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Abstract

This paper deals with the real-time trajectory generation problem for two cooperating mobile robots moving the common rigid

object. The holonomic constraints resulting from a closed kinematic chain and the dynamics of such a system are considered.

Two methods of generation sub-optimal trajectories allowing for mechanical and control limitations and collision avoidance

conditions are proposed. The first solution is based on a leader-follower approach, in the second one the robotic system is

treated as a whole mechanism. In both cases, the trajectories are generated in order to avoid singularities and they are scaled

to satisfy control constraints. Advantages and disadvantages of both presented approaches are discussed. A computer example

involving two mobile manipulators consisting of nonholonomic platform (2,0) class and planar 3-DOF holonomic manipulator

is presented.

Keywords Multiple mobile robots · Cooperative manipulation · Trajectory generation

1 Introduction

There is a class of tasks that cannot be executed by a single

robot. They are associated with the movement of heavy

objects that a single robot cannot lift due to physical limita-

tions of its actuators. Another example of these tasks is the

movement of the large objects which must be supported at

several points. The necessity of performing such tasks leads

to rise the interest in the trajectory generation for multiple

robots performing the common task. Combining the mobil-

ity of the platform with dexterity of the manipulator, the

mobile manipulators seem to be especially attractive in this

application. The platform significantly increases the oper-

ating range of the robot, and therefore such a system may

be used to transport objects over long distances. Moreover,

after reaching the desired location, dexterity of the manip-

ulator allows to the precise placement of the object in the

desired position.

Solving the trajectory generation problem for multiple

mobile manipulators is more complicated than for a single
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robot. At first, limitations arising from the physical abilities

of the cooperating robots have to be taken into account.

Additionally, the use of the mobile robots with nonholo-

nomic platforms requires consideration of pure rolling and

non-slip conditions. Moreover, the robots moving the com-

mon object create the closed kinematic chain which imposes

an additional constraint that has to be allowed for.

1.1 RelatedWorks

In the literature there are several approaches to the motion

control for mobile manipulators. Some solutions employ the

calculus of variations. This approach has been presented by

Desai and Kumar in [7, 8] to formulate a general approach

in order to obtain optimal trajectories for nonholonomic

cooperating mobile robots. Solutions based on a pseudo-

inverse of the Jacobian matrix have been proposed in [11,

12] in order to generate real-time collision-free trajectories.

Seraji in [24] has used the augmented Jacobian matrix and

has introduced an on-line approach for motion control on

the kinematic level. The method discussed in this paper

employs the augmented Jacobian matrix, however it is appli-

cable to cooperative robot tasks, generated trajectories take

account of the dynamics of the system, control limitations

and state constraints.

In the recent years an increasing research interest in the

multi-robot systems has been noticed. A large number of
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studies concern problems of motion control for multiple

robots performing a common task in the same workspace.

Some works consider control design problems for groups

of vehicles which have to achieve a specified location [29]

or move in a given formation [17]. Such solutions are often

limited to use only the mobile platforms, thus the robots do

not have manipulation abilities. Moreover, the method of this

type cannot be directly adopted to solving the cooperative

transportation tasks by multiple mobile robots. In the case

of such tasks, two general methods are used: pushing and

grasping. In the first approach the object is pushed by a

group of the robots [6, 9, 30], however, in this case the

motion of the object cannot be controlled precisely.

In the second approach robots are equipped with

graspers and they hold the object during transportation, and

therefore the more precise manipulation is possible. The

solution of such tasks is more difficult due to the neces-

sity to satisfy constraints resulting from the closed kine-

matic chain established by cooperative robots and the object

held by them. The methods of motion control for multiple

cooperative robots have been first developed for multiple

manipulators. These studies are further intensively devel-

oped especially in the case of coordinated manipulation

tasks, such as bolt and nut mating [32] and transportation

tasks [10, 14]. Stationary manipulators have a limited work-

space, thus they cannot be used to carry long objects over

long distances. Due to the mobility of the platform, mobile

robots are more suitable for this type of tasks. The ideas used

in the case of cooperative manipulators may be employed

for motion control of mobile robots but the control task is

more complicated due to limitations resulting from a plat-

form movement.

Research carried out in the field of multiple robots

motion control has been aimed at solving the problem using

centralized and decentralized approaches. In the centralized

methods, motion control applies to all cooperating robots

simultaneously. The methods of this type are based on

full knowledge of the environment and they concentrate on

searching an optimal solution. Desai and Kumar in [7, 8]

have presented the method based on calculus of variations

for optimal control for mobile manipulators cooperating in

the workspace including obstacles. In [26] Tanner et al. have

discussed globally asymptotically stable centralized feedback

controller for mobile manipulators moving a deformable

object in the environment including obstacles.

While the centralized methods usually lead to algorithms

with high computational complexity, the decentralized

approaches are computationally more efficient due to decom-

position of the motion control task. In [15, 18] the authors

have considered a leader-follower motion control algorithm

for multiple mobile manipulators moving a common object.

In this approach, each robot has had a caster-like dynam-

ics in 3D space and an object has been manipulated without

using the geometric relations among the robots. Luh and

Zheng in [19] have proposed a leader-follower approach in

which they derived the relation between the joint positions

and velocities of the leader and the follower as a set of holo-

nomic equality constraints. Other leader-follower approaches

have been presented in [25, 27]. Sugar and Kumar in [25]

have discussed the motion control method for a small team

of mobile manipulators that cooperatively transport a large,

flexible object in a two dimensional environment with

obstacles. In [27] Trebi-Ollennu et al. have proposed an

decentralized algorithm for two Mars rovers carrying a long

object over an uneven, natural terrain. Abou-Samah et al. in

[2] have considered the leader-follower approach for coop-

erative payload transport based on the individual mobile

manipulator control schemes. In [13] a decentralized hybrid

position/force controller has been presented for the control

of multiple tightly coupled manipulators handling a com-

mon object. Adaptive control law developed from the virtual

decomposition approach has been designed by Brahmi et al.

in [3].

1.2 Summary of the Proposed Solution

In this paper, two trajectory generation methods for mobile

manipulators moving the common rigid object are pre-

sented. The proposed solutions are the development of the

method discussed in [21] and shows that an approach for

a single mobile manipulator can be easily adopted to the

cooperative task of two mobile robots. In the first method,

the trajectory generation problem is solved by using the

leader-follower conception. In this approach, the leader

determines the motion and the follower assists the leader

supporting the object. In the presented work, the leader per-

forms the point-to-point task moving its end-effector to the

final location resulting from the desired pose of the object.

The follower tracks the trajectory imposed by the leader

motion ensuring the fulfillment of the constraints which

results from the closed kinematic chain formed by coop-

erating robots. This approach is the development of the

idea presented in [23]. In the second method, the trajec-

tory generation problem is solved in a centralized way. In

this case, the both robots are treated as the one system con-

strained by conditions resulting from the closed kinematic

chain and they perform the point-to-point task moving the

object to its final location. The solution scheme for both

proposed approaches is similar, however, each of them has

some advantages and disadvantages that can be crucial in

choosing a particular approach for a particular application.

These issues will be detailed discussed in Section 6.

In both presented methods, the trajectories of the robots

are generated to minimize the performance indexes to avoid

manipulators singularities. In the first case, maximization of

the manipulability measures of the leader and the follower
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is carried out. In the second one, the total manipulability

of two cooperative robots is maximized. Additionally, the

constraints causing by mechanical and control limitations as

well as constraints connected with the potential collisions

between cooperating robots, are taken into account. In the

proposed solutions, the task is transformed into an optimiza-

tion problem with holonomic and nonholonomic equality

constrains, and inequality constraints resulting from col-

lision avoidance and mechanical limitations. Finally, the

resulting trajectories are scaled to fulfill the constraints

imposed on the controls. As it is shown further on, in the

leader-follower approach, controls of the system depend on

the motion imposed by the leader, thus satisfying control

constraints is obtained by trajectory scaling of the leader

only. In the centralized approach, controls of the system

depend on the trajectory of the whole system, and there-

fore in this case, the trajectory of both cooperating robots is

scaled to fulfill control constraints.

To the best of the author knowledge, no research has con-

sidered the cooperative task formulated in the above manner.

Some of the existing research addresses the problem using

only kinematic equations of the mobile manipulators [19,

24, 26] and the dynamics of the robots is not considered at

all. The studies considering the dynamics of the cooperative

systems do not allow to take into account control constraints

[2, 3, 7, 8]. In contrast, the presented solution takes into con-

siderations dynamics of the cooperative system, moreover,

it is distinguished by the method of determining the con-

tinuous controls which fulfill the assumed constraints. The

results of the proposed approach are trajectories parameter-

ized by gain coefficients, which can be chosen in such a way

to fulfill the imposed control constraints. The proposed tra-

jectory generation algorithm does not need the knowledge

of the system dynamics, the dynamic model is necessary

to determine the values of gain coefficients only. Other

research considering the dynamics of the robots produces

controls parameterized by gain coefficients of the controller

directly. In such cases, it is very difficult (or impossible) to

find coefficients which fulfill control limits.

The paper is organized as follows. Section 2 presents kine-

matic and dynamic model of cooperating robots. Section 3

formulates the cooperative task, constraints taken into

account and general idea of proposed control system. Two

approaches to solve the problem formulated in Section 3

are presented in Sections 4 and 5. The first solution is

based on a leader-follower approach, in the second one

the robotic system is treated as a whole mechanism. Each

of these sections includes derivation of the manipulability

measure of the considered system, the proposed form of

the trajectory generator and approach used to satisfy con-

trol constraints. Advantages and disadvantages of presented

methods are discussed in Section 6. The proposed methods

are demonstrated numerically in Section 7, for two mobile

manipulators consisting of a nonholonomic (2,0) class plat-

form and a 3-DOF planar holonomic manipulator moving

the rigid beam in 2D space.

2Model of the System

In the cooperative task considered in this paper two mobile

manipulators are moving the common rigid object, firmly

connected to their end-effectors, to the specified location in

the workspace. Manipulators and an object form a closed

kinematic chain, therefore knowledge of the kinematics and

dynamics of such a system is necessary to formulate the task

as a consequence of a cooperation.

2.1 Kinematics

In order to describe the kinematics of the closed kinematic

chain consisted of two mobile robots and an object carried

by them, the location of the object in the workspace must be

specified. For this purpose, as it is shown in Fig. 1, a local

coordinate frame {O} attached to the object at any given

point is introduced. The pose of this local frame in a global

reference frame {B} specifies the location of the object is

described by the m-elemental vector p:

p
def
=

[
xT , ϕT

]T

, (1)

where x and ϕ are the vectors describing position and

orientation of the local frame attached to the object in a

global reference frame.

In this paper, it is assumed that each of cooperating robots

is composed of a nonholonomic platform and a holonomic

manipulator with kinematic pairs of the 5th class. They are

described by the vectors of generalized coordinates:

qi
def
=

[
qT
p,i qT

r,i

]T

, i = 1, 2, (2)

where qi is the ni-dimensional vector of the generalized

coordinates of the i-th mobile manipulator, qp,i is the pi-

dimensional vector of the coordinates of the i-th nonholo-

nomic platform, qr,i is the ri-dimensional vector of joints

coordinates of the i-th holonomic manipulator, ni = pi +ri .

Fig. 1 Virtual stick conception
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In order to describe the geometry of the grasp the

approach of a virtual stick is adopted [28]. In this case the

virtual stick is a constant vector which determines the origin

of the object frame in the manipulator end-effector frame.

In Fig. 1 two manipulators holding a common object are

presented. The vectors vs1 and vs2 represent virtual sticks

of the first and second robot. They connect the origins of

frames {G1}, {G2} attached to the end-effectors of both

robots with the origin of the object frame {O}. Additionally,

at the end points of vs1 and vs2 the virtual end-effectors

with the same orientation as the object frame are introduced.

The idea mentioned above is used in this work to describe

geometry of the closed kinematic chain formed by two

cooperating robots.

Using the virtual stick approach, the location of the object

can be expressed with respect to generalized coordinates of

the mobile manipulator as:

p = fi (qi) , i = 1, 2, (3)

where fi : ℜni → ℜm denotes the m-dimensional mapping,

which describes the position and orientation of the virtual

end-effector of the i-th manipulator in the workspace.

Since there are no relative motions between the virtual end-

effectors of two cooperating robots (assuming the object is

rigid), the following geometric and kinematic constraints

should be fulfilled:

f1 (q1) = p = f2 (q2) , (4)

J1 (q1) q̇1 = v = J2 (q2) q̇2. (5)

where Ji = ∂fi (qi) /∂q is the (m × ni) Jacobian matrix of

the i-th manipulator and v denotes the common velocity of

the virtual end-effectors of the robots in the workspace.

Moreover, due to use of mobile robots, it is necessary to

take into account holonomic and nonholonomic constraints

which limit the platform motion capabilities. The con-

straints of this type, for the i-th platform, can be described

in the Pfaffian form as:

Ãi

(
qp,i

)
q̇p,i = 0, i = 1, 2, (6)

where Ãi(qp,i) is the (hi ×pi) Pfaffian full rank matrix and

hi is the number of independent holonomic and nonholo-

nomic constraints.

2.2 Dynamics

The cooperation causes that manipulators and object form a

closed kinematic chain, and consequently reduces the degree

of freedom of the system. Thus, owing to the redundant

number of the actuators, this system can be considered as a

rigid over-actuated multi-body system. After disconnection

of this multi-body system at the origin of the object frame

[16], the dynamic equations for i-th robot are given as:

Mi (qi) q̈i + Fi (qi, q̇i) + AT
i (qi) λi = Biui, (7)

where Mi (q) is the (ni × ni) positive definite inertia

matrix, Fi (qi, q̇i) is the ni-dimensional vector representing

Coriolis, centrifugal, viscous, Coulomb friction and gravity

forces, Mi and Fi contain both robot and object dynamic

properties, Ai (q) =
[
Ãi 0

]
, 0 is the (hi × ri) zero matrix,

λi is the hi-dimensional vector of the Lagrange mul-

tipliers corresponding to constraints (6) and Bi is the

(ni × (ni − hi)) full rank matrix (by definition) describing

which state variables of the mobile manipulator are directly

driven by the actuators.

Introducing the combined vectors q =
[
qT

1 , qT
2

]T
, q̇ =[

q̇T
1 , q̇T

2

]T
and the matrix J (q) = [J1, −J2], the kinematic

constraints (5) can be expressed in a compact form as:

J q̇ = 0, (8)

therefore the overall dynamic equations for the cooperating

robots taking into account both platform (6) and closed

kinematic chain (8) constraints, can be written as:

Mq̈ + F + AT λp + J T λc = Bu. (9)

where q̈ =
[
q̈T

1 , q̈T
2

]T
, F =

[
F T

1 , F T
2

]T
, λp =

[
λT

1 , λT
2

]T
,

u =
[
uT

1 , uT
2

]T
, A, M , B are the block diagonal matrices

defined as follows: M = blockdiag (M1,M2), A= blockdiag

(A1, A2), B = blockdiag (B1, B2), λc is the m-dimensional

vector of the Lagrange multipliers corresponding to the

constraints (8).

A (q) is the full rank matrix, thus there exists the full rank

(n1 + n2)×(n1 + n2 − h1 − h2) matrix Np (q), orthogonal

to A (q), which satisfies the relation:

ANp = 0. (10)

Using the above dependency and multiplying the dynamic

equation (9) by NT
p , the vector of Lagrange multipliers λp

can be eliminated and the model takes a new form as:

NT
p Mq̈ + NT

p F + NT
p J T λc = NT

p Bu. (11)

Assuming that the matrix JNp is the full rank

(rank
(
JNp

)
= m), the full rank (n1 + n2 − h1 − h2) ×

(n1 + n2 − h1 − h2 − m) matrix Nc (q), orthogonal to

JNp, can be determined in such a way that the following

relation is fulfilled:
(
JNp

)
Nc = 0. (12)

Finally, multiplying dependency (11) by NT
c , the dynamic

model of the system is reduced to the form given below:

NT
c NT

p Mq̈ + NT
c NT

p F = NT
c NT

p Bu. (13)

Cooperative robots moving the common rigid object form

an over-actuated dynamic system, thus there is no unique

solution of the Eq. 13 for u. Assuming the full rank of matrix

NT
c NT

p B , the inverse dynamic model of the system may be

determined as:

u = Mq̈ + F, (14)
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where M = B+NT
c NT

p M , F = B+NT
c NT

p F , B = NT
c NT

p B

and B+ is the Moore-Penrose pseudoinverse of matrix B .

3 Problem Formulation

This paper considers the cooperative task of two mobile mani-

pulators moving the common rigid object to the specified

location in the workspace. Using the vector p describing

the location of the object (1), this task can be formulated as

displacement of the object from the given initial location p0

to the final location pf .

Additionally, the motion of the mobile robots have to

take into account mechanical limits, boundary constraints

resulting from the task and collision-free conditions. At

the initial moment of motion the manipulators are (by

assumption) in the collision-free configuration for which the

virtual end-effectors are in the initial location p0 with zero

velocity:

p0 = fi (qi (0)) , q̇i (0) = 0, i = 1, 2. (15)

At the final moment of motion the both virtual end-effec-

tors have to reach the final location pf with zero velocity:

pf = fi (qi (T )) , q̇i (T ) = 0, i = 1, 2, (16)

where T stands for an unknown time of performing the task.

Conditions resulting from the mechanical limits and

constraints connected with the potential collisions between

cooperating robots or between robots and object carried by

them can be written as a set of inequalities:

ψk,i (qi (t)) ≥ 0, k = 1, ..., li, i = 1, 2, (17)

where ψk,i is the scalar function which involves the fulfill-

ment of the constraints imposed by the i-th robot mecha-

nical limits and collision avoidance conditions, li stands for

the total number of constraints.

In practice, the configuration of mobile manipulator

joints should be far away from singular configurations. The

distance from singularities can be defined based on various

manipulability measures. The next sections will discuss

manipulability indexes adopted in this paper. Regardless of

the form of the manipulability measure, to maximize the

distance from the robot singular configurations, in this paper

minimization of certain instantaneous performance index is

used. This index may be in the general form written as:

Ĩ
def
= 1/ (σ + w(· )) , (18)

where σ is the small positive coefficient and w (· ) denotes

the manipulability measure (explicit forms are given in the

following sections).

Additionally, each control should be within the limits

defined by the physical capabilities of the actuator, then the

following limitations for controls u1 and u2 for the first and

the second robot, should be satisfied:

umin,1,j1
≤ u1,j1

≤ umax,1,j1
, j1 = 1, . . . , n1 − h1,

umin,2,j2
≤ u2,j2

≤ umax,2,j2
, j2 = 1, . . . , n2 − h2, (19)

where u1,j1
is the j1-th control (torque or force) of the first

robot, u2,j2
is the j2-th control (torque or force) of the sec-

ond robot, and umin,1,j1
, umax,1,j1

, umin,2,j2
, umax,2,j2

are

the lower and upper limits on u1,j1
and u2,j2

, respectively.

To solve the cooperative task satisfying kinematic con-

straints (4)–(6) and limitations resulting from the construc-

tion of the robots and the nature of the task (15)–(19), the

control system shown schematically in Fig. 2 is proposed.

As can be seen, the problem will be solved by a real-time

trajectory generator working in the closed loop. The input

signal of the generator is the error vector E calculated

based on the desired location of the object and its current

location obtained from a forward kinematic model (FKM)

given by dependency (3). The other components of vector E

result from holonomic and nonholonomic platform con-

straints (PC), described by Eq. 6, and additional constrains

(AC) introduced by dependencies (4), (5), (17), (18). The

controls are determined from the dynamic model of the sys-

tem (model) given by dependency (14). The main advantage

of the proposed method is that, in contrast to other solutions,

it generates trajectories ensuring fulfillment of both the state

and control constraints.

In the next sections two trajectory generators are considered.

The first one is based on the leader-follower conception

[19]. In this approach, the leader determines the motion

and the follower assists the leader supporting the object. In

the second one, the centralized approach is presented and

the cooperating robots are taken into account together and

treated as the one system. The solutions are based on the

previous author’s work on the trajectory generation for a sin-

gle mobile manipulator [21] and use of the penalty function

approach and a redundancy resolution at the acceleration

level. The advantages and disadvantages of both solutions

are also discussed.

Fig. 2 The idea of control system for cooperating robots
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4 Leader-Follower Approach

In this solution cooperating mobile manipulators are

considered as two individual systems called the leader and

the follower. The main task of the first mobile manipulator

(leader) is to move its virtual end-effector from the initial

location p0 to the final location pf . The second robot

(follower) has to follow the leader, tracking the trajectory

determined by its virtual end-effector. During this motion

both robots should allow for constraints described by

dependencies (4)–(19) and minimize performance indexes

(18).

Section 4.1 presents the manipulability measure for the

single robot. In Sections 4.2 and 4.3 the methods of trajec-

tory generation for the leader and the follower satisfying

constraints (4)–(17) are considered. Trajectory scaling tech-

nique leading to fulfillment of control constraints (19) is

presented in Section 4.4.

4.1 Manipulability Measure

In order to avoid singular configurations the manipulabil-

ity of mobile manipulators moving the common object has

to be taken into account. In the solution presented in this

section, the manipulability measure is considered for each

subsystem independently, and it is based on the manip-

ulability ellipsoid introduced by Yoshikawa [31]. In this

approach the relationship between unit norm generalized

velocities of the robot and its virtual end-effector velocity

in the workspace is determined. The unit norm velocities in

the configuration space fulfill the following dependency:

q̇T
i q̇i = 1, i = 1, 2, (20)

Using the Moore-Penrose pseudoinverse of Jacobian matrix

Ji , velocities in the workspace can be determined from Eq. 5

as q̇i = J+
i v, therefore (20) can be rewritten as:

1 = q̇T
i q̇i

= (J+
i v)T J+

i v

= vT (J+
i )T J+

i v

= vT (J T
i (JiJ

T
i )−1)T J T

i (JiJ
T
i )−1v

= vT ((JiJ
T
i )−1)T JiJ

T
i (JiJ

T
i )−1v

= vT ((JiJ
T
i )−1)T v

= vT ((JiJ
T
i )T )−1v

= vT (JiJ
T
i )−1v. (21)

Thus, a unit sphere from the configuration space is mapped

into an ellipsoid in the workspace. According to Yoshikawa,

the manipulability of the robot can be measured as propor-

tional to the volume of this ellipsoid as:

w (qi) =

√
det (Ji J T

i ), i = 1, 2. (22)

4.2 Trajectory Generation for the Leader

The main task of the leader is to move its virtual end-

effector to the final location pf in such a way as not to

violate constraints (6). Additionally, the trajectory of the

robot has to satisfy inequality conditions (17) and reach the

minimum value of the performance index (18) in each time

instant. To solve this problem, an approximate implementa-

tion of inequality constraints (17) is accepted in this work.

The approach is to use penalty functions which cause the

inequality constraints to be satisfied, but the performance

index (18) to be somewhat increased. In this case the

instantaneous performance index (18) can be expressed as:

I1 (q1)
def
= Ĩ1 +

l1∑

i=0

κi,1

(
ψi,1

)
, (23)

where κi,1 is the penalty function which associates a penalty

with a violation of a leader constraint, see Numerical

example section for an exemplary form of this function.

In order to find a trajectory of the leader minimizing the

performance index (23), first let us consider the problem of

finding an optimal robot configuration q1 (T ) at the final

location pf :

f1 (q1) − pf = 0,

A1q̇1 = 0, (24)

min
q1

I1 (q1) .

Necessary condition to obtain the minimum of the per-

formance index I1 (q1) is that the differential of I1 at q1 (T )

equals zero:

〈Iq1
(q1) , δq1〉 = 0 (25)

where 〈· 〉 means the dot product of the vectors, Iq1
(q) =

∂I1/∂q1 and δq1 is the variation of q1.

Moreover, at the configuration q1 (T ) equality con-

straints given by the first and second dependency from

Eq. 24 have to be fulfilled. After differentiating the first of

them, they can be expressed in a compact form as:

J1 (q1) δq1 = 0, (26)

where J1 (q1) =
[
J T

1 AT
1

]T
is the ((m + h1) × n1) non-

singular matrix (nonsingularity is forced by minimization

procedure).

Since J1 is the full rank matrix, it is possible to rewritten

the above dependency as:

[
JR,1 JF,1

] [
δqT

R,1 δqT
F,1

]T

= 0, (27)

where JR,1 is the square matrix constructed from (m + h1)

linear independent columns of J1, JF,1 is the matrix

obtained by excluding JR,1 from J1, δqR,1 is the (m + h1)

dimensional vector corresponding to the reduced matrix
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JR,1, obtained by choosing elements from δq1 related to

columns of the matrix JR,1 and δqF,1 is the vector obtained

by excluding δqR,1 from δq1.

Multiplying the left side of Eq. 27, the related vector

δqR,1 can be expressed in terms of free vector δqF,1 as:

δqR,1 = −J
−1
R,1 JF,1 δqF,1. (28)

Then, taking into account dependency (28), necessary

condition (25) may be rewritten as:

〈IF,1 − (J−1
R,1 JF,1)

T IR,1, δqF,1〉 = 0, (29)

where IR,1 is the (m + h1) dimensional vector correspond-

ing to the vector δqR,1, obtained by choosing elements from

Iq1
related to components of the vector δqR,1 and IF,1 is the

vector obtained by excluding IR,1 from Iq1
.

The consequence of the free vector δqF,1 in Eq. 29 is the

following equation (called transversality condition):

IF,1 − (J−1
R,1 JF,1)

T IR,1 = 0. (30)

Equation 30 introduces (n1 − m − h1) dependencies

which in combination with the equality conditions from

Eq. 24 allow to obtain an optimal configuration for a given

final location. Then, in order to find a trajectory of the

leader, mapping E1 (q1, q̇1), which may be interpreted as a

measure of the error between a current configuration q1 (t)

and unknown final configuration q1 (T ), is introduced as

follows:

E1
def
=

⎡
⎣

f1 (q1) − pf

IF,1 − (J−1
R,1 JF,1)

T IR,1

A1 q̇1

⎤
⎦ . (31)

The m-first components of E1 are responsible for reach-

ing the given final location pf , the h1-last items ensure

fulfillment of constraints (6). The remaining n1 − m − h1

dependencies are derived above from the necessary condi-

tion for the minimum of the performance index (23), thus

they are responsible for the fulfillment of constraints (17) as

well as minimizing performance index (18).

Applying the error measure (31), the dependency speci-

fying the trajectory of the leader to the final location pf is

postulated as the following system of differential equations:
[

ËI
1 + 	I

V,1Ė
I
1 + 	I

L,1E
I
1

ĖII
1 + 	II

L,1E
II
1

]
= 0, (32)

where EI
1 is constructed from the first two components of

mapping E1, EII
1 is the third component of E1, 	I

V,1, 	I
L,1

are the ((n1 − h1) × (n1 − h1)) diagonal matrices with

positive coefficients ensuring the stability of the equilibrium

of the first equation and 	II
L,1 is the (h1 × h1) diagonal

matrix with positive coefficients ensuring the stability of the

equilibrium of the second equation.

The proposed form of dependency (32) results from the

necessity to determine trajectory at the acceleration level.

Hence, the second order differential equation with respect

to q1 is needed. Equation 32 is a system of homogeneous

differential equations with constant coefficients. In order to

solve it and find the trajectory of the mobile manipulator

2n1 − h1 consistent dependencies should be given. These

dependencies are obtained from E1 for t = 0 taking into

account conditions (15), especially zero initial velocity.

As it has been shown in [21], the proposed form of

differential equation (32) ensures that its solution is asymp-

totically stable which implies fulfillment of the conditions

(16) for the leader. What is more, if corresponding elements

of the main diagonals of matrices 	I
V,1 and 	I

L,1 satisfy

condition λI
V,1 > 2

√
λI

L,1, the solution is also a strictly

monotonic function, thus for the initial nonsingular config-

uration q1 (0) fulfilling mechanical and collision avoidance

constraints (17) leader motion is free of singularities and

fulfills constraints (17) during the movement to the final

location pf .

In order to obtain trajectory of the leader, Eq. 32 can be

rewritten in the expanded form:

[
EI

q,1q̈1 + ĖI
q,1 q̇1 + 	I

V,1Ė
I
1 + 	I

L,1E
I
1

EII
q̇,1q̈1 + EII

q,1 q̇1 + 	II
L,1E

II
1

]
= 0, (33)

where EI
q,1 = ∂EI

1/∂q1, ĖI
q,1 = dEI

q,1/dt ,

EII
q̇,1 = ∂EII

1 / ∂q̇1, EII
q,1 = ∂EII

1 /∂q1.

Then, after simple transformations, Eq. 33 can be written

as:

E1q̈1 = −

[
ĖI

q,1 q̇1 + 	I
V,1Ė

I
1 + 	I

L,1E
I
1

EII
q,1 q̇1 + 	II

L,1E
II
1

]
, (34)

where E1 =
[
(EI

q,1)
T (EII

q̇,1)
T
]T

.

Finally, the trajectory of the leader is given by:

q̈1 = −E
−1
1

[
ĖI

q,1 q̇1 + 	I
V,1Ė

I
1 + 	I

L,1E
I
1

EII
q,1 q̇1 + 	II

L,1E
II
1

]
. (35)

4.3 Trajectory Generation for the Follower

The task of the second robot is to follow the trajectory of

the leader virtual end-effector d̃ (t). This trajectory can be

determined from the forward kinematic model of the leader

(4), as follows:

d̃ (t) = f1 (q1 (t)) . (36)

Just as the leader the follower, during its motion, should

also keep inequality constraints (17) and avoid singular con-

figurations. In this case, the same approach as for the leader
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is employed and the extended performance index I2 (q2) is

defined in the same way as I1 (q1), as follows:

I2 (q2)
def
= Ĩ2 +

l2∑

i=0

κi,2

(
ψi,2

)
. (37)

where κi,2 is the penalty function which associates a penalty

with a violation of the follower constraint, see Numerical

example section for an exemplary form of this function.

In the case of finding trajectory for the follower, the prob-

lem of determining an optimal robot configuration q2 (t)

at the given time instant t should be considered:

f2 (q2) − d̃ (t) = 0,

A2q̇2 = 0, (38)

min
q2

I2 (q2) .

Similarly as in previous subsection, using necessary con-

dition of performance index (37), transversality condition

for the follower can be derived as:

IF,2 − (J−1
R,2 JF,2)

T IR,2 = 0, (39)

where IR,2, IF,2, JR,2, JF,2 are defined in similar way as

IR,1, IF,1, JR,1, JF,1.

The counterpart of the error measure E1 (31) for the

follower is the mapping E2 (q2, q̇2) defined as follows:

E2
def
=

⎡
⎣

f2 (q2) − d̃ (t)

IF,2 − (J−1
R,2 JF,2)

T IR,2

A2 q̇2

⎤
⎦ (40)

In this case the m-first components of the above

dependency result from the grasp constraint of the two

cooperating robots (4) and describe an error between a

current follower virtual end-effector location and trajectory

d̃ (t). The next n2 −m−h2 dependencies are obtained from

the necessary condition for the minimum of the performance

index (37) and they ensure the fulfillment of constraints

(17) as well as minimizing performance index (18) for the

follower. The h2-last items are responsible for fulfillment of

constraints (6) of the second robot.

To find the trajectory of the follower the same approach

as in the previous subsection is used. For this purpose, the

differential equation for mapping E2, defined in accordance

to Eq. 32, is introduced:

[
ËI

2 + 	I
V,2Ė

I
2 + 	I

L,2E
I
2

ĖII
2 + 	II

L,2E
II
2

]
= 0, (41)

where EI
2 , EII

2 are constructed from the mapping E2 in sim-

ilar way as for the trajectory of the leader (32), 	I
V,2, 	I

L,2,

	II
L,2 are the diagonal matrices with positive coefficients

ensuring the stability of the equilibrium of the Eq. 41.

Finally, the trajectory of the follower takes the following

form:

q̈2 = −E
−1
2

[
ĖI

q,2 q̇2 − d̈ + 	I
V,2Ė

I
2 + 	I

L,2E
I
2

EII
q,2 q̇2 + 	II

L,2E
II
2

]
(42)

where d =
[
d̃ T 0

]T
, 0 is the (n2 − m − h2) elemental

vector, E2, EI
q,2, EII

q̇,2, ĖI
q,2, EII

q,2 are defined in similar way

as for the trajectory of the leader (33).

The trajectory q2 (t) is the result of solving a system of

differential equations whose form ensures that its solution is

asymptotically stable for positive definite diagonal matrices

	I
V,2, 	I

L,2 and 	II
L,2. This property combined with the

fulfillment of the condition (16) for the leader implies that

the follower reaches the final location pf with zero velocity,

thus the condition (16) is also fulfilled for the follower.

Additionally, for appropriately chosen matrices 	I
V,2, 	I

L,2

the solution is also a strictly monotonic function, thus for the

initial nonsingular configuration q2 (0) fulfilling constraints

(4), (5) and (17), the follower motion is free of singularities

and fulfills constraints (4), (5), (17) during its movement to

the final location pf .

4.4 Control Constraints

To satisfy control constraints (19) the development of the

methods presented in [22] for stationary cooperating robots

and in [21] for single mobile manipulator is proposed.

Denoting:

	1 =
[
diag(	I

V,1)
T , diag(	I

L,1)
T
]T

and introducing the following substitutions:

A1 = −E
−1
1

[
diag(ĖI

1 ), diag(EI
1 )

0

]
,

b1 = −E
−1
1

[
ĖI

q,1q̇1

EII
q,1q̇1 + 	II

L,1E
II
1

]
,

trajectory of the leader (35) can be written as linear with

respect to 	1:

q̈1 = A1	1 + b1. (43)

Denoting by
(
EI

1

)(m)
,
(
ĖI

1

)(m)
and

(
ËI

1

)(m)
the vectors

built by the m-first coordinates of the EI
1 , ĖI

1 and ËI
1 ,

respectively and taking into account (36), it is easy to show

from Eq. 31 that:

d̃ =
(
EI

1

)(m)
+ pf ,

˙̃d =
(
ĖI

1

)(m)
,

¨̃d =
(
ËI

1

)(m)
.

(44)

The m-first dependencies from Eq. 32 can be rewritten as:

¨̃d + (	I
V,1)

(m) ˙̃d + (	I
L,1)

(m)(d̃ − pf ) = 0, (45)
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where
(
	I

V,1

)(m)

,
(
	I

L,1

)(m)

are the (m × m) submatrices

of 	I
V,1, 	I

L,1, respectively.

Taking into account that d =
[
d̃ T 0

]T
, dependency (45)

can be written in the expanded form as:

d̈ + 	I
V,1ḋ + 	I

L,1

(
d −

[
pT

f 0
]T

)
= 0. (46)

Introducing the matrix A0:

A0 = −

[
diag(ḋ), diag

(
d −

[
pT

f 0
]T

) ]
,

it is easy to show that the trajectory of the leader virtual

end-effector is linear with respect to 	1:

d̈ = A0	1. (47)

Finally, inserting (47) into the trajectory of the follower

(42) and introducing substitutions:

A2 = E
−1
2

[
A0

0

]
,

b2 = −E
−1
2

[
ĖI

q,2 q̇2 + 	I
V,2Ė

I
2 + 	I

L,2E
I
2

EII
q,2 q̇2 + 	II

L,2E
II
2

]
,

the trajectory of the follower (42) can be also written as

linear with respect to 	1:

q̈2 = A2	1 + b2. (48)

Substituting (43) and (48) into the dynamic model (14),

controls of cooperating robots can be determined as:

u = M̌ 	1 + F̌, (49)

where M̌ = M
[
AT

1 AT
2

]T
and F̌ = M

[
bT

1 bT
2

]T
+ F.

As it is seen, controls of both cooperating robots are

linear with respect to gain coefficients of the leader 	1. In

order to find controls fulfilling constraints resulting from

limitations of mobile robots actuators, dependency (49) is

substituted into conditions (19) and the following system of

inequalities is obtained:

umin ≤ M̌ 	1 + F̌ ≤ umax . (50)

The dependency (50) introduces (n1 − h1) + (n2 − h2)

inequalities, thus choice of the leader such that (n1 − h1) ≥

(n2 − h2) results in dim(	1) = 2 (n1 − h1), hence it is

possible to determine 	1 ensuring fulfillment of constraints

(19). An alternative approach based on scaling of the

trajectory using certain heuristics can be found in [20].

5 Centralized Approach

In this solution cooperating mobile manipulators are

considered as one centralized system, and therefore both

robots are treated equally and none of them performs the

role of the leader. The manipulability measure of this system

is considered in Section 5.1. The centralized trajectory

generation method is presented in Section 5.2. Section 5.3

shows application of the trajectory scaling technique to

fulfillment of the control constraints (19).

5.1 Manipulability Measure

This section considers the total manipulability measure of

the system consisting of two mobile robots moving the

common rigid object. Based on the manipulability ellipsoid

method for two cooperative robots [5], since there are no

relative motions between the virtual end-effectors of the

robots, kinematic constraints (5) are written in a matrix form

as:

ϑ = Jq̇, (51)

where ϑ =
[
vT , vT

]T
is the combined vector of the end-

effectors velocities and J = blockdiag (J1, J2) is the

block-diagonal matrix combined from the Jacobian matrices

of both robots.

Taking into account (51), the unit norm velocities in the

configuration space:

q̇T q̇ = 1, (52)

are transformed into an ellipsoid in the workspace as

follows:

1 = q̇T q̇

= (J+ϑ)T J+ϑ

= ϑT (J+)T J+ϑ

= ϑT (JT (JJT )−1)T JT (JJT )−1ϑ

= ϑT ((JJT )−1)T JJT (JJT )−1ϑ

= ϑT ((JJT )−1)T ϑ

= ϑT ((JJT )T )−1ϑ

= ϑT (JJT )−1ϑ . (53)

The dependency (53) can be easily transformed to show

relation with the Jacobian matrices of both robots:

1 = ϑT
(
JJ

T
)−1

ϑ

=
[
vT vT

] ([
J1 0

0 J2

] [
J T

1 0

0 J T
2

])−1 [
v

v

]

=
[
vT vT

] [ (
J1J

T
1

)−1
0

0
(
J2J

T
2

)−1

][
v

v

]

= vT
(
(J1 J T

1 )−1 + (J2 J T
2 )−1

)
v, (54)

therefore the manipulability of cooperating robots can be

measured as:

w(q) =

√
det (((J1 J T

1 )−1 + (J2 J T
2 )−1)−1). (55)
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5.2 Trajectory Generation

In order to find, in a centralized way, the trajectory of both

robots fulfilling inequality constraints (17) and avoiding

singular configurations, the extended performance index

I (q) is defined in the similar way as for individual robots:

I (q)
def
= Ĩ +

l1∑

i=0

κi,1

(
ψi,1

)
+

l2∑

i=0

κi,2

(
ψi,2

)
. (56)

where κi,1, κi,2 are the penalty functions which associates

a penalty with a violation of the first and the second robot

constraint, see Numerical example section for an exemplary

form of this function.

In the case of two cooperative robots considered as

the one system, the problem of finding an optimal robots

configuration q (T ) at the final location pf should be

considered:

f1 (q1) − pf = 0,

f1 (q1) − f2 (q2) = 0,

A1q̇1 = 0,

A2q̇2 = 0,

min
q

I (q) . (57)

Similarly as in previous section, transversality condition

for the cooperating robots can be derived from the necessary

condition for minimum of the performance index I (q):

〈Iq (q) , δq〉 = 0, (58)

where Iq (q) = ∂I/∂q and δq is the variation of q.

At the configuration q (T ) equality constraints from

Eq. 57 have to be fulfilled. After differentiating the first two

constraints, they can be expressed in a compact form as:

J (q) δq = 0, (59)

where J =
[
[J1 0]T , [J1 − J2]T , blockdiag(A1, A2)

T
]T

is the nonsingular matrix (nonsingularity is forced by

minimization procedure).

Since J is the full rank matrix, it is possible to written the

above dependency as:

[JR JF ]
[
δqT

R δqT
F

]T

= 0, (60)

where JR is the square matrix constructed from

(2m + h1 + h2) linear independent columns of J, JF is

the matrix obtained by excluding JR from J, δqR is the

(2m + h1 + h2) dimensional vector corresponding to the

reduced matrix JR , obtained by choosing elements from δq

related to columns of the matrix JR , and δqF is the vector

obtained by excluding δqR from δq.

Multiplying the left side of Eq. 60, the related vector δqR

can be expressed in terms of free vector δqF as:

δqR = −J
−1
R JF δqF . (61)

Then, taking into account the dependency (61), necessary

condition (58) may be written as follows:

〈IF − (J−1
R JF )T IR, δqF 〉 = 0, (62)

where IR is the (2m + h1 + h2) dimensional vector corre-

sponding to the vector δqR , obtained by choosing elements

from Iq related to components of the vector δqR and

IF is the vector obtained by excluding IR from Iq .

The consequence of the free vector δqF in Eq. 62 is the

following equation:

IF − (J−1
R JF )T IR = 0. (63)

The total error measure E (q, q̇) of whole robot system is

determined analogously to error measures introduced earlier

in Section 4:

E
def
=

⎡
⎢⎢⎢⎢⎣

f1 (q1) − pf

f1 (q1) − f2 (q2)

IF − (J−1
R JF )T IR

A1q̇1

A2q̇2

⎤
⎥⎥⎥⎥⎦

. (64)

In the similar way as in Section 4, using the error measure

(64), the dependency specifying the trajectory of the whole

system of cooperating robots is proposed as a following

system of differential equations:
[

ËI + 	I
V ĖI + 	I

LEI

ĖII + 	II
L EII

]
= 0, (65)

where EI is constructed from the first three components of

mapping E, EII is formed from the remaining components

of E, 	I
V , 	I

L are the (n1 + n2 − h1 − h2) square diagonal

matrices with positive coefficients ensuring the stability

of the equilibrium of the first equation and 	II
L is the

(h1 + h2) square diagonal matrix with positive coefficients

ensuring the stability of the equilibrium of the second

equation.

Similarly as in previous section, the trajectory of coop-

erating robots can be determined by simple transformation

from Eq. 65 as:

q̈ = −E
−1

[
ĖI

q q̇ + 	I
V ĖI + 	I

LEI

EII
q q̇ + 	II

L EII

]
(66)

where E =
[
(EI

q )T (EII
q̇ )T

]T

, EI
q = ∂EI/∂q, ĖI

q =

dEI
q/dt , EII

q̇ = ∂EII/∂q̇, EII
q = ∂EII/∂q.

As in the leader-follower approach, suitable choice of the

gain coefficients 	I
V , 	I

L and 	II
L leads to solution which

is asymptotically stable and strictly monotone. These prop-

erties imply that the robots reach the final location pf with

zero velocity and their motion is free of singularities and ful-

fills constraints (4), (5), (17) during the movement if initial

configurations are nonsingular and satisfy constraints (4),

(5) and (17).
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5.3 Control Constraints

To satisfy control constraints (19), trajectory (66) is scaled

in similar was as in leader-follower approach. Denoting:

	 =
[
diag(	I

V )T , diag(	I
L)T

]T

and introducing the following substitutions:

A = −E
−1

[
diag(ĖI ), diag(EI )

0

]
,

b = −E
−1

[
ĖI

q q̇

EII
q q̇ + 	II

L EII

]
,

trajectory of the robots (66) can be written as linear with

respect to 	:

q̈ = A	 + b. (67)

Similarly as in previous section, substituting (67) into

dynamic model (14), controls of cooperating robots can be

determined as:

u = M̂ 	 + F̂, (68)

where M̂ = MA and F̂ = Mb + F.

As it is seen, in contrast to leader-follower approach, in

this case controls are linearly dependent on gain coefficients

	 of both cooperating robots. In order to find controls ful-

filling constraints resulting from limitations of mobile robots

actuators, dependency (68) is substituted into conditions

(19) and the following system of inequalities is obtained:

umin ≤ M̂ 	 + F̂ ≤ umax . (69)

The dependency (69) introduces (n1 − h1) + (n2 − h2)

inequalities whereas dim(	) = 2 (n1 − h1 + n2 − h2),

thus it is possible to determine 	 ensuring fulfillment of

constraints (19).

6 Discussion

It seems that the both presented approaches are computa-

tionally effective and allow to find solutions satisfying all

the imposed constraints which is confirmed by the results of

the simulations presented in Numerical example section. How-

ever, each of them has some advantages and disadvantages.

The methods described in this paper are based on the sim-

ilar approach in which trajectories of the robots are derived

from differential equations using suitable defined error

measures. The both proposed trajectory generators take state

dependent constraints into account, maximize the manip-

ulability measure, and using suitable scaling techniques

determine trajectories satisfying control constrains. Accord-

ing to the idea of the proposed control system shown in

Fig. 2, the input signal of the trajectory generator is the error

measure determined based on the current state of the system.

The output signals q, q̇, q̈ are obtained by solving the ini-

tial value problem given by dependencies (32) and (41) for

the leader-follower approach or Eq. 65 for the centralized

approach. In each case, initial conditions are determined

by using a suitable error measure for t = 0 allowing for

conditions (15).

The solution scheme for both proposed approaches is

similar, however, there are important differences that can be

crucial for choosing a particular approach for a particular

application. These issues will be discussed in the following

paragraphs.

6.1 Computational Burden

Regardless of the used approach, finding the trajectory of

cooperating robots requires solving the initial value problem

given by system of (n1 + n2) secondary differential equa-

tions. The differences in a computational effort are related to

the cost of determining the components of these equations.

Let us compare the computational effort needed to deter-

mine the error measures in the case of the leader-follower

(31), (40) and centralized approach (64). All components

from E1 and E2 are included in the error measure E, how-

ever, the leader-follower approach requires computing two

separate transversality conditions - one for the leader (30),

and one for the follower (39) and in the centralized approach

the single transversality condition (63) for both cooperating

robots is determined. In the first approach, robots are con-

sidered as two individual systems, thus J1, J2 are matrices

of dimensions ((m + h1) × n1) and ((m + h2) × n2) and

vectors Iq1
, Iq2

have n1 and n2 elements, respectively. In

the second method, robots are treated as one centralized

system, in this case J is ((2m + h1 + h2) × (n1 + n2))

matrix and Iq is (n1 + n2) elemental vector. The greater

number of elements in the matrix J, in the case of the cen-

tralized approach, leads to more operations needed to deter-

mine the transversality condition. In particular, in the leader-

follower approach it is necessary to invert two matrices with

dimensions (m + h1)× (m + h1) and (m + h2)× (m + h2)

and in the centralized approach one (2m + h1 + h2) ×

(2m + h1 + h2) matrix has to be inverted.

The higher calculation costs associated with the deter-

mination of the error measure E result in higher costs of

computing EI
q , ĖI

q and ĖI . Moreover, in the centralized

approach, derivatives are calculated with respect to com-

bined vector q = [qT
1 , qT

2 ]T . It causes dimensions of matri-

ces EI
q , EII

q̇ , and in a consequence E is ((n1 + n2)× (n1 +

n2)) matrix and ĖI
q is ((2m+h1 +h2)× (n1 + n2)) matrix.

In the case of the leader-follower approach, derivatives are

calculated with respect to q1 and q2, thus dimensions of

matrices E1, E2 are equal to (n1×n1) and (n2×n2), whereas
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dimensions of ĖI
q,1, ĖI

q,2 are equal to ((m + h1) × n1) and

((m + h2) × n2), respectively. Determining the trajectories

of robots requires inverting the matrices E1 and E2 and cal-

culation of products ĖI
q,1q̇1, ĖI

q,2q̇2 in the leader-follower

approach and the inversion of matrix E and calculation of

product ĖI
q q̇ in the centralized approach. The larger matri-

ces size in the second case results in higher computational

burden and it can lead to larger computation time.

6.2 Secondary Cost Functions

According to the above analysis, the centralized approach

requires more computational burden but it allows to use

secondary cost functions taking into account properties

of the whole system such as a measure describing total

manipulability of two cooperative robots. In the case of the

leader-follower approach, each of the robots is considered

as an individual subsystem, and therefore secondary

performance indexes can be functions of state variables of

the single robot only. Such approach allows to maximize

the manipulability measure of each individual mechanism,

however does not provide optimization of the manipulability

of the whole system, which is confirmed by the simulation

results presented in Section 7. In the centralized approach,

the performance index can be a function of state variables of

the whole system, hence optimization of the manipulability

of the whole mechanism is possible. Summarizing, where a

sufficient computing power is available and it is important

to optimize secondary cost functions describing properties

of the whole system, the application of the centralized

approach should be considered.

6.3 Trajectory Generation for Multiple Robots

The scope of the work is limited to the case of generating

the trajectory for two robots, however it seems that both

proposed approaches can be employed directly in generat-

ing the trajectory for multiple cooperating robots. In the

case of the leader-follower approach, the robot with the

number of the degree of freedom not less than the num-

ber of degrees of freedom of other robots is chosen as a

leader, the other robots become followers. The trajectory of

the leader is derived from dependency (35) and trajectories

of the followers according to dependency (42). In the case

of the centralized approach, the error measure (64) has to

be modified. Taking another robot into account requires the

addition of two components, one related to the existence of

a closed kinematic chain and the other resulting from the

constraints imposed on the robot platform motion. Simi-

larly, equality constraints in Eq. 57 should be completed in

order to derive the transversality condition for the whole

system. Consideration about the computational burden and

secondary cost functions for the case of two cooperating

robots also applies the case of multiple robot system.

The above analysis presents the general idea of the appli-

cation of the method in the case of trajectory generation for

multiple robots. However, these issues are out of the scope

of this paper, they require a further elaboration and will be

the subject of further research.

7 Numerical Example

In the numerical example two mobile manipulators, shown

in Fig. 3, each composed of the nonholonomic differentially

driven platform (2,0) class and planar 3-DOF holonomic

manipulator are considered. The task of the robots is to

move the uniform, rigid beam to the final location in the

workspace. Two cases of performing above task are consi-

dered. In the first one control constraints are not taken

into account. In the second case, the methods described in

Sections 4.4 and 5.3 are used to satisfy control constraints

Fig. 3 Schematic diagram of two cooperative robots
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(19). In each example, two simulations for: leader-follower

and centralized approach are carried out.

7.1 System Parameters and Constraints

The system of two cooperating mobile manipulators taken

into account in simulations is shown in Fig. 3. The i-th robot

is described by the vector of generalized coordinates:

qi =
(
xc,i, yc,i, θi, φ1,i, φ2,i, q1,i, q2,i, q3,i

)T
,

where [xc,i, yc,i] is the platform center location, θi is the

platform orientation, φ1,i, φ2,i are the angles of driving

wheels, q1,i , q2,i , q3,i are the configuration angles of the

manipulator joints.

The mobile manipulators work in XBYB plane of the

base coordinate system {B}. The coordinate system {Pi} is

attached to the i-th mobile platform at the midpoint of the

line segment connecting the two driving-wheels. The i-th

holonomic manipulator is connected to the i-th platform at

the point [l0,i, 0, 0]T {Pi} system. The frame {O} is attached

to the selected point of the object moved by the cooperating

robots. The object frame {O} is rotated by ϕO,i around

Z-axis of the coordinate frame {Gi} attached to the

grasper of i-th manipulator and translated by the vector

[xO,i, yO,i, 0]T . The line section connecting the origins of

the {Gi} and {O} systems is a virtual stick of the i-th

robot introduced in Section 2. The transformation matrices

describing kinematics of the mobile manipulators are given

as follows:

B
Pi

T =

⎡
⎢⎢⎣

cθ,i −sθ,i 0 xc,i

sθ,i cθ,i 0 yc,i

0 0 1 0

0 0 0 1

⎤
⎥⎥⎦ ,

Pi

Gi
T =

⎡
⎢⎢⎢⎣

c3,i −s3,i 0
∑3

k=1 lk,ick,i + l0,i

s3,i c3,i 0
∑3

k=1 lk,isk,i

0 0 1 0

0 0 0 1

⎤
⎥⎥⎥⎦ ,

Gi

O T =

⎡
⎢⎢⎣

cϕ,i −sϕ,i 0 xO,i

sϕ,i cϕ,i 0 yO,i

0 0 1 0

0 0 0 1

⎤
⎥⎥⎦ ,

where l1,i , l2,i , l3,i are the lengths of the manipulator links,

cθ,i = cos(θi), ck,i = cos(
∑k

j=1 qj,i), sθ,i = sin(θi),

sk,i = sin(
∑k

j=1 qj,i).

During the task accomplishment, the mobile robots are

subject to limitations causing by the constraints of the

platform motion. According to the analysis of kinematic

properties of wheeled mobile robots presented by Campion

et al. in [4], the motion of the wheeled platform is subject

to limitations resulting from rolling and sliding constrains

of each platform wheel. For differentially driven platforms

discussed in this work, each of fixed wheels of the i-th

platform introduces one rolling constraint:

ẋc,i cθ,i + ẏc,i sθ,i − ai θ̇i = ri φ̇1,i,

ẋc,i cθ,i + ẏc,i sθ,i + ai θ̇i = ri φ̇2,i,

where ri is the radius of driving wheels and ai is half-

distance between the wheels.

The wheels of each platform are parallel, thus the non-

sliding constraints are equivalent and they can be written

as:

−ẋc,i sθ,i + ẏs,i cθ,i = 0.

Taking above wheel constraints into account, the velocity

of the platform
[
ẋc,i, ẏc,i, θi

]T
can be determined from:

⎡
⎣

ẋc,i

ẏc,i

θ̇i

⎤
⎦ =

⎡
⎢⎢⎣

ri
2
cθ,i

ri
2
cθ,i

ri
2
sθ,i

ri
2
sθ,i

− ri
2ai

ri
2ai

⎤
⎥⎥⎦

[
φ̇1,i

φ̇2,i

]
.

Finally, using the above dependency, platform constraints

can be expressed in the Pfaffian form as:

⎡
⎢⎢⎣

1 0 0 − ri
2
cθ,i − ri

2
cθ,i

0 1 0 − ri
2
sθ,i − ri

2
sθ,i

0 0 1 − ri
2ai

ri
2ai

⎤
⎥⎥⎦

⎡
⎢⎢⎢⎢⎣

ẋc,i

ẏc,i

θ̇i

φ̇1,i

φ̇2,i

⎤
⎥⎥⎥⎥⎦

= 0.

It is assumed that both robots have same kinematic and

dynamic parameters, they are given as (all physical values

are expressed in the SI system):

l0,i = l3,i = 0.3, l1,i = l2,i = 0.5, ai = 0.2, ri = 0.08.

The masses of the mobile manipulator elements amount to:

mp,i =20, mw,i =0.2, m1,i =2.5, m2,i =2, m3,i =1,

where mp,i is the total mass of the platform, mw,i is the

mass of the platform wheel and m1,i , m2,i , m3,i are the

masses of the manipulator links.

The task of the mobile manipulators is to move the

uniform 2 kg beam 1.69 meter long from the initial location:

p0 = [1.15, 0.5, π/2]T

to the final one:

pf = [4.0, 2.0, −π/2]T .

The location and orientation of the object frame {O} with

respect to the grasper frames {Gi} determine parameters:

x0,i = 1.69/2, y0,i = 0, ϕO,1 = 0, ϕO,2 = π .
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At the initial moment of motion the robots are in the

non-singular, collision-free configurations:

q1 (0) = [0, −1, 0, 0, 0, 0, π/4, π/4]T ,

q2 (0) = [0, 2, 0, 0, 0, 0, −π/4, −π/4]T ,

for which the beam is in the location p0.

To preserve mechanical constraints generalized coordi-

nates of holonomic manipulators should not exceed limits:

qmax,i = −qmin,i = [2π/5, π/3, π/3]T .

Scalar functions involving fulfillment of k-th constraint

connected to k-th generalized coordinate are taken as:

ψk,i = qk,i − qmin,k,i

ψk+3,i = qmax,k,i − qk,i

f or k = 1, 2, 3.

Then, the penalty functions used in the performance indexes

(23), (37) and (56), ensuring fulfillment of the mechanical

constraints are proposed as:

κk,i

(
ψk,i

)
= ρm/ψk,i,

where ρm is the positive coefficient determining strength of

penalty for the mechanical constraints.

In order to preserve potential collisions between robots

and the object, the approach based on obstacles enlargement

with a simultaneous discretization of the mobile manipula-

tor, shown in [21], has been adopted. In order to apply this

approach, the carried object is an obstacle for both robots

and each robot is treated as an obstacle for the second

one. The object and segments of the mobile manipulators

(platforms, manipulator links) are approximated by smooth

surfaces and collision avoidance conditions are written as:

ψk,i = ηj

(
xd,i

)
− δ, f or k > 6,

where ηj is the equation of j -th obstacle surface, xd,i is

the point from the set of points which approximates the i-

th mobile manipulator and δ denotes a small positive scalar,

safety margin.

In order to take into account above constraints, in the

indexes (23), (37) and (56), the following penalty functions

acting in the neighborhood of the obstacles are used:

κk,i

(
ψk,i

)
=

{
ρc

(
ψk,i − ε

)2
f or ψk,i ≤ ε

0 otherwise
,

where ρc denotes the constant positive coefficient determin-

ing the strength of penalty and ε is the constant positive

coefficient determining the threshold value which activates

the k-th constraint.

Due to the asymptotic stability of the equilibria of

Eqs. 35, 42 and 66, it is possible to reach the final location

pf and fulfillment of the boundary conditions (16) with a

desired accuracy. It has been assumed that the algorithms

stop when the distance to the desired location pf is less than

the given value ep and generalized velocities of both robots

are less than the given value ev , i.e.:
(
‖f1 (q1)−pf ‖<ep

)
and (‖q̇1‖<ev) and (‖q̇2‖<ev) .

In the all presented simulations, the values for ep and ev

equal to 0.01 have been used.

7.2 TrajectoryWithout Control Constraints

In the first case, methods described in Sections 4 and 5 are

used to generate trajectory without taking into account con-

trol constraints. The values of the gain coefficients for the

leader-follower approach are taken as:

	I
L,i = I, 	I

V,i = 2.1	I
L,i , 	II

L,i = I,

and for the centralized approach they are equal to:

	I
L = I, 	I

V = 2.1	I
L, 	II

L = I,

where I is the identity matrix of the appropriate size.

The final time of task execution T for the leader-follower

approach is obtained as 11.31 [s]. The robots motion is

shown in Fig. 4. The leader is plotted with solid line and

the follower with dashed line. The initial, the final and

two intermediate phases of the motion are shown. The

obtained trajectories of holonomic parts of the robots are

shown in Fig. 5. The horizontal lines represent the assumed

mechanical constraints: the dashed lines for the first joint,

the dotted lines for the second and the third joint. As can

be seen the obtained trajectories do not exceed the assumed

constraints. Finally, the controls of the leader and the
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Fig. 4 Robots motion for the leader-follower approach
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Fig. 5 Trajectories of the holonomic manipulators of the leader (top)

and the follower (bottom) for the first case

follower (torques of the platform wheels and manipulator

joints) are shown in Figs. 6 and 7, respectively. Let us note

that controls are continuous functions of the time and they

are within ranges:

−[2.9, 6.9, 0.5, 2.6, 3.6]T ≤u1 ≤[6.3, 5.4, 2.7, 0.2, 0.1]T

−[3.3, 3.4, 0.7, 0.2, 5.1]T ≤u2 ≤[19.8, 10.7, 2.5, 1.1, 0.0]T .

In the second simulation the centralized approach is used

to perform the same task. In this case, the final time of task

execution T is equal to 11.62 [s]. The robots motion is shown

in Fig. 8. The first robot is plotted with solid line and the

second robot with dashed line. Similarly as for the leader-

follower approach, four phases of the motion are shown. In

Fig. 9 the obtained trajectories of holonomic parts of the

first and the second robot are shown (the horizontal dashed

and dotted lines represent the mechanical constraints). As

in the leader-follower approach, the obtained trajectories

satisfy the assumed constraints. The controls of the first

and the second robot are shown in Figs. 10 and 11. As it is

seen, controls are continuous functions of the time and in

this case they are within ranges:

−[3.4, 5.4, 0.7, 2.4, 3.4]T ≤u1 ≤[6.5, 5.8, 2.8, 0.3, 0.3]T

−[3.4, 3.4, 1.4, 0.1, 4.9]T ≤u2 ≤[18.0, 11.6, 2.5, 1.3, 0.6]T .

Additionally, the comparison of robots motions obtained

in both simulations can be seen at the animation available

on-line at [1].
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Fig. 8 Robots motion for the centralized approach (solid line - the first

robot, dashed line - the second robot)
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Fig. 9 Trajectories of the holonomic manipulators of the first (top) and

the second (bottom) robot for the first case
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Fig. 12 Trajectories of the holonomic manipulators of the leader (top)

and the follower (bottom) for the second case

0 4 8 12 16 20 24
−6

−4

−2

0

2

4

6

u
1
,1

, 
u

2
,1

 [
N

m
]

t [s]

u
1,1

u
2,1

0 4 8 12 16 20 24
−1.5

−1

−0.5

0

0.5

1

1.5

u
3

,1
, 
u

4
,1

, 
u

5
,1

 [
N

m
]

t [s]

u
3,1

u
4,1

u
5,1
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Fig. 15 Trajectories of the holonomic manipulators of the first (top)

and the second (bottom) robot for the second case
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7.3 Trajectory with Control Constraints

In the second case, it is assumed that limitations on controls

resulting from physical abilities of the actuators are equal to:

umax,i = −umin,i = [5.0, 5.0, 1.0, 1.0, 1.0]T .

As can be seen, controls determined in the previous

subsection exceed above limits both for the leader-follower

and centralized approach.

As it has been shown in Sections 4.4 and 5.3, controls

are linearly dependent on 	1 or 	. Therefore, it is possible

to determine the values of gain coefficients in such a

way that control constraints are satisfied. For simplicity of

simulations, 	1 and 	 are assumed to be constant and for

the leader-follower approach they are equal to:

	I
L,1 = 0.18 I, 	I

V,1 = 2.1	I
L,1,

and for the centralized approach are taken as:

	I
L = 0.19 I, 	I

V = 2.1	I
L.

The final time T , in both simulations, is increased and

it equals 23.22 [s] for the leader-follower approach and it

equals 23.91 [s] for the centralized approach. The deter-

mined trajectories of the holonomic manipulators and robot

controls in both simulations are shown in Figs. 12, 13, 14,

15, 16 and 17. The dashed and dotted horizontal lines repre-

sent the assumed mechanical and control constraint. As can
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Fig. 17 Second robot torques for the second case

be seen, the proposed methods are effective and all imposed

constraints are satisfied, moreover, obtained controls are

continuous functions of the time. Application of the scaling

techniques results in a reduction of controls and, as a conse-

quence, the longer execution time, but it has no significant

impact on the way the task is accomplished, therefore the

way of task execution in both simulations is similar to these

presented in Figs. 4 and 8.

The advantage of the centralized approach is the ability to

take into account the total manipulability of the whole sys-

tem, which was not possible in the leader-follower method.

In order to compare results of both trajectory generators, the
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Fig. 18 Total manipulability of the system for the second case (leader-

follower approach)
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Fig. 19 Total manipulability of the system for the second case

(centralized approach)

total manipulability measure (55) has been calculated for

both the leader-follower and the centralized approach.

Changes of these indexes over time are shown in Figs. 18

and 19, respectively. As it is seen in Fig. 18, optimization

of the manipulability measure of the individual subsystems

(leader and follower) does not lead to optimal manipulabil-

ity of the whole system.

8 Conclusion

In the presented paper, the original boundary value problem

has been transformed into the initial value problem - so it seems

that the proposed solution is computationally efficient.

In this paper two suboptimal methods of trajectory

generation for mobile manipulators moving the common

rigid object to a specified location in the workspace have

been proposed. Presented approaches guarantee fulfillment

of constraints imposed by the closed kinematic chain as

well as boundary conditions resulting from the task to

be performed. Constraints connected with the existence of

mechanical limitations for manipulator configuration, col-

lision avoidance conditions and control constraints have

been considered in both methods. Minimization of instanta-

neous performance indexes ensures that during the motion,

robots are far away from singular configurations. The pro-

posed methods do not guarantee the global optimality

because they minimize the performance indexes in each

time instant, then the obtained solutions are suboptimal.

The problem has been solved by using penalty functions

and a redundancy resolution at the acceleration level. The

resulting trajectories have been scaled in a manner to fulfill

the constraints imposed on controls. The property of asymp-

totic stability of the proposed control systems implies fulfill-

ment of all the constraints imposed.

Advantages and disadvantages of both methods have

been discussed. The leader-follower approach is attractive

due to the higher computation efficiency resulting in lower

computational burden. The centralized approach is more

computationally demanding but it allows to take into

account more complex performance indexes including state

variables of both cooperating robots, thus it lets to optimize

total manipulability measure of the whole system. However,

the presented work is limited to the case of generating the

trajectory for two robots, the application of the proposed

approaches in generating the trajectory for multiple coop-

erating robots has been discussed and it will be the subject

of the further research.

In the proposed approaches, the original boundary value

problems have been transformed into the initial value

problems, then the proposed solutions are computationally

efficient. The effectiveness of the presented methods are

confirmed by the results of computer simulations.
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