Proceedings of the 2003 IEEE

Tnternational Conference on Robotics & Automation

Taipei, Taiwan, September 14-19, 2003

Real-time Tracking and Pose Estimation for Industrial Objects
using Geometric Features '

Youngrock Yoon, Guilherme N. DeSouza, Avinash C. Kak
Robot Vision Laboratory
Purdue University
West Lafayette, Indiana 47907
Email: {yoony,gdesouzakak }@ecn.purdue.edu

Abstract— This paper presents a fast tracking algorithm
capable of estimating the complete pose (6DOF) of an
industrial object by using its circular-shape features. Since
the algorithm is part of a real-time visual servoing system
designed for assembly of automotive parts on-the-fly, the
main constraints in the design of the algorithm were: speed
and accuracy, That is: close to frame-rate performance, and
error in pose estimation smaller than a few millimeters. The
algorithm proposed uses only three model features, and yet it
is very accurate and robust. For that reason both constraints
were satisfied: the algorithm runs at 60 fps (30 fps for each
stereo image) on a PIII-800MHz computer, and the pose of
the object is calculated within an uncertainty of 2.4 mm in
translation and 1.5 degree in rotation.

1. INTRODUCTION

There has been considerable interest in object track-
ing in the past few years. The applications of such
systems vary enormously, ranging from: 1) tracking of
different objects in video sequences[13]; 2) tracking
of human bodies[10], human hands for sign language
recognition[12], and faces for airport secunity[8]; 3) track-
ing of flying objects for military use; to finally 4) tracking
of objects for automation of industrial processes[1]. How-
ever, when it comes to the last — automation of industrial
processes — the task of designing a successful tracking
algorithm becomes even more daunting. While most of
the applications of object tracking can tolerate off-line
processing and relatively large errors in pose estimation of
the target object, the autonomous operation of an assembly
line for manufacturing requires much higher levels of
accuracy, robustness, and speed. Therefore, without an ef-
ficient tracking algorithm, it becomes virtually impossible,
for example, to servo a robot to fasten bolts located on the
cover of a car engine — as this engine continuously moves
down the assembly line.

Using robots in moving assembly lines has obvious
advantages: the improvements in productivity; the safety
aspects of using robots in hazardous or repetitive tasks —
which are not quite suitable for human workers — etc, Also,
machine vision has’been very useful in robotics, because
it can be used to clese the control loop around the pose of
the robotic end-effector {7]. This visual feedback allows
for more accurate retrieval and placement of parts during

0-7803-7736-2/03/$17.00 ©2003 IEEE

an assembly operation [4].

Unfortunately, visually guided robot control has
been limited to applications with stationary calibrated
workspaces, or to applications with the assembly line
synchronized with the robot workspace — which creates
the effect of the workspace being stationary with respect
to the robot [2], [11]. The reasen for this limitation in the
applications is caused partially by a lack of fast tracking
algorithms that can accurately guide the robot with respect
to moving, dynamic workspaces.

In this paper, we describe such a fast and accurate
visual tracking algorithm. While most tracking and pose
estimation algorithms rely on CAD models or unstructured
cloud of points to provide accuracy and redundancy[5],
[9], our algorithm achieves very good accuracy using
only three of the many similar geometric features of
the object. By doing so, we also guarantee real-time
performance which is indispensable for automation in
dynamic workspaces. The target object used in our work
is an engine cover as depicted in Fig. 1. This object has
a metallic surface rich in circular shapes such as bolts,
lug-holes, and cylindrical rods. That characteristic makes
natural the choice of geometric features as visual cues for
both tracking and 3D pose estimation of the object.

In Section 2, we describe the tracking algorithm, as
well as the pose estimation algorithm. These two modules
interact with our distributed visual servoing architecture,
as described in detail in [1}. The results are presented in
Section III followed by the conclusions and a discussion
of future work presented in Section IV.

II. TRACKING SYSTEM

Our system is divided in two modules: the Stereo-vision
Tracking module and the Pose Estimation module (Fig.3-
a). The Stereo-vision Tracking module consists of a stereo
model-based algorithm, which tracks three particular cir-
cular features of the target object and passes their stereo-
corresponding pixel coordinates to the Pose Estimation
module. An example of the processing performed by the
Stereo-vision Tracking module is depicted in Fig.2, where
the pixel coordinates of the features are indicated by
cross-hairs. Based on these pixel coordinates, the Pose

3473

mailto:yoony,gdesouza,kak}@ecn.purdue.edu

Stereo—vision Tracking Module

Initial localization of
the target feaures

Right Image ", Left image :

i rl]
Sterec—vision E"ﬁ Blob Segmentation |

Tracking Module : H

lﬁ Ellipse Detection 1

picture cpordinates of the : :
tracking features i L]

[Target Feature Selection)

i

Pase Estimation . . 4

1
Move Search Window |

Module 1

¥
6-DOF pose of target object

(@) (b)

T
To Pose Estimation Module

Fig. 1. The target object(engine block cover) and our stereo camera

mounted on the robot end-effector

Fig. 3. System overview: (a) whole system {b) details of the Stereo-
vision Tracking module

Fig. 2. Example of the Stereo-vision Tracking process - (a) left image,
(b) right image

Estimation module can calculate the 3D coordinates of the
feature points using stereo reconstruction and estimate the
complete pose (6-DOF) of the engine cover in the robot
workspace.

Details of each module are presented in the next sub-

Initial Search Windows

R Fig. 4. Principal axes of the target blob and the initial positions of
sections. search windows for three target features.

A. Stereo-vision Tracking Module

In this section, we will present the tracking algorithm
for only one of the stereo images (Fig.3-b.) This tracking
algorithm performs in two distinct phases: initialization
phase and tracking phase, During the initialization phase,
the algorithm must roughly locate the center of mass of
each of the three object features. Once these coordinates
are determined, search windows around the three features
can be defined. Those windows are used during the
tracking phase of the algorithm to constrain the search
for the features in the sequence of frames (Fig.4.)

In order to perform the initial localization of the features
in the image space, the tracking module assumes that
the whole engine cover can be seenl. Also, due to the
elongated shape of the engine cover, two axes — the

major and minor axes of the target object — can be
easily obtained using principal components applied to the
binarized image. These two axes are used to locate the
features in the image space, since the pixel coordinates
of the features can be easily expressed with respect to
these two axes. Result of this mitialization procedure 1s
depicted on Fig.4. As we mentioned before, once the
features are located in the image, search windows for each
target feature can be defined. As one may infer, the initial
position of the search window does not need to be exact.
The only assumption during the initialization phase is that
the initial position and size of the search window should
be reasonably accurate for the search window to enclose
the target feature. It is only in the tracking phase of the

!This condition is satisfied by another module of our visual servoing algorithm that the exact position of the target feature will
system called Coarse Control[1]. be determined. Each search window has a size that equals

3474

twice the size of the target feature (blob) on top of which
it is located.

Fig. 5. Result of blob tracking. Numbered blobs shown in each enlarged
search window are filiered by morphological filter.

During the tracking phase of the algorithm, many blobs
may appear as candidate features inside the search win-
dows. In order to decide which blobs represent the tracked
features, a feature identification algorithm is applied to the
pixels confined by the search windows. As the first step,
this algorithm removes noise from the binarized image
using a morphological filter (Fig. 5). Next, an cllipse
detection procedure is employed to search for the circular
features, which may be projected on the input image as
ellipses. This procedure uses the fact that the Mahalanobis
distance from a point on the border of an ideal ellipse to
the center of the ellipse is always constant. The ellipse
detection procedure is described in more detail by the
following steps:

» Find the border pixels of each candidate blob using

a border-following algorithm;
Compute the center of mass of the border pixels and
the covariance of their pixel coordinates. Let gy be
the center of mass and M be the covariance matrix;
For each pixel on the border, say g;, calculate the
Mahalanobis distance as defined by:

d;= \/(Qi —qo)" M~ (qi — q0)

As we mentioned above, if the blob has an elliptical
shape, this distance measure would be constant within
a very small tolerance throughout all border pixels.
Calculate the standard deviation of d;, 6, and com-
pare with an empirically obtained threshold. If this
condition is satisfied, the candidate blob is accepted
as an ellipse.

After all the blobs are tested, the blob with the minimum
standard deviation is chosen as the target feature. To
illustrate the results of this feature identification applied to
Fig.5, we list in Table I the average distances and standard

3475

TABLE I
MAHALANOBIS DISTANCE MEASURE FOR EACH OF BLOBS IN SEARCH
WINDOW DISPLAYED IN FIGURE 5

Window Blob d Mean Oy
number | number
1 1 1.376326 | 0499613
2 1413372 | 0.072007
3 1 1417955 | 0.139050
3 1 1.382495 | 0.297839
2 1.410550 | 0.101723

deviations for the blobs detected. In this example, blob 2 in
window 1 1s selected as feature 1, while blob 2 in window
3 is selected as feature 3. Since window 2 has only one
candidate, if the blob passes the ellipse detection fest it is
automatically selected as feature 2.

Finally, during the tracking phase of the algorithm, the
positions of the search windows in the next frame are
updated based on the positions of the target features in
the current frame. In this case, it is assumed that the
movement of the target feature between frames will not
exceed the size of the search window, which is determined
using the actual motion speed of the target object in the
assembly line in terms of the frame rate.

B. Pose Estimation

Assuming that the features can be tracked and their
pixel coordinates can be calculated, it is the job of the Pose
Estimation module to find the actual pose of the target
object. Since the Stereo-vision Tracking module makes
sure that the search window for a feature stays locked
onto that feature, finding the stereo correspondence of
the pixel coordinates becomes trivial. Therefore, obtaining
the 3D coordinates of the features is easily accomplished
using the stereo camera calibration [6] and simple stereo
reconstruction methods [3].

Given the 3D coordinates of the features, the pose of
the target object is defined by the homogeneous transfor-
mation matrix that relates the object reference frame and
the robot end-effector reference frame — where the stereo
cameras are mounted. This homogeneous transformation
maltrix can be decomposed into 6 parameters: x, y, z, yaw,
pitch and roll (Euler 1). However, before we can calculate
those six parameters, we need to find the object coordinate
frame in end-effector coordinates. The object reference
frame is defined with respect to the three model features
(tracked features) as shown in Fig. 6 and is calculated by
the Pose Estimation module as follows:

« Let the 3D coordinates of the three model features
shown in Fig. 6 be P, P, Ps.

« The origin of object reference frame € is the point
dividing the line P P in half.

o« TheY aﬂs’ of the object reference frame is along the
vector OF;.

+ The X axis is along the vector ge“ﬁned by the cross
product of the vectors OF) and OPF;.

e The Z axis lies on the plane of the three features and
i8 calculated by the cross product of the X axis and
the ¥ axis.

Since Py, P, P; represent three vectors in the end-effector
reference frame, the homogeneous transformation with
respect to the object reference frame comes directly from
the axes above.

Model Features

Object Reference Frame

Fig. 6. Definition of object reference frame

III. EXPERIMENTAL RESULTS

Before we describe our error measurements, we must
present the workspace on which the experiments were
carried out. Our workspace consists of a target object
placed in front of two stereo cameras mounied on a
Kawasaki UX-120 robot end-effector as depicted in Fig.
1. Our system was implemented on a Linux environment
running on a Pentium-III 800MHz with 512Mb of system
memory. Two externally synchronized Pulnix TMC-7DSP
cameras were connected to two Matrox Meteor image
grabbers, which can grab pairs of stereo images at 30fps.
The system can track all three object features at exactly
60fps (30fps per camera.)

In a system such as this one — for assembly of parts on
the fly — the various errors in the tracking algorithm ulti-
mately transfate into how accurately the tracker positions
the end-effector with respect to the target object. These
errors originate mainly from: 1) the varicus calibration
procedures such as hand-eye calibration, camera calibra-
tion, etc.; 2) the pose estimation using 3D reconstruction
of the feature points; and 3) the ability of the sysiem
to detect and keep track of the target object. In [6],
we have already presented a comprehensive calibration
procedure that, for the same workspace, provided an
accuracy of 1mm in 3D reconstruction of special objects

3476

(calibration patterns). Therefore, for this work we focused
on the measurement of the errors specifically in 3D pose
estimation and tracking.

The accuracy of the tracking algorithm was measured in
two ways, First, we measured how the tracking algorithm
performs the stereo reconstruction and pose estimation
when the object is stationary. The second error measure-
ment was regarding the pose estimation for a moving
object.

1) Error Measurement for Stationary Target: The goal
here was to measure the effects that algorithms such
as binarizing, ellipse detection, -etc. have in the pose
estimation using 3D reconstruction as described in section
[I-B. Therefore, we ran the tracking algorithm and fixed
both object and camera positions while we measured the
uncertainties in pixel coordinates of the object features as
well as the object pose in the world reference frame. These
uncertainties reflect the errors of the algorithms above over
a 5-minute sampling period, at 60fps.

In Table II we show the experimental results. For this
experiment, the pose of the object was calculated at three
different relative distances between object and cameras,
For each of these distances, four positions of the camera
were chosen with respect to the object: top, left, right,
and bottom. Each position is about 20cm from the center
position,

From the table above we notice that the uncertainty (o)
in the object pose is highly dependent on the uncertainty
in the pixel coordinates of the features. Also from the
table, the uncertainty in the position of the features seems
to be unexpectedly independent of the distance between
camera and target object, since at 70cm the error is smaller
than at 60 or 80 cm. However, we attribute this behavior
to other factors that may also affect the pose estimation,
such as the proximity of the object to the vergence point
of the cameras, the quality of the tracking for different
sizes of the features as perceived in the image, and the
illumination ¢onditions (shade and reflectance for different
angles/positions).

2) Error Measurement for Moving Target: For this
experiment, measuring the error is more difficult than is
the case for a stationary target. That is, it is not possible to
calculate the ground truth for the object pose if the object
is moving. Therefore, instead of measuring the error for
4 moving target, we fixed the target object and moved
the camera (end-effector). The camera/end-effector moved
along an arbitrary path, while the pose of the robot end-
effector was monitored at each instant when an image was
digitized. Fig. 7 depicts plots of the estimated and the
actual values for each of the six components of the object
pose — X, ¥, z, yaw, pitch, and roll — as the camera moves
along the path.

Finally, in Table I, we summarize the statistics of
the error in X, v, Z, yaw, pitch, and roll. As one may

TABLE I
STATISTICS GF POSE ESTIMATIGN UNCERTAINTY FOR A STILL GBIECT; 0! STH, RANGE: MAX-MIN

)

observe, despite the occurrence of a few “off-the-curve’
values (large max abs error’s in the table), the translaticnal
uncertainty is less than 2.5 mm, while the rotational
uncertainty is less than 1.5 degree.

e

M R N

Frame number

v

N

Degres

ik

o w e W W W W

Frama mmber

Frama number

z Rolt

I
Dagree

A

Matar

-

!

N T I

Frame npmber

B e W W W

Fig. 7. Actual (blue plot} and estimated (red plot) values for the X, Y,
Z, Yaw, Pitch, and Roll components of the object pose

3477

Distance Pose [Translational Rotational uncertainty
to with among all uncertainty (degree)

object | respect to | six features (mm) Yaw Pitch Roll
{mm) object (pixel) c range g range o Tange g range
top 0.15 0495 | 2077 | 0.033 | 0.232 | 0.069 | 1.824 | 0.254 | 0.924
600 left 0.29 0.566 [2.918 | 0.035 | 0.270 | 0.448 | 3.005 | 0.264 | 1.389
right 0.27 0.581 | 2.028 ; 0.032 { 0.258 | 0.338 | 1.947 | 0.294 | 1.066
bottom 0.24 0.280 | 2.450 | 0.077 | 0414 | 0.314 | 3.360 | 0.109 | 1.047
top 0.22 0.099 | 0.301 | 0.077 | 0.255 | 0.390 | 2.629 | 0.019 | 0.138
700 left 0.13 0059 | 1544 [0.038 | 0.245 | 0.470 | 1.287 | 0.033 | 0.713
right 0.04 0.076 | 1.368 | 0.008 | 0.370 | 0.080 | 1.294 | 0.035 | 0.55%
bottom 0.30 0.363 | 3.102 | 0.058 | 0.416 | 0.706 | 4.084 | 0.160 | 0.836
top 0.31 0.576 1 5.162 | 0.052 | 0.440 | 0.860 | 5.053 | 0.280 | 2.406
800 left 0.17 0.160 | 1.993 | 0.026 | 0.314 | 0.827 | 5.414 | 0.077 | 0.904
right 0.30 0.867 | 3.694 ; 0.102 | 0.443 | 0.912 | 4.994 | (.380 [1.525
bottom 0.15 0.539 | 3948 | 0.076 | 0.708 | 0.206 | 3.586 | 0.253 | 2.414

TABLE Il

MEAN AND STANDARD DEVIATION OF THE ERRORS BETWEEN
ACTUAL AND ESTIMATED POSE.

Mean Std Max

a abs error
X(mm) 0.094 | 2418 7.158
Y 0.190 | 1.630 5.396
z -0.703 | 2.210 9,298
Yaw(degree) | 0202 | 1.397 5.136
Piich -0.162 | 0.594 3.067
Roll 0.240 | 1497 5.540

IV. CoNCLUSION AND FUTURE WORKS

A real-time stereo tracking algorithm which can esti-
mate the 6-DOF pose of an indusirial object with high
accuracy was presented. Integrated with the visual servo-
ing system in [1], this tracking algorithm exposes a new
frontier in automation of moving assembly lines.

In the future, we intend to study the effect of any
changes in the vergence angle of the cameras on the
target object’s estimated pose. Also, because of the ini-
tialization phase, the application of this algorithm is
currently constrained to a controlled environment with, for
example, distinctive backgrounds, and consistent lighting
conditions. While these constraints are not relevant to the
tracking phase of the algorithm, these limitations need to
be addressed in future work.

ACKNOWLEDGEMENT

The authors would like to thank Ford Motor Company
for supporting this project.

V. REFERENCES

[1] G.N.DeSouza and A. C. Kak. A subsumptive, hierarchical,
and distributed vision-based architecture for smart robotics.
IEEE Transactions on Robotics and Automation, submitted,
2002,

[2] E. Ersu and 5. Wienand. Vision system for robot guidance
and quality measurement systems in automotive industry.
Industrial Robot, 22(6).26-29, 1995,

[3] O. D. Faugeras. Three-Dimensional Computer Vision. MIT

Press, 1993,

J. T. Feddema and O. R. Mitchell. Vision-guided servoing

with feature-based trajectory generation. [EEE Transac-

tions on Robotics and Automation, 5(5):691-700, October

1989,

[5] C. Harris. Tracking with rigid models. In A. Blake and

A. Yuille, editors, Active vision, pages 59-73, Chapter 4,

1992. MIT Press.

R. Hirsh, G. N. DeSouza, and A. C. Kak. An iterative ap-

proach to the hand-eye and base-world calibration problem.

In Proceedings of 2001 IEEE International Conference on

Robotics and Awtomation, volume 1, pages 2171-2176,

May 2001. Seoul, Korea.

[7] S. Huichinson, G. D. Hager, and P. I. Corke. A tutorial
on visual servo control. [EEE Trans. on Rebolics and
Automation, 12(5):651-670, Oct. 1996.

[8] L Incorporated. Faceit{tm) face recognition
technology. In hup:/www.identix.com/productsipro_
faceithtmi http:Avww.cnn, com2001/U5/09/28/rec.
airport.facial.screening, 2002.

[9] E. Marchand, P. Bouthemy, F. Chaumette, and V. Moreau.
Raobust real-time visual tracking using a 2d-3d model-based
approach. In Proceedings of the 1999 IEEE International
Conference on Computer Vision, pages 262-268, Sept.
1999.

[10] T. B. Moeslunt and E. Granum. A survey of computer
vision-based human motion capture. Computer Vision and
Image Understanding, 81(3):231-268, 2001.

[11] T. Park and B. Lee. Dynamic tracking line: Feasible track-
ing region of a robot in conveyor systems, IEEE Transac-
tions on Systems, Man and Cybernetics, 27(6):1022-1030,
Dec. 1997.

{12} V. I Pavlovic, R. Sharma, and T. S. Huang. Visual inter-
pretation of hand gestures for human-computer interaction:
a review. [EEE Transactions on Pattern Analysis and
Machine Intelligence, 19(7):677-695, July 1997.

[13] Y. Rui, T. Huang, and S. Chang. Digital image/video
library and mpeg-7: standardization and research issues.
In Proceedings of ICASSP 1998, 1998.

[4

—

[6

)

3478

