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ABSTRACT We adopted actual intelligent production requirements and proposed a tiny part defect detection

method to obtain a stable and accurate real-time tiny part defect detection system and solve the problems of

manually setting conveyor speed and industrial camera parameters in defect detection for factory products.

First, we considered the important influences of the properties of tiny parts and the environmental parameters

of a defect detection system on its stability. Second, we established a correlation model between the detection

capability coefficient of the part system and the moving speed of the conveyor. Third, we proposed a defect

detection algorithm for tiny parts that are based on a single short detector network (SSD) and deep learning.

Finally, we combined an industrial real-time detection platform with the missed detection algorithm for

mechanical parts based on intermediate variables to address the problem of missed detections. We used a

0.8 cm darning needle as the experimental object. The system defect detection accuracy was the highest

when the speed of the conveyor belt was 7.67 m/min.

INDEX TERMS Defect detection, tiny parts, deep learning, SSD, missing detection rate.

I. INTRODUCTION

During production and daily applications, machine tool pro-

duction equipment can malfunction due to poor design and

working conditions. Manufactured products are prone to

defects, such as holes, sags, and abrasions. Corrosion and

fatigue damage occur in daily applications, thus increasing

production costs and causing considerable wasted resources

and economic opportunities [1]. Defect detection tech-

nology has achieved favorable results in areas, such as

pipelines [2.3], electronic components [4]–[6], parts [7]–[9],

fault diagnosis [10.11] and others [12.13]. However, research

on the defect detection of tiny parts, particularly the literature

on real-time defect detection of tiny parts in conveyor belts,

has remained scarce. Therefore, combined with defect detec-

tion sample attributes and the actual production environment,

we study the defect detection technology based on deep learn-

ing, which will provide a reference for the manual setting of

conveyor speed and industrial camera parameters in defect

detection for factory products.

The associate editor coordinating the review of this manuscript and
approving it for publication was Tomasz Trzcinski.

Deep learning, which has rapidly developed because

of its efficient feature extraction ability [14.15], can be

applied to the defect detection of tiny parts. The Faster

R-CNN [16], [17], YOLO [18], and SSD[19] are currently

the most popular methods for object detection. In 2015,

Shao et al. proposed the Faster R-CNN deep learning object

detection algorithm. However, the Faster R-CNN has a slow

detection speed [17]. In 2016, Redmon et al. proposed

the object detection algorithm YOLO [18] at an interna-

tional conference on computer vision and pattern recognition

(CVPR). In the same year, Wei Liu et al. proposed the object

detection algorithm SSD [19] at a European conference on

computer vision (ECCV). YOLO and SSD detect objects

using regressions, and deep learning is used for real-time

detection. The Faster R-CNN is a two-step object detec-

tion algorithm that detects objects through classification and

regressions [20]. The SSD algorithm is a one-step object

detection algorithm that directly detects objects using regres-

sions. Therefore, we apply an SSD object detection method

to improve the real-time performance of tiny part defect

detection. A complete part defect detection system considers

the feature extraction ability and real-time performance of the
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detection algorithm. The stability and defect detection ability

of the algorithm are indispensable key factors. For example,

Taivedi et al. [21] described the significance of camera imag-

ing for defect detection and proposed a single beam Fourier

transform digital holographic interferometric technology for

defect detection.

By combining a real-time defect detection system and the

attributes of tiny parts, we propose a real-time tiny part defect

detection method based on the abovementioned analysis. The

experimental results demonstrate that the proposed method

can achieve superior performance and strong adaptability.

The main contributions of this work are presented as follows.

• The mainstream defect detection methods mainly focus

on studying the defect degree of a detection sample.

We fully consider the attributes of tiny parts and the

environmental parameters of a defect detection sys-

tem, including industrial camera parameters, illumina-

tion, and conveyor speed, and establish a relationship

model between the detection capability coefficient of

the tiny part system and the moving speed of parts.

Thus, the robustness of the defect detection system is

improved.

• With the integration of the improved SSD object detec-

tion algorithm and the correlation model between the

detection capability coefficient and the moving speed

of the parts, we analyze the optimal object recognition

method SSD and propose a tiny part defect detection

algorithm based on SSD and speed model. The proposed

method has higher accuracy than YOLO V3, Faster-

RCNN, and FPN.

• Missed detection is prone to occur when the dynamic

defect detection is performed in the conveyor belt.

Therefore, combined with the fiber sensor, conveyor

speed, detection algorithm, and the attributes of tiny

parts, we propose an algorithm for determining the

missed detections of tiny parts based on intermediate

variables, thereby increasing the stability and accuracy

of the system.

The organization of this paper is presented as follows.

In the first part, we review related research works on defect

detection technology. In the second part, we describe the rela-

tionship model between the detection capability coefficient

of a system of defective parts and the moving speed of parts.

In the third part, we propose a tiny part defect recognition

algorithm based on SSD. In the fourth part, we design an

industrial real-time object detection platform and propose an

algorithm to determine the missing detection of tiny parts

based on intermediate variables. In the fifth part, we exper-

imentally analyze the proposed method. Finally, we summa-

rize the research work and discuss future research directions.

II. RELATED WORK

Common defect detection methods include filtering, ultra-

sonic, and machine vision detection. For ultrasonic detection,

Tan et al. [22] used computer simulations to study mobile

thermal scanning to detect the defects detection bottom of

mechanical products and adopted a second-order peak differ-

ential method to determine the defect depth, which has good

accuracy for surface defect detection. However, the errors

increased as the defect depth increased. Devivier et al. [23]

proposed and applied a damage index that is based on the

virtual field method to detect the defects of mechanical prod-

ucts. However, this index is sensitive to the changes of the

properties, such as stiffness. To apply the current method

to the defect detection of mechanical products, several tasks

should be done to extend the current research scope to the

defect detection of curved surfaces. Aiming at the challenge

brought by the complexity of trailing pulses to ultrasonic

detection, the self-focusing method of trailing pulses was

proposed to improve the accuracy of defect location by theo-

retically deducing the characteristics of trailing pulses [24].

In filtering detection, Zou et al. [25] proposed a real-time

X-ray flaw detection method for mechanical products based

on Kalman filtering. Zhang et al. [26] used the zero-angle

spatial filter and peak search to obtain the time center

of the corresponding signal sources and proposed a new

time-variant spatial filtering rearrangement scheme that is

based on amicrophone array. The proposed scheme overcame

the Doppler distortion in acoustic bearing signals and the

signal separation quality detection method of multi-bearing

source mixing.

In machine vision defect detection, Boaretto

and Centeno [27] proposed a double image exposure tech-

nique for mechanical product radiation image automatic

detection and classification. The discontinuities of ‘‘defects’’

and ‘‘no defects’’ were taken as the indicators for the exper-

iment, and the test data of the obtained classifier reached

88.6% accuracy with the use of semisupervised learning

technology. Hajizadeh et al. [28] used high-frequency cam-

eras to detect unmarked defect candidates and improve the

imbalance of nondefective image data. Wakaf and Jalab [29]

detected the defects of mechanical products using histogram

matching from an image background. Martinez proposed the

extraction of features from each region of the fused image

and developed a machine vision system that detects the

defects on machined metal parts. This research considered

the illumination method in image processing to increase

the defect detection accuracy, but it extracted the defective

features in the fused image, thereby increasing the time

overhead of defect detection and the difficulty of real-time

defect detection [30].

In addition, deep learning [31]–[34] is widely used in prod-

uct defect detection. Yang et al. proposed three-point circle

fitting and convolutional neural network (CNN) to achieve

automatic aperture detection. The automatic defect detection

systemwill save time and labor costs. Song et al. [32] consid-

ered the defect detection problem of surface damage, surface

dirt, and stripped screws; proposed the screw surface defect

detection technology based on the CNN; and proved that deep

learning technology was better than the traditional template

matching technology.Wei et al. [33] used the CNN to classify

the defects of a printed circuit board (PCB) and achieved
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FIGURE 1. Schematic of the tiny part detection (a. Collection of tiny parts. b. Collection of a single sample).

better classification results for a data set containing 1818 col-

lected images. Liu et al. [19], Krummenacher et al. [35] pro-

posed a pipeline defect detection method based on deep

learning, and showed that the size of the data set, the ini-

tialization of the network model, the training mode, and

the network super-parameter impact the performance of the

model. In conclusion, the application of deep learning to

defect detection is highly significant.

III. RELATION MODEL OF DETECTION CAPABILITY

COEFFICIENT AND PART MOTION VELOCITY

The attributes of tiny parts and the environmental parameters

of defect detection systems are the main factors that affect

the stability of the system. By analyzing the performance and

experimental parameters of each part of a system, we define

the index that reflects the excellent defect detection of the sys-

tem for tiny parts as the defect detection capability coefficient

of tiny parts in unit time θ .

We define the length and width of the camera field d as

Lview and Wview, respectively. The length and width of a tiny

part are L1 andW1, correspondingly. The distance of the tiny

parts to be positioned from the bottom edge of the field of

vision is d1, and the conveyor belt speed is v. The direction of

motion is the direction indicated by the arrow, as illustrated

in Figure 1.

Figure 1(b) demonstrates that, in accordance with the size

of the small part, when the camera’ field of vision d is larger

than the size of the tiny parts, that is,Wview > W1, Lview > L1.

The image collection of the tiny parts begins when the upper

edge of a tiny part coincides with the edge of the camera’

field of vision, while the collection ends when the upper

edges of the tiny parts coincide with the edge of the lens.

Considering the processing image time of computers, T is

assumed to be the necessary time for the system to respond.

If T ≪ t , then the necessary time for collecting an image is

expressed as follows:

t = Wview
/

V . (1)

If the sample image is not collected after time t , then a

missed detection will occur. The formula for calculating the

capability coefficient of the system in detecting tiny parts in

unit time is expressed as follows:

θ =
Wview

/

(D1 +W1)

t
. (2)

Formula (1) is substituted into Formula (2) to establish the

relationship model between the detection coefficient and the

movement speed of the tiny parts.

θ =
v

D1 +W1
. (3)

Formula (3) presents that, if only the size of tiny parts and

the camera’ field of vision are considered, then the defect

detection capability coefficient of the system in unit time

is directly proportional to the conveyor belt speed when

the size of the tiny parts and the camera’ field of vision

remains unchanged. If T > t , then the processing time of

the computer is long, the processing of the tiny parts will be

incomplete, and the tiny parts to be processed will enter the

camera’ field of vision.We define the time of the missing tiny

parts as follows:

1t = T − t. (4)

In the initial stage, the distance of a tiny part in 1t time can

be expressed as follows:

1S = 1t.v. (5)
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When 1S = Wview, the detection of a tiny part is missed. The

system loss rate ε is defined as follows:

ε = 50% (6)

At this time, the defect detection capability coefficient of the

system can be expressed as follows:

θ = (1 − ε)
v

D1 +W1
=

v

2(D1 +W1)
. (7)

When d1 ≤ 1s ≤ Wview and 1s = d1, the second sample

of tiny parts can be identified, but the third sample image

cannot be recognized. This case is called data loss. When

1s > d1, the distance between the nth sample image and

the standard position is presented as follows:

Sdis = n.1S. (8)

When Sdis = Wview, the situation can be considered an

error cycle.

n =
Wview

1S
. (9)

Formulas (4) and (5) are integrated into Formula (9).

n =
Wview

v.(T − t)
. (10)

After considering the number of samples to be tested,

we assume that the number of samples in camera’ field of

vision is expressed as follows:

P = Wview
/

(D1 +W1)
. (11)

The loss rate of tiny parts at this time is computed as

follows:

ε =
P.v.(T − t)

Wview
× 100%. (12)

The substitution of Formula (11) into Formula (12) yields

ε = v.
T − t

D1 +W1
× 100%. (13)

The detection capability coefficient of the system at this

time for tiny parts is expressed as follows:

θ = −v2.
T − t

(D1 +W1)
2

+ v.
1

D1 +W1
. (14)

When the speed of the conveyor belt v, the camera’ field

of vision range Wview, and the size of tiny parts are deter-

mined, the defect detection coefficient of the system’s tiny

parts is inversely proportional to the detection speed T of

the program. In Formula (14), v considerably influences the

coefficients of the tiny parts in the system. When Wview ≤
1S ≤ 2Wview,

ǫ =
2v.(T − t)

D1 +W1
× 100%. (15)

By analogy, when 2Wview ≤ 1S ≤ 3Wview,

ε =
3v.(T − t)

D1 +W1
× 100%. (16)

When (m − 1)Wview ≤ 1S ≤ mWview (m > 1 and m is a

positive integer),

ε =
mv.(T − t)

D1 +W1
× 100%. (17)

With the integration of Formula (17) into Formula (7),

the system defect detection capability coefficient can be cal-

culated as follows:

θ = −v2.
m (T-t)

(D1 +W1)
2

+ v.
1

D1 +W1
. (18)

According to the abovementioned analysis, when the lens

field Wview, the system response time t , and the distance

D1 between two tiny parts are constant, the defect detection

capability coefficient of the system is a quadratic function in

relation to the conveyor belt speed. Moreover, the quadratic

function θ is continuous and derivable. The maximum point

of θ is v = (W 3 × m+ D1 +W1)
/

2mT . The speed of the

system is the optimal conveyor belt speed, and its defect

detection ability is the optimal rate.

IV. TINY PART DEFECT RECOGNITION ALGORITHM

BASED ON SSD

A. SSD OBJECT DETECTION

An SSD network combines the anchor mechanism of the

YOLO [18] regression and the Faster-RCNN [17]. The

regression is adopted to simplify the computational complex-

ity of the neural network and improve the real-time perfor-

mance of the algorithm. The anchor mechanism is used to

extract the features with different aspect ratios. This local fea-

ture extraction method is more reasonable and effective than

the YOLO method for global feature extraction for a certain

location in terms of the feature extraction ability. In addition,

the SSD adopts the method of multiscale [36] object feature

extraction for the feature expression of different scales. This

design is helpful for improving the robustness of detecting

objects with different scales. Given these advantages of SSD

networks, this study uses an SSD network to detect defects in

tiny parts.

1) FEATURE LAYER MAPPING MODEL

In consideration of the different attributes of tiny parts and

the idea that an SSD network adopts a multiscale method to

obtain multiple feature graphs with different sizes, a m-layer

feature graph is used for model detection. The formula for

calculating the proportion of the default box of the k-th feature

graph is as follows:

Sk = Smin +
Smax − Smin

m− 1
(k − 1) , k ∈ {1, 2, . . . ,m} .

(19)

where Smin = 0.2 and Smax = 0.95, which represents the

proportion of the default box of the feature layer in the input

image. The SSD uses the anchor mechanism to determine the

different aspect ratios for the default box on the same feature

layer to enhance the robustness of the default box to the shape
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of the object. In this work, the default box aspect ratio is r =
{1, 2, 1/2, 3, 1/3}. For the class when the aspect ratio is equal
to 1, S

′
k =

√
SkSk+1 is added. Then, we get the following.

Wn
k = Sk

√
rn, h

n
k =

Sk√
rn

, n ∈ {1, 2, 3, 4, 5}. (20)

W6
k = h6k =

√

SkSk+1. (21)

We set the default box of the center for
(

a+0.5
|fk | , b+0.5

|fk |

)

,

whereby |fk | is the k-th feature image size, and a, b ∈
{0, 1, 2, . . . , |fk | − 1}. We set the coordinates of the default

box so that it is within [0,1]. The mapping relationship

between the default box coordinates on the feature image and

the original image coordinates is as follows.

xmin =
cx + wb

2

wfeature
wing = (

a+ 0.5

|fk |
−
wk

2
)wing (22)

ymin =
cy + hb

2

hfeature
hing = (

b+ 0.5

|fk |
−
hk

2
)hing. (23)

xmax =
cx + wb

2

wfeature
wing = (

a+ 0.5

|fk |
+
wk

2
)wing. (24)

ymax =
cy + hb

2

hfeature
hing = (

b+ 0.5

|fk |
+
hk

2
)hing. (25)

Here, (cx , cy) are the coordinates of the default box center on

the feature layer; wb and hb are the width and height of the

default box, respectively; wfeature and hfeature are the width

and height of the feature layer, respectively; andwimg and himg
are the width and height of the original image, respectively.

After (xmin, ymin, xmax , and ymax) are obtained, the object

frame coordinates of the k-th layer are mapped to the original

image.

2) LOSS FUNCTION

The SSD’s training simultaneously conducts the regressions

of the position and the object type. The object loss function

is the sum of the confidence and the position loss, and its

expression is as follows:

L (z, c, l, g) =
1

n
(Lconf (z, c) + Lloc(z, l, g)). (26)

where n is the number of default frames matching the ground

truth object frame; Lconf (z,c) is the confidence loss; Lloc(z,l,g)

is the position loss [37]; z is the matching result of the default

box and the ground truth object boxes of different categories;

c is the confidence of the prediction object frame; l is the

position information of the prediction object box; g is the

position information of the object frame of the ground truth;

and α is a parameter that weighs the confidence loss against

the position loss, whereby we set α to 1. The object loss

function and position contain incredible losses. In the training

process, the SSD algorithm improves the confidence of the

prediction box object by reducing the loss function value

and enhancing the position reliability of the prediction box.

The object detection performance of the model is continu-

ously improved through several optimizations of the object

detection results. Hence, an enhanced prediction model is

trained.

B. TINY-PART DEFECT DETECTION ALGORITHM

BASED ON SSD AND SPEED MODEL

The original color image is converted into a binary image by

preprocessing to improve the accuracy of the defect detec-

tion of tiny parts. The areas of tiny parts in the conveyor

belt are determined by locating these areas to simplify the

calculation, and the detected simple image is cut to remove

useless background noise. A boundary detection algorithm

is used to determine the four boundaries of tiny parts and

realize an accurate location. the grid is divided to extract

the data information of the tiny parts, and the extracted data

are transmitted to the subsequent SSD defect identification

program to obtain the class of defects. The specific algorithm

is described as follows.

Algorithm 1 Tiny Part Defect Detection Algorithm Based on

SSD and Speed Model (TP-SSDM)

Input: Image data Xpic
Output: Image data Xpic; predicted class estimates for

defect types ppic; part class Pclass
Step 1: Set the image pixels of the sample tiny parts.

Step 2: When the optical fiber sensor transmits the fre-

quency of the optical signal to the industrial camera,

the sensor begins the collection of the sample image of tiny

parts.

Step 3: Set the background information of the tiny part

sample. The industrial camera is set to the bright part area,

and the background color is dark.

Step 4: Use the subpixel edge extraction function

select_obj() in Halcon to extract the contours of the tiny

parts.

Step 5: Fit the shapes of circles and lines in the detection

sample to obtain the position and size information of the

detection object, which is the bounding box of the first

feature map.

Step 6: The results obtained in Step 3 are integrated

into Formulas (19)– (25), the feature information of the

k-th feature graph is obtained as the output vector of the

first layer of the SSD network, and the output vector is used

as the input of the second layer.

Step 7: The VGGNet [38] network is used as the training

network of the SSD, and convolution and pooling opera-

tions are used to obtain the feature vector V of the samples.

Step 8: Formula (26) is used to reduce the value of the loss

function and thus improve the confidence of the type of

prediction box while enhancing the position reliability of

the prediction box.

Step 9: The eigenvector V is used as the input of the soft-

max() classification function, and the predicted class esti-

mates of defect type ppic and part class Pclass are obtained.

Step 10:Output the predictive probability estimate ppic and

part class Pclass.
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V. INDUSTRIAL REAL-TIME TINY PART DETECTION

EXPERIMENTAL PLATFORM

Figure. 2 illustrates the experimental testing platform that was

designed by the research group [39]. It includes a conveyor

belt, data processor, data acquisition sensor, light source,

and parts for mechanical support. The touch screen is used

for the data input and the display is a 32-inch industrial

touch screen. The vision sensor device uses a MindVision

high-speed industrial camera with an electronic rolling shut-

ter, which can collect high-speed samples that can be tested in

real time. The data processor is a Raspberry Pi B3. To ensure

the sufficiency of the light in the system box, a strip envi-

ronmental light source LED with adjustable brightness is

installed on the box. A biological LED ring light is used for

sample imprinting. The workstation that is used to reduce the

computing load of the data processor is configured with an

Intel Xeon e5-1620 V3 3.5 GHz CPU, 16 GB of memory,

a Nvidia GeForce GTX1080, and Ubuntu16.04 and is mainly

used for data analysis. The Raspberry Pi and the workstation

are equipped with OpenCV 3.1, TensorFlow 1.4, YOLO V3,

and the SSD. The Raspberry Pi B3 has a wireless commu-

nication module that can realize end-to-end communication

between the experimental test platform and the workstation.

FIGURE 2. Industrial real-time part detection experimental platform.

To enable the algorithm to detect the defects of different

tiny parts quickly and accurately, we combine it with the real-

time detection equipment. Then, we design a real-time defect

detection process for tiny parts based on Algorithms 1 and 2

and the speed model. The flowchart is shown in Figure. 3.

When the optical fiber sensor detects the mechanical parts on

the conveyor belt, the control module judges the movement of

the mechanical parts into the visual field close to the camera

system. In the center, trigger pulses are sent to the image

acquisition part, and the trigger pulses are then sent to the

industrial camera and the lighting system according to preset

procedures and delays. The industrial camera begins captur-

ing images, and the microscope LED ring light is illuminated

by a special ring light source. The lighting opening time

matches the exposure time of the industrial camera. After

the camera captures the image, the digital image is stored in

the memory of the processor. The defect detection algorithm

based on the SSD is used to process, analyze, and identify

Algorithm 2 Missing Detection Algorithm for Mechanical

Parts Based on Intermediate Variables (AMP-IV)

Input: Image data Xpic
Output: Loss rate of tiny parts ε

Step 1: Initialize the intermediate variablesµi = 0, and set

the attributes of the tiny parts to be detected: the number

of the tiny parts and the size of the pixels of the captured

image.

Step 2: According to the transmission signal of the optical

fiber sensor, the industrial camera captures the sample

image Xpic.
Step 3: Use Algorithm 1 for defect detection to obtain the

predicted class estimation value ppic of the defect type of

the detection samples.

Step 4: If Pclass 6= 0 or Ppic 6= 0, then

The AMP-IV algorithm does not detect the missing

tiny parts. The predicted class estimation value ppic=µ0

and ε 6= 0.

else

The loss rate of tiny parts is ε= 0. The AMP-IV

algorithm detects the missing tiny parts and proceeds to

Step 3.

end if

Step 5: if µ1 − µ0 6= 0, (that is, no missed detection is

observed), then

Continue to Step 3, and output ε = 0.

else

µ1 − µ0 = 0 indicates that AMP-IV has missing

parts between the two tiny parts. Output ε = 1.

end if

the defects of the tiny parts, and the result of the detection is

obtained. The processing result is sent to the control unit for

sorting and selecting the defective parts.

We propose an algorithm based on intermediate variables

to determine the missed detections of tiny parts. The specific

algorithm is described as follows.

VI. EXPERIMENTAL RESULT AND ANALYSIS

A. DATASET

1) EXPERIMENTAL DATA COLLECTION

The four kinds of defects in 0.8 cm darning needles, which

are frequently used in actual production, are crooked shapes,

length size errors, endpoint size errors, and wringing. The

0.8 cm darning needle dataset is collected in motion with

the high-speed industrial camera on the self-built industrial

real-time object detection platform. The distance between

the camera and the belt is 10 cm. We collected the 0.8 cm

darning needle dataset with 3000 images using constant

changes in the locations of the detection objects, including

2140 training and 860 testing images. The training and testing

images contained 6306 and 2000 0.8 cm darning needle

labels, correspondingly. The collected samples are depicted

in Figure 4.
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FIGURE 3. Defect detection process for tiny parts.

FIGURE 4. Example of autonomous collection of experimental data.

2) EXPERIMENTAL DATA AUGMENTATION

Data augmentation is a common method that can improve the

robustness of an algorithm without degrading the detection

accuracy. The collection of data that satisfy various condi-

tions for training and testing can be difficult. Therefore, many

object detection algorithms use data augmentation to evaluate

the generalizability of the designed algorithm in specific sce-

narios and practical applications. Data augmentationmethods

include horizontal flipping, translation, cutting, and color

TABLE 1. 0.8 cm darning needle data label information.

dithering [40]. We use data augmentation operations on the

image data with rotation angles of 0◦, 22.5◦, 45◦, 67.5◦, and
90◦ to improve the generalizability of the model in different

directions. Table 1 summarizes the detailed information on

the label number of classes in each category of the original

data, data augmentation, and new data.

B. RELATIONAL MODEL OF DETECTION CAPABILITY

COEFFICIENT OF DEFECT SYSTEM AND PART

MOTION VELOCITY

1) EXPERIMENTAL PARAMETER SETTING

The proposed method is validated on the experimental plat-

form. In accordance with the relationship model between the

defect detection system of the tiny parts and themoving speed

of the conveyor belt, combined with the structures of the

experimental equipment and the tiny parts, we set the param-

eters, as listed in Table 2. Moreover, we use Formula (18)

to calculate the optimal speed of the conveyor belt under the

experimental parameters and detect the defects. The follow-

ing definition is used: The conveyor belt speed per second is

approximately v = [0m, 10m].We useMATLAB to simulate
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FIGURE 5. Influence of other system parameters on the system defect detection capability coefficient: (a) distance
between parts and the system defect detection capability coefficient, (b) width of parts and the system defect detection
capability coefficient, (c) system response time and the defect detection capability coefficient, and (d) the camera’ field of
vision and the system defect detection capability coefficient.

TABLE 2. Parameter setting of experimental system.

and analyze the defect detection capability coefficient of the

system and the speed of the conveyor belt. The simulation

results show that the speed of the conveyor belt is directly

proportional to the defect detection capability of the system.

θ = −v2 ×
m (T-t)

(D1 +W1)
2

+ v×
1

D1 +W1

= −v2 ×
6 − 36

/

v

(2 + 8)2
+ v×

1

2 + 8

= −v2 ×
3

50
+

9

25
× v+

v

10

= −v2 ×
3

50
+

23

50
× v.

This function is quadratic, and the parabolic opening

is downward. The point whose derivative is 0. its unique

maximum point.

θ
′
= −v×

3

50
+

23

50
.

When θ
′ = 0, the following formulas are obtained:

−v×
3

50
+

23

50
= 0

v =
23

3
≈ 7.67.

2) DEFECT DETECTION SYSTEM FOR IDENTIFYING THE

RELATION BETWEEN PART COEFFICIENT

AND MOTION VELOCITY

The high-speed recognition algorithm of tiny parts based on

the SSD realizes the high-speed defect detection of tiny parts.

In the experiment, 520×520 pix are the pixels of the sampled

image. Considering the reflection and complex background

interference on the actual production line, the defect detection

ability of the miniature parts with the conveyor belt speed of

7.67 m/min is the optimum in the sampling process.

Figure 6. Influence of other system parameters on the

system defect detection capability coefficient: (a) distance

between the parts and the system defect detection capability

coefficient, (b) width of the parts and the system defect
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FIGURE 6. Shows the defect detection sample (It compares the pedestrian detection results with those of
state-of-the-art methods. The first column shows the input images with the ground truths annotated with red
rectangles. The other columns show the detection results (green rectangles) of YOLO V3, the FPN, the Faster-R-CNN,
and our method. Our method can successfully detect most small-size instances that the two state-of-the-art methods
miss.).

TABLE 3. Detection results of Defect 1 under different algorithms.

detection capability coefficient, (c) system response time

and defect detection capability coefficient, and (d) the cam-

era’ field of vision and system defect detection capability

coefficient.

A comparison of the influence of each parameter on the

system defect detection capability coefficient in Figure 6 indi-

cates that the small distance between two tiny parts leads

to a narrow width of the tiny parts. When the system pro-

cessing time is short, the system defect detection capability

coefficient is high; when the camera’ field of vision is large,

and the movement speed of the tiny parts is 7.67 m/min,

the system defect detection capability coefficient is low.

The experiments show that, when the distance between two

defect detections is 2.00 mm, the width of the tiny parts is

8.00 mm, the camera’ field of vision is 36.00 mm, and the

defect detection capability coefficient of the tiny parts on the

experimental platform is the highest.

C. COMPARISON OF PROPOSED ALGORITHM WITH

CLASSICAL ALGORITHM

We use an 0.8 cm darning needle as the experimental object

to verify the validity of the algorithm further and compare the

proposed algorithm with YOLO V3 [18], Faster-RCNN [17],

FPN [41], and the proposed method. The settings of com-

parison algorithms are similar to those of the SSD experi-

ment [19]. The four kinds of defect data that are observed

in the test dataset are analyzed from subjective and objective

perspectives. The test set has 860 and 2000 images in the

0.8 cm darning needle label data. The detailed data informa-

tion is summarized in Table 1. The statistical results of the

recognition accuracy and predictive probability estimates of

the algorithm in the system are presented in Tables 3 –6, and

the subjective detection results are illustrated in Figure 6.

1) ANALYSIS OF SUBJECTIVE TEST RESULTS

Figure 6 depicts the experimental results of the subjective

defect detections of the algorithm in this work and the com-

pared algorithms. The figure also demonstrates that YOLO

V3 and Faster-RCNN cannot reliably detect the size error

(fat point size) defects. This result occurs mainly because the

sample in YOLO V3 must identify the image segmentation

for a 7 × 7 grid. The inside of the cell is used to detect

the object neurons with information loss problems, thereby

resulting in a model with a strong spatial constraint in the
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TABLE 4. Detection results of Defect 2 under different algorithms.

TABLE 5. Detection results of Defect 3 under different algorithms.

TABLE 6. Detection results of Defect 4 under different algorithms.

process of feature extraction. If the grid contains small, sim-

ilar detection tasks, then the system cannot simultaneously

detect all the objects. The Faster-RCNN detects an object

based on information, such as the color and image edges,

thus denoting its insufficient ability to detect weak objects.

The bounding box is remarkably larger in the FPN than in

the method proposed in the present work. The bounding

box regression of the FPN does not converge. This work is

based on the SSD for defect detection. The SSD network

is found in the multi-feature layer detection frame extrac-

tion and improves the accuracy of tiny object bounding box

regression. The FPN can also obtain the defect type and

provide the approximate locations of the defects accurately.

However, accurate and appropriate object location is crucial

to calculating the grasping position of the manipulator in an

actual robotic grabbing task.

2) OBJECTIVE ANALYSIS OF TEST RESULTS

Tables 3–6 correspond to the detection results of the proposed

method and the comparison algorithms under the four defect

type datasets. Table 3 reflects that, under Defect Type 1,

the predictive probability estimates are 3.32%, 5.20%, and

−1.60% higher in the proposed method than in YOLO V3,

Faster-RCNN, and FPN, respectively. The accuracy rates

are 5.20%, 6.80%, and 3.00% higher than those of the cor-

respondingly compared algorithms. The location times are

−0.05, 0.83, and 0.12 less than those of the respectively

compared algorithms. The missing detection rate is 2.40%

lower than that of the Faster-RCNN.

In Table 4, under Defect Type 2, the predictive probability

estimates, and accuracy of the proposed method are 95.36%

and 99.00%, correspondingly. The FPN has the highest

predictive probability estimation and accuracy among the

compared algorithms. The estimated probability and accu-

racy of the proposed method are 2.47% and 1.20% higher

than those of the FPN, respectively. In Table 5, in the case of

Defect Type 3, the prediction probability estimation and accu-

racy of the proposed method are 2.37% and 3.40% higher,

correspondingly, than those of the FPN with the highest

comparison algorithm. The location time is −0.10 less than

that of the lowest YOLO V3 algorithm. The missed detection

rate is the same as that of the lowest YOLO V3 algorithm.

In the case of Defect Type 4, the prediction probability

estimation and accuracy of the proposed method are 4.74%

and 6.80% higher, respectively, than those of the FPN. The

location time is −0.10 less than that of the lowest YOLO V3

algorithm. The missed detection rate is 0.60% less than that

of the lowest YOLO V3 algorithm.

Further observation of Figure 7 indicates that the accu-

racy is higher in the proposed method than in the compared

algorithms under the four defect types. The location time of

YOLO V3 is the shortest, and the location time is shorter

in the proposed method than in the Faster-RCNN and FPN.

In terms of the relevant datasets and experimental param-

eters, the missed detection rate is lower in the proposed

method than in the comparison algorithms. The training time

is 32 h shorter in the proposed method than in YOLO V3

and 55 h and 16 h lower than in the Faster-RCNN and FPN,

respectively.

In summary, the accuracy is higher in the proposed method

than in the comparison algorithms because an anchor mech-

anism is used to extract the features with different aspect

ratios. The proposed local feature extraction method is more

reasonable and effective than the global feature extraction
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FIGURE 7. Test results of the system under different indicators.

method of YOLO V3 for a certain location in terms of the

feature extraction ability. However, detecting YOLOV3 sam-

ples as a single regression problem directly uses image pixel

optimization and can detect the sample bounding box loca-

tion and conduct classification. In addition, the proposed

method has a higher location time than that of YOLO V3.

The average missed detection rate of the proposed method is

approximately 1.00%. We propose a missed detection algo-

rithm for tiny parts based on intermediate variables, which

can effectively identify missed detections in industrial pro-

cesses. The proposed regions extracted by the Faster-RCNN

overlap with one another, and the overlapping parts become

repeatedly extracted features. The feature extraction process

of the Faster-RCNN increases the positioning time of the

model, thereby increasing the missed detection rate. The

longer model training time of the proposed method than that

of YOLO V3 is caused by the numerous parameters of the

SSD-based method. This problem must be solved in future

studies. Defect Type 4 has a large similarity to the standard

0.8 cm darning needle; thus, the accuracy is lower.

3) TINY PART DEFECT DETECTION RESULTS OF THE

DIFFERENT FIELDS OF VISION OF THE CAMERA AND

VARIOUS SPEEDS OF THE CONVEYOR BELT

In Section relational model of detection capability coefficient

of defect system and part motion velocity, we have theoreti-

cally confirmed that the defect detection capability of small

parts is optimal when Wview is 36.00 mm and the conveyor

speed v is 7.67 m/min. We compare our method defect detec-

tion algorithm in the test set to obtain better performance

than that of the comparison algorithm in Section Compari-

son of proposed algorithm with classical algorithm. In this

part, we combine the speed model and the TP-SSDM defect

detection method to verify the actual application on the defect

detection simulation platform.We set the simulation platform

conveyor motor range of speed per minute v = [0 m/min,

10 m/min] and consider the performance of the proposed

method when the actual camera’ field of vision of the indus-

trial Wview are 32.00, 36.00, and 40.00 mm. We deploy the

algorithm on a workstation with one GTX1080. The work-

station connects the industrial camera on the simulation plat-

form through the USB serial port to test the defect detection

accuracy, the missed detection rate, and the average number

of detections within 10 s at different conveyor speeds with

1000 defect type parts. Table 7 displays the result of an

average test of 10 times.

Table 7 presents that, when the velocity is v = 1 m/min,

the recognition accuracy of defect detection is the highest.

The accuracy rates of Wview = 32.00, 36.00, and 40.00mm

are 86.87%, 93.26%, and 87.23, respectively. The average

number of defect detections is the least, and the detection

numbers of Wview = 32.00, 36.00, and 40.00mm are 10, 13,

and 15, correspondingly. Furthermore, the missed detection

rate is the lowest, and the missing detection rates ofWview =
32.00, 36.00, and 40.00 mm are 2.35%, 1.20%, and 2.11%,

respectively. This finding is due to the slow movement of
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TABLE 7. Tiny part defect detection results in different field of the camera’ field of vision and different speeds of the conveyor belt.

the conveyor belt, the clearly captured sample image of the

camera, the missing detection rate, the increased detection

number, and the decreased accuracy rate of the algorithm.

When the speed is v = 10 m/min, the defect detection has the

lowest recognition accuracy, and the defect detection sample

number and the missed detection rate are the highest. This

finding is due to the number of cameras captured increases

with the speed of the conveyor belt. Therefore, the number

of detections rises. However, the sharpness of the picture is

degraded, the missing detection rate of the proposed algo-

rithm is increased, and the recognition accuracy is decreased.

Using the lowest conveyor belt speed not only obtains

the highest defect detection accuracy but also the effect of

product life cycle in the actual defect detection. Although

the fastest conveyor speed increases the number of tiny

parts tested, it reduces the defect detection accuracy of tiny

parts. Therefore, when the conveyor speed is between v =
[5 and 8 m/min], the missing detection rate, accuracy rate,

and detection number are acceptable ranges for the enter-

prise. This finding further confirms our previous theoretical

derivation. When Wview = 36.00 mm and the conveyor

speed v = 7.67 m/min, the system has the optimal defect

detection capability for small parts. The missing detection

rate is 3.60%. The accuracy rate is 85.50%, and the detection

number is 91.

Based on the abovementioned analysis, the proposed

method obtains the optimal defect detection system capability

coefficient considering the factors, such as conveyor speed,

part size attribute, camera’ field of vision, missing detection

rate, and detection number. Given the complexity of the actual

working conditions and the jitter, the recognition accuracy on

the simulation platform is lower in the proposedmethod in the

test dataset in the PC.

VII. CONCLUSION

We proposed a real-time tiny part defect detection system

for manufacturing using an end-to-end CNN algorithm. This

system is based on the defects of a 0.8 cm darning needle,

such as crooked shapes, length and endpoint size errors,

and wringing. Subsequently, we studied the correlation

relationship model between the part coefficients identified by

the defect detection system and the moving speed of the parts.

We obtained HD detected samples and a stable tiny part data

acquisition system using the optimal speed and appropriate

camera position, respectively. Our study used the advanced

object detection algorithm SSD, which can detect the defects

of tiny parts accurately and efficiently. The proposed method

is applicable to the defect detection of 0.8 cm darning needles

and other tiny parts.

1) We proposed a relationship model between the detec-

tion capability coefficient of defective part systems and the

movement speed of parts and obtained the best transmission

belt speed of the defective part detection system. This method

improves the system stability for tiny part defect detection.

2) The end-to-end defect detection model was trained

based on an SSD algorithm using the defect data of a 0.8 cm

darning needle. The accuracy rates of the model in Defect

Types 1, 2, 3, and 4 were 98.00%, 99.00%, 97.80%, and

79.40%, respectively. Compared with the compared object

detection algorithms, our proposed SSD-based tiny part

defect detection algorithm is more suitable for the defect

detection of 0.8 cm darning needles.

3) We built a real-time industrial detection platform and

propose an algorithm for mechanical part omission detection

that is based on intermediate variables. The platform can

effectively detect missing tiny parts and provide a theoretical

reference for the practical application of defect detection

technology.

In addition, for occluded objects, the increased attention

mechanismmethod will provide more contextual information

that will provide new ideas for the automated detection of tiny

part defects.
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