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Abstract— Real-time and robust sound source tracking is an
important function for a robot operating in a daily environment,
because the robot should recognize where a sound event such as
speech, music and other environmental sounds originate from.
This paper addresses real-time sound source tracking by real-
time integration of an in-room microphone array (IRMA) and a
robot-embedded microphone array (REMA). The IRMA system
consists of 64 ch microphones attached to the walls. It localizes
multiple sound sources based on weighted delay-and-sum beam-
forming on a 2D plane. The REMA system localizes multiple
sound sources in azimuth using eight microphones attached to
a robot’s head on a rotational table. The localization results are
integrated to track multiple sound sources by using a particle
filter in real-time. The experimental results show that particle
filter based integration improved accuracy and robustness in
multiple sound source tracking even when the robot’s head was
in rotation.

I. INTRODUCTION

Integration of various information improves robustness and

accuracy of perception. In human perception, plenty of ev-

idence on such integration has been reported. For example,

temporal integration [1], McGurk effect in speech recognition

[2] and audio-visual localization [3] are commonly known

as the evidence on audio-visual integration, Also, in sound

source localization, two different cues such as interaural phase

difference and interaural intensity difference are integrated

to robustly localize sounds with wide ranges of frequencies

[4]. Some researchers reported auditory-visually integrated

systems inspired by the evidence to deal with real-world

problems [5], [6]. This means that integration is essential for a

robot which is expected to work in the real world to improve

the robustness of perception. Actually, we have been reported

a robot audition system that localizes, separates and recognizes

a mixture of speech uttered by three persons simultaneously by

using audio-visual integration, and showed the effectiveness of

the system in application to human-robot communication [9].

The system, however, relied on only two microphones at the

position of the robot’s ears. The system can use not only mi-

crophones embedded in a robot, but also those deployed in the

surrounding environments to improve the performance. Thus,

we propose spatial integration, which means the integration

of multiple microphone arrays for better sound processing.

A. Two Types of Microphone Arrays and Their Integration

We considered two types of microphone arrays – a robot-

embedded microphone array, and an in-room microphone array

(hereafter, referred to as REMA and IRMA, respectively).

REMA is promising to improve robot audition directly. Actu-

ally, some work [7], [8] has been reported that an 8 ch REMA

system has better performance for sound source localization

and separation than a binaural approach such as [9]. However,

it has two defects. One is that the performance, while the robot

is in motion, is worse because it is difficult to synchronize

signal capturing with motion precisely and to adapt to acoustic

environmental changes after a robot’s motion. The other is that

it does not give any solution to extract accurate information

from a distant talker due to the small size of the microphone

array. On the other hand, IRMA can solve these problems,

because a microphone array is always stationary, and the

microphones are distributed throughout the room. Since this

type of microphone array can compensate for the above two

defects, it is effective to improve robot audition indirectly.

Large size microphone arrays for sound source localization

and separation reported in [10], [11], [12] can be used for

this purpose. For REMA, we reported a binaural auditory

system [9] and Geometric Source Separation (GSS) based

microphone array [13] so far. Although both systems work

in real-time, they were not robust enough against acoustic

environmental changes. In this paper, we adopt an adaptive

beamformer, Multiple Signal Classification (MUSIC) [14] for

our 8 ch REMA system. It has better performance for sound

source localization and separation than that of the above non-

adaptive methods, because it can adapt to some environmental

changes. In addition, it can work in real-time by making use

of pre-measured impulse responses.

As an algorithm for IRMA, we proposed weighted delay-

and-sum beamforming (WDS-BF) [15]. This algorithm can

estimate directivity patterns and locations of sound sources.
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Directivity pattern estimation can be applied to detect actual

voice and sound orientation. These functions are useful for

human-robot communication, because it enables a robot to

distinguish between voices from TV and those uttered by a

user and it provides information to move the robot face-to-

face with others. Actually, we constructed a 64 ch IRMA with

this algorithm and showed the effectiveness in terms of these

functions. However, it did not work in real-time, because such

a large number of microphones made its computational cost

very expensive. So, we introduced a sub-array method to attain

real-time processing.

To integrate localization results from REMA and IRMA,

we propose a particle filter refined for multiple sound source

tracking. Particle filtering is well-known to track moving ob-

jects in robot vision and to solve a Simultaneous Localization

And Mapping (SLAM) problem [16]. It was not applied to

multiple sound source tracking and integration of microphone

arrays. Our proposed particle filter can cope with difficulties

in microphone array integration and works in real-time.

We will show the effectiveness of a spatial integration

system, which consists of an 8 ch REMA system, a 64 ch

IRMA system and a particle filter based integrator, through

multiple sound source localization and tracking.

II. SIGNAL PROCESSING FOR MICROPHONE ARRAYS

A. Algorithm for Robot-Embedded Microphone Array

The MUSIC implementation for our REMA system was

developed by the National Institute of Advanced Industrial

Science and Technology (AIST) [7]. It was specially developed

for a humanoid robot operating in the real world. In their

implementation, pre-measured impulse responses are used as

transfer functions to overcome the diffraction of the robot and

to realize faster adaptation. This approach is more accurate

and faster in processing speed than model based ones such as

[9]. The detail algorithm is described in [14].

B. Algorithm for In-Room Microphone Array

Generally, output spectrum Yp(ω) for a typical microphone

array system is defined by

Yp(ω) =
N

∑

n=1

Gn,p(ω)Xn(ω) (1)

Xn(ω) = Hp,n(ω)X(ω) (2)

where X(ω) denotes the spectrum of a sound source S located

at p. Hp,n(ω) denotes a transfer function from S to the n-

th microphone. Xn(ω) is the spectrum captured by the n-

th microphone. Gn,p(ω) denotes a filter function to estimate

the sound spectrum at p from the spectrum of the input

signal to the n-th microphone. The WDS-BF is generalized

to be able to use various kinds of transfer functions such as

measured impulse responses and simulated transfer functions

which take reverberation and diffraction into account. Also,

the norm of Gn,p(ω) is minimized, so the WDS-BF is robust

against the dynamic changes of Hp,n and distorted Xn(ω).
We introduce sub-array processing to use only channels with

high contribution to localization for faster processing and

improving the localization accuracy. The criteria for channel

selection is decided by the distance between the sound source

and each microphone, rn. When rn is less than rth, n-

th microphone is selected. Otherwise, n-th microphone is

excluded in beamforming and every transfer function for n-th

microphone is set to 0. The WDS-BF is applied to estimate

directivity pattern estimation by replacing p with p′ = (p, θ)
in Eqs. (1) and (2). The detail algorithm of sound source

localization with directivity pattern is described in [15].

III. INTEGRATION OF MICROPHONE ARRAYS

To integrate the results of two types of microphone ar-

rays, we propose to use a particle filter[17]. The two main

advantages of the particle filter are that it can deal with non-

linear motion of an object and the processing speed can be

controlled by the number of particles. It is basically easy to

apply to track a sound source [18], [19], [20], because the

particle filter needs only probabilistic models on a transition

and an observation of the internal states. Valin[21] extended

the particle filter to track multiple sound sources with an 8 ch

microphone array in a mobile robot, by using the techniques on

source-observation assignment in multiple object tracking[18],

[22], [23]. In addition, the particle filter is extended for multi-

modal integration[22], for example, Asoh et al.[24] suggests

that this technique is useful for integration of audio and video

data to track speakers. However, it is difficult to apply their

methods to integrate multiple sound source localization results

obtained from two types of microphone arrays, i.e., REMA

and IRMA, because the following two issues related to the

coordinates are not taken into account in their methods.

A. Issues in Integration of Microphone Arrays

For microphone array integration, we should consider two

issues – the robot vs. the world coordinates, and the polar vs.

the Cartesian coordinates.

REMA moves, while IRMA is stationary. This means that a

sound is observed in the robot coordinates for REMA, so the

coordinate conversion to the world coordinates is necessary

to integrate REMA with IRMA. This requires that accurate

time synchronization between sound processing and a robot’s

motion is crucial. We can consider two approaches to solve this

synchronization problem. One is a software-based approach,

i.e, the particle filter itself can solve this synchronization

problem by using a probabilistic model concerning the time

difference. The other is a hardware-based approach that uses

the architecture with mechanically and electronically accurate

synchronization between sound processing and robot motion.

The former looks smart because one particle filter can be

applied for time synchronization, but some synchronization

errors occur inevitably because they use probabilistic repre-

sentation. So, we chose the latter approach to solve this issue

(see Section IV-A).

The second issue was caused by the fact that the coordinate

types were different. To integrate them, we propose two

types of likelihood functions for the polar and the Cartesian
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coordinates. These functions output likelihood independent

from the coordinates. So, the two likelihood values can be

easily integrated. The detail is explained below.

B. Particle Filter

In the particle filter, the transition model p(x(t)|x(t − 1))
and the observation model p(y(t)|x(t)) of internal state x(t)
are defined as probabilistic representation. y(t) denotes an

observation vector. Because the particle filter allows a non-

linear transition model, it is more flexible than other linear

filtering methods such as the Kalman filter. A particle plays

a role of an agent to track a target source. The i-th particle

includes the internal states xi(t) and the importance weight

wi(t), which is an index to show how the particle contributes

to tracking and is usually defined as likelihood. The density

of a set of the particles approximates posterior probability

p(x(t)|y(t)). In other words, the posterior probability is

sampled by the particles. That is why the particle filter is

also called a sampling method. In our case, two types of

observations, Y REMA(t) and Y IRMA(t), are obtained from

the microphone arrays at time t.

Y REMA(t) = {ya1
(t), · · · ,yal

(t), · · · ,yaLt

(t)}, (3)

Y IRMA(t) = {yb1
(t), · · · ,ybm

(t), · · · ,ybMt

(t)} (4)

where Lt and Mt are the number of observations by REMA

and IRMA at time t. yal
and ybm

are denoted as

yal
= {aθl

, apl
}, (5)

ybm
= {bxm

, bym
, bom

, bpm
}, (6)

where aθl
is the azimuth in the world coordinates. bxm

and

bym
are the position in the world coordinates, and bom

is the

orientation of a sound source. apl
and bpm

are the estimated

power in dB.

Our particle filter consists of the following five steps:

Initialization, Source check, Importance sampling, Selection,

and Output. The following sections describe each step in

detail.

Step 1 – Initialization: This step makes the initial states of a

particle. We defined (xi(t), yi(t), vi(t), oi(t)) as the internal

states of i-th particle. (xi(t), yi(t)) denotes the position of

a sound source. vi(t) and oi(t) are the velocity and the

orientation of the sound source. At the initial state, the particles

were distributed uniformly at random. To deal with multiple

sound sources, we initialized the importance weight defined

by

∑

i∈Pk

wi = 1,

S
∑

k=1

Nk = N, (7)

where Nk is the number of particles for k-th particle group

Pk, and S is the number of sound sources. N is the fixed

value which shows the total number of particles.

Step 2 – Source Check: This step is newly added to support

multiple sound sources. The internal state of the particle group

Pk is defined by

x̂k(t) =
∑

i∈Pk

xi(t) · wi(t) (8)

When ym(t) satisfies ||x̂k(t) − ym(t)|| < Dth, ym(t)
is associated with Pk. When no particle group is found for

ym(t), a new particle group is generated. When no observation

is found for the particle group Pk for more than time Tth, Pk

is terminated. In both cases, the particles are re-distributed so

that Eq. (7) is maintained.

Step 3 – Importance Sampling: In this step, first, xi(t)
is estimated from xi(t − 1) by using the transition model

p(x(t)|x(t − 1)). Secondly, wi(t) is updated by Eq. (20).

Finally, wi(t) is normalized subject to Eq. (7).

For the transition model, we switched two models based on

random walk and Newton’s equation of motion according to

the velocity of the sound source. When the velocity is less

than vth, which is empirically set to 2m/s, the system uses

the transition model based on random walk defined by

xi(t) = xi(t − 1) + rx, (9)

yi(t) = yi(t − 1) + ry, (10)

vi(t) = vi(t − 1) + rv, (11)

oi(t) = oi(t − 1) + ro, (12)

where r∗ denotes white noise.

When the velocity is larger than vth, the system uses

the transition model based on Newton’s equation of motion

defined by

xi(t) = xi(t − 1) (13)

+ vi(t − 1) · cos(oi(t − 1)) + rx,

yi(t) = yi(t − 1) (14)

+ vi(t − 1) · sin(oi(t − 1)) + ry,

vi(t) = α · vi(t − 1) (15)

+ (1 − α) ·
√

∆xi(t)2 + ∆yi(t)2 + rv,

oi(t) = αoi(t − 1) (16)

+ (1 − α) · tan−1

(

∆yi(t)

∆xi(t)

)

+ rθ,

where α is an weight defined experimentally. ∆xi(t) and

∆yi(t) are defined by

∆xi(t) = xi(t) − xi(t − 1),

∆yi(t) = yi(t) − yi(t − 1).

The likelihood is defined as follows:

lREMA(t) = exp

(

−
(� (xi(t) − P REMA(t)) − θl)

2

2RREMA

)

(17)

lIRMA(t) = exp

(

−
||xi(t) − ybm

(t)||2

2RIRMA

)

(18)

where � (x) denotes the angular coordinate for x. RREMA

and RIRMA are variances of localization results by REMA
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Fig. 1. Spatial Integration System

and IRMA, P REMA is the position of the robot. They are

integrated into lI(t).

lI(t) = αl · lREMA(t) + (1 − αl) · lIRMA(t) (19)

where αl is an integration weight value. Finally wi is updated

by

wi(t) = lI(t) · wi(t − 1). (20)

Step 4 – Selection: According to the importance weight

wi, the selection step propagates and removes particles. When

i ∈ Pk, the number of particles for i is updated by

Nki
= round(Nk · wi). (21)

In this case, some particles can remain. The number of such

particles is calculated by

Rk = Nk −
∑

i∈Pk

Nki
. (22)

These particles are also distributed according to the residue

weight Rwi
.

Rwi
= wi − Nki

/
∑

i∈Pk

Nki
(23)

For this, Sampling Importance Resampling (SIR) algorithm

[17] is commonly used.

Step 5 – Output: From the density of the updated particles,

the posterior probability is estimated as p(x(t)|ym(t)). The

internal states of a set of particles for sound source k is

estimated as Eq. (8). Steps 2 – 5 are repeated until the tracking

process finishes.

IV. SYSTEM IMPLEMENTATION

Fig 1 shows the architecture of our spatial integration

system. It consists of four components – a robot with a REMA

system, an IRMA system, a microphone array integrator and

a sound viewer. They are described in the following sections.

A. Robot with REMA System

For the REMA system, we developed a wheel-based robot

shown in Fig. 2. The robot consists of the head of Honda

ASIMO, a rotational table, an omni-directional vehicle and an

8 ch REMA system. The rotational table is controlled by a

remote PC via an I/O card shown in Fig. 3. The angle of rota-

tion is measured by an encoder accurately. Its resolution of the

angle measurement is 0.0015◦. The omni-directional vehicle

also can be controlled by a remote PC via a wireless-LAN. The

maximum load of the vehicle is 80 kg. The side of the vehicle

is covered by sensors to detect collision. The REMA system

omni-directional

vehicle

rotational table

robot-embedded

microphone array

ASIMO head

Fig. 2. Wheel-based Robot

Robot 

Microphone

Array

Rotational Table

Encoder

Potentio-meter

Voltage-Frequency

Converter

multi-channel

sound card

I/O card

PC

motion command

digitalized angle data

frequency modulated

angle data

sound data

angle data

Fig. 3. The Architecture of REMA

consists of 8 microphones, and each microphone is embedded

in a rubber head-band at the same interval. The head-band is

installed on the head of ASIMO.

The captured sound signals by REMA and the signals of

angle information from the encoder are sent to one PC. To

localize sound signals in the world coordinates even when

the robot is in rotation, these two types of signals should be

synchronized precisely. The encoder outputs accurate informa-

tion, but it takes small processing time to send the digitized

data. This makes time difference between the captured sound

signals and the corresponding encoder output signal. To make

precise synchronization, we measured the time difference.

As shown in Fig. 3, we installed a potentio-meter in the

rotational table to detect rotation quickly in addition to the

encoder. The potentio-meter was connected to the sound card

to synchronously capture sounds from REMA via a voltage-

frequency converter which prevents a DC component like

potentio-meter output from being filtered out by the sound

card. Because the potentio-meter produced analog output, the

output included larger errors (0.95◦), but the time difference

was regarded as 0, since the data was captured with sounds

from REMA simultaneously. Therefore, we measured the time

difference by comparing angle data captured by the sound card

with that sent from the encoder. As a result, we found that the

angle data from the encoder was delayed 32.9 ms on average

in comparison with captured sound signals. This delay was

taken into account in the coordinate conversion from the robot

coordinates to the world coordinates.

B. IRMA System

We constructed a 64 ch IRMA system. The IRMA captures

an acoustic signal from 64 microphones synchronously at a

sampling rate of 16 kHz using four RASP II. Fig. 4 depicts a

4.0 m × 7.0 m room for IRMA. It is acoustically asymmetrical

because three walls are covered with sound absorbing material,

another wall is made of glass with high sound reflection, and

there is a kitchen sink. The asterisks represent microphone

positions in the room. The height of the microphones on the

wall is 1.2 m. This microphone layout was decided because it

covers as much of the room as possible. The sound position

was digitized at an interval of 25 cm. The digitizing area

was 1.0 m – 5.0 m for X axis, and 0.5 m – 3.5 m for Y
axis. The height (Z axis) was fixed to 1.2 m. So, the number

of pm is 221. To design a beamformer for IRMA, we cal-

culated beamforming coefficients from pre-measured transfer
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TABLE I

THE EFFECT OF A SUB-ARRAY ON COMPUTATIONAL COST (SIMULATION)

rth computational # of ch to use
cost (%) Max Min

7 100 64 64

6 99.9 64 63

5 97.4 64 41

4 82.4 64 33

3.5 68.8 62 22

3 53.0 56 19

2.5 37.5 39 12

2 23.2 29 0

0 1 2 3 4 5 6 7

0

1

2

3

4

Position X (m)

P
o

si
ti

o
n

 Y
 (

m
)

Microphone

P1 (1.43, 2.13) P0 (2.93, 2.13)

Kitchen

sink

(5.23, 0.88)

1.9m

1.0m

Fig. 4. Layout of Microphones

functions, because they can deal with any kind of acoustic

environment and microphone layout. To obtain the transfer

functions, we measured impulse responses at every pm under

the condition that a loudspeaker at pm faced a robot placed at

P0. We call this beamformer “M-BF” in the latter sections. We

then designed the sub-array version of the M-BF (hereafter,

referred to as “MS-BF”). The distance threshold rth described

in Section II-B is set to 3.5 m. In this case, a 30% reduction of

the computational cost would be expected as shown in Tab.I.

C. Microphone Array Integrator and Sound Viewer

Microphone array integrator integrates localization results

from REMA and IRMA, and tracks sound sources by par-

ticle filtering described in Sec. III-B. The particle filter is

implemented on PC Linux by using C language. The tracking

results are sent to a sound viewer implemented with with

Java3D and OpenFlight. It has the functions of real-time

3D visualization, online and off-line processing, and flexible

change of a viewpoint so that we can understand sound scene

in the room at a glance.

V. EVALUATION

Two types of evaluations for the spatial integration system

using microphone arrays were performed as follows:

1) the basic performance of sound source localization, and

2) the performance of sound source tracking.

In the first evaluation, a single sound source was localized

by the IRMA and REMA. As a sound source, we used the

recorded voices played by a loudspeaker GENELEC 1029A

located at P1 shown in Fig. 4. The average error and the stan-

dard deviation of localization were measured. The four types

of beamformers – “M-BF”, “MS-BF”, “Sim-BF” and “RSim-

BF” – were used for the IRMA. “M-BF” and “MS-BF” were

already described in Section IV-B. The other two beamformers

were based on simulation. “Sim-BF” is a beamformer which

is designed by simply assuming a free space, while “RSim-

BF” is a beamformer which takes room reverberations into

account. RSim-BF is designed to reduce the power of sounds

reflected by the walls. This is done by the adaptation of the

RSim-BF coefficients to minimize the total system gain from

the imaginary non-target points which are 0.2 m outside the

room boundaries. The detailed algorithm is described in [25].

The orientation of the loudspeaker was 0◦ which was specified

as a vector (1,0) and the direction of positive rotation was

counterclockwise.

In the second evaluation, the performance to track moving

sound sources was measured. Moving sound sources were

recorded in five situations as follows:

Ex.2A: The loudspeaker was moved from (2.93 m, 0.63 m)

to (2.93 m, 3.63 m) along the arc of the circle with

center P0 and radius 1.5 m in the counterclockwise

direction. The heading of the robot located at P0 was

fixed to 180◦.

Ex.2B: The loudspeaker was fixed at P1. The robot was

located at P0. The heading was changed from 90◦ to

270◦.

Ex.2C: The loudspeaker was moved in the same way as

Ex.2A. The heading of the robot located at P0 was

changed from 90◦ to 270◦ to face the loudspeaker.

Ex.2D: Two persons (Mr. A and Mr. B) walked while

speaking along the circle with center P0 and radius

1.5 m. They were asked to say Japanese sentences

continuously and to face the robot. Mr. A started at

(2.93 m, 0.63 m), i.e., 90◦ in the robot coordinates,

and walked clockwise to 0◦. Just before arriving at

0◦, he turned back and walked counterclockwise to

270◦. Mr. B started at (2.93 m, 3.63 m) and walked

in a mirrored way, that is, he first moved counter-

clockwise to 0◦, and turned to 90◦ in the clockwise

direction. They approached and receded at 0◦, and

crossed at 180◦. The heading of the robot located at

P0 was fixed to 180◦.

Ex.2E: The motion of two persons was the same as Ex.2D.

The heading of the robot located at P0 was always

kept facing Mr. A.

The sound source localization by REMA and IRMA, and

sound source tracking by the particle filter were performed

from recorded sound. To obtain an accurate location of the

moving sound sources as reference data, we used an Ultrasonic

3D Tag System (U3D-TS) which localized an ultrasonic 3D

tag (U3D tag) with only several cm errors [15]. In every case,

MS-BF was used as a beamformer for IRMA.

A. Results

Fig. 5a)-d) shows the localization performance of a single

sound source by IRMA. The horizontal axis is time, the

vertical axes are the estimated X and Y in meters. Fig. 5e)
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M-BF (IRMA) 0.016 m 0.039 m

MS-BF (IRMA) 0.019 m 0.041 m

Sim-BF (IRMA) 0.95 m 1.19 m

RSim-BF (IRMA) 0.50 m 0.52 m

MUSIC (REMA) 4.56◦ 1.41◦

f) Error of Localization

Fig. 5. Sound Source Localization Results

TABLE II

LOCALIZATION ERROR WITH REMA AND IRMA

REMA IRMA
Avg.(deg) S.D.(deg) Avg.(m) S.D.(m)

Ex.2A 4.01 16.18 0.217 0.157

Ex.2B 3.25 7.61 0.082 0.249

Ex.2C 5.96 3.16 0.190 0.303

Ex.2D 6.14 10.66 0.194 0.173

Ex.2E 7.46 7.83 0.234 0.200

TABLE III

TRACKING ERROR WITH PARTICLE FILTER

IRMA Only Integration of IRMA and REMA
Avg.(m) S.D.(m) Avg.(m) S.D.(m)

Ex.2A 0.12 0.062 0.10 0.040

Ex.2B 0.06 0.012 0.06 0.012

Ex.2C 0.11 0.075 0.10 0.071

Ex.2D 0.16 0.084 0.16 0.083

Ex.2E 0.18 0.133 0.17 0.123

shows the result using REMA. The horizontal axis is time,

the vertical axis is the estimated azimuth in degrees in the

world polar coordinates. Fig. 5f) shows the average error and

the standard deviation in localization.

Fig. 6 shows the results of localization and tracking. The

first to the fifth row in Fig. 6 corresponds to the results of

Ex.2A – Ex.2E. The left column shows the localization results

by using REMA. The horizontal axis is time in seconds, and

the vertical axis is estimated azimuth in degrees. The blue

asterisks show the localization results in the robot coordinates.

The red line shows the robot motion obtained from the encoder

in the world polar coordinates. The red plus marks are the

localization results after the coordinate conversion to the world

polar coordinates. The black and green lines are the sound

directions obtained from the U3D tags. The middle column

shows the localization results by using IRMA. The blue

asterisks show the localization results in the world Cartesian

coordinates. The black and green lines are the sound tracks

obtained from the U3D tags. The right column shows the

tracking results using the particle filter. The red lines show

the tracking results with the particle filter when only room

localization data was used. The blue lines are those when room

and robot localization data are integrated by the particle filter.

The black and green lines are the sound tracks from the U3D-

TS. Tab. II shows the average and the standard deviation of

localization error in REMA and IRMA, and Tab. III shows the

tracking errors with the particle filter.

B. Observations

From the first evaluation, the best beamformers were M-

BF and MS-BF. They had small localization errors of 15 cm

– 20 cm. These beamformers were designed from measured

transfer functions, so they were robust for the reverberation

in the room. When considering processing speed, we can

say that MS-BF is the best beamformer for our IRMA. As

shown in Tab. I, the 30% computational cost was reduced

while maintaining localization accuracy. Actually, the IRMA

system attained around 16 fps of localization speed due to

the introduction of the sub-array method. Because transfer

functions were available at the discrete points which we

measured in advance, a regression method was necessary to

cope with sound localization at the points where transfer

functions were unavailable. As such a method, RSim-BF could

be substituted for M-BF and MS-BF. In the case of MUSIC,

it had an error of about 4.5◦. This is equivalent to 12 cm at a

point 1.5 m away from the robot. It is almost the same accuracy

as IRMA. Localization was more accurate for a closer sound

source, and the resolution of localization was worse for the

further sound sources. The distance between the robot and

the sound sources was about 1.5 m in every experiment. So,

we used 0.5 for integration weight parameter αl in the last

evaluation.
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3D-2) IRMA result
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3E-3) integrated result

******
++++++

Localization result in the robot polar coordinates
Localization result in the world polar coordinates
Robot motion in the world polar coordinates
Tracking result by U3D tag 1 in the world polar coordinates
Tracking result by U3D tag 2 in the world polar coordinates

****** 2D Localization result in the Cartesian coordinates
Tracking result by U3D tag 1 in the Cartesian coordinates
Tracking result by U3D tag 2 in the Cartesian coordinates

REMA result IRMA result

Tracking result by PF (integration of room-MA and robot-MA)
Tracking result by PF (using only room-MA)
Tracking result by U3D tag 1
Tracking result by U3D tag 2

Integrated Result

Fig. 6. Tracking Results
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In the second evaluation, compared with tracking by U3D-

TS, we can say that REMA and IRMA could localize at

least two simultaneous speech signals properly even when

the sources were in motion. In the case of REMA, accurate

time synchronization was achieved because the coordinate-

converted localization results fitted those obtained from U3D-

TS. The localization error in Tab. II shows that it became large,

when the number of sound source increases and/or the sound

sources were moving, but the difference of the errors was

within several cm or degrees. On the other hand, some outliers

could be seen, and data association between each localization

result and the corresponding sound source was not done yet.

In tracking of multiple sound sources, this association was

essential because miss association causes a fatal tracking

error. This problem is also known as the permutation problem

in sound source separation such as independent component

analysis. The particle filter solved this problem from the

right column in Fig. 6. In addition, Tab. III shows that the

particle filter improved localization in accuracy and robustness

because the average errors were reduced 2 cm – 9 cm and

the standard deviations were reduced about 10 cm on average.

From Tab. III, the effect of the microphone array integration

looks small, but the integration contributes to an improvement

in the robustness of tracking. For example, the tracks (red

lines) using localization results by IRMA had large errors from

5 sec to 10 sec in Fig. 6 2D-3) and 2E-3), while the integrated

tracks (blue lines) did not include the large errors.

VI. CONCLUSION

We proposed the particle filter based spatial integration

of REMA and IRMA for general sound understanding to

enhance a robot audition system. For IRMA, we extended

reported weighted delay-and-sum beamforming to work in

real-time by the introduction of a sub-array method. For

real-time spatial integration, we newly proposed a particle

filter for multiple sound sources, which can integrate multiple

localization results utilizing a probabilistic integration method

to track sound sources. We constructed a real-time spatial

integration system including 64 ch IRMA and 8 ch REMA

based on the particle filter. The evaluations of the system show

that the two types of microphone arrays localized multiple

sound sources accurately, and sound source tracking with the

particle filter improved the accuracy and the robustness of

sound source localization.

VII. FUTURE WORK

The particle filter used several parameters. We selected the

best values for each parameter manually. These values should

be optimized automatically. Also, we assumed that the number

of sound sources is at most two. This restriction should be

removed or relaxed. The microphone layout for IRMA should

be considered more. For example, a combination of small

microphone arrays can reduce the number of microphones

while maintaining the total performance of IRMA. The inte-

gration of microphone arrays has a possibility to improve not

only sound source localization/tracking but also other sound

processing such as sound source separation and automatic

speech recognition.
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