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In order to reveal the dissolution behavior of iron tailings in blast furnace slag, the main component of iron tailings, SiO,, was used
for research. Aiming at the problem of information loss and inaccurate extraction of tracking molten SiO, particles in high
temperature, a method based on the improved DeepLab v3+ network was proposed to track, segment, and extract small object
particles in real time. First, by improving the decoding layer of the DeepLab v3+ network, construct dense ASPP (atrous spatial
pyramid pooling) modules with different dilation rates to optimize feature extraction, increase the shallow convolution of the
backbone network, and merge it into the upper convolution decoding part to increase detailed capture. Secondly, integrate the
lightweight network MobileNet v3 to reduce network parameters, further speed up image detection, and reduce the memory usage
to achieve real-time image segmentation and adapt to low-level configuration hardware. Finally, improve the expression of the loss
function for the binary classification model of small object in this paper, combining the advantages of the Dice Loss binary
classification segmentation and the Focal Loss balance of positive and negative samples, solving the problem of unbalanced dataset
caused by the small proportion of positive samples. Experimental results show that MIoU (mean intersection over union) of the
proposed model for small object segmentation is 6% higher than that of the original model, the overall MIoU is increased by 3%,
and the execution time and memory consumption are only half of the original model, which can be well applied to real-time
tracking and segmentation of small particles.

1. Introduction

With the rapid development of computer vision, image
segmentation technology, as a key field of graphics and
image processing, has gradually stepped into the devel-
opment of new concepts [1]. Image segmentation refers to
the process of planning pixel values with the same attri-
butes into the same label by using the nonlinear rela-
tionship between the difference and correlation of different

pixel values. Image segmentation can provide concise and
reliable image feature information and then effectively
improve the processing efficiency of subsequent visual
tasks, which is of great significance. In the fields of un-
manned driving, medical impact observation, satellite re-
mote sensing, etc., different methods are used to adapt the
internal chip and logic algorithm according to the actual
requirements, so as to meet the requirements of different
segmentation tasks.
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With the gradual development of convolutional neural
network [2] and the proposal of image semantic segmen-
tation [3], image segmentation technology has been greatly
improved. Image semantic segmentation can accurately
locate the image content and fully present the semantic
features of the region composed of the same attribute pixels
by predicting and classifying the pixels. Due to the high
complexity of image semantic segmentation, enhancing the
representation ability of image pixels and improving the
information utilization rate of multilayer convolution are
the key directions of segmentation. In 2015, J. Long [4] and
K. Simonyan [5] proposed Full Convolutional Network for
image segmentation, whose core idea is to remove the fully
connected layers of the network structure and complete
prediction through the feature map of the final convolu-
tional layer. This method has promoted the development of
semantic segmentation.

Image spatial information is to strengthen the rela-
tionship between different image channels, and the corre-
lation can be adjusted through this spatial information.
Therefore, the method of dilated convolution was intro-
duced. Through this method, DeepLab v1 [6] solved a series
of information loss problems caused by convolution oper-
ations. However, this method has the following problems: (1)
reduced feature resolution, (2) the existence of multiscale
objects, and (3) decreased spatial accuracy due to spatial
invariability of dilated convolution and so on. Further, two
methods, DeepLab v2 [7] and DeepLab v3 [8], were in-
troduced. (1) The same model uses shared weight, which is
suitable for multiscale input. (2) The feature response of
large-scale input preserves the details of small objects. (3)
The method transforms the input into multiscale through
the Laplacian pyramid. The DeepLab v3+ network structure
used in this paper combines the above advantages, has a
simple and effective encoding-decoding structure and ASPP
module that aggregates multiscale features, and has achieved
excellent results in multiple public datasets [9].

Since this article is research on industrial manufacturing
technology, the cameras in different factories are different,
and the pixels for capturing images are also different. This
network framework can reduce the impact of resolution very
well. The framework does a good job of reducing the
memory usage of the GPU, only using multiscale inputs in
the final prediction. Therefore, this paper selects the
DeepLab v3+ network for in-depth research. At present, the
model also requires high-performance computers, which is
not suitable for factory equipment, and the tracking and
recognition accuracy of small objects are not high, so this
cannot be put into production. Therefore, it is necessary to
improve the model.

In order to improve the tracking accuracy of small
objects, solve the problem of uneven positive and negative
samples, and reduce the requirements of computer per-
formance to meet the requirements of factories, this paper
plans to conduct an in-depth study on the DeepLab v3+
model to improve the remaining shortcomings of the model
structure. In DeepLab v3+ model coding stage, context
information is aggregated through ASPP, but the small
object segmentation has the disadvantage of low accuracy
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and lack of spatial correlation. In the decoding stage, only
one of the multistage shallow features on the backbone
network is fused, resulting in partial loss of effective in-
formation, in segmentation discontinuity, and in rough
segmentation boundary. Therefore, in this paper, the net-
work architecture is modified to increase the feature layer
fusion in the decoding stage and then strengthen the feature
pixel learning. Combining with the lightweight network, the
problem of redundant network parameters and high
hardware requirements is improved, and the form of loss
function is modified to adopt to the problem of binary
classification and uneven distribution of positive and neg-
ative samples in this paper.

The first part of this article introduces the DeepLab v3+
network framework used in this article by introducing the
significance of computer to image segmentation. The second
part briefly introduces the related work and the latest re-
search of the network framework used in this article. The
third part deeply analyses the advantages and disadvantages
of the DeepLab v3+ framework as well as the development
history and performance of the MobileNet v3 network,
paving the way for improvement. The fourth part describes
the details of the author’s improvement of network archi-
tecture. The fifth part combines experimental data to con-
duct a conclusion analysis and prove the advantages of the
algorithm in this article. The sixth part is a summary de-
scription of this paper.

2. Related Work

Image segmentation algorithms have developed rapidly in
recent years, and many researchers have improved and
optimized the deep learning framework of semantic seg-
mentation algorithms and then applied them to daily life and
industrial manufacturing. For DeepLab v3+ improvement
research direction, Baheti B [10] focused his research on
India Driving Dataset which contains data from unstruc-
tured traffic scenario and modified the DeepLab v3+
framework by using lower atrous rates in ASPP module for
dense traffic prediction. D. Wu [11]et al. used the framework
of ResNet-101 to develop the DeepLab v3+ semantic seg-
mentation model to segment the data frames collected from
70 video clips of different cows. An ensemble method for
crack detection is based on convolutional neural networks,
of which DeepLab v3+ was found to be reliable and widely
applicable for crack detection. Among the quantitative in-
dicators, the prediction value of crack length has the lowest
relative error rate. A. Ji [12] proposed an integrated ap-
proach based on the convolutional neural network for crack
detection, in which DeepLab v3+ was found to be reliable
and widely applicable or crack detection. Among various
quantitative indicators, the relative error rate of the pre-
dicted value of crack length is the lowest. S. Cheng [13] used
the DeepLab v3+ to segment smoke images. U. Verma [14]
et al. used DeepLab v3+ for river identification and width
measurement. For other algorithms to split the direction,
K. Iyer [15] designed a convolutional neural network
AngioNet for vessel segmentation in X-ray angiography
images. The best performance was obtained using
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Deeplabv3+. Wang [16]proposes a dense FCN (fully con-
volutional network) which combines dense network with
FCN model and achieves good semantic segmentation effect.
Q. Liu [17]proposes a multilevel similarity model under a
Siamese framework for robust thermal infrared object
tracking. He designed a simple while effective relative en-
tropy based ensemble subnetwork to integrate the semantic
and structural similarities. The proposed algorithm performs
favorably against the state-of-the-art methods. Yuan [18]
proposes an effective self-supervised learning-based tracker
in a deep correlation framework which achieves competitive
tracking performance contrasted to state-of-the-art super-
vised and unsupervised tracking methods on standard
evaluation benchmarks. For picture prediction direction,
Huang [19]proposes a novel network structure, namely,
Kernel-Sharing Atrous Convolution, where branches with
different receptive fields share the same kernel; i.e., let a
single kernel ‘see’ the input feature maps more than once
with different receptive fields. Li [20] proposes a deep
learning scheme to achieve fine extraction of image water
bodies. The process includes multiscale feature perception
splitting of images, a restructured deep learning network
model, multiscale joint prediction, and postprocessing op-
timization performed by a fully connected conditional
random field. For small objects, Yang [21] proposes a real-
time segmentation model that creates a narrow deep net-
work and constructs a synthetic dataset by inserting addi-
tional small objects in training images. An average 2% MIoU
improvement is obtained on small objects. For the modi-
fication of the loss function, big data can solve most data
problems [22], assembling algorithms to adapt to specific
problems [23].

Therefore, this paper uses this framework to study the
online tracking of small target melting and obtains a network
model with high accuracy and low training fluctuation.

3. Related Theory

3.1. Traditional DeepLab v3+ Network. Taking the residual
model as the underlying network and adding an encoder-
decoder structure, DeepLab v3+ model is an improvement of
DeepLab v3 model and belongs to a typical Dilated Fully
Connected Network framework. The network framework
ResNet [24] or Xception [25] was used for feature extraction
of the input images, and then ASPP was used, as shown in
Figure 1, mainly to introduce multiscale information and to
fuse image features through image dilated convolution to
reduce the loss of image feature. ASPP is designed to capture
multiscale information, which is critical to segmentation
accuracy. Among them, rate (r) controls the size of the
receptive field, and the greater the r, the greater the receptive
field [26].

As shown in Figure 2(b), the DeepLabv3+ model bor-
rowed the encoder-decoder structure and introduced a new
decoder module. First, use bilinear interpolation to qua-
druple the feature obtained by the encoder, and then connect
with the low-level feature of the corresponding size in the
encoder. In order to prevent the high-level feature obtained
by the Encoder from being weakened, 1x1 volume
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FIGURE 1: Atrous spatial pyramid pooling.

Input feature map

convolution was used to reduce the dimensionality of the
low-level feature. After the two features being connected,
3 x 3 volume convolution was used to further fuse. Finally,
bilinear interpolation was performed to obtain a segmen-
tation prediction of the same size as the original image.

The modified Xception is attempted in DeepLab v3+
model. The Xception network mainly uses depthwise sep-
arable convolution [27], which makes the calculation of
Xception lower. (1) Add more layers; (2) replace all the max
pool layer with depthwise separable convolutions with step
size of 2, which can be changed into dilated convolution. (3)
Add batch standardization and ReLu activation functions
after 3x3 volume depthwise convolution.

3.2. MobileNet v3. With the MobileNet structure proposed
[28], the lightweight network framework has developed
rapidly. As the backbone, MobileNet is three times faster
than the Vgg [29] network. MobileNet v2 [30] added the
idea of residual model and the inverted residual structure to
prevent vanishing gradient. The concept of bottleneck was
designed to reduce input and output parameters and
compress the model structure again. The ReLu behind the
pointwise convolution was replaced with a linear function,
and the output result was 0 after reducing the number of
nodes. This paper introduces the MobileNetv3 model. First,
the network architecture is based on MnasNet [31]
implemented by NAS, which is better than MobileNet v2.
The MobileNet v3 model combines the depthwise separable
convolution of MobileNet vl with the inverted residual
structure of MobileNet v2 with linear bottlenecks. Sec-
ondly, a lightweight attention model based on squeeze and
excitation structure is introduced to weight different
channels, increasing the important channel weights and
decreasing the unimportant channel weights. Third, the
activation function is improved, using a new activation
function h-swish instead of ReLu to significantly improve
the accuracy of neural network. In network structure
search, two technologies are combined: (1) platform-aware
NAS [32] is used to optimize each block by using search the
network when the calculations and parameters are limited.
(2) NetAdapt [33] is used to fine-tune the number of
convolution kernels in each layer of the network layer after
each module is determined.
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FIGURE 2: (a) DeepLabv3 model diagram; (b) encoding and decoding methods; (c) improved DeepLab v3+ model diagram influenced by

decoding ideas; (d) the model structure realized in this paper.

4. Deep Learning Network Construction
and Improvement

4.1. DeepLab v3+ Network Improvement. In this paper, the
author uses DeepLab v3+ algorithm as a semantic seg-
mentation method based on fully supervised learning, using
deep convolutional neural networks to achieve target seg-
mentation and using the dilated convolution to balance the
accuracy and time consumption through.

Since semantic segmentation is an end-to-end network
structure, upsampling of the prediction images obtained by
convolutional neural networks is required. DeepLab v3+
model is improved for upsampling. As shown in Figure 2(c),
it divides 8-fold upsampling into two 4-fold upsampling
operations, i.e., 16-fold upsampling, and then goes through a
refinement operation of 3 * 3 convolution to obtain high
accuracy and fast speed, which combines the advantages of
residual model and gathers high-level and low-level infor-
mation. Since the volume of SiO, gradually becomes smaller
during the melting process, the segmentation accuracy of
this network for small targets is not high and the phe-
nomenon of loss exists in this network. Therefore, inspired
by the YOLO [34] target detection algorithm, as shown in
Figure 2(d), this paper divides the above 16-fold upsampling
into two 2-fold operations and one 4-fold operation,
combines image of the first convolution of the original
image, and refines the upsampling model to obtain more
information about the image and enhance the segmentation
accuracy of small targets.

4.2. Fused DeepLab v3+ Model. Researchers integrated
ResNet into the DeepLab v3+ model to improve accuracy
based on the strong adaptability of the underlying network.
With the improvement of the accuracy of model classification
and regression, the gradual deepening of the neural network
structure directly leads to the increase of the complexity of the
model. In addition, the original model requires high hardware
requirements, large memory consumption, and a large
amount of time cost. Secondly, it is necessary to detect SiO,
movement state with low delay and high efficiency. Most of
the production plant and equipment cannot meet the above

requirements. Therefore, this paper proposes abandoning the
high-complexity network architecture and integrates the
lightweight neural network MobileNet v3 into the DeepLab
v3+ segmentation model. This model retains more image
features through the decoder. It also decomposes the 8-fold
convolutional network into two layers and fuses the coding
convolutional layer for each channel to replace the complete
convolution operator. The changes to convolutional network
improve the performance of the DeepLab v3+ decoder
module to recover the boundary.

Under the premise of the same dataset, the execution
time of traditional ResNet is twice that of MobileNet v3, so
the network used by the model in this paper has obvious
advantages in segmentation efficiency. The difference be-
tween this model and traditional model is the use of
depthwise convolution; that is, each channel performs its
own convolution operation with the same number of
channels and filters. After the new channel feature maps are
obtained, the standard 1x1 cross-channel convolution op-
eration is performed on these new channel feature maps.

In Figure 3, the coding area adopts the dilated convo-
lution structure, which extracts the features calculated by
arbitrary resolution in MobileNet v3. The first is to expand the
receptive field. The traditional deep network structure always
uses the method of downsampling to increase the receptive
field and reduce the amount of computation. Although this
method can increase the receptive field, it greatly reduces the
spatial resolution. Therefore, in order to prevent resolution
loss, dilated convolution is adopted. The second is to capture
multiscale context information; the dilated convolution can
set the dilated rate (r); that is, fill  zeros in the convolution
kernel. Therefore, when different dilated rates are set, the
receptive field will be different; that is, multiscale information
will be obtained. Multiscale information is very important in
visual tasks. After removing the span in the last one or two
blocks at the output end, an output with a stride of 16 is used
to carry out more intensive feature extraction. When
decoding with 8-fold stride output, compared with 16-fold
stride output, the performance is improved, but the com-
putational complexity is also increased. Therefore, a 16-fold
output of 4x2x2 is used in this paper to balance the seg-
mentation accuracy and operation speed.
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4.3. Loss Function Improvement. The loss function used in
the original model is the Cross Entropy loss function, but its
biggest problem is the serious imbalance of positive and
negative samples, because the negative samples (back-
ground) in the entire image account for the majority of all
samples. Therefore, in the training process, the negative
samples that are easy to classify will occupy the main part of
the loss and affect the return of the gradient. Moreover,
Cross Entropy is suitable for multiclassification sample
model and is not suitable for tracking single object in this
paper, which will increase the error value. So, it is necessary
to improve the loss function. Inspired by X. Li [35], the
method of combining loss function is adopted to alleviate
the above problems. Due to different problems, different loss
functions are adopted. Dice Loss comes from the Dice co-
efficient, a metric function used to evaluate the similarity of
two samples, having a good effect on binary classification
problems. The value ranges from 0 to 1. The larger the value,
the more the similarity. Dice coeflicient is defined as follows:
21X NY]|

= 1
1X] +[Y] W

dice

where | X NY] is the intersection between X and Y, | X| and |Y]|,
respectively, represent the number of elements of X and Y, and
the numerator is multiplied by 2 to ensure that value range of
the denominator after repeated calculations is between [0, 1].
Therefore, Dice Loss can be written as
21X NY]|

=1 (2)
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Dice Loss is a region-related loss. The loss and gradient
value of pixel point are not only related to the label and
predicted value of this point, but also related to the label and
predicted value of other points, which can effectively reduce
loss value. However, training loss is prone to instability,
especially in the case of small targets. In addition, extreme
conditions can lead to gradient saturation. Since the samples
tested in this paper are too small, using this loss function will
also lead to the imbalance of positive and negative samples.

Therefore, Focal Loss function is introduced, which is
modified on the basis of the standard Cross Entropy loss. By
reducing the weight of easy-to-classify samples, the model
can focus more on the difficult-to-classify samples.

—a(1-7)"logwheny y = 1
Focal = (3)

~(1-a)7"log(1 — §)wheny =0’

where « and y are adjustable hyperparameters and y = 1/0
indicates that the sample is a positive sample or a negative
sample. a € [0, 1], when y = 1; the coefficient is taken as «,
when y distributes different weight ratios for positive and
negative samples to solve the problem of unbalanced positive
and negative samples. «a € [0, 1], when y = 1; the coefficient
is a,and when y = —1, the coefficient is taken as 1 —a. ¥ is the
target predicted value of the model, and its value is between 0
and 1. More importantly, wheny = 1 and y = 1, it represents
a simple positive sample, and its contribution to the weight is
0. When y =0 and y =0, it represents a simple negative
sample, and its contribution to the weight is 0. Therefore,
Focal Loss not only reduces the weight of the background
class, but also reduces the weight of simple positive and
negative samples. y is the adjustment of the loss function,
when y = 0; Focal Loss is equivalent to the Cross Entropy
loss function adjusted by a.

According to the requirements, this paper combines the
advantages of these two loss functions to obtain

21XNY|+e¢
LD—F = (1 7) + /\LFocal’

IX|+|Y]+e
where ¢ means preventing loss function from nonexistent
phenomenon and A is adjustment coefficient.

(4)

5. Analysis of Experimental Results

5.1. Experimental Materials, Experimental Equipment, and
Experimental Procedures. The research in this paper is
mainly inspired by image processing problems in high-
temperature environments in the industrial production field,



which is to combine the chemical industry with computer
technology. It brings further improvement to the fiber-
forming process of slag wool. As we all know, at high
temperatures, the volume and position of high-temperature
melts will change during the melting process due to
Brownian motion. However, traditional image processing
methods require specific brightness adjustment, regional
extraction, and other preprocessing based on the acquired
image information. Therefore, the efficiency in the actual
production process needs to be improved. In order to reveal
the dissolution behavior of iron tailings in blast furnace slag,
the main component of iron tailings, silica, was used to study
the melting process of silica particles at high temperatures to
characterize the melting of iron ore tailing. The test used a
vertical high-temperature furnace, a camera, a recording
system, and a tablet press. The experimental hardware
configuration was the processor AMD R7-4800H, the
memory was 16 GB, the graphics card was NVIDIA GeForce
RTX 3060GPU, and the operating system was Windows 10.
The code compilation software uses PyCharm. The networks
involved in this article were all built under the TensorFlow
framework, and the experimental programming language
was Python.

In order to solve the problem of lack of dataset and have
good adaptability to the tracking of various bulk objects,
therefore, six SiO, samples with different shapes and vol-
umes were selected, and the SiO, melting process was
recorded by a CCD camera, and the video stream was di-
vided into sequence pictures with an interval of s, a total of
590 pictures. Using the graphical interface labeling software
Labelme to label each image in the original dataset, generate
multiple JSON files and finally batch converted them into
grayscale images with a resolution of 224x224 and a bit
depth of 24, according to the PASCALVOC data self-built
database in set format. The obtained SiO, pictures were
expanded to 17,700 after being processed by data aug-
mentation such as gray inversion, horizontal inversion,
stretching, scaling, and rotation. In the experimental phase,
the training dataset accounted for 90%, and the test dataset
accounted for 10%. Transplant the MobileNet v3 network
structure into the framework, replace the original Cross
Entropy function with the loss function improved in this
article, improve the frame of the decoding part, and finally
complete all the improvements. The overall flow chart is
shown in Figure 4.

In order to comprehensively select the optimal combi-
nation of dilated convolution expansion rate, compared
different ASPPs are shown in Table 1. Combined different
connection methods and in-depth analysis, it could be seen
that the segmentation effect of the different receptive field
stitching ASPP with the expansion rate combination
[6, 12, 18, 24] was better than that of the combination
[6, 12, 18], but the predicted consumption time for single
image is 13.5% higher. The convolution group with the ex-
pansion rate combination [6, 12, 18] can increase MIoU by
0.84% and at the same time increase the prediction speed by
8.13%. Therefore, in this paper, the expansion rate of
depthwise separable convolution combination of the ASPP
module of different receptive fields can be selected [6, 12, 18].
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In this paper, the optimizer chose the SGD optimization
method. And to ensure that each data could be read, the
batch size was set to 35, and the parameter information was
updated every two samples. Extract 500 batches in one
epoch, so that each sample could be extracted once, and this
parameter could be updated 10,000 times. The data was
saved every 200 epochs, and the segmentation accuracy
changed as shown in Figure 5. Through training 10,000
times, the accuracy and loss of the model tend to be stable.
The final accuracy rate was 88.8%. It could be seen from the
figure that when the training is about 2000, the accuracy rate
has reached more than 80%, the loss value produces a period
of fluctuations and decreases rapidly, and the function
converges quickly. As shown in figure (c), the loss value of
the original model fluctuates violently and the final loss value
is 0.7920. It shows that the loss function design in this article
had an effect. For small object training, the model training
was stable. This function directly calculates the error be-
tween the true value and the training value, which reduces
the loss value to the greatest extent, and the final loss value is
0.6336.

5.2. Comparative Experiment and Performance Evaluation.
In order to verify the superiority of the lightweight neural
network MobileNet v3 in the segmentation model, this
article compared it with the common lightweight network
model. The comparison results are shown in Table 2.

In common neural network models, the higher the
model depth value, the greater the number of parameters
involved in the model, the more complex the model, and the
greater the difficulty of training. From Table 2, the network
parameters such as MobileNet v1, MobileNet v2, ShuffleNet,
and Proxyless are several times that of the network Mobi-
leNet v3. In the ImageNet project, the classic ResNet50
network is more than twice the model depth of MobileNet
v3. Comprehensive factors such as the highest accuracy rate,
experimental hardware equipment conditions, and training
time proved the necessity of choosing the lightweight neural
network MobileNet v3.

However, traditional image segmentation methods, such
as fuzzy C-means and watershed algorithm, simply segment
images. Therefore, it is necessary to locate the pictures first,
which will cause a lot of time loss and cannot be compared
with the real-time tracking and segmentation of the deep
learning framework.

In this paper, the MloU (mean intersection over
union) and execution time were used as quantitative in-
dicators to evaluate the segmentation accuracy and de-
tection efficiency of the model; the engineering
practicability of the model was judged based on the
memory size of the generated weight file. The MIoU
calculation method is as follows:

MIOU=L,
TP + FN + FP
. (5)
MIoU = — y Pi
o Tkl

3 3 :
20 Yo Py + Xjmo Pji — Pii
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TaBLE 1: Comparison of test results of ASPP module improvement schemes.
Group Dilation rate HFS DSAConv MIoU/% Training time hour T,/ms
1 [6, 12, 18] 74.52 23.85 275.3
2 [6, 12, 18, 24] 74.98 25.62 310.8
3 [6, 12, 18] v 75.39 27.37 322.4-
4 [6, 12, 18, 24] v 75.82 30.44 372.0
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6 [6, 12, 18, 24] v v 75.62 25.60 312.4
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FIGURE 5: (a) The accuracy of the model in this paper fluctuates. (b) The loss of the model in this paper fluctuates. (c) The loss of the original
model fluctuates.

In the formula, TP represents the number of pixels that  incorrectly segmented as background. The next formula is
are correctly segmented into SiO, regions; FN represents the ~ used in the actual calculation: p; represents the true value of
number of pixels that are incorrectly marked as background i and the number of predicted j, and k+1 is the number of
SiO, regions; FP represents the number of pixels that are  categories (including empty categories). p; is the real
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TaBLE 2: Performance comparison of different network architectures.
Params MAdds
Network Top 1/% CPU Advantage
P (M) X
MobileNet v1 70.6 4.2 575 113 ms Proposed depthwise separable convolution
MobileNet v2 72.0 34 300 75 ms Proposed inverted residuals and linear bottlenecks
??gl]ﬂleNet(XZ) 73.7 5.4 524 - Combined grouped convolution and channel shuffle
NasNet-A 74.0 5.3 564 183 ms Designed NasNet search space
Proxyless [37] 746 4 320 156 ms A new path pruning method was proPosed, which reduced memory
consumption
MobileNet v3 759 54 219 69 ms Combined complementary search technology and introduced the h-

swish activation function

TaBLE 3: Performance comparison before and after model improvement.

Algorithm name Pre-MIoU/% Mid-MIoU/% Last-MIoU/% Time/ms RAM/MB
DeepLabv3 + basic model 91.4 88.6 80.3 424 52
Improved DeepLabv3 + model 92.6 90.1 86.2 215 23
FastFCN 91.6 89.1 82.2 220 31
VisTR 92.4 90.1 85.2 230 41

Original image

DeepLab v3+(Improved model)

DeepLab v3+(Original model)

FastFCN

VisTR

150s 450s

FIGURE 6: SiO, comparison of different melting times.

quantity. p; and p; represent false positives and false
negatives, respectively.

For the improved DeepLab v3+ model, the DeepLab v3+
basic model, FastFCN [38], and VisTR [39] tested the first 200s,
the middle 200s, and the final 190s of the pictures, as shown in
Table 3. It can be seen from the table that, due to the large SiO,
bulk in the initial melting picture, the accuracy of the three
identification methods is very considerable. But starting from
the mid-term, the accuracy of the object’s gradual melting has
decreased, and the DeepLab v3+ basic model has decreased
significantly. In the final 190s, the melting of SiO, is about to
end, and the recognition accuracy of the basic model is greatly

reduced. It is far inferior to the improved DeepLab v3+ model,
which is about 6% higher. Moreover, the effect of the latest two
models tested in this paper is not as good as the improved
DeepLab v3+ model. The use of multiscale fusion of small data
segmentation and binary classification loss function was well
applied, and the execution time and memory consumption were
only half of the original model, which fully demonstrated the
advantages of lightweight network structure MobileNet v3 with
low memory and high efficiency. It had little effect on accuracy.
After calculation, the computational cost of the model is 0.53 B.

Figure 6 is the original image at different times and the
effect diagram of the original model segmentation and the
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TaBLE 4: Explanation of special symbols in the text.
Symbol Explanation Page
Lgice Definition of dice coefficient 6
XorY Pixels of the whole image 6
[XNY]| Intersection between X and Y pixels 6
[X|or|Y| The number of elements in X or Y 6
Lrocal Definition of Focal Loss function 8
aorl Tunable hyperparameters 8
y Model target predicted value 8
€ Preventing nonexistence of the loss function from occurring 8
) The modified loss function definition 8
k k is the number of categories (except for empty categories) 8
MIoU Mean intersection over union 11
Pi Pixels correctly segmented into SiO, regions 11
Pjj Pixels in the SiO, region that were incorrectly marked as background 11
Pji Wrongly segmented into background pixels 11
TP All pixels correctly segmented into SiO, regions 11
FN All pixels in SiO, regions that were incorrectly marked as background 11
FP All are wrongly segmented into background pixels 11

model segmentation in this paper. It can be seen from the
figure that the large object segmentation area of the original
model is too large due to the greater influence of the in-
terference in the furnace. For small objects of 450s, the
original model segmentation area is too small, resulting in
low accuracy. The reason why the proposed model had good
segmentation effect for each moment was that this paper
integrated convolution factors of more scales, which greatly
reduced pixel value loss. Finally, the accuracy of this model
was much higher than the original model, which had a good
experimental application for small object tracking
analysis.(Table 4)

The network structure model has certain shortcomings.
The final effect of pictures with too many small objects is not
ideal. The accuracy rate of the improved model in the
Vaihingen dataset is only 80.6%, but the accuracy rate in the
Aeroscapes dataset reaches 94.1%. Therefore, the model still
needs to be adjusted and modified.

6. Conclusion

The original model is not accurate enough for the seg-
mentation and extraction of small targets. Therefore, in view
of the weak representation ability of detailed pixels in
DeepLab v3+ model and the problems of missing seg-
mentation and mis-segmentation, the relationship between
each convolutional layer is further strengthened, and the
multiscale fusion method was adopted to strengthen the
control of the decoding layer on the details of the image. At
the same time, the lightweight network was used to solve the
problems of model parameter redundancy and large
memory consumption, improved the running speed of
image segmentation to achieve the effect of real-time
monitoring, and reduced the demand for hardware. Dice
Loss and Focal Loss were combined to improve the accuracy
of binary classification while enhancing the weight of pos-
itive samples of small objects and reduced the fluctuation of
model training and enhance the stability of the model. This
model had a good effect on SiO, melting motion capture,

improved the control of image position and detail infor-
mation, and strengthened the characterization capacity of
the model. In the follow-up work, we will make an in-depth
study of high-performance networks that take into account
prediction accuracy and real-time performance and further
enhance the practicality of semantic segmentation algo-
rithms in engineering applications.
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