
P m ~ e ~ d i n g ~ o f t h e 1 0 0 3  IEEE 
Internationnl Conference on Robotics &Automation 

Taipei, Taiwan, September 14-19, 2003 

Real-time Tracking and Pose Estimation for Industrial Objects 
using Geometric Features 

Youngrock Yoon, Guilherme N. DeSouza, Avinash C. Kak 
Robot Vision Laboratory 

Purdue University 
West Lafayette, Indiana 47907 

Email: {yoony,gdesouza,kak}@ecn.purdue.edu 

AbsIracf-This paper pments a fast tracking algorithm 
capable of estimating the complete pose (6DOF) of an 
industrial object by using its circular-shape features. Since 
the algorithm i s  part of a real-time visual servoing system 
designed for assembly of automotive parts on-the-fly, the 
main constraints in the design of the algorithm were: speed 
and accuracy. That is: close to frame-rate performance, and 
error in pose estimation smaller than a few millimeters. The 
algorithm proposed uses only three model features, and yet it 
is very accurate and robust. For that reason both constraints 
were satisfied the algorithm runs at 60 fps (30 fps for each 
stereo image) an a PIII-800MHz computer, and the pose of 
the object is calculated within an uncertainty of 2.4 mm in 
translation and 1.5 degree in rotation. 

I. INTRODUCTION 

There has been considerable interest in object track- 
ing in the past few years. The applications of such 
systems vary enormously, ranging from: 1) tracking of 
different objects in video sequences[l3]; 2) tracking 
of human bodies[IO], human hands for sign language 
recognition[l2], and faces for airport security[8]; 3) track- 
ing of flying objects for military use; to finally 4) tracking 
of objects for automation of industrial processes[l]. How- 
ever, when it comes to the last - automation of industrial 
processes - the task of designing a successful tracking 
algorithm becomes even more daunting. While most of 
the applications of object tracking can tolerate off-line 
processing and relatively large errors in pose estimation of 
the target object, the autonomous operation of an assembly 
line for manufacturing requires much higher levels of 
accuracy, robustness, and speed. Therefore, without an ef- 
ficient tracking algorithm, it becomes virtually impossible, 
for example, to servo a robot to fasten bolts located on the 
cover of a car engine - as this engine continuously moves 
down the assembly line. 

Using robots in moving assembly lines has obvious 
advantages: the improvements in productivity; the safety 
aspects of using robots in hazardous or repetitive tasks - 
which are not quite suitable for human workers - etc. Also, 
machine vision has'beeu very useful in robotics, because 
it can he used to close the control loop around the pose of 
the robotic end-effector [7l. This visual feedback allows 
for more accurate retrieval and placement of parts during 
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an assembly operation [4]. 
Unfortunately, visually guided robot control has 

been limited to applications with stationary calibrated 
workspaces, or to applications with the assembly line 
synchronized with the robot workspace - which creates 
the effect of the workspace being stationary with respect 
to the robot [2], [ I l l .  The reason for this limitation in the 
applications is caused partially by a lack of fast tracking 
algorithms that can accurately guide the robot with respect 
to moving, dynamic workspaces. 

In this paper, we describe such a fast and accurate 
visual tracking algorithm. While most tracking and pose 
estimation algorithms rely on CAD models or unstructured 
cloud of points to provide accuracy and redundancy[5], 
[91, our algorithm achieves very good accuracy using 
only three of the many similar geometric features of 
the object. By doing so, we also guarantee real-time 
performance which is indispensable for automation in 
dynamic workspaces. The target object used in our work 
is an engine cover as depicted in Fig. 1. This object has 
a metallic surface rich in circular shapes such as bolts, 
lug-holes, and cylindrical rods. That characteristic makes 
natural the choice of geometric features as visual cues for 
both tracking and 3D pose estimation of the object. 

In Section 2, we describe the tracking algorithm, as 
well as the pose estimation algorithm. These two modules 
interact with our distributed visual servoing architecture, 
as described in detail in [I]. The results are presented in 
Section I11 followed by the conclusions and a discussion 
of future work presented in Section IV. 

11. TRACKING SYSTEM 

Our system is divided in two modules: the Stereo-vision 
Tracking module and the Pose Estimation module (Fig.3- 
a). The Stereo-vision Tracking module consists of a stereo 
model-based algorithm, which tracks three particular cir- 
cular features of the target object and passes their stereo- 
corresponding pixel coordinates to the Pose Estimation 
module. An example of the processing performed by the 
Stereo-vision Tracking module is depicted in Fig.2, where 
the pixel coordinates of the features are indicated by 
cross-hairs. Based on these pixel coordinates, the Pose 
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Fig 1 
mounted on the robot end-effector 

The target objectiengme block cover) and our stereo camera 

(a) (b) 

Fig. 2. &ample of the Stereo-vision Tracking process - (a) left image. 
(b) right image 

Estimation module can calculate the 3D coordinates of the 
feature points using stereo reconstruction and estimate the 
complete pose (6-DOF) of the engine cover in the robot 
workspace. 

Details of each module are presented in the next suh- 
sections. 

A. Stereo-vision Tracking Module 
In this section, we will present the tracking algorithm 

for only one of the stereo images (Fig.3-b.) This tracking 
algorithm performs in two distinct phases: initialization 
phase and tracking phase. During the initialization phase, 
the algorithm must roughly locate the center of mass of 
each of the three object features. Once these coordinates 
are determined, search windows around the three features 
can be defined. Those windows are used during the 
tracking phase of the algorithm to constrain the search 
for the features in the sequence of frames (Fig.4.) 

In order to perform the initial localization of the features 
in the image space, the tracking module assumes that 
the whole engine cover can be seen'. Also, due to the 
elongated shape of the engine cover, two axes ~ the 

'This condition is satisfied by another module of our visual servoing 
system called Coarse Control[ 11. 

Stere-vision Trackng Module 

Fig. 3. 
vision Tracking module 

System overview: (a) whole system (b) details of the Stereo- 
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Fig. 4. 
search windows for three target features. 

Principal axes of the targel blob and the ioltial positions of 

major and minor axes of the target object - can be 
easily obtained using principal components applied to the 
binarized image. These two axes are used to locate the 
features in the image space, since the pixel coordinates 
of the features can he easily expressed with respect to 
these two axes. Result of this initialization procedure is 
depicted on Fig.4. As we mentioned before, once the 
features are located in the image, search windows for each 
target feature can be defined. As one may infer, the initial 
position of the search window does not need to be exact. 
The only assumption during the initialization phase is that 
the initial position and size of the search window should 
be reasonably accurate for the search window to enclose 
the target feature. It is only in the tracking phase of the 
algorithm that the exact position of the target feature will 
be determined. Each search window has a size that equals 
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twice the size of the target feature (blob) on top of which 
it is located. 

Fig. 5.  R ~ S U ~ I  of blob tracking. Numbered blobs shown in each enlarged 
search window a x  filtered by morphological filter. 

During the tracking phase of the algorithm, many blobs 
may appear as candidate features inside the search win- 
dows. In order to decide which blobs represent the tracked 
features, a feature identification algorithm is applied to the 
pixels confined by the search windows. As the first step, 
this algorithm removes noise from the binarized image 
using a morphological filter (Fig. 5) .  Next, an ellipse 
detection procedure is employed to search for the circular 
features, which may be projected on the input image as 
ellipses. This procedure uses the fact that the Mahalanobis 
distance from a point on the border of an ideal ellipse to 
the center of the ellipse is always constant. The ellipse 
detection procedure is described in more detail by the 
following steps: 

Find the border pixels of each candidate blob using 
a border-following algorithm; 
Compute the center of mass of the border pixels and 
the covariance of their pixel coordinates. Let qo be 
the center of mass and M he the covariance matrix; 
For each pixel on the border, say q;, calculate the 
Mahalanohis distance as defined by: 

di = J(qi  -qo)TM-'(qi -40) 

As we mentioned above, if the blob has an elliptical 
shape, this distance measure would be constant within 
a very small tolerance throughout all border pixels. . Calculate the standard deviation of di, o d 3  and com- 
pare with an empirically obtained threshold. If this 
condition is satisfied, the candidate blob is accepted 
as an ellipse. 

After all the blobs are tested, the blob with the minimum 
standard deviation is chosen as the target feature. To 
illustrate the results of this feature identification applied to 
Fig.5, we list in Table I the average distances and standard 

TABLE I 
MAHALANOBIS DISTANCE MEASURE FOR EACH OF BLOBS IN SEARCH 

WINDOW DISPL*YED IN "CURB 5 

I Window I Blob I d Mean I UA I 

deviations for the blobs detected. In this example, blob 2 in 
window 1 is selected as feature 1, while blob 2 in window 
3 is selected as feature 3. Since window 2 has only one 
candidate, if the blob passes the ellipse detection test it is 
automatically selected as feature 2. 

Finally, during the tracking phase of the algorithm, the 
positions of the search windows in the next frame are 
updated based on the positions of the target features in 
the current frame. In this case, it is assumed that the 
movement of the target feature between frames will not 
exceed the size of the search window, which is determined 
using the actual motion speed of the target object in the 
assembly line in terms of the frame rate. 

B. Pose Estimation 

Assuming that the features can he tracked and their 
pixel coordinates can be calculated, it is the job of the Pose 
Estimation module to find the actual pose of the target 
object. Since the Stereo-vision Tracking module makes 
sure that the search window for a feature stays locked 
onto that feature, finding the stereo correspondence of 
the pixel coordinates becomes trivial. Therefore, obtaining 
the 3D coordinates of the features is easily accomplished 
using the stereo camera calibration [6] and simple stereo 
reconstruction methods [3]. 

Given the 3D coordinates of the features, the pose of 
the target object is defined by the homogeneous transfor- 
mation matrix that relates the object reference frame and 
the robot end-effector reference frame - where the stereo 
cameras are mounted. This homogeneous transformation 
matrix can be decomposed into 6 parameters: x, y, z, yaw, 
pitch and roll (Euler 1). However, before we can calculate 
those six parameters, we need to find the object coordinate 
frame in end-effector coordinates. The object reference 
frame is defined with respect to the three model features 
(tracked features) as shown in Fig. 6 and is calculated by 
the Pose Estimation module as follows: . Let the 3D coordinates of the three model features 

shown in Fig. 6 he P,,q,/'3. 
The origin of object reference frame 0 is the point 
dividing the line 54 in half. . The Y ax2 of the object reference frame is along the 
vector OP,. 
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. The X axis is along t h z e c t o r  d e d  by the cross 
product of the vectors OP, and Ofi .  
The Z axis lies on the plane of the three features and 
is calculated by the cross product of the X axis and 
the Y axis. 

Since P,,Pz,P3 represent three vectors in the end-effector 
reference frame, the homogeneous transformation with 
respect to the object reference frame comes directly from 
the axes above. 

Model Feaiures 

Fig .  6. Definition of object reference frame 

111. EXPERIMENTAL RESULTS 

Before we describe our error measurements, we must 
present the workspace on which the experiments were 
carried out. Our workspace consists of a target object 
placed in front of two stereo cameras mounted on a 
Kawasaki UX-I20 robot end-effector as depicted in Fig. 
1. Our system was implemented on a Linux environment 
running on a Pentium-111 800MHz with 512Mb of system 
memory. Two extemally synchronized Pulnix TMC-7DSP 
cameras were connected to two Matrox Meteor image 
grabbers, which can grab pairs of stereo images at 3Ofps. 
The system can track all three object features at exactly 
6Ofps (3Ofps per camera.) 

In a system such as this one - for assembly of parts on 
the fly - the various errors in the tracking algorithm ulti- 
mately translate into how accurately the tracker positions 
the end-effector with respect to the target object. These 
errors originate mainly from: 1 )  the various calibration 
procedures such as hand-eye calibration, camera calibra- 
tion, etc.; 2) the pose estimation using 3D reconstruction 
of the feature points; and 3) the ability of the system 
to detect and keep track of the target object. In [6], 
we have already presented a comprehensive calibration 
procedure that, for the same workspace, provided an 
accuracy of Imm in 3D reconstruction of special objects 

(calibration patterns). Therefore, for this work we focused 
on the measurement of the errors specifically in 3D pose 
estimation and tracking. 

The accuracy of the tracking algorithm was measured in 
two ways. First, we measured how the tracking algorithm 
performs the stereo reconstruction and pose estimation 
when the object is stationary. The second error measure- 
ment was regarding the pose estimation for a moving 
object. 

I )  Error Measuremenr for Srarionary Targer: The goal 
here was to measure the effects that algorithms such 
as binarizing, ellipse detection, etc. have in the pose 
estimation using 3D reconstruction as described in section 
11-B. Therefore, we ran the tracking algorithm and fixed 
both object and camera positions while we measured the 
uncertainties in pixel coordinates of the object features as 
well as the object pose in the world reference frame. These 
uncertainties reflect the errors of the algorithms above over 
a 5-minute sampling period, at 6Ofps. 

In Table I1 we show the experimental results. For this 
experiment, the pose of the object was calculated at three 
different relative distances between object and cameras. 
For each of these distances, four positions of the camera 
were chosen with respect to the object: top, left, right, 
and bottom. Each position is about 20cm from the center 
position. 

From the table above we notice that the uncertainty (U) 
in the object pose is highly dependent on the uncertainty 
in the pixel coordinates of the features. Also from the 
table, the uncertainty in the position of the features seems 
to be unexpectedly independent of the distance between 
camera and target object, since at 70cm the error is smaller 
than at 60 or 80 cm. However, we attribute this behavior 
to other factors that may also affect the pose estimation, 
such as the proximity of the object to the vergence point 
of the cameras, the quality of the tracking for different 
sizes of the features as perceived in the image, and the 
illumination conditions (shade and reflectance for different 
angleslpositions). 

2) Error Measuremenr for  Moving Target: For this 
experiment, measuring the error is more difficult than is 
the case for a stationary target. That is, it is not possible to 
calculate the ground tNth for the object pose if the object 
is moving. Therefore, instead of measuring the error for 
a moving target, we fixed the target object and moved 
the camera (end-effector). The cameralend-effector moved 
along an arbitrary path, while the pose of the robot end- 
effector was monitored at each instant when an image was 
digitized. Fig. 7 depicts plots of the estimated and the 
actual values for each of the six components of the object 
pose - x, y, z, yaw, pitch, and roll - as the camera moves 
along the path. 

Finally, in Table 111, we summarize the statistics of 
the error in x, y. z, yaw, pitch, and roll. As one may 
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TABLE 11 
STATISTICS O F P O S E  ESTIMATION UNCERTAINTY FOR A STILL OBJECT; 6: STD, RANGE: MAX-MIN 

observe, despite the occurrence of a few "off-the-curve" 
values (large m m  a h  error's in the table), the translational 
uncertainty is less than 2.5 mm. while the rotational 
uncertainty is less than 1.5 degree 

TABLE 111 
MEAN AND STANDARD DEVIATION OF THE ERRORS BETWEEN 

ACTUAL AND ESTIMATED POSE. 

I I Mean I Std I Max I 

Fig. 7. 
2, Yaw. Pitch, and Roll components of the object pose 

Actual (blue plot) and estimated (red plot) values for the X. U, 

IV. CONCLUSION A N D  FUTURE WORKS 

A real-time stereo tracking algorithm which can esti- 
mate the 6-DOF pose of an industrial object with high 
accuracy was presented. Integrated with the visual servo- 
ing system in [I] ,  this tracking algorithm exposes a new 
frontier in automation of moving assembly lines. 

In the future, we intend to study the effect of any 
changes in the vergence angle of the cameras on the 
target object's estimated pose. Also, because of the ini- 
tialization phase, the application of this algorithm is 
currently constrained to a controlled environment with, for 
example, distinctive backgrounds, and consistent lighting 
conditions. While these constraints are not relevant to the 
tracking phase of the algorithm, these limitations need to 
be addressed in future work. 
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