin. For texture synthesis, it is usually assumed that the approximate scale

of the texture elements is known [4]. The patch size serves a similar function as the

window size in [4], which is also a randomness parameter. The main difference is

that a large window size in [4] drastically reduces the texture synthesis speed; the

patch size wB has little impact on the synthesis speed.

Unless stated otherwise, all examples in this paper are generated with � values

between 0:25 and 0:5.

Distance Metric: We choose the following measure of the distance between two

boundary zones

d(EBk
; Ek

out) = [
1

A

AX

i=1

(piBk
� piout)

2℄1=2 (2)

8



where A is the number of pixels in the boundary zone. piBk
and piout represent the

values of the i-th pixel in the boundary zones EBk
and Ek

out respectively.

Boundary Zone Width (wE): The boundary zone width wE should be sufficiently

large to avoid mismatching features across patch boundaries. A wide boundary

zone implies strong statistical constraints, which force a natural transition of fea-

tures across patch boundaries. However, when the boundary zone is too wide,

the statistical constraint will become so strong that there will be very few texture

patches satisfying the constraints in a small sample texture Iin. In that case, patch-

based sampling suffers serious statistical fluctuations. As we shall see, when wE is

too large it is also more costly to construct the k-d tree for accelerating the search

for the texture patches of 	B . As a balance, we typically set wE to be four pixels

wide.

Distance Tolerance (dmax): When the distance between two boundary zones is

defined by equation (2), we define dmax as

dmax = [
1

A

AX

i=1

(�piout)
2℄1=2

where A is the number of pixels in the boundary zone. piout represent the values

of the i-th pixel in the boundary zone Ek
out. � � 0 is the relative matching error

between boundary zones.

The parameter � controls the similarity of the synthesized texture Iout with the

input sample texture Iin and the quality of Iout. The smaller the �, the more similar

are the local structures of the synthesized texture Iout and the sample texture Iin.

If � = 0, the synthesized texture Iout looks like the tiling of the sample texture

Iin, as Figure 5 (b) shows. When � is too big, the boundary zones of adjacent

texture patches may be very different and thus there may not be a natural transition

across the patch boundaries, as Figure 5 (d) shows. To ensure the quality of the

synthesized texture, we set � = 0:2.

Edge Handling: Let B(x;y) be the texture patch whose lower left corner is at (x; y)

in Iin. To construct the set 	B we have to test B(x;y) for inclusion in 	B . For (x; y)

near the border of the input sample texture Iin, part of B(x;y) may be out side of

Iin. If the sample texture Iin is tileable, then we set the value of B(x;y) toroidally.

B(x;y)(u; v) = Iin(u mod win; v mod hin) where (u; v) is the location of a pixel

of B(x;y) inside the sample texture Iin and win and hin are the width and the height

of Iin. If the sample texture Iin is not tileable, we only search the texture patches

that are completely inside Iin.

Constrained Synthesis: It is straightforward to extend the patch-based sampling

algorithm to handle constrained texture synthesis. To better match the features

9



Figure 8: Result of tileable texture synthesis. Left: A tileable texture synthesized

from the input sample in Figure 1. Right: A 2� 2 tiling of the synthesized texture.

across patch boundaries between the known texture around the hole and newly

pasted texture patches, we fill the hole in spiral order. Figure 6 shows an example.

Tileable Texture Synthesis: For tileable texture synthesis, Figure 7 shows the

boundary zones to be matched for the last patch in a row and for the patches of

the last row. In the synthesized texture Iout, the pixel values in the boundary zone

should be

Eout(x; y) = Iout(x mod wout; y mod hout)

where (x; y) is the location of the pixel in Iout. wout and hout are the width and

height of the synthesized texture. Figure 8 shows the result of tileable texture

synthesis.

2.4 Discussion

Patch- and Pixel-Based Non-Parametric Sampling: When the patch size wB =

1, patch-based sampling becomes the non-parametric sampling of [4, 18]. When

wB = 1, the estimated conditional MRF density becomes

p(I(v)jI�v) =
X

i

�iÆ(I(v) � I(vi));
X

i

�i = 1;

where I(vi) is a pixel of the input sample texture Iin whose neighborhood I�vi
matches I�v . The weight �i is a normalized similarity scale factor. This is the

non-parametric sampling described in [4, 18]. When wB = 1, the window size of

[4] is w = 2wE + 1 where wE is the boundary zone width.

Like [4, 18], the patch-based sampling algorithm is also greedy. However, the

patches in the sampling scheme provide constraints for avoiding garbage. A texture

10



Figure 9: The patch-based sampling algorithm continues to synthesize high-quality

texture even when other methods cease to be effective. (a) and (e) are input sample

textures. (b) and (f) are results by Efros and Leung’s algorithm [4]. (c) and (g) are

the results by Wei and Levoy’s algorithm [18]. (d) and (h) are the results of the

patch-based sampling.

synthesized by patch-based sampling can be divided into two types of areas. The

first type, which includes the majority of the synthesized texture, is the middle part

of a pasted texture patch and this type of area has no garbage. The second type

of area is a blend of two boundary zones. This type of area cannot have garbage

either because the boundary zones themselves have no garbage and the blending is

done on boundary zones with matched features.

Similar to [4, 18], the patch-based sampling algorithm can sometimes produces

verbatim copies of the sample texture. With the parameter setting given earlier, this

rarely occurs and when it does, we can solve the problem by slightly adjusting the

patch size wB . Adjusting patch size can be done interactively in our system.

Patch-Based Sampling vs Patch Pasting: When the relative matching error be-

tween the boundary zones becomes sufficiently large, say � = 1:0, the patch-based

sampling algorithm is essentially the patch-pasting algorithm of [22].

11



3 Synthesis Results

We have tested the patch-based sampling algorithm on a wide variety of textures

ranging from regular to stochastic. Figure 10 shows typical results. The companion

CDROM contains more than 100 examples. Figure 11 shows some examples of

failure. The left example in Figure 11 is a minor failure in which the algorithm

tries to blend two different radishes together. This is not natural to people who are

familiar with radishes. The right example is a failure because the sky progressively

becomes brighter from left to right. The patch-based algorithm cannot detect the

progressive transition very well and that leads to some boundary effects noticeable

under close examination.

As mentioned, for some textures, [4] has a tendency to “slip” into a wrong

part of the search space and start to grow garbage. The TSVQ acceleration [18]

further aggravates this problem. Figure 9 show two examples. In contrast, patch-

based sampling continues to synthesize high-quality textures. To synthesize these

200 � 200 textures from a 192 � 192 sample with Efros and Leung’s algorithm,

we spent about 20 hours on a mid-level PC. Patch-based sampling only takes 0:02

second on the same machine. The results of Wei and Levoy’s algorithm were

downloaded from their webpage.

For natural textures like the ones shown in Figure 9, the results of the patch-

based sampling look subjectively better because the patches capture the fine nu-

ances of natural textures that are often difficult to characterize by a statistical tex-

ture model such as MRF.

4 Performance Optimization

When constructing the set 	B as defined in equation (1) in Section 2.2, we need to

search the set of all wB � wB patches of the input sample texture Iin for patches

whose boundary zones match Ek
out. Similar to [12, 18], we formulate our search as

a k nearest neighbors search problem in the high dimensional space consisting of

texture patches of the same shape and size as Ek
out. The k nearest neighbor problem

is a well-studied problem. If we insist on getting the exact nearest neighbors in

high dimensions, it is hard to find search algorithms that are significantly better

than brute-force search. However, if we are willing to accept approximate nearest

neighbors, there are efficient algorithms available [12, 1].

We adopt a quality-first principle for choosing acceleration techniques. If an

acceleration technique has noticeable negative impact on the synthesized texture,

we do not use the technique. With this principle in mind, we accelerate the approx-

imate nearest neighbors search at three levels.

12



Figure 10: Texture synthesis results. Each example includes the 200 � 200 input

sample and 256� 256 result.

13



Figure 11: Examples of failure. The smaller texture is the input sample.

Figure 12: The quad-tree pyramid. The left figure shows two levels in a standard

Gaussian pyramid. The pixels in the red rectangle in the lower level do not have

a corresponding pixel in the higher level. The right figure shows two levels in a

quad-tree pyramid. Every set of four pixels has a corresponding pixel in the higher

level.

general acceleration We accelerate the search at general level using an optimized

kd-tree [11].

domain specific acceleration We introduce a novel data structure called the quad-

tree pyramid for accelerating the search based on the fact that the data points

in our search space are images.

data specific acceleration We use principal components analysis (PCA) [9] to ac-

celerate the search for the given input sample texture.

The acceleration at all three levels can be combined to get a compound speed-

up of the ANN search.

14



4.1 Optimized KD-Tree

We use an optimized kd-tree [11] as our general technique for accelerating the

ANN search. Initially we experimented with the bd-tree, which is optimal for

ANN search [1]. However, our experiments indicate that bd-trees introduce minor

but noticeable artifacts in the synthesized textures. In terms of speed, bd-trees and

kd-trees are about the same for our searching needs. As pointed out in [1], the

optimized kd-tree, with all its optimizations [1], performs as well as the bd-tree on

most data sets1.

A kd-tree partitions the data space into hypercubes using axis-orthogonal hy-

perplanes [6, 11]. Each node of a kd-tree corresponds to a hypercube enclosing a

set of data points. When constructing a kd-tree, an important decision is to choose

a splitting rule for breaking the tree nodes. We use the sliding mid-point rule [11].

An alternative choice is the standard kd-tree splitting rule, which splits the dimen-

sion with the maximum spread of data points. The standard kd-tree splitting rule

has a good guarantee on the height and size of the kd-tree. However, this rule

produces hypercubes of arbitrarily high aspect ratio. Since we only allow small

errors in boundary zone matching, we want to avoid high aspect ratios. The sliding

mid-point rule can also lead to hypercubes of high aspect ratios, but these hyper-

cubes have a special property that prevents them from causing problems in nearest

neighbor searching [11].

For searching a kd-tree, we use an adapted version of the search algorithm from

[6] with the incremental distance computation of [1]. When the allowed matching

errors are small, as is the case for us, the algorithm of [6] is slightly faster than the

priority search algorithm, which is superior for finding exact nearest neighbors or

for large matching errors [11].

For implementation, we use the Approximate Nearest Neighbor (ANN) library

[11] to build a kd-tree for each one of the three boundary zone configurations

shown in Figure 3.

4.2 Quad-Tree Pyramid

The kd-tree acceleration does not directly take advantage of the fact that our data

points correspond to images. We introduce the quad-tree pyramid (QTP) to address

this problem. QTP is a data structure for hierarchical search of image data. To

find approximate nearest neighbors for a query vector v, we find the m initial

candidates using the low resolution data points and query vector v. In general we

should choose m � n, where n is the number of data points. In our system, we

1One case in which the bd-trees do perform significantly better is when the data points are clus-

tered in low-dimensional subspaces, but this is not the case with our texture data.

15



set m = 40. From the initial candidates, we can find the k nearest neighbors using

high-resolution query vector v and data points.

In order to use a kd-tree to accelerate the search of the m initial candidates, we

need to filter all data points and the query vector v into low resolution. A naive

approach to filter them is to do it one by one, which will be very expensive in

terms of both time and storage because of the large number of data points. With

QTP, we only need to filter the input sample texture Iin. The low resolution data

can be extracted from the filtered Iin. As Figure 12 shows, a problem with the

standard Gaussian pyramid is that a patch in the high-resolution image may not

have a corresponding patch in the low-resolution image. QPT solves this problem

by building a tree pyramid. The tree node in QTP is a pointer to an image and a tree

level corresponds to a level in the Gauss pyramid. The root of the tree is the input

sample texture Iin. When we move from one level of pyramid to the next lower

resolution level, we compute four children (lower resolution images) with different

shifts along the x- and y-directions as shown in Figure 12. With QTP constructed

this way, each patch in the higher resolution image I does correspond to a patch in

a child of I . In our system, we use a three-level QTP. There are 1, 4, and 16 images

of the size of the sample texture at level 1, 2, and 3 respectively.

4.3 Principal Components Analysis

The approximate nearest neighbors search can be further accelerated by consider-

ing the special property of the input sample texture. Specifically, we reduce the

dimension of the search space using PCA [9]. Suppose that we need to build a kd-

tree containing n data points fx1; :::;xng where each xi is a d-dimensional vector.

PCA finds the eigenvalues and eigenvectors of the covariance matrix of these data

points. The eigenvectors of the largest eigenvalues span a subspace containing the

main variations of the data distribution. We choose the subspace dimension so that

97% of the variation the original data is retained. For example, if the texture patch

size is wB = 64 and the boundary zone width is wE = 4, then the dimension of

original data points is d = 93 and PCA typically reduces the dimension to about

20.

4.4 Acceleration Results

Table 1 summarizes the performance of the patch-based algorithm with and without

acceleration techniques applied. The table also compares the speed of patch-based

sampling with Heeger’s algorithm [7] and Wei and Levoy’s algorithm [18]. The

timings for the patch-based sampling algorithm and Heeger’s algorithm are mea-

sured by averaging the times of 500 trial runs with different textures. Wei and

16



Method Analysis Time Synthesis Time

QTP+KDTree+PCA 0.678 0.020

QTP+KDTree 0.338 0.044

QTP 0.017 0.256

Exhaustive 0.000 1.415

Heeger 0.0 32

Wei and Levoy** 22.0** 7.5**

Table 1: Timing comparison between the patch-based sampling algorithm and

other algorithms. Timings are measured in seconds on a 667 MHz PC for syn-

thesizing 200 � 200 textures from 128 � 128 samples. ”Exhaustive” means no

acceleration is used. **Wei and Levoy’s timings are taken on a 195 MHz R10000

processor.

Levoy’s timings are taken from [18].

5 Conclusion

We have presented a patch-based sampling algorithm for texture synthesis. Our

algorithm synthesizes high-quality textures for a wide variety of textures ranging

from regular to stochastic. The algorithm is fast enough to enable real-time tex-

ture synthesis on a mid-level PC. For generating textures of the same size and

comparable (or better) quality, our algorithm is orders of magnitude faster than ex-

isting texture synthesis algorithms. Our algorithm combines the strengths of non-

parametric sampling [4, 18] and patch-pasting [22]. In fact, both patch-pasting

and the pixel-based non-parametric sampling [4, 18] are special cases of the patch-

based sampling algorithm. The patches in our sampling scheme implicitly provide

constraints for avoiding garbage. For this reason, our algorithm continues to syn-

thesize high-quality textures even when [4, 18] cease to be effective. For natural

textures, the results of patch-based sampling look subjectively better.

For future work, we are interested in extending the ideas presented here for

texture synthesis on surfaces of arbitrary topology. With patch-based sampling,

we can eliminate a number of problems with existing techniques, e.g., the need

for manual texture patch creation and feature mismatches across patch boundaries

[15]. Other interesting topics include texture mixtures and texture movie synthesis

[7, 2].

17



References

[1] S. Arya, D. M. Mount, N. S. Netanyahu, R. Silverman, and A. Y. Wu. An Opti-

mal Algorithm for Approximate Nearest Neighbor Searching. Journal of the ACM,

45:891–923, 1998.

[2] Z. Bar-Joseph, R. El-Yaniv, D. Lischinski, and M. Werman. Texture Mixing and

Texture Movie Synthesis Using Statistical Learning. IEEE Trans. on Visualization

and Computer Graphics, 2001.

[3] J. S. De Bonet. Multiresolution Sampling Procedure for Analysis and Synthesis of

Texture Image. In Computer Graphics Proceedings, Annual Conference Series, pages

361–368, August 1997.

[4] A. A. Efros and T. K. Leung. Texture Synthesis by Non-Parametric Sampling. In

Proceedings of International Conference on Computer Vision, 1999.

[5] A. Fournier, D. Fussell, and L. Carpenter. Computer Rendering of Stochastic Models.

Communications of the ACM, 25(6):371–384, June 1982.

[6] J. Friedman, J. Bentley, and R. Finkel. An Algorithm for Finding Best Matches in

Logarithmic Expected Time. ACM Trans. on Mathematical Software, 3(3):209–226,

1977.

[7] D. J. Heeger and J. R. Bergen. Pyramid-Based Texture Analysis/Synthesis. In Com-

puter Graphics Proceedings, Annual Conference Series, pages 229–238, July 1995.

[8] H. Iversen and T. Lonnestad. An Evaluation of Stochastic Models for Analysis and

Synthesis of Gray Scale Texture. Pattern Recognition Letters, 15:575–585, 1994.

[9] I. T. Jollife. Principal Component Analysis. Springer-Verlag, New York, 1986.

[10] J.-P. Lewis. Texture Synthesis for Digital Painting. In Computer Graphics (SIG-

GRAPH ’84 Proceedings), volume 18, pages 245–252, 1984.

[11] D. M. Mount. ANN Programming Manual. Deptartment of Computer Science, Uni-

versity of Maryland, College Park, Maryland, 1998.

[12] S.A. Nene and S.K. Nayar. A Simple Algorithm for Nearest-Neighbor Search in High

Dimensions. IEEE Trans. on PAMI, 19(9):989–1003, September 1997.

[13] K. Popat and R.W. Picard. Novel Cluster-Based Probability Model for Texture Syn-

thesis, Classification, and Compression. In Proceedings of SPIE Visual Communica-

tion and Image Processing, pages 756–768, 1993.

[14] J. Portilla and E. Simoncelli. Texture Modeling and Synthesis Using Joint Statistics

of Complex Wavelet Coefficients. In Proceedings of IEEE Workshop on Statistical

and Computational Theories of Vision, 1999.

[15] E. Praun, A. Finkelstein, and H. Hoppe. Lapped Texture. In Computer Graphics

Proceedings, Annual Conference Series, pages 465–470, July 2000.

18



[16] R. Szeliski and H.-Y. Shum. Creating full view panoramic mosaics and environment

maps. Proceedings of SIGGRAPH 97, pages 251–258, August 1997.

[17] G. Turk. Genereating Textures on Arbitrary Surfaces Using Reaction-Diffusion. In

Computer Graphics (SIGGRAPH ’91 Proceedings), volume 25, pages 289–298, July

1991.

[18] L. Y. Wei and M. Levoy. Fast Texture Synthesis Using Tree-Structured Vector Quan-

tization. In Computer Graphics Proceedings, Annual Conference Series, pages 479–

488, July 2000.

[19] A. Witkin and M. Kass. Reaction-Diffusion Textures. In Computer Graphics (SIG-

GRAPH ’91 Proceedings), volume 25, pages 299–308, July 1991.

[20] S. P. Worley. A Cellular Texturing Basis Function. In Holly Rushmeier, editor,

SIGGRAPH 96 Conference Proceedings, Annual Conference Series, pages 291–294,

August 1996.

[21] Y. N. Wu, S. C. Zhu, and X. W. Liu. Equivalence of Julesz Ensemble and FRAME

Models. Int’l Journal of Computer Vision, 38(30):245–261, 2000.

[22] Y. Q. Xu, B. Guo, and H. Y. Shum. Chaos Mosaic: Fast and Memory Efficient

Texture Synthesis. In Microsoft Research Technical Report MSR-TR-2000-32, April

2000.

[23] S. C. Zhu, X. Liu, and Y. Wu. Exploring Texture Ensembles by Efficient Markov

Chain Monte Carlo. IEEE Trans. on PAMI, 22(6), 2000.

[24] S. C. Zhu, Y. Wu, and D. B. Mumford. Minimax Entropy Principle and Its Applica-

tion to Texture Modeling. Neural Computation, (9):1627–1660, 1997 (first appeared

in CVPR96).

[25] S.C. Zhu, Y. Wu, and D. Mumford. Filters, Random-Fields And Maximum-Entropy

(Frame). International Journal of Computer Vision, 27(2):107–126, March 1998.

19


