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Abstract — A novel framework is developed in this research, to 

increase the real-time roadway traffic condition assessment 

accuracy, which integrates connected vehicle technology with 

artificial intelligence paradigm forming a CVT-AI method. Traffic 

density is a major indicator of traffic conditions. In this paper, the 

traffic operational condition is assessed based on traffic density. A 

simulated network of Interstate 26 in South Carolina is developed 

to investigate the effectiveness of the method. The assumption is 

that the vehicle on-board units will forward the connected vehicle 

(CV) generated data to the edge devices (e.g., roadside units) for 

further processing. CV generated distance headway, number of 

stops, and speed data are used to estimate traffic density. This 

study reveals that with 20% and greater CV penetration levels, the 

accuracy of the density information with the AI-aided CVT is a 

minimum of 85%. Moreover, this study demonstrates that the 

integrated CVT-AI method yields a higher accuracy with the 

increase of CV penetration levels. Level of service (LOS) is the 

indicator of traffic congestion level on highways, and is described 

with traffic density in terms of passenger car/mile/lane for a 

specific free flow speed. LOS estimated using the CVT-AI density 

estimation method are compared with the density estimation 

algorithm used by the Caltrans Performance Measurement 

System (PeMS), which relies on the occupancy and flow data 

collected by the freeway inductive loop detectors. With a 10% or 

more CV penetration, higher accuracy is achieved using the CVT-

AI algorithm compared to the PeMS density estimation algorithm.  

 

Index Terms— Connected vehicles, Density estimation, LOS, 

Artificial intelligence, PeMS, Loop detector1 
 

I. INTRODUCTION 

OR efficient management of intelligent transportation 

systems (ITS), accurate assessment of real-time traffic 

operational conditions is critical. ITS technologies and 

solutions have been developed and deployed over the last three 

decades as a cost-effective investment to improve capacity of 

existing transportation system [1]. One key feature of ITS 

applications is the real-time traffic operational assessment. The 

goal of real-time condition analyses is to immediately collect 

the traffic information and estimate the traffic condition for 

real-time traffic management, congestion monitoring, and road-

user (traveler and concerned agencies) information. In recent 

years, connected vehicle technology (CVT) has been 

considered as the next big innovation platform for ITS. Over a 

wireless communication network, connected vehicles (CVs) 

will reliably share the traffic condition data with surrounding 

vehicles through vehicle-to-vehicle (V2V) communication and 

with transportation infrastructures through the vehicle-to-

infrastructure (V2I) communication. Once the CV on-board 

unit compiles traffic data (e.g., vehicle position, number of 

brakes applied etc.) in an autonomous way at predetermined 

intervals, they transmit the data to roadside units (RSUs). Later, 

these data are further processed to derive the additional vehicle 

kinetics data (e.g., average speed, acceleration etc.) [2]. 
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Reliability of this vehicle-generated data for incident detection, 

congestion identification, vehicle routing, and increasing 

energy efficiency has already been explored in previous 

research [3-8]. 

Different state departments of transportation (DOTs) have 

recognized CVT as a viable option for congestion monitoring 

and management in future [9-11]. The ‘Vehicle Data for Traffic 
Operations’ application defined in the Connected Vehicle 

Reference Implementation Architecture (CVRIA) uses the CV 

generated data to support traffic operations by implementing 

localized operational strategies, as shown in Fig. 1 [12]. This 

application architecture shows the interconnectivity between 

different physical objects (i.e., entities) to implement real-time 

operational strategies using CV data. Once the RSUs collect 

vehicle situation data (including traffic condition monitoring 

data) from nearby CVs, it sends the data to the Traffic 

Management Center (TMC). TMC assigns the parameters to 

control the traffic condition information flow from the RSUs. 

Finally, estimated traffic condition data by TMC will be 

forwarded to other centers (i.e., the maintenance and 

construction center, the transportation information center, and 

the emergency management center for further actions (e.g., 

traffic information dissemination to road users, emergency road 

maintenance etc.).  

Estimation of traffic density is the most important task in 

real-time roadway network condition assessment [13, 14]. 

Several other traffic measures like speed or traffic volume can 

act as surrogate indicators for a congested situation, but density 

has been identified as the most important parameter to identify 

traffic congestion [15]. Traditionally real-time traffic 

operational analysis by density estimation has been conducted 

using embedded inductive loop detectors, surveillance cameras, 

and hybrid methods (e.g., loop detector-probe vehicles, loop 

detector-chase-car method, etc.) [16, 17]. The freeway 

Performance Measurement System (PeMS), managed by 

Caltrans utilizes single inductive loop detectors to collect 

occupancy (i.e., the amount of the time vehicles occupy the 

detector) and flow data (i.e., the number of vehicles that cross 

the detector for a specific time period) to assess freeway traffic 

density [18]. To estimate density, at first PeMS employs an 

adaptive g-factor (i.e., the effective length of the vehicle) 

approach to derive speed. Here the basic assumption is that an 

initial g-factor can be assessed when traffic is under free-flow 

conditions [19]. Although the estimated density is used in 

planning and other air quality studies [20], the density 

estimation algorithm used in PeMS has limitations. For 

example, loop detectors can be damaged due to vehicle weight 

and/or poor maintenance. If no data are received due to loop 

detector malfunction or the collected values are not reliable 
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(i.e., flawed), those data are replaced with estimated or imputed 

data, which may lead to erroneous density estimation. 

According to the PeMS website, for the year 2015 (from 

January 4, 2015 to December 27, 2015), on average 40.5% of 

the total data collected from detectors is estimated or imputed, 

which is reasonably high [21]. Moreover, PeMS assumes a 

constant flow and speed across the entire segment during a 

particular time interval [22], which is less valid for longer 

freeway sections. On the contrary, CVT is a promising 

technology for continuous real-time traffic data collection [2, 6, 

23] to estimate density, and disseminating the traffic 

information to the surrounding vehicles and infrastructures 

more efficiently. However, few research has been undertaken 

regarding the use of the integrated CVT-AI method to estimate 

traffic density, and this knowledge gap has been the motivation 

for this research. The specific research objectives are: (i) to 

evaluate the effectiveness of CVT in estimating the freeway 

Level of Service (LOS) based on density values, (ii) to explore 

the feasibility of different AI methods to estimate real-time 

density in a connected vehicle environment, (iii) to identify CV 

penetration levels to reliably estimate freeway LOS, and (iv) to 

compare the freeway density estimated by the CVT-AI density 

estimation method with the loop detector based density 

estimation (e.g., PeMS) algorithm. For this study, Interstate 26 

(I-26) in South Carolina (between Exit 194 and Exit 187) is 

chosen as the study area.  

In Section II, previous research works related to (i) traffic 

density estimation methods, and (ii) the application of AI in 

traffic operational assessments are presented. The discussion on 

the adopted research method in this research is introduced in 

Section III. In Section IV, the detailed analysis of the results is 

presented based on the findings from the CVT-AI method and 

the PeMS density estimation algorithm. Section V summarizes 

the research contribution. Section VI concludes the paper by 

presenting further discussion on the research findings and the 

future research directions of CV applications in real-time state 

estimation.   

Fig. 1. Architecture of a real-time traffic operational condition assessment application in a CV environment (adapted from [12]) 
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II. LITERATURE REVIEW 

The primary goal of this section is to summarize the evolution 

of the knowledge domain in real-time traffic state assessment 

using density estimation and the application of AI for traffic 

operational analysis. 

A. Traffic Density Estimation Methods  

Different studies have been conducted to determine existing 

traffic operational conditions. Vehicle speed [24, 25], vehicle 

spacing (i.e., distance between two vehicles) [26], and density 

[13] have been used to estimate traffic operational conditions. 

However, Qui et al. identified traffic density as a requirement 

to establish a high performance traffic management system, 

whereas other studies found density to be the single most 

important factor to identify the traffic congestion [13, 15, 27]. 

Fig. 2 shows different traffic density estimation methods, which 

are mainly categorized into two broad classes based on the used 

technology: wired and wireless density estimation 

technologies. Wired density estimation technologies can be 

further classified into two categories: density estimation using 

(a) single device, and (b) hybrid devices. Single device, such as 

loop detectors [15, 27, 28], video cameras [29], and 

microphones [30] are used to estimate density. Hernandez et al. 

developed a method for real-time density estimation using the 

travel times of the re-identified vehicles’ predicted from a 

vehicle re-identification algorithm using inductive loop 

detectors [15]. The authors found less than 4% mean absolute 

percentage error in both congested and non-congested condition 

detection after comparing with video camera data. Tyagi et al. 

used the cumulative acoustic signal collected by microphones 

to categorize the vehicular traffic states into the jammed, 

medium-flow, and free-flow condition based on the difference 

between the various spectral contents of the noise signals [30]. 

Bayes classifier was used to categorize the acoustic signal 

segments, where they found high classification accuracy 

(almost 95%). Further classification accuracy is gained by using 

a discriminative support vector machine classifier. However, 

this method is unable to extract microscopic traffic speed.  

Apart from these standalone density estimation devices, 

several hybrid devices have been used for density estimation. 

Qiu et al. used the integrated loop detector responses and probe 

vehicle information to assess density for a particular freeway 

segment at a predefined time interval [13]. The results showed 

that in comparison to using only detector data (almost 40% 

error), the hybrid method is more accurate (4% error) in 

estimating traffic density. In another study, chase-car data was 

combined with loop detector data to determine the LOS of 

freeway segments in California [16]. Speed data collected by 

chase cars (a chase car is an instrumented vehicle that records 

the distance between the vehicle itself and another target 

vehicle representing normal driving behaviors in the study area, 

which is then used to determine speed and acceleration data for 

each second for the target vehicle [31, 32]) for more than 37 

hours covering 250 freeway sections in Los Angeles were used 

in this study. After matching with the data collected by a loop 

detector (i.e., speed, count, occupancies, etc.), data is 

aggregated for each segment for every 15 mins to compute 

segment density. Anand et al. used digital videos and GPS-

equipped probe vehicles to collect flow data and travel time data 

respectively [33]. Here, the mean absolute percentage error of 

the prepared model is varied from 0.9 to 15.5%. 

Emerging CVT enabled vehicles uses wireless 

communication to collect and transfer the traffic data to 

surrounding vehicles and infrastructures (e.g., traffic signal, 

RSU). Usability of traffic data collection using V2V and V2I 

based wireless communication for density estimation has been 

studied in several studies. Beacon messages received from CVs 

(i.e., using V2V) and from RSUs (i.e., using V2I) and roadmap 

topology features were used by Barrachina et al. to estimate the 

density in a study [34]. In this study, the ns-2 simulator was 

used to study the traffic conditions in different cities. From the 

simulated data, a mathematical relationship was derived, which 

resulted in 1.02% average relative error for V2V-based density 

estimation. For V2I-bassed density estimation, the average 

relative error was 3.04%. This algorithm depends on the 

examination of the corridor maps to derive the street-junction 

ratio, which was a variable in the regression analysis model 

used by authors to estimate density. Barrachina et al. concluded 

that combining both V2V and V2I would give higher accuracy. 

In another study, Venkata et al. found vehicle clustering to be 

an effective approach for density estimation using both V2V 

and V2I communication [35]. In this study, the authors 

developed an algorithm to estimate density with the vehicle 

clusters. The proposed algorithm was validated in a simulation 

environment. Analysis revealed that the algorithm accurately 

estimated the density in different roadway traffic speeds. 

Caceres et al. used numerous cellular phones acting as probes 

to capture traffic volume [36]. To approximate the vehicle 

number moving from one area (i.e., service area under the 

coverage of a set of base stations) to other, the authors used the 

anonymous call phone data. After comparing with loop detector 

data, the experimental results showed an absolute relative error 

of 17%. Also, the developed method can be used for non-real-

time estimations. 

For real-time traffic management, DOTs need to collect 

accurate data across the state. Many state DOTs use loop 

detectors to collect traffic data. Washington DOT uses loop 

detectors embedded in the pavement of the state highways to 

collect traffic data [37]. South Carolina DOT utilizes side-fire 

microwave speed detectors as well as automatic traffic 

recorders; whereas, Ohio DOT has loop detectors to record 

speed [38, 39]. Also, 15 State DOTs collect real-time data from 

private companies such as INRIX, Tom-tom, and SpeedInfo 

[40]. These DOTs allocate a major share of their budget to buy 

data services from private companies. In connected vehicle 

environment, the integrated CVT-AI based density estimation 

method can be used by DOTs to get the reliable and accurate 

real-time traffic condition information [41]. 

B. Application of Artificial Intelligence in Traffic 

Operational Analysis 

Different algorithms have been developed for traffic operation 

analysis, including embedded algorithms in loop detector 

systems (e.g., the vehicle re-identification algorithm and the 

direct calculation of the density value from the traffic parameter 

recorded by the detector), the computer vision-based algorithm, 

and AI [15, 38, 42-44]. Among these algorithms, AI-based 



 

algorithms have the potential to increase the efficacy of the 

system to assess the density over time due to their inherent 

capability to adapt to changing traffic conditions. Among 

different AI paradigms, case-based reasoning (CBR) uses 

decisions from relevant past experiences to resolve new 

problems; thus, CBR mimics human behavior to resolve new 

cases [45]. The key assumption behind finding the solution to a 

problem is that similar problems have similar answers, and 

based on this hypothesis, CBR finds the closest or nearest 

earlier event, and proposes a result. CBR algorithms can work 

for challenging problems like noisy data and poor similarity 

functions [46]. Previous studies regarding the application of 

CBR in transportation engineering problems include collision 

analysis, real-time traffic diversion during incidents, and traffic 

control measures’ impact evaluation [47-50]. Another widely 

used AI technique is the support vector machine (SVM), which 

represents a collection of supervised learning methods that are 

used to classify (e.g., one-class SVM for one-class 

classification, and support vector classification or SVC for 

multi-class classification), or to conduct regression analysis 

(Support Vector Regression or SVR). SVM achieves nonlinear 

classification by creating a hyper plane after mapping the 

training data onto a richer kernel-induced feature space. 

Moreover, only the cases determining the support vectors 

require computational cost, which signifies that the SVM is a 

computationally efficient. Previous study revealed that SVM 

has higher prediction capability and learning potential 

compared against other AI-based paradigms, such as artificial 

neural network [51]. SVM is applied to predict traffic 

parameters (e.g., speed, travel time, and traffic flow) and to 

detect incident [6, 48, 51, 52]. For this research, the feasibility 

of both AI paradigms (CBR and multi-class SVC) to assess the 

real-time operational condition of a freeway is evaluated. 

III. METHOD 

In order to accomplish the research objectives, traffic 

microsimulation software (i.e., VISSIM) is used to create an 

AI-incorporated connected vehicle environment for the real-

time freeway state (i.e., LOS) estimation, and to compare the 

CVT-AI method performance with the PeMs density estimation 

algorithm. This section discusses the basic assumptions and 

associated research steps. 

A. Basic Assumptions for CV Simulation Environment 

For the I-26 simulation network, it is assumed that 7 RSUs, 

equipped with a microprocessor and wireless interfaces are 

placed along the freeway. Previous studies estimated that a 

reliable data transmission for V2I communication is possible by 

placing the RSUs at regular intervals [6], [53]. It is assumed that 

the CVs communicate with the RSU directly, or relay to the 

RSU through CVs within RSU’s communication range. After 

collecting microscopic traffic data such as headway, 

acceleration, speed, number of stops and vehicle maneuver data 

like lane-changing behavior using vision-based corridor lane 

marking detection and the onboard camera with time stamp 

information, CVs can transmit the information to the RSU 

without any communication latency. Once the data is collected 

by the RSU, it analyzes the data with the AI technique to 

estimate traffic density and LOS. Density values corresponding 

to each LOS, as well as the class label is shown in the following 

Table 1.  

Fig. 3 Simulation method of CV environment 
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Table 1 

 Label for different Level of Service (LOS) [54] 

LOS 
Density (passenger 

car/mi/ln) 
Label 

A <=11 1 

B >11 and <18 2 

C >18 and <26 3 

D >26 and <35 4 

E >35 and <45 5 

F >45 6 

In order to get the headway value, it is assumed that the vehicle 

location data is provided with a combination of the corridor 

name and the mile marker information, which can be found 

using the onboard GPS units and geographic information 

system (GIS) database. 

B. Development of Simulation Network  

In order to develop the simulation network in VISSIM, the 

macroscopic software VISUM is used to initially develop the 

geometric model using the shape file obtained from the SCDOT 

GIS database warehouse. Once the network is modified 

according to the field data of the roadway geometry, the 

network is then exported to VISSIM simulation software. In 

order to derive the origin-destination matrix, each gateway 

point Annual Average Daily Traffic (AADT) value is converted 

to Directional Design Hourly Volume using the 2012 AADT 

data [55]. Dynamic Traffic Assignment (DTA) is used in the 

network to get turning volumes at each interchange. The 

network is calibrated in an iterative process with the field 

measured travel time and volume data, link cost (in simulation), 

vehicle speed distribution (in simulation), and driver behavior 

parameters (in simulation) to match the volumes and travel 

times observed on the site. The model is considered calibrated 

once the volumes and travel times are found to be within 10 

percent of the field values. All dynamic routes are converted to 

static routes using the final DTA paths and cost files. Finally, 

the calibrated model is used to generate different LOS 

categories (i.e., LOS A-F categories). Fig. 3 shows the steps for 

the simulation model development and case generation for a CV 

environment. For each penetration level of CVs, a total of 50 

cases are developed with different seed numbers. Among them, 

20 cases are taken to be the training files, whereas 30 cases are 

considered as the test files. Each case represents a different 

combination for different LOS categories, where each LOS 

category has a one hour of representative data, and LOS was 

estimated for one second time interval. Among the one hour 

data, initial 1,200 seconds were considered as the simulation 

warm-up period. Vehicle volume is adjusted in order to 

simulate different LOS events based on the density values 

compared to the base scenario. The following Table 2 shows a 

sample vehicle generated dataset from microscopic simulator 

VISSIM. In this example, for a 2 second time interval, one 

Fig. 5 Density estimation using CVT-AI method and PeMS density estimation algorithm 

(a) Density estimation with CVT-SVM method 

(b) Density estimation with CVT-CBR method 

(c) Density estimation with PeMS density estimation method 
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vehicle (vehicle ID. 8) on a particular corridor (the study 

corridor, Link: 181) generated data for different variables: time, 

headway (ft.), lane change status, number of stops, acceleration 

(ft./s²) and speed (mph). 

TABLE 2 

Sample Vehicle Generated Data for 2 Seconds Interval 

Time  
(sec.) 

Link 
Vehicle 

ID. 
Headway 

(ft.) 
Lane  
Change 

No.  
of  
Stop 

Acceleration 
(ft/s2) 

Speed 
(mph) 

232 181 8 37375.8 - 0 0.00 77.31 

233 181 8 37262.4 - 0 0.00 77.31 

 

The corridor specific dataset includes data for a particular time 

for all vehicles and all links. The corridor dataset includes 

variables such as: time (sec), average speed of all vehicles on 

the link (mph) and density (veh/mi/lane). The Table 3 illustrates 

a sample corridor specific data for Link 181 between the Exit 

187 and Exit 194 on I-26.  
TABLE 3 

Sample Corridor Specific Data for 2 Seconds Interval 

Time (sec.) Link Avg. Speed 

(mph). 

Density (Veh/mi/lane) 

232 181 74.68 5.65 

233 181 74.59 5.73 

In real-life, the microscopic data will be collected from CVs and 

roadside units with Dedicated Short Range Communication 

(DSRC)-enabled devices. DSRC devices will transmit the basic 

safety messages (BSMs) [56] , which include the data (e.g., 

headway, speed, brake system status) required for the CV safety 

applications. Each RSU will have a processor to process the 

microscopic vehicle-generated data required for the density 

estimation. Once the RSUs collect BSMs from all CVs and the 

data processing task is completed, the freeway LOS will be 

estimated in the real-life CV environment using the CVT-AI 

method. 

To replicate the PeMS density estimation method using loop 

detectors, two data collection points placed 6 ft. apart in 

simulation to represent a 6 ft. long single loop detector, shown 

in Fig. 4. Two successive data collection points capture the 

detector occupancy and number of vehicle crossing the loop 

detector, which is a surrogate measure of a single loop detector 

system. Following the loop detector spacing in PeMS, the 

spacing interval between the loop stations is 0.5 mile [57]. As 

there are two lanes in study area on I-26, a total of 28 data 

collection points are installed which represents 28 loops in the 

real world. The raw data collection interval for the PeMS 

density estimation algorithm is typically 30 seconds which is 

aggregated to 5-minute average [58]. According to the 

literature, the summation of the individual 30-second data 

samples for flow from the loop detectors gives the flow value 

for a 5-minute interval. For occupancy, the 5-minute value is 

the average of the 30-second data samples received. A similar 

5-minute time interval is considered for the AI-aided CVT 

system for comparison with the PeMS loop detector based 

density estimation algorithm. 25 microscopic traffic simulator 

generated files are used to derive the g-factor for any particular 

time, and a different set of 25 microscopic traffic simulator files 

are used to check the accuracy of the PeMS LOS estimation 

algorithm.  

C. Feature Selection 

In order to select initial features, the Spearman coefficient value 

is calculated for each feature to estimate the LOS (i.e., headway, 

speed, acceleration, number of stops, and vehicle lane-changing 

maneuver) [59]. Spearmen coefficient can be applied when the 

data type is ordinal (i.e., the features can be divided in multiple 

categories and they can be ranked or ordered). In this research, 

the features associated with the different density values can be 

classified in six categories (i.e., LOS A to F). Also, the input 

features are monotonically related to density (which is the 

indicator of LOS) as (i) when the value of one feature increases 

(i.e., number of stops, number of lane changing), the freeway 

density increases; or (ii) when the value of one features 

decreases (i.e., speed, headway, acceleration), the freeway 

density increases. The following Equation 1 shows the formula 

of Spearmen coefficient between each individual feature and 

LOS [60]. 𝜌 = 1 − 6∑𝑑𝑖2𝑛.(𝑛2−1)                                                    (1) 

Where, ρ is the Spearman rank correlation, di is the difference 

between the ranks of input feature and corresponding LOS at a 

particular time i, and n is the number of data point in each data 

set. Using the above formula, Spearman coefficient values for 

LOS and input features (i.e., headway, speed, acceleration, 

number of stops, and vehicle lane-changing maneuver) are 

calculated at a 5% CV penetration level. The estimated 

Spearman coefficient for headway, speed, acceleration, number 

of stops, and vehicle lane-changing maneuver are 0.8, 0.7, 

0.006, 0.4 and 0.2, respectively. When the coefficient value is 

less than 0.3, it means there exists small association between 

input feature and LOS [61]. Medium association between the 

input variable and LOS is observed when the coefficient values 

are within the range of 0.3 and 0.5. When the coefficient value 

is more than 0.5, it represents strong association between the 

input variable and LOS. Based on the calculated value of the 

Spearmen coefficient, three input features (i.e., headway, speed 

and number of stops) are considered for further analysis in this 

study. 

D. AI Methods for Traffic Operational Analysis 

1) Support Vector Machine (SVM) 

Fig. 5 (a) shows a flow chart with the steps of SVM followed 

in this study. For the multiclass classification problem (LOS A 

to F), the LIBSVM library tool is used for the C-support vector 

classification (C-SVC) algorithm with the radial-basis kernel 

function [62]. Earlier study identified radial basis kernel 

function generally performs well compared to other kernel 

functions [63]. For this research, the LOS estimation accuracy 

achieved with various kernel functions (i.e., linear, polynomial, 

sigmoid and radial basis kernel functions) are evaluated. It was 

found that highest LOS estimation accuracy is achieved with 

the radial basis kernel function. A desktop computer with a 3.4 

GHz Intel® Core i7 and 24 GB of RAM is used for running C-

SVC algorithm. Various combinations of CV generated data are 

tested which include combinations of distance headway, speed, 

acceleration, number of stops, and vehicle lane-changing 

maneuver data. Using cross validation (with 4 train sets and 1 

validation set) the combination of distance headway, number of 

stops, and speed data are determined that give the highest 



 

accuracy in estimating traffic density. After finding the values 

of the three input features (i.e, distance headway, number of 

stops, and speed) from the CV generated data, cost coefficient 

(C), a parameter to avoid misclassification of the training sets, 

and the kernel function parameter (γ), a parameter to define the 

influence area of a single training example, are estimated for 

SVM classifications. To find the optimal value of C and γ to 
maximize the classification accuracy, a grid-search method is 

used with a 10-fold cross validation technique. 

2) Case-based Reasoning (CBR) 

Fig. 5 (b) outlines the k-nearest neighbor classification method 

used for CBR analysis. In this study, the Euclidean distance 

measurement formula (Equation 2, for all instances 

corresponding to the points in the n-dimensional space) is 

applied to find the closest case for each test case. Once the 

nearest cases are identified from the search, the LOS is 

determined for the respective case. 

Euclidean Distance (a, b) =√∑ 𝑤𝑓.(𝑎𝑓 − 𝑏𝑓)2𝑛𝑓=12
            (2) 

where 𝑤𝑓 is the weight for each parameter of each case, 𝑎𝑓 and 𝑏𝑓 are the components of case a and b [48], [64]. To get the 

optimal nearest neighbor number and weight values associated 

with each feature, the k-fold cross validation method was 

applied. The training data is grouped into k subsets in this 

validation strategy [65]. In total, trials were conducted for ‘k’ 
times. For each scenario, test data contains data from one of the 

k subsets, and training data is considered as the other k-1 

subsets. The average error across all trials is estimated for both 

scenarios: (i) with different values of nearest neighbors, and (ii) 

with different weight combinations for three input features (i.e., 

headway, speed and number of stops). The number of nearest 

neighbors and weight combinations, which produce the 

minimum average error, were considered to be the optimal 

value. Once the optimal values were found, an analysis was 

conducted on the test cases. For the test cases, LOS was 

estimated based on the minimum expected classification cost. 

E. PeMS Density Estimation Algorithm 

For the PeMS density estimation algorithm, 25 VISSIM 

generated files are used to estimate the g-factor for time interval 

t (i.e., 5 minutes) using the Equation 3 [19]. The g-factor is 

estimated, when the traffic is experiencing the free-flow 

condition, as the basic assumption is that vehicles move with a 

free flow speed when the occupancy is low. 𝑔𝑓𝑎𝑐𝑡𝑜𝑟 = v𝐹𝐹.𝜌(𝑡)𝑁(𝑡)                     (3) 

where v𝐹𝐹 is the corridor free flow speed where the detector is 

placed, 𝜌(𝑡) and 𝑁(𝑡) are the occupancy and flow values for 

the loop detector for the time interval, t respectively. To 

calculate g-factor for the test files, the regression line via loess 

is used following the PeMS density estimation algorithm, as 

shown in Fig. 5 (c) [19]. Using the derived g-factor for time 

interval t, detector determines the occupancy, and flow value 

from the test files. The preliminary speed, v  is estimated using 

Equation 4. v (t) = 𝑁(𝑡).𝑔𝑓𝑎𝑐𝑡𝑜𝑟𝜌(𝑡)                             (4) 

Later, the initial estimate of speed is passed through an 

exponential filter with weights that vary as a function of the 

flow. Based on the exponential filter, the final estimate of 

speed, v  for w(t) is derived using Equation 5. w(t) can be 

estimated with Equation 6.  v (t) = 𝑤(𝑡). v (t) + (1 − 𝑤(𝑡)). v (t − 1)         (5) w(t) = 𝑁(𝑡)𝑁(𝑡) + 𝐶           (6) 

After cross validation, the value of the smoothing parameter C 

is derived. Once v  is calculated, the density value for particular 

time interval t is assessed using the flow value for that loop 

detector. This estimated density represents a point- density. For 

a particular time interval t, estimates from all loop detector 

stations can be averaged together to estimate the freeway 

section-density [15].  

F. Data Formatting and Normalization  

For AI based density estimation methods, 20 training cases and 

30 test cases are generated using VISSIM simulation software 

for each CV penetration level. The microscopic traffic 

simulator VISSIM generated vehicle record file contains 

different microscopic data. For a certain time stamp, the CV-

generated microscopic data (speed, acceleration, number of 

stops and lane change) are captured from all CVs. Later, for 

same time stamp, the average values of these parameters are 

matched with the corresponding density data collected from the 

simulator link evaluation file. For the training files of the 

integrated CVT-AI method, the 6 different LOS values are 

labeled from 1 to 6, where 1 means LOS A, 6 means LOS F, 

and the values 2, 3, 4, and 5 represent LOS B, C, D, and E, 

respectively. Similar labels are used for the PeMS density 

estimation algorithm to examine the accuracy of the algorithm. 

Literature shows that both AI techniques (SVM and CBR) are 

highly sensitive to the input data variance and scale, which 

necessitates the use of data normalization [66, 67]. Once the 

training data is normalized and used to develop the classifier, 

test files are normalized using the same scale from 0 to 1, as 

suggested in the literature [62].  

G. Accuracy Estimation of Traffic Operational Assessment 

According to a real-time system management information 

program under Title 23 of the Code of Federal Regulations, 

state DOTs and other responsible agencies must report real time 

traffic and travel information at a minimum of 85% accuracy 

[68, 69]. In this research, 85% accuracy is considered to be the 

threshold in examining the suitability of different algorithms. 

For both the CVT-AI methods and the PeMS density estimation 

method, classification accuracy, A is measured using the 

Equation 7.  

A = (𝑠𝑛) .100%                     (7) 

where, s is the number of accurately classified density events, 

and n is the total event number. In this research, the accuracy is 

measured with respect to density data from the VISSIM link 



 

evaluation output, which is considered to be the ‘ground truth’ 
value of the density. This link density is the density data for the 

study corridor (i.e., the simulated I-26 freeway section from 

Exit 194 to Exit 187).  

IV. RESULT AND ANALYSIS 

This section is organized into the following subsections to 

present research findings from the freeway density estimation 

analysis based on the CVT-AI framework, and the PeMS 

density estimation algorithm. 

A.  Parameter adjustment for SVM and CBR 

  The accurate estimation of the SVM parameters is needed for 

the accuracy of the multi-class SVM. Using the grid search 

method, both the cost coefficient, C, and the kernel parameter, 

γ, are estimated. For each CV penetration level the optimal 

value of the C and γ parameters are selected depending on the 

highest cross-validation accuracy with the 20 training cases. 

Using these values of these SVM parameters, the trained SVM 

model files are generated to estimate density for the test cases. 

Similarly, weight parameters and number of nearest neighbors 

are also estimated for CBR. Table 4 contains the optimal values 

of the SVM parameters for various CV penetration levels in the 

I-26 network. Table 5 shows the optimal weight parameters and 

number of nearest neighbors for CBR. 

 

 

B. Comparison of density estimation by CVT-CBR and CVT-

SVM method  

In MATLAB, the C-support vector classification (C-SVC) 

method from LibSVM library tool is used to analyze CV test 

case data with SVM. Fig. 6 shows the accuracy of both AI 

methods for different penetration levels of CVs (i.e., 5%, 20% 

and 40%) along the I-26 study corridor. From Fig. 6, it is 

observed that, for the tested penetration level of CVs, SVM 

CV penetration (%) 5 10 15 20 

C 4096 1024 256 1024 

ϒ 0.25 0.25 0.025 0.25 

CV penetration (%) 25 30 35 40 

C 1024 1024 1024 1024 

ϒ 0.25 0.25 0.25 0.25 

Fig. 6 Density estimation accuracy by CVT-AI methods 
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Fig. 7 Average density estimation accuracy by CVT-AI methods 

TABLE 4 

Estimated SVM Parameters  

CBR 
Features 

Input 
features 
for CVT-

CBR  

CV Penetration (%) 

5 10 15 20 25 30 35 40 

Weight 

Headway 0.21 0.79 0.79 0.64 0.64 0.32 0.64 0.03 

Number 
of Stops 

0.32 0.06 0.06 0.22 0.22 0.54 0.22 0.32 

Speed 0.47 0.15 0.15 0.14 0.14 0.14 0.14 0.65 

Number 
of 

nearest 
neighbors 

All 
features 

(i.e., 
headway, 
number 
of stops. 
speed) 

13 15 7 11 11 7 11 5 

 

TABLE 5 

Estimated CBR Features  



 

gives higher accuracy in density estimation over CBR for each 

test case. The difference between the accuracy of the CBR and 

SVM estimated density varies up to 18.7% for 5% CV 

penetration, whereas for the 40% penetration level, it varies up 

to 7.7%. Fig. 7 shows that the average estimated density 

accuracy for the CVT-SVM method is lower than the Federal 

regulation defined threshold (i.e., 85% accurate) for a 15% or 

less penetration level of CVs, whereas for the CVT-CBR 

method, it is lower than the threshold for a 25% or less 

penetration level of CVs. One significant observation is that for 

each CV penetration level, the average density estimation 

accuracy for the radial kernel based SVM algorithm is higher 

than the k-nearest neighbor based CBR algorithm. Moreover, 

statistical analysis revealed that the density estimation accuracy 

difference between the CVT-CBR and CVT-SVM methods is 

significant for each CV penetration level at a 95% confidence 

level. It is also evident from Fig. 7 that the average density 

estimation accuracy increases with the increase in CV 

penetration levels for both AI methods. Also, with increasing 

penetration levels of CVs, the difference between the average 

accuracy of CBR and SVM decreases. From the observed trend, 

it is expected that with higher penetration levels (i.e., more than 

40%) of CVs, the accuracy of the density estimation will further 

increase. 

 Table 6 shows the detailed density estimation accuracy for 

different classes of LOS (LOS A to F) for both CBR and SVM. 

At the lowest penetration level (5%), AI methods cannot 

estimate LOS B, C, D and E with sufficient accuracy (i.e., 

minimum 85% accurate) in comparison to higher CV 

penetration levels. Moreover, SVM performs better than CBR 

in classifying all LOS events for any penetration level.  

C.   Computational time requirement for AI methods 

As the real-time density estimation application requires instant 

analysis of the collected data, the computational time needs to 

be negligible so that it does not delay the decision making 

process. Table 7 shows the average processing time of both AI 

techniques in analyzing each test file. In the analysis, individual 

5% CV 10% CV 15% CV 20% CV 25% CV 30% CV 35% CV 40% CV

SVM Accuracy (%) with CV 70.7 83.2 84.4 89.7 90.7 90.9 91.4 92

CBR Accuracy (%) with CV 69.7 80.9 84.2 88 88.6 89.9 90.3 90.5

Required accuracy (%) 85 85 85 85 85 85 85 85

PeMS Algorithm Accuracy (%)

with Loop
81.7 81.7 81.7 81.7 81.7 81.7 81.7 81.7
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Fig. 8 LOS estimation accuracy by CVT-AI methods and PeMS algorithm 

TABLE 6 

Level of service (LOS) estimation accuracy by different AI methods 

CV penetration (%)-AI method 

Accuracy for LOS Events (%) Average 

Accuracy 

for all 

LOS 

events (%) 

A B C D E F 

5% CV-SVM accuracy (%) 73.5 46.7 46.3 54.1 49.0 87.1 59.8 

5% CV-CBR accuracy (%) 56.8 48.6 43.6 47.5 46.9 84.9 55.2 

10% CV-SVM accuracy (%) 88.4 65.7 68.8 68.9 68.0 92.0 75.8 

10% CV-CBR accuracy (%) 82.7 63.8 62.4 59.9 62.1 90.2 70.8 

15% CV-SVM accuracy (%) 88.2 75.3 73.2 74.2 74.1 92.1 80 

15% CV-CBR accuracy (%) 82.4 70.3 63.2 67.6 68.1 91.6 74.4 

20% CV-SVM accuracy (%) 96.6 82.0 80.2 79.1 76.4 94.7 85.3 

20% CV-CBR accuracy (%) 94.4 80.9 75.9 76.9 70.4 93.4 82.7 

25% CV-SVM accuracy (%) 96.0 86.3 81.0 82.2 78.9 95.8 87.2 

25% CV-CBR accuracy (%) 93.8 82.2 76.1 78.6 74.1 95.7 84 

30% CV-SVM accuracy (%) 96.2 86.5 83.3 85.0 87.7 95.6 89.2 

30% CV-CBR accuracy (%) 95.2 81.9 77.2 79.7 80.9 94.6 85.2 

35% CV-SVM accuracy (%) 98.5 90.8 90.7 89.2 88.9 97.7 92.9 

35% CV-CBR accuracy (%) 98.7 90.9 85.9 82.7 85.4 96 89 

40% CV-SVM accuracy (%) 99.2 92.6 89.7 89.6 89.5 97.1 93.2 

40% CV-CBR accuracy (%) 98.3 90.1 86 85.1 80.2 94.9 90 

 



 

vehicle generated data is aggregated for one second time 

interval to assess the study corridor traffic density. The adopted 

density estimation methods take only few milliseconds to 

compute the link density, which stays within the tolerable limit 

for real-time traffic applications [2]. CVT-SVM requires more 

time compared to the CVT-CBR method. However, the 

computational time reduces with increasing CV penetration for 

both CVT-AI methods.  

 

 

D. Comparison of density estimation by CVT-AI method and 

PeMS Density Estimation method  

When comparing the CVT-AI density estimation method and 

PeMS density estimation method, a 5-minute time interval is 

adopted to compute freeway section density. Each method is 

compared against the ground truth data- link density from 

VISSIM simulation. It is observed that with the PeMS density 

estimation algorithm, 81.7% accuracy can be achieved (Fig. 8), 

which is less than the required accuracy level (85%) according 

to the real-time system management information program under 

Title 23 of the Code of Federal Regulations [68, 69].  

In this study, the loop detector-based PeMS performance is 

estimated based on the assumption that all the loop detectors are 

functioning properly. However, in real-life, loop detectors often 

malfunction and require frequent maintenance. Earlier, 

Hernanadez et al. collected loop detector data for a segment of 

I-405N in Irvine, California and achieved an overall density 

estimation accuracy of 87% applying PeMS algorithm [15]. The 

difference in the estimation accuracy of this study with our 

research could be attributed to the variation in traffic pattern 

and geometric characteristics of study areas. For example, I-

405N corridor used in Hernanadez et al. study is 0.66 mile long, 

and 7 lane (one-direction) freeway segment including two high-

occupancy vehicle (HOV) lanes, where the study corridor used 

in this study is a 7-mile segment of I-26 with two lanes (each 

direction). 

Findings from the statistical analysis reveal that, at a 95% 

confidence level the differences between the CVT-AI methods 

and the PeMS density estimation method accuracy are 

significant for a 20% or more CV penetration level. One 

probable cause of the relatively poor performance of the PeMS 

algorithm compared to CVT-AI method can be the use of a 

fixed g-factor value for 5-minute periods. A fixed g-factor is not 

sensitive to the changes in traffic conditions in the freeway 

section. The changes in traffic conditions could be estimated by 

the g-factor values for shorter period of time. One important 

issue here is to ensure the continuous flow of reliable and 

accurate data from all the loop detectors. Otherwise, similar 

accuracy cannot be achieved in real-world. For any missing 

and/or inaccurate data in the PeMS system, several data 

imputation methods are available, which are used to replace the 

loop detector collected bad data in real-world applications. 

Accuracy of the PeMS density estimation algorithm including 

the data from these imputation methods are not tested in this 

paper, since data is available from the simulation network for 

all the induction loop detectors.  

Fig. 9 shows the accuracy of the PeMS algorithm for density 

estimation for different LOS events compared to SVM and 

CBR method. The accuracy is almost 96% for LOS A, while it 

is as low as only 56% for LOS E.  

V. RESEARCH CONTRIBUTIONS 

Prior studies investigated the accuracy of different traffic 

density estimation algorithms (such as, polynomial and non-

polynomial function based density estimation algorithm and 

vehicle clustering-based density estimation algorithm) using 

data collected through V2V and V2I connectivity on urban 

streets. In contrast, this study is the first attempt to study an 

integrated CVT-AI method to estimate the LOS/traffic density 

on freeways. In this study, the three CV generated data sets (i.e., 

distance headway, number of stops, and speed) were identified 

as significant variables in feature selection step for freeway 

LOS estimation. Using these data, an increase in LOS 

estimation accuracy was observed with the gradual increase of 

CV penetration level applying both AI methods (i.e., CBR and 

SVM). This study also demonstrated the advantage of 

integrated CVT-AI method compared to the loop based LOS 

estimation algorithm used by the PeMS. Earlier studies did not 

compare CVT-AI based density estimation methods with the 

loop detector based density estimation methods. It was found 

that the developed CVT-AI method can provide better density 

estimation accuracy with a 20% or more CV penetration level 

compared to the loop detector based LOS estimation algorithm. 

VI. CONCLUSIONS AND FUTURE RESEARCH DIRECTIONS  

A. Conclusions 

 Intelligent transportation systems enabled by CVT will 

substantially improve safety, mobility, and the environment. 

This study examined a mobility application, specifically the 

real-time traffic state assessment using CV data. Among 

various combinations of microscopic traffic data that can be 

collected from CVs, space headway, number of stops, and 

speed were found to be the best parameter combination to 

predict traffic density with AI methods. CV-based traffic 

condition assessment strategy provides more than 85% 

CV Penetration (%) 
Processing time for 

CBR (sec) 

Processing time for 

SVM (sec) 

5 0.17 65.76 

10 0.13 52.99 

15 0.15 56.55 

20 0.12 29.07 

25 0.11 25.98 

30 0.11 23.97 

35 0.13 26.02 

40 0.09 14.30 

TABLE 7 

Average computational time requirement for CVT-AI methods 

Fig. 9 LOS event detection accuracy by PeMS algorithm 

A B C D E F Mean

PeMS algorithm

accuracy (%) with

loop detectors
96 96 89 72 56 82 82

0
10
20
30
40
50
60
70
80
90

100

A
cc

u
ra

cy
 (

%
)



 

accuracy with a 20% or more CV penetration level. The radial-

kernel based CVT-SVM algorithm consistently provides higher 

traffic density estimation accuracy compared to the k-nearest 

neighbor based CVT-CBR algorithm at any CV penetration 

level. Moreover, both AI methods’ estimation accuracy 

improves with higher CV penetration levels. When comparing 

to a traditional loop detector based density estimation algorithm 

(i.e., PeMS algorithm), it is observed that the estimated LOS by 

the PeMS system is much lower (~80%) compared to true LOS 

values. However, both CVT-AI methods showed significantly 

higher LOS estimation accuracy at 20% or more CV penetration 

levels, which shows the effectiveness of the CVT-AI 

framework developed in this research over the traditional loop 

detector based LOS estimation system. While some state DOTs 

have deployed extensive road sensors to monitor traffic 

conditions, other DOTs have contracts with private companies 

for receiving real-time traffic speeds and travel times data. The 

CVT application evaluated in this research will create a unique 

opportunity to collect real-time traffic condition data, which 

will reduce and eliminate the current use of traditional loop 

detector-based data collection practices or data purchased from 

private vendors that cost taxpayer dollars. Moreover, data 

collected from smart-phones can be used to estimate density, 

which will act as surrogate data when the penetration level of 

CVs is low. Apart from providing a more accurate alternative 

to the traditional traffic loop detector, CVT-AI system has the 

potential to assess traffic conditions where traffic sensors are 

not installed. 

B. Future Research Directions 

The real-world field tests are required to assess the reliability, 

feasibility and performance of the CVT-AI framework, 

developed in this research, to estimate traffic states. Also, the 

real-world DSRC communication reliability is needed to be 

tested. CVs will be on public roads within the next few years, 

and this offers challenges as well as opportunities for 

transportation agencies in terms of transportation planning, 

design, operations, and management. This study did not 

incorporate non-CV data, such as data from social media and/or 

news feeds. Future studies to estimate LOS should be done 

incorporating these non-CV data sources. Data collected in the 

CV environment will also permit the incorporation of non-real 

time applications, for example transportation planning.  
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