Real-Time Top-N Recommendation in Social Streams

Ernesto Diaz-Aviles', Lucas Drumond?, Lars Schmidt-Thieme?, and Wolfgang Nejdl*

L3S Research Center / University of Hannover, Germany
{diaz, nejdl}@L3S.de

2Information Systems and Machine Learning Lab / University of Hildesheim, Germany
{ldrumond, schmidt-thieme}@ISMLL.de

ABSTRACT

The Social Web is successfully established, and steadily grow-
ing in terms of users, content and services. People generate
and consume data in real-time within social networking ser-
vices, such as Twitter, and increasingly rely upon continuous
streams of messages for real-time access to fresh knowledge
about current affairs. In this paper, we focus on analyzing
social streams in real-time for personalized topic recommen-
dation and discovery. We consider collaborative filtering as
an online ranking problem and present Stream Ranking Ma-
triz Factorization — RMFX —, which uses a pairwise approach
to matrix factorization in order to optimize the personal-
ized ranking of topics. Our novel approach follows a selective
sampling strategy to perform online model updates based on
active learning principles, that closely simulates the task of
identifying relevant items from a pool of mostly uninterest-
ing ones. RMFX is particularly suitable for large scale appli-
cations and experiments on the 476 million Twitter tweets
dataset show that our online approach largely outperforms
recommendations based on Twitter’s global trend, and it is
also able to deliver highly competitive Top-N recommen-
dations faster while using less space than Weighted Reg-
ularized Matrix Factorization (WRMF), a state-of-the-art
matrix factorization technique for Collaborative Filtering,
demonstrating the efficacy of our approach.

Categories and Subject Descriptors: H.3.3 [Information
Storage and Retrieval|—Information Filtering

General Terms: Algorithms, Experimentation, Measurement,
Performance

Keywords: Collaborative Filtering; Matrix Factorization; On-
line Learning; Ranking; Selective Sampling; Twitter

1. INTRODUCTION

The amount of user generated content in social media
applications and the rate at which such content is made
available poses a challenge to state-of-the-art recommender
system algorithms. For instance, the number of users of the

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

RecSys’12, September 9-13, 2012, Dublin, Ireland, UK.

Copyright 2012 ACM 978-1-4503-1270-7/12/09 ...$15.00.

popular micro-blog service Twitter! is estimated to have sur-
passed 300 million generating more than 200 million tweets
(micro-blog posts) per day [18].

When dealing with user generated content in social me-
dia applications, it is crucial that finding good patterns and
making inference about them is done in a reasonable time.
One scenario where this point becomes particularly critical
is that of filtering a continuous stream of incoming tweets
in order to recommend topics that match user interests at a
specific moment, given the huge scale of this kind of data.
The challenge here is to account for dynamic short term
information needs of the users. As a surrogate for a user’s
topic interests one could use hashtags. For example, in Twit-
ter, if user Alice often tags her tweets with the hashtag
#TechCrunch and never uses the hashtag #fashion, we can
exploit this information and use it as a good indicator for
her preferences. We can infer that, currently, Alice is more
interested in technology news than, for instance, in fashion.
Thus the task can be cast as that of recommending hashtags
to users.

Collaborative filtering (CF) has been shown to be an effec-
tive approach to recommender systems. The essence of CF
lies in analyzing past user and item interactions to generate
personalized recommendations based on the preferences of
other users with similar behavior. One of CF’s most suc-
cessful techniques are low dimensional linear factor models,
that assume user preferences can be modeled by only a small
number of latent factors [11].

Although latent factor models are able to generate high
quality recommendations, coping with fast changing trends
in the presence of large scale data might be a challenge,
since retraining such models is costly. One alternative is to
learn the parameters online, updating the decision function
for each new observation [2]. Unfortunately, the gain in pro-
cessing time achieved by online learning algorithms comes
at the cost of reduced prediction quality and work has been
done on closing this gap. The main issue with online ap-
proaches is their short-term “memory”, i.e., since the up-
dates based only on the most recent data point do not take
into account past observations, the model quickly “forgets”
them. Recently Zhao et al. [23] proposed an online learn-
ing algorithm for maximizing Area Under the ROC Curve
(AUCQ), a metric that is widely used for measuring the classi-
fication performance for imbalanced data distributions, that
addresses this problem by keeping a representative sample
of the data set in a reservoir and using only this sample plus
the new observation for retraining.

I rwitter: http://twitter.com

One issue that arises with the reservoir approach is how to
perform the model updates. In this paper we propose to se-
lectively sample the most informative instances from a reser-
voir using personalized small buffers and perform stochastic
gradient descent updates based on active learning princi-
ples [6, 22]. We elaborate on the notion of “informative el-
ements” and illustrate the application of our approach to
learning factorization models. We demonstrate its useful-
ness on the task of recommending hashtags to Twitter users
based on real world data.

To summarize, the main contributions of this work are as
follows:

e We introduce a novel framework for online collaborative
filtering. The novelty of our approach lies in a selective
sampling strategy to update the model based on person-
alized small buffers.

e We propose Stream Ranking Matrix Factorization (RMFX),
an online learning algorithm based on a pairwise rank-
ing approach for matrix factorization that is intended for
streaming data, and is well founded in stochastic gradient
descent.

e For unpersonalized learning to rank, many studies have
been made in the field of information retrieval. This paper
presents an innovative personalized ranking perspective to
matrix factorization for social media streams, which has
not been reported before in the literature.

e Finally, this paper provides an example of integrating large-
scale collaborative filtering with the real-time nature of
Twitter.

The reminder of the paper is organized as follows: In Sec-
tion 2, we present background material and notation. In Sec-
tion 3, we present our Stream Ranking Matrix Factorization
approach. Section 4 discusses related work. In Section 5, we
show the results of our approach by analyzing real-world
data consisting of millions of tweets. Finally, in Section 6,
we conclude and present directions for future work.

2. BACKGROUND

First we introduce some notation that will be useful in
our setting. Let U = {u1,...,un} and I = {i1,...,im} be
the sets of all users and all items, respectively. We reserve
special indexing letters to distinguish users from items: for
users u, v, and for items i, j. Suppose we have interactions
between these two entities, and for some user v € U and
item ¢ € I, we observe a relational score ;.

Thus, each instance of the data is a tuple (u,?, ;). For
example in the movie recommendation case, the tuple might
correspond to an explicit “rating” given by user u to movie
¢ or, in the case of hashtag/topic recommendation, to a
“weight” that is implicitly derived from user u’s interaction
patterns, e.g., how many times the user u has used hashtag
i. Typical CFs organize these tuples into a sparse matrix X
of size |U| x |I|, using (u,) as index and x.; as entry value.
The task of the recommender system is to estimate the score
for the missing entries. The relational scores themselves are
ordinal and need not be numbers. Thus, we assume a total
order between the possible score values. We distinguish pre-
dicted scores from the known ones, by using Z,;. The set S
of all observed scores is defined as follows:

S = {(u,%, zui) | (0,4, zui) € U x I x N}.

For convenience, we also define for each user the set of all
items with an observed score, denoted by By :

Bl :={ieI| (u,i,zu)ecS}.

Low dimensional linear factor modeling are popular col-
laborative filtering approaches [11]. These models consider
that only a small number of latent factors can influence the
preferences. Their prediction is a real number, &,;, per user
item pair (u,i). Some of the most successful realizations of
latent factor models are based on matrix factorization (MF).
In its basic form, matrix factorization estimates a matrix
X : Ux1I by the product of two low-rank matrices W : |U|xk
and H : || X k:

X := WHT, (1)

where k is a parameter corresponding to the rank of the
approximation.

The factorization process is performed by minimizing a
loss function that measures the quality of the reconstruc-
tion X. One alternative to learn the optimal parameters of
the model is to use a Stochastic Gradient Descent (SGD)
approach [2].

Even though the squared loss has been successfully used
for MF in the context of rating prediction (e.g., [11]) and
item prediction [8], we are interested in a ranking approach
to MF, and therefore require an ordinal loss to guide the
factorization process. In particular we are interested in a
pairwise approach, similar to the one used by RankSVM [9],
a popular ranking method in the field of learning to rank.
We present the details of our approach in the next section
and discuss related work in Section 4.

3. STREAM RANKING MATRIX
FACTORIZATION

In the presence of a continuous stream of incoming tweets,
arriving at a high rate, our objective is to process the incom-
ing data in bounded space and time and recommend a short
list of interesting topics that meet users’ individual taste.

The high rate makes it harder to: (i) capture the informa-
tion transmitted, (ii) compute sophisticated models on large
pieces of the input, and (iii) store the input data, which can
be significantly larger than the algorithm’s available mem-
ory.

This problem setting fits a streaming model of computa-
tion by Muthukrishnan [12], which establishes that, by im-
posing a space restriction on algorithms that process stream-
ing data, we may not be able to store all the data we see.
The impact is that the data generated in real-time carries
high-dimensional information which is difficult to extract
and process. Any time lag in modeling the data could ren-
der the outcome of the modeling obsolete and useless.

We assume that topics of interest are captured by the
hash-tagging behavior in Twitter. Hashtags are words or
phrases prefixed with the symbol #, e.g., #recsys, a form
of metadata tag used to mark keywords or topics in a tweet.
Hashtags evolve over time, reflecting the dynamics of user
preferences in the social stream. Our approach seeks to in-
corporate these dynamics to produce a short list of interest-
ing recommendations based on a matrix factorization model
for CF, which is learned online.

In this section, we formally define the problem and in-
troduce our approach Stream Ranking Matrix Factorization

or RMFX, and develop our model in steps discussing the ra-
tionale behind them. Such steps are illustrated in Figure 1.

Social Media Stream, e.g., Twitter -

Sample the Stream: Reservoir Sampling

Stream Ranking Matrix Factorization RMFX:

Pairwise Approach for Personalized Rank Learning
Using Selective Model Updates from Small Buffers

Per lized R dations

Figure 1: Main steps of our approach Stream Ranking
Matrix Factorization (RMFX).

3.1 Pairwise Approach for Personalized Rank
Learning

We focus on learning a matrix factorization model for col-
laborative filtering in presence of streaming data. To this
end, we will follow a pairwise approach to minimize an or-
dinal loss. Our formalization extends the work of Scully [15]
for unpersonalized learning to rank, to an online collabora-
tive filtering setting.

With slight abuse of notation, we also use S to represent
the input stream s1, s2, . . . that arrives sequentially, instance
by instance. Let p: = ((u,1), (u, 7))+ denote a pair of train-
ing instances sampled at time ¢, where (u,%) € S has been
observed in the stream and (u, j) ¢ S not.

Formally, we define the set P as the set of tuples p =
((u, 1), (u,j)) selected from the data stream S, as follows:

Pi={((ui), (w.j)) | i€ Bf A j¢ B}

We require pairs that create a contrast in the preferences
for a given user u over items ¢ and j. Since we are dealing
with implicit, positive only feedback data (i.e. the user never
explicitly states a negative preference for an item) we follow
the rationale from Rendle et al. [13] and assume that user
u prefers item i over item j. We will restrict the study to
a binary set of preferences xz.; = {+1,—1}, e.g., observed
and not-observed, represented numerically with +1 and —1,
respectively. For example, if a user u in Twitter posts a
message containing hashtag ¢, then we consider it as a pos-
itive feedback and assign a score z,; = +1. More formally,
Zui = +1 <= i € BY. In future work we plan to explore
how repeated feedback can be exploited to establish a total
order for items in B

It is obvious that, in the case of streaming data, we do
not compute P explicitly, but instead select pairs from the
stream, at each time step, that meet P’s membership re-
quirements.

With P defined, we find § = (W, H) that minimizes the
pairwise objective function:

. A A
argmin L(P, W, H) + 7;” [[W|5 + THHHHE . (2)
0=(W,H)

In this paper, we explore the use of the SVM loss, or hinge-
loss, used by RankSVM for the learning to rank task [9].

RMFX Framework
Input:
Reservoir representing a sample of the stream at time
t: R; Regularization parameters Aw, A+, and Ag—;
Learning rate no; Learning rate schedule «; Number of
iterations T's, and Ty; Parameter ¢ to control how often
to perform the model updates.
Output: § = (W, H)
1: initialize Wy and Hg
2: initialize sample stream S’ + ()
3: counter < 0
4: fort =1 to Ts do
5: R < updateReservoir(R)
6 counter < counter + 1
7 if ¢ = counter then
8 0 < updateModel(S:, Aw, A+, Ag—,m, a, To)
9: counter < 0
10: end if
11: end for
12: return 6r = (Wr,Hr)

Figure 2: RMFX Framework for Real-Time CF.

Given the predicted scores Z,; and Z,;, the ranking task is
reduced to a pairwise classification task by checking whether
the model is able to correctly rank a pair p € P or not. Thus,
L(P,W,H) is defined as follows:

LPW.H) = (0 S Ay - (wa b = b)) (3)

peEP

where fi(z) = maxz(0, 1—2) is the hinge-loss; yui; = sign(Tui—
Zyj) is the sign(z) function, which returns +1 if z > 0,
i.€., Tui > Zuj, and —1 if z < 0. The prediction function
(Wu,hy — hy) = (wy,h;) — (wy, h;) corresponds to the
difference of predictor values Tui — Zuj.

Please note that in this special case of binary rank values
of observed and not-observed, the optimization problem de-
fined by Eq. (3) is equivalent to the problem of optimizing
area under the ROC curve (AUC) for binary-class data [15].

Other convex loss functions can also be applied, e.g., squared
or logistic loss [13, 15], as well as any prediction function be-
sides the dot product (-, -) [14].

To conclude this section, we compute the gradient of the
pairwise loss at instance p; € P with non-zero loss, and
model parameters 6; = (wy, h;, hj), as follows:

Yuij - (hl - h]) if 015 = Wy,

ym-j c Wy lf Ot = hi,

—Vh(ps, 0;) =
(P, 8:) Yuij - (—Wu) if 6 = h;,
0 otherwise.

Our goal is to develop an algorithm to efficiently optimize
the objective function (2).

Based on stochastic gradient descent concepts [2], we present
the framework of our algorithm in Figure 2. The main com-
ponents of this framework are: (i) a sampling procedure done
on the streaming data and (ii) a selective model update
based on small buffers created per each user.

3.2 Random Sampling the Social Stream with
a Reservoir

When processing streams of data, one usually wants to
avoid the cost of retraining a model every time new data

points arrive; thus online updates are usually used. Unfor-
tunately, the gain in processing time and bounded space
achieved by this online learning approach comes at the cost
of reduced prediction quality, compared to more accurate
models that the large training set could allow. The main
issue with online approaches is their short-term “memory”,
i.e., since the updates based only on the most recent data
point do not take into account past observations, the model
quickly “forgets” them. In the presence of an abundant source
of training examples, a way to reduce complexity of a learn-
ing algorithm consists of picking a random subset of training
examples and building a model on this subset. In this phase
of our model, we employ the technique of random sampling
with a reservoir [20], which is widely used in data streaming,
and recently has been proposed for online AUC maximiza-
tion in the context of binary classification [23].

A reservoir sampling algorithm incrementally maintains a
random sample of fixed size of the incoming stream of tweets.
We represent the reservoir as a list R := [s1,52...,5|g/] that
“remembers” | R| random instances from stream S. Instances
can occur more than once in the reservoir, reflecting the
distribution of the observed data, thus the reservoir captures
an accurate “sketch” of history under the constraint of fixed
space.

Let be t the index reflecting the order of arrival of data in
the stream, note that until ¢ = |R| all data points enter the
reservoir. When ¢ = |R| we have a random sample of size
|R| of the stream; indeed the entire dataset so far is in the
reservoir. For subsequent ¢ we need to decide whether the
newly arrived data should be put in the reservoir and, if so,
which data already in the reservoir it should replace.

Vitter shows in [20] that if one includes the ¢ data in-
stance with probability |R|/t and replaces uniformly at ran-
dom an instance from the reservoir, the reservoir is a ran-
dom sample of the current dataset. This reservoir sampling
mechanism is implemented by the procedure updateReser-
voir(R) in Figure 2.

3.3 Selective Model Update from Small Buffers

The random sampling with a reservoir allows us to retain a
fixed size of observed instances, bounding the space available
for the algorithm to a set of |R| randomly chosen samples
from the stream and update the model using this history.
Although simply updates of the model based on the reservoir
may yield better results than single online updates, it is still
far from the accuracy achieved by the offline cases. On top
of that, in the reservoir we store only user and item pairs
observed in the stream, and the question of how to sample
the pairs needed for creating the contrasts P still remains.

In order to address this drawback, we need to exploit as
much information as possible from the sampled tweets in the
reservoir. In particular we propose to perform model updates
and retraining on the most informative examples present in
the reservoir, then, the question is how to select such exam-
ples from this sketch of the stream. This scenario is similar
to the one of active learning, where the system asks the user
to evaluate a minimum set of items which will contribute
the most to learning his/her preferences (e.g., [10]).

Consider the case of binary classification using Support
Vector Machines (SVM). SVM attempt to find a hyperplane
that divides the two classes with the largest margin. From
the theoretical foundations of SVM we know that only the
support vectors have an effect on the solution. The support

vectors are the points that lie closest to the hyperplane,
therefore the most informative training points, and the goal
of training is to discover them [19].

Usually, the training set is chosen to be a random sam-
pling of instances, for example the tweets in our reservoir.
However, in many cases principled criteria can be used to
sample the training data with the goal to reduce its need for
large quantities of labeled data.

Our scenario of dyadic data, i.e., user-item interactions,
differs from the one of SVM in two fundamental ways: (i)
since we are learning personalized rankings, there are as
many hyperplanes as users, unlike an SVM, (ii) we are not
just learning a hyperplane per user, but simultaneously also
the item feature vectors, in contrast to SVM where the val-
ues of the features vectors, defining the training points, are
known and given in advance.

Moreover, remember that we are concerned with learning
personalized rankings from pairwise comparisons, hence the
most informative instances are the ones that have opposite
labels but are close to each other in the ranking induced
by the user’s hyperplane, intuitively they are more difficult
to order than the ones away from each other in the rank-
ing [22]. Figure 3 illustrates how user u’s feature vector wy,
induces a particular (personalized) ranking at a given it-
eration in a two dimensional exampleZ. w, determines the
ordering of four item points. For any user weight vector w,,,
the items are ordered by the projection onto w,, or equiva-
lently, by their signed distance to a hyperplane with normal
vector w,. The items in the figure are ordered (h1, hs, ho,
ha). We denote as ¢ the distance between two projections
of data points with different labels on the induced ranking,
the smaller the §, the more informative the instances are for
training the model.

Figure 3: Example of how a user weight vector w, ranks
four item points. (a) The vector w, ranks the points as
(hi, hs, ha, hy), erroneously ranking hz higher than ho.
(b) The model updates vector w, (user features) and the
item features iteratively based on pairwise differences
and learns the correct ordering (hi, hg, h3, hy). In this
example, the pair (h2, h3) with d23 is considered more
informative than (hi, hy) with §13, since |d23| < |d13], i.e.,
the smaller the §, the more informative the instances are
for training the model.

2Observe that Figure 3 can be regarded as a personalized adaptation
of Figure 2 in [9].

Finally, to answer the question of how to select such ex-
amples from the reservoir, we will use an active learning in-
spired approach. In classical active learning [17], the search
for the most informative instance is performed over the en-
tire dataset, which involves the recomputation of each train-
ing example’s distance to the new hyperplane. This process
is prohibitively expensive for large datasets or unbounded
data streams. Therefore, we propose a selection method based
on the “59 trick” [16, 6], that establishes that randomly sam-
pling only 59 instances, regardless the training set size, is
enough to guarantee with 95% probability, that one of them
is among the top 5% closest instances to the hyperplane.
This approach also simulates the real world scenario of given
a pool of items, ranking the positive ones higher than the
negatives, modeled into the recommender system evaluation
protocol proposed in [3].

At each iteration, we select at random a user-item (u, %)
interaction from the reservoir, which represents a positive
feedback observation. Next, we construct a small buffer for
user v by sampling 59 negative items j’s, creating the re-
quired contrast in the preferences for user u over items 1%
and j’s. The user buffer contains exactly 59 pairs of the form
oo = ((u,1), (u,jp)), b=1...59. Then, we compute the val-
ues duib between the projections on w,, of each instance in
the pair py. Finally, we sample a pair p* with probability pro-
portional to its informativeness, which is given by 1/64ijb,
and use p* to perform the matrix factorization model up-
dates. This procedure is shown in Figure 4, which includes
three regularization constants: A\w, Ag+, and Ag—, one for
the user factors, the other two for the positive and negative
item factors updates. Moreover, we include a learning rate,
and a learning rate schedule « that adjusts the step size of
the updates at each iteration.

4. RELATED WORK

Learning of large-scale recommender systems for dealing
with dynamic and fast changing content has been addressed
before, for instance in the context of the Google News sys-
tem [4]. However the problem setting in [4] is different from
the one addressed here, since their work does not deal with
a continuous stream of user generated data, but instead pro-
vides recommendations to users based on offline models.

The Fast Online Bilinear Factor Model (FOBFM) [1] ad-
dresses the related task of click through rate prediction.
They combine offline training with online updates in a prin-
cipled framework. While FOBFM addresses a regression task,
we are concerned here with a learn to rank problem. Also our
approach does not need an explicit dimensionality reduction
step for the offline learned features.

Online matrix factorization learning methods have also
been investigated by Rendle and Schmidt-Thieme for rat-
ing prediction [14]. They propose online update rules on a
stochastic gradient descent style based on the last example
observed. While those update rules take into account only
the last observed data point, RMFX uses a reservoir with a
representative set of previously seen data points from the
stream. This idea has been previously explored by Zhao et
al. [23] in the context of binary classification, in contrast, a
novel idea introduced in this work is the selective sampling
based on personalized buffers according to the distance of
points to the decision boundary which, as shown in our ex-
periments, delivers better results than using exclusively the
random sampling technique used by Zhao et al. [23].

RMFX Model Update based on SGD for MF using

active learning with small buffers

Input:
Reservoir representing a sample of the stream at time
t: R; Regularization parameters Aw, Ag+, and Ag—;
Learning rate 7o; Learning rate schedule a; Number of
iterations Tp.

Output: 0 = (W, H)

1: procedure UPDATEMODEL(S¢, Aw, A+, Agr—, Mo, @, Tp)
2: fort=1to Ty do

3: Select a user-item pair (u,¢) from R uniformly at
random

4: Construct a small buffer for user u by sampling
59 negative items j’s from R (“59 trick” [16, 6])

5: Compute the distances dyi;s for each pair
py = ((u,7), (u, 7)) € P, b=1...59 in the small buffer

6: Sample a pair p* = ((u, 1), (u,7)) from the buffer
with probability proportional to its informativeness:
1/6uijo
// Perform the model updates as follows:

7: Yuij < SIGN(Twi — Tuj)

8: Wy < Wy + n Yuij (hz - hj) —-n AW Wy

9: h; < h; + 7 Yuij Wu — 1 Ag+ hy

10: hj < hj + 7 yuij (W) =1 Ag- hy

11: n=auoa-n

12: end for
13: return § = (Wr,,Hr,)
14: end procedure

Figure 4: Matrix factorization model update based on
SGD wusing personalized active learning with small
buffers. The procedure minimizes the SVM loss, or
hinge-loss, following a pairwise learning to rank approach
for dyadic data.

Yu proposed a selective sampling technique for learning
ranking functions in the context of data retrieval applica-
tions [22]. Our method, on the other hand, is a learning to
rank approach for personalized item prediction.

Since we deal with pairwise classification from positive-only
data, negative examples must be sampled. The sampling of
the 59 negative examples for each positive one has been pro-
posed, discussed and proved in [6]. Whereas they do it for
active learning, we adapt it for our online learning to rank
scenario.

S. EXPERIMENTAL STUDY

In this section, we demonstrate our approach by analyzing
real-world data consisting of millions of tweets. We present
the evaluation protocol and experimental setting, as well as
the results of the empirical study.

476 million Twitter tweets Dataset

The dataset corresponds to the 476 million Tuwitter
tweets® [21], which includes over 476 million Twitter posts
from 20 million users, covering a 7 month period from June
1, 2009 to December 31, 2009. The number of hashtags
present in the dataset is 49,293,684. It is estimated that
this is about 20-30% of all public tweets published on Twit-
ter during the particular time frame. For our evaluation we
computed a 5-core of the dataset, i.e., every user has used at
least 5 different hashtags, and every hashtag has been used

3ht1:p ://snap.stanford.edu/data

at least by 5 different users. The 5-core consists of 35,350,508
tweets, 413,987 users and 37,297 hashtags.

Evaluation Methodology

Evaluation of a recommender in the presence of stream data
requires a time sensitive split. We evaluated by splitting the
dataset S into two sets: a training set Sirqin and a testing
set Stest. Consider we make the split at time tgpii¢, then
we put into Sirqin the individual training examples (tweets)
with timestamps less that tspiic. Into Siest, we put the user
rankings with timestamps greater than tsp;;¢. The recom-
menders are trained on Si,qin and then their performance is
measured on Stes:. Note that given the dynamics in Twitter,
there might be users in Strqin not present in Siest.

To evaluate the recommenders we used a variant of the
all-but-1 protocol, also known as the leave-one-out holdout
method. In particular, we follow a similar schema as the one
described in [3].

Our goal is to evaluate the system performance when it
suggests Top-N topics to a user. For example, recommending
the user a few specific hashtags which are supposed to be the
most attractive to him. That is, to find the relative position
of these interesting items within the total order of items
ranked for a specific user.

To this end, for each user u € |Uiest| we aggregate his
rankings in the test set Sies¢ by accumulating the item fre-
quencies across those rankings in order to produce a single
total ranking. The items are again sorted in descending order
of their accumulated frequencies.

We take one item ¢ at random from the top-10 of the ag-
gregated ranking and hide it. The goal of a recommender
system is to help users to discover new items of interest,
therefore we impose the additional restriction that the hid-
den item has to be novel for the user, and therefore we re-
move from the training set all occurrences of the pair (u,1).
In total, we have |Utest| = 260,246 hidden items.

Then, for each hidden item ¢, we randomly select 1000
additional items from the test set Sies:. Notice that most of
those items selected are probably not interesting to user u.

We predict the scores for the hidden item i and for the ad-
ditional 1000 items, forming a ranking by ordering the 1001
items according to their scores. The best expected result is
that the interesting item i, to user u will precede the rest
1000 random items.

Finally, we generate a Top-N recommendation list by se-
lecting the N items with the highest score. If the test item
iy, is in the Top-N, then we have a hit, otherwise we have a
miss. We measure the quality by looking at the recall metric.

Evaluation Metric: Recall

Traditionally, collaborative filtering algorithms are evalu-
ated by the accuracy of their predicted ratings. One com-
monly used performance metric for rating accuracy is the
Mean Absolute Error (MAE).

However, we are interested in measuring Top-N recom-
mendation performance and not in rating prediction. There-
fore, we measure the quality by looking at the recall metric,
also known as hit rate, which is widely used for evaluating
Top-N recommender systems (e.g., [5, 3]).

In our recommender systems setting, the recall metric is
defined as follows:

ZuGUtest L, eTop-N,)
|Utest| ’

recall :=

(4)

where 1[.; is the indicator function that returns 1 if condition
z holds, and 0 otherwise. A recall value of 1.0 indicates that
the system was able to always recommend the hidden item,
whereas a recall of 0.0 indicates that the system was not able
to recommend any of the hidden items. Since the precision
is forced by taking into account only a restricted number N
of recommendations, there is no need to evaluate precision
or F'1 measures, i.e., for this kind of scenario, precision is
just the same as recall up to a multiplicative constant.

Experimental Setting

We implemented our RMFX, and evaluated them against the
following competing models:

1. RMF-RSV: Reservoir Sampling involves retaining
a fixed size of observed instances in a reservoir. The reservoir
captures an accurate “sketch” of history under the constraint
of fixed space. We randomly choose |R| samples from the
stream and update the model using this history, i.e., without
performing any selective sampling.

2. RMF-SP: Single Pass takes a single pair from the
stream and performs an update of the model every itera-
tion. This approach does not “remember” previously seen
instances. That is, we sample a pair p, € P at iteration ¢,
and directly execute the model updates described in lines 7
to 11 in Figure 4.

3. Trending Topics (TT). This model sorts all hash-
tags based on their popularity, so that the top recommended
hashtags are the most popular ones, which represents the
trending topics overall. This naive baseline is surprisingly
powerful, as crowds tend to heavily concentrate on few of
the many thousands available topics in a given time frame.

4. Weighted Regularized Matrix Factorization
(WRMF). This is a state-of-the-art matrix factorization
model for item prediction introduced by Hu et al. [8]. Their
method outperforms neighborhood based (item-item) mod-
els in the task of item prediction for implicit feedback datasets.
The model is computed in batch mode, assuming that the
whole stream is stored and available for training. It is ex-
pected that the performance of this offline method, with full
access to the user-item interactions, will set an upper bound
for the online approaches.

We simulate the stream receiving one instance at the time
based on the tweets’ publication dates. Tweets without hash-
tags were ignored.

For RMFX, RMF-RSV, and RMF-SP we set regularization
constants A\w = A+ = Ay— = 0.1, learning rate no = 0.1,
and a learning rate schedule o = 1, and find that the setting
gives good performance. We are currently investigating how
to efficiently perform a grid search on stream data to tune up
the hyperparameters dynamically. Moreover, the number of
iterations is set to the size of the reservoir for both RMFX and
RMF-RSV.

WRMF setup is as follows: Awrmr = 0.015, C = 1,
epochs = 15, which corresponds to a regularization parame-
ter, a confidence weight that is put on positive observations,
and to the number of passes over observed data, respec-
tively® [8].

We divided the six-month Twitter activity of our dataset,
by choosing the first five months (from first of June, 2009 to
end of November, 2009) for training. We use the remaining

“We have observed that WRMF is not so sensitive to changes in
the hyperparameters, the most important aspect is the number of
iterations before early stopping, i.e., epochs=15

recall
=}
—
7]

[TT [RMF-SP [l RMF-RSV H RMFX [] WRMF

Figure 5: Recommendation performance in terms of recall
for Top—{1, 5, 10}. The reservoir size for RMF-RSV and
our method RMFX is set to 8M. The number of factors for
the matrix factorization models is set to 128. The batch
mode WRMF provides an upper bound reference for the
the online methods’ performance.

month, i.e., December, to build 10 independent test sets fol-
lowing the evaluation protocol described previously in this
section. The models RMFX and RMF-RSV are built on the
sketch of the stream available just before the evaluation pe-
riod, i.e., end of November, 2009. For TT, we use as pre-
dictors the most popular hashtags from the last four weeks
before the evaluation, i.e., TT of November, 2009.

We restricted the analysis to short list of recommenda-
tions and computed the recall metric for Top-IN recommen-
dations, where N € {1,5,10}. The value of the metric for a
particular Top-N is denoted as recall@N. The performance
is evaluated on the test set only and the reported results
are the average over 5 runs. All the differences reported are
statistically significant (two-sample t-test, p < 0.015).

Reproducibility of Experiments. We will provide an anony-
mized dataset of the 5-core dataset used in our experiments
and a reference implementation of RMFX upon request by
email. We used the WRMF implementation provided by My-
MediaLite, a free software recommender system library® [7].

Results

Figure 5 summarizes the recommendation performance for
RMFX, the baselines and the upper bound given by WRMF.
We can observe that RMFX is superior with respect to the
online methods RMF-SP and RMF-RSV, and largely out-
performs the trending topics (TT). Please note that the
trending topics from the previous four weeks achieve a re-
call@10=7.8%, this performance based on the crowd behav-
ior in Twitter is much better than a random model, whose
recall@10 is under 1%.

Table 1 shows that RMFX achieves the best performance
over all online methods evaluated with reservoir sizes 2, 4
and 8 million. As expected, the offline method WRMF sets
an upper bound for the online approaches achieving a re-
call@5 of 18.96%, but RMFX is still competitive with a re-
call@5=16.58% and the advantage of real-time updates.

Finally, with a fixed reservoir size of 8M, we also explored
the impact of model dimensionality over the recommenda-
tion quality for RMFX. The results are presented in Figure 6
and Table 2. From the figure, we see that RMFX consistently
outperforms the baseline TT and the online competitors for
32, 64 and 128 dimensions.

5MyMediaLite:
http://www.ismll.uni-hildesheim.de/mymedialite

Method Reservoir Recall@l Recall@5 Recall@10
Size
RMFX 8M 6.50% 16.58% 22.25%
RMF-RSV 8M 4.70% 14.72% 21.25%
RMFX M 4.16% 11.24% 15.84%
RMF-RSV 4M 2.82% 9.02% 13.70%
RMFX 2M 1.95% 5.59% 8.41%
RMF-RSV 2M 1.68% 4.89% 7.36%
RMF-SP - 3.57% 10.03% 14.69%
TT - 2.26% 5.22 % 7.80%
WRMF (Batch) 8.85% 18.96% 25.73%

Table 1: Recommendation performance for different sizes
of the reservoir. The number of factors is set to 128 for
the online methods RMFX, RMF-RSV, as well as for the
offline approach WRMF'.

Top-5
R e ——— —
© RMF-SP
0.15) 1 RMF-RSV
= % RMFX
S 010 B
[— WRMF
1
0.05
0

32 64 96

Number of Factors

Figure 6: Recall@5 for 32, 64 and 128 factors.

Method Factors Recall@l Recall@5 Recall@10
RMFX 64 5.57% 15.10% 20.79%
RMF-RSV 64 3.79% 12.40% 18.89%
RMFX 32 4.32% 13.18% 18.96%
RMF-RSV 32 2.69% 9.98% 16.07%

Table 2: Recommendation performance for 32 and 64 fac-
tors, with a fixed reservoir of size 8M (the information
for 128 factors is shown in Table 1).

Time and Space Savings vs. Recommendation Quality

We report in this section the CPU training times and space
required for the best performing variation of our online ap-
proach: RMFX, and the ones for the strongest baseline: WRMF.
We also discuss the trade-off between time and space savings
against the recommendation performance.

RMFX is implemented in the Python programming language
using SciPy®. We ran RMFX on a Intel Xeon 1.87GHz ma-
chine. For WRMF, we used the implementation provided by
MyMediaLite [7], which is implemented in C#. The baseline
WRMEF was run on a machine with a slightly faster CPU (In-
tel Xeon 2.27GHz). The experiments were conducted using
GNU/Linux 64-bit as operating system. None of the meth-
ods was parallelized and therefore used one single CPU for
computations. Please remember that running times heavily
depend on platform and implementation, so they should be
only taken as relative indicators.

In Table 3, we can observe the gains in speed of our ap-
proach over the baseline for all the evaluated reservoir sizes.
We can observe that for all reservoir sizes RMFX is faster and
more space efficient than WRMF. For example, RMFX with a

6SciPy : http://scipy.org

Method Time recall@10 Space x times faster Recommendation
(128 factors) (hh:mm:ss) than WRMF Quality w.r.t WRMF
WRMF (Batch) [Baseline] 96:21:50.093 0.2573 100.00% - 100%
RMFX 2M 0:33:12.898 0.0841 5.66% 174.07 32.69%
RMFX 4M 1:07:10.570 0.1584 11.32% 86.07 61.52%
RMFX 8M 2:14:32.355 0.2225 22.63% 42.98 86.47%

Table 3: Time, Space and Recommendation Quality Comparison. RVMFX is compared against WRMTF for different reservoir
sizes: 2, 4 and 8 million. The dimensionality of all methods is 128 factors. Time is measured in seconds and corresponds
to the training time of 15 epochs in case of WRMF and one single epoch in case of RMFX, the gain is computed w.r.t.
WRMPF’s duration. Space is measured as the percentage of all transactions in the dataset, which is 100%=35.35M.
Recommendation performance quality is computed with respect to WRMF'’s recall, which is set as an upper-bound.

reservoir size 8M is approximately 43 times faster and uses
77% less space than WRMF, and yet it delivers a highly
competitive recommendation performance corresponding to
86.47% of the state-of-the-art baseline computed offline.

6. CONCLUSIONS AND FUTURE WORK

We proposed RMFX, an approach for recommending topics
to users in presence of streaming data. Our online setting for
collaborative filtering captures: “what is interesting to me
right now within the social media stream”. RMFX represents
a novel principled approach for online learning from streams,
that selects a subsample of the observed data based on the
objective function gradients, and uses it to guide the matrix
factorization.

RMFX receives instances from a microblog stream and up-
dates a matrix factorization model following a pairwise learn-
ing to rank approach for dyadic data. At the core of RMFX is
stochastic gradient descent which makes our algorithm easy
to implement and efficiently scalable to large-scale datasets.
Our empirical study used Twitter as a test bed and showed
that models updated using the selective sampling approach
proposed here, significantly outperform online methods that
use random samples of the data.

In future work, we plan to investigate how the frequency
of repeated events (i.e. users using the same hashtag or lis-
tening to the same song) can be incorporated to the model
to generate more accurate predictions.

Acknowledgments We would like to thank Zeno Gantner and
Stefan Siersdorfer for fruitful discussions during the genesis of this
paper. This work was funded, in part, by the European Commis-
sion FP7/2007-2013 under grant agreement No.247829 for the M-Eco
Project, the DFG project Multi-relational Factorization Models, and
the NTH School (Niederséchsische Technische Hochschule) for IT Eco-
systems. Lucas Drumond is sponsored by a scholarship from CNPq,
a Brazilian government institution for scientific development.

7. REFERENCES

(1] D. Agarwal, B.-C. Chen, and P. Elango. Fast online
learning through offline initialization for time-sensitive
recommendation. In Proceedings of the ACM KDD
conference, 2010.

[2] L. Bottou. Online Algorithms and Stochastic
Approximations. In Online Learning and Neural Networks.
1998.

[3] P. Cremonesi, Y. Koren, and R. Turrin. Performance of
Recommender Algorithms on Top-N recommendation
Tasks. In Proceedings of the ACM RecSys conference, 2010.

[4] A. S. Das, M. Datar, A. Garg, and S. Rajaram. Google
news personalization: scalable online collaborative filtering.
In Proceedings of the World Wide Web, 2007.

[6] M. Deshpande and G. Karypis. Item-based top-n
recommendation algorithms. ACM Trans. Inf. Syst.,
22:143-177, January 2004.

[6] S. Ertekin, J. Huang, L. Bottou, and L. Giles. Learning on
the Border: Active Learning in Imbalanced Data
Classification. In Proceedings of the ACM CIKM
conference, 2007.

[7] Z. Gantner, S. Rendle, C. Freudenthaler, and
L. Schmidt-Thieme. MyMediaLite: A free recommender
system library. In Proceedings of the ACM RecSys
conference, 2011.

[8] Y. Hu, Y. Koren, and C. Volinsky. Collaborative filtering
for implicit feedback datasets. In Proceedings of the IEEE
ICDM conference, 2008.

[9] T. Joachims. Optimizing Search Engines Using
Clickthrough Data. In Proceedings of the eighth ACM
SIGKDD international conference on Knowledge discovery
and data mining, KDD ’02, 2002.

[10] R. Karimi, C. Freudenthaler, A. Nanopoulos, and
L. Schmidt-Thieme. Towards optimal active learning for
matrix factorization in recommender systems. In IEEE
ICTAI conference, 2011.

[11] Y. Koren, R. Bell, and C. Volinsky. Matrix Factorization
Techniques for Recommender Systems. Computer, August
2009.

[12] S. Muthukrishnan. Data streams: algorithms and
applications. Now Publishers, 2005.

[13] S. Rendle, C. Freudenthaler, Z. Gantner, and
L. Schmidt-Thieme. BPR: Bayesian Personalized Ranking
from Implicit Feedback. In Proceedings of UAI conference,
2009.

[14] S. Rendle and L. Schmidt-Thieme. Online-updating
regularized kernel matrix factorization models for
large-scale recommender systems. In Proceedings of the
ACM RecSys conference, 2008.

[15] D. Sculley. Combined regression and ranking. In
Proceedings of the ACM KDD conference, 2010.

[16] A. J. Smola and B. Scholkopf. Sparse greedy matrix
approximation for machine learning. In Proceedings of the
International Conference on Machine Learning, 2000.

[17] S. Tong and D. Koller. Support vector machine active
learning with applications to text classification. J. Mach.
Learn. Res., 2:45-66, Mar. 2002.

[18] twittereng. 200 million tweets per day. Twitter Blog.
http://goo.gl/eybp0, June 2011.

[19] V. N. Vapnik. The nature of statistical learning theory.
Springer-Verlag New York, Inc., New York, NY, USA, 1995.

[20] J. S. Vitter. Random sampling with a reservoir. ACM
Trans. Math. Softw., 11:37-57, March 1985.

[21] J. Yang and J. Leskovec. Patters of temporal variation in
online media. In Proceedings of the ACM WSDM
conference, 2011.

[22] H. Yu. SVM Selective Sampling for Ranking with
Application to Data Retrieval. In Proceedings of the
eleventh ACM KDD conference, 2005.

[23] P. Zhao, S. Hoi, R. Jin, and T. Yang. Online AUC
Maximization. In Proceedings of the International
Conference on Machine Learning, 2011.

