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Abstract Due to the strict requirements of extremely high

accuracy and fast computational speed, real-time transient

stability assessment (TSA) has always been a tough prob-

lem in power system analysis. Fortunately, the develop-

ment of artificial intelligence and big data technologies

provide the new prospective methods to this issue, and

there have been some successful trials on using intelligent

method, such as support vector machine (SVM) method.

However, the traditional SVM method cannot avoid false

classification, and the interpretability of the results needs to

be strengthened and clear. This paper proposes a new

strategy to solve the shortcomings of traditional SVM,

which can improve the interpretability of results, and avoid

the problem of false alarms and missed alarms. In this

strategy, two improved SVMs, which are called aggressive

support vector machine (ASVM) and conservative support

vector machine (CSVM), are proposed to improve the

accuracy of the classification. And two improved SVMs

can ensure the stability or instability of the power system in

most cases. For the small amount of cases with undeter-

mined stability, a new concept of grey region (GR) is built

to measure the uncertainty of the results, and GR can

assessment the instable probability of the power system.

Cases studies on IEEE 39-bus system and realistic

provincial power grid illustrate the effectiveness and

practicability of the proposed strategy.

Keywords Power system, Transient stability assessment

(TSA), Intelligent method, Support vector machine, Grey

region

1 Introduction

Real-time transient stability assessment (TSA) is one of

the most important means for the power systems to prevent

cascading failures, and avoid power system instability and

large-area blackout. At the same time, it is also a necessaryCrossCheck date: 13 July 2018
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tool for power system security and stability analysis.

However, until now TSA has not been widely used in

practice, because each traditional analysis method has its

own limitations and defects. The main research progress in

TSA includes the following aspects. One aspect is the study

of improving simulation speed with high-performance

computing method such as parallel computing. The second

aspect is the study of direct method which can determine

the stability of a system directly according to the state of

the system without numerical integration. The other aspects

are the improving direct method research to adapt to large-

scale grid, the combining direct method research with

simulation method to form mixed method and method

research of directly determining the system stability using

response of post-fault system. It is a whole new research

method on the TSA with data mining and big data tech-

nologies based on huge amount of data and intelligent

algorithms. For the first four methods, a lot of research

works are carried out, while there are still some bottle

necks that cannot break. A time parallel algorithm is pro-

posed [1], and the bottle neck is the contradiction between

parallelism and convergence. There is literature that iden-

tifies the instability by the concavity and convexity of the

plane trajectory of the post-fault equivalent system, while

the recognition speed needs to be further improved [2].

In these years, the value of big data technology has been

widely recognized all around the world. It is both oppor-

tunities and challenges to analyse big data and explore

useful information or knowledge for various application

[3]. In the era of big data, big data technology is used to

mine useful information in massive data and to make

correct decisions [4]. TSA based on data mining usually

consists of two main phases, one is offline training and

another is online application. Firstly the data mining

method is used to train a model based on large amount of

simulation data and historical data. Then the mapping from

various physical variables to power systems’ steady states

is find. At last the power systems’ stability rules are

extracted. In online application phase, the pre-prepared

stability assessment rules and the current state of the sys-

tem are used to obtain a stability assessment result, while

the stability assessment rules do not dependent on the

system models, but rely on offline training. Early in 1989,

[5] proposes an artificial neural network (ANN) based

approach to predict the critical clearing time (CTT). It is

one of the earliest attempts in this field, and since then

relevant studies are underway through the world. The

studies are categorized into two types, which are pre-fault

type and post-fault type, and this paper belongs to the latter

one. Generally speaking, the most commonly used methods

are ANN [6–8], decision tree (DT) [9, 10] and support

vector machine (SVM) [11, 12]. There are also researches

about comparing these new methods, and SVM shows

excellent performance [12, 13]. Apart from the traditional

SVM, multi-SVM has been applied in the field of TSA

[14]. SVM is also used to handle emergency control

problem of power system [15] and forecast the wind power

generation [16]. Since SVM has been widely used and has

many advantages, this paper chooses to apply SVM algo-

rithm in TSA study.

This paper addresses on problems of the data mining

method with SVM. There are some deficiencies in data

mining method. Firstly, the data mining method based on

correlation does not focus on the specific physical model,

while the traditional power system stability analysis based

on the casual relationship has a mature physical model and

theoretical method. Traditional methods have questioned

the reliability of data mining method in TSA. Secondly, the

classification rules established by data mining method

cannot avoid false alarms and false dismissals. For the first

problem, this paper integrates stability assessment rules

with traditional theory of stability analysis of power sys-

tems, and establishes the stability assessment rules under

the stability domain concept. To deal with the problems of

false alarms and false dismissals, this paper proposes a new

strategy with grey region (GR), and two novel SVMs,

aggressive support vector machine (ASVM) and conser-

vative support vector machine (CSVM). So that the data

mining based on TSA can adapt to the special requirements

of power system. In this strategy, most of the cases can be

classified into stability or instability. For those small

amounts of cases, on the one hand, they can be determined

as instability to ensure the accuracy of classification; on the

other hand, the probability of instability can be obtained.

2 Theoretical basis

In this section, theoretical basis is prepared for the fol-

lowing studies, which include basic concept of stability

domain, a brief introduction of SVM algorithm, and the

relationship between them.

2.1 Stability domain theory

The power system belongs to the nonlinear autonomous

system, as shown in (1).

_x ¼ f xð Þ x 2 Rn; f 2 Rn ð1Þ

where x ¼ x1; x2; . . .; xn½ �T is n-dimensional state variable;

f(x) is a smooth function. If xe 2 Rn satisfies the condition

f xeð Þ ¼ 0, xe is the equilibrium point of the system. The

corresponding linear system at the equilibrium point of the

system is presented in (2).
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A ¼
of xð Þ

ox

�

�

�

�

xe

8

>

<

>

:

ð2Þ

If A has no zero-real eigenvalue, xe is a hyperbolic

equilibrium point. The system structure near hyperbolic

equilibrium point is stable. In the power system transient

stability analysis, generally assume that the equilibrium

point is hyperbolic. According to Hartman-Grobman

theory [17], the system shown in (1) and the linear

system shown in (2) are equivalent in the neighborhood of

the hyperbolic equilibrium point xe. Therefore, the stability

analysis of (1) can be transformed into the stability of (2)

near xe. The stable manifolds Ws xeð Þ and

unstable manifolds Wu xeð Þ of the hyperbolic equilibrium

point xe are defined as shown in (3).

Ws xeð Þ ¼ x 2 Rn
: lim
t!þ1

/ x; tð Þ ¼ xe

� �

Wu xeð Þ ¼ x 2 Rn
: lim
t!�1

/ x; tð Þ ¼ xe

n o

8

>

>

<

>

>

:

ð3Þ

where / x; tð Þ represents the solution of (1) through x when

t ¼ 0. The trajectory of the point in the steady manifold

tends to the equilibrium point xe when t tends to be infinite.

While the trajectory of the point in the unsteady manifold

tends to the equilibrium point xe when t tends to be

negative. There is a region around the stable equilibrium

point xs, and the trajectories passing through the points in

the region are finally attracted to xs. This region is defined

as the stability domain of the equilibrium point, as shown

in (4).

A xsð Þ ¼ x 2 Rn
: lim
t!þ1

/ x; tð Þ ¼ xs

� �

ð4Þ

The stability domain of the stable equilibrium point is its

stable manifold, and is an open constant connected set. The

boundary of A xsð Þ is called the stable boundary of xs,

denoted by oxs. However, the greatest difficulty in

assessing the stability domain is to solve the stability of

the boundary, and for high-dimensional systems, the

boundary of the actual system is difficult to obtain.

2.2 SVM algorithm

TSA is a classification problem, and the stable boundary

is actually an interface between the stable and unstable re-

gions. SVM is a kind of data mining methods which can

solve the classification problem by fitting the interface of

two regions. The principle of SVM is to map the training

samples into high-dimensional space by using the mapping

function, and find a linear hyperplane in high-dimensional

space, so that the distance from the hyperplane to the

samples of two sides is the farthest [18], as shown in (5).

min
w;b;f

1

2
wTwþ C

X

nt

i¼1

fi

 !

s.t. yi w
Tu Xið Þ þ b

� �

� 1� fi

fi � 0 i ¼ 1; 2; . . .; nt

8

>

>

>

>

<

>

>

>

>

:

ð5Þ

where nt is the number of training sample; Xi; yið Þ is the ith

training sample, Xi stands for support vectors that are the

decisive samples around the hyperplane, yi is the output

related to support vectors; u �ð Þ is the mapping function

from low-dimensional space to high-dimensional space; fi
is the slack variable; C is the penalty factor for the slack

variable; b is threshold value; w is the weight vector of the

hyperplane. The optimization variables in this optimization

problem are w, b and f. b is the coefficient trained in SVM.

In theory, the value of b is uncertain. When SVM is opti-

mal, the b value can be obtained by taking samples from

any standard SVM.

When solving the problem of SVM, usually transform

(5) into its dual problem and transform the calculation of

the mapping function into the calculation of the kernel

function. To use the trained SVM classifier, calculate fSVM
by (6) and see whether it is positive or not.

fSVM Xð Þ ¼
X

nt

i¼1

aiyiK Xi;Xð Þ þ b ð6Þ

where ai is the coefficient corresponding to support vectors,

which is also the non-zero Lagrangian multipliers of the

optimization problem above. Positive and negative fSVM
respectively indicate two classes. K Xi;Xð Þ is kernel

function, which is the inner product of mapping function,

as presented in (7).

K Xi;Xð Þ ¼ u Xið ÞTu Xð Þ ð7Þ

Usually the radial basis kernel function, which is shown

in (8), is chosen as the kernel function because of its good

performance, and it measures the similarity between two

vectors, and the parameter c adjusts the distance between

them.

K Xi;Xð Þ ¼ e�c Xi�Xk k2 ð8Þ

2.3 Theoretical basis of fitting stability boundary

with SVM

According to the relevant theory of the stability of the

power system, if the stability domain exits, the stable and

unstable regions are nonlinearly separable, which means

the stable boundary is linearly separable in an infinite

dimensional space. This property provides a theoretical

basis for the SVM to fit the stable boundary. The SVM
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realizes the transformation of low-dimensional space to

high-dimensional space through mapping function, so that

the two regions of nonlinear separable in low-dimensional

space are linearly separable in high-dimensional space.

Therefore, find the appropriate mapping function and get

enough samples on both sides of stable boundary and then

a stability assessment rule equivalent to the stable bound-

ary can be established by training SVM. On the one hand,

the stability domain theory provides theoretical support for

the application of data mining methods and clarifies the

physical meaning of the stability assessment rules; on the

other hand, the data mining methods provide a new method

for obtaining the stable boundary of the stable domain.

It is the most ideal method for real-time TSA to directly

apply the stable boundary obtained by fitting as a TSA rule.

However, the actual system faces the following problems:

1) In the real-time TSA, the stable equilibrium point

refers to the one of the post-fault system. The different

faults in the same operating mode will result in

different post-fault systems, and these systems have

different stable equilibrium points and also the

stable boundaries are different. It is unrealistic to use

a stable boundary as a stability assessment rule to fit

all possible stable boundaries in the offline training

phase.

2) Real-time transient assessment requires measurement

of input characteristics immediately after a fault, and

then the results are obtained by substituting the

measured values into the stabilization rules. Never-

theless, the states of an actual system are not easy to

get through measurement.

To solve the above two problems, this study does two

approximations:

1) When the scale of system is large enough, it is

considered that the stable domain corresponding to the

post-fault equilibrium point obtained by different

disturbances before the same fault equilibrium is

approximately the same stable domain.

2) In this study, only the state quantities which are easy

to measure and the non-state quantities such as active

and reactive power of the line and the phase angle of

the bus voltage are taken as alternatives of the input

features.

The most important approximation is built on the large

scale of system, which means the bigger system is, the

better result is. But it does not mean the algorithm can’t be

used to a system not so big. From the case study in this

paper, application in the provincial grid of China is well

satisfied.

3 Real-time TSA strategy using ASVM and CSVM

Due to the factors, such as model error, stability domain

approximation, and input space dimensionality constraints,

the TSA rule cannot be exactly equivalent to the stability

boundary of the system stability domain. Therefore, the

stable region and unstable region cannot be completely

separated in the regular input space, and there exits the GR.

In this section, the GR is defined to ensure that the

assessment results outside the GR are accurate and credi-

ble, rather than find the boundaries of the two regions.

3.1 GR

GR is the region where the output state is not unique in

the input space of the stability assessment rule. Suppose

there is a point X in the input space, and there exits two

different post-fault systems which can be both represented

by X in the input space. The stability of the two systems are

different, and then X is in GR. The following main causes

of GR are analysed:

1) The mapping function corresponding to the kernel

function cannot map the input space exactly to the

high dimensional space of which the stability bound-

ary is linearly separable, so the mapping relationship

error is one of the causes.

2) Because of the two approximations in Section 2.3, it is

impossible to find an interface to accurately separate

the two types of samples. So, the accuracy rate of

stability assessment rules cannot reach 100%.

When kernel function, pre-fault mode of operation and

input features of stability rules are determined, the shape

and size of GR will be determined. In this case, misclas-

sification cannot be avoided if the accuracy is still focused

on. Therefore, a new idea for stability assessment is

needed.

3.2 ASVM and CSVM

From the perspective of sample, GR is a mixed area of

stable and unstable samples, as shown in Fig. 1.

In traditional SVM, the samples that fall above L1 are

classified as unstable, while below are stable. It is obvious

that misclassification exits. In this section, a new idea

based on GR is proposed: region above L2 is determined as

unstable while below L3 is determined stable and the sta-

bility assessment of the samples fall into these two regions

is ensured correct. For the cases in GR, calculate the

instability probability.
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3.2.1 CSVM

CSVMs do not allow unstable samples to be misclassi-

fied, thus defining the boundary of GR near the stable re-

gion, as L3 in Fig. 1. Adjusting the slack variable in the

constraint condition can limit the type of misclassified

sample. CSVM can be obtained by removing the slack

variables in the constraints corresponding to the unsta-

ble samples, as shown in (9).

min
w;b;f

1

2
wTwþ C

X

nt

i¼1

fi

 !

s.t. ysti wTu Xst
i

� �

þ b
� �

� 1� fi i ¼ 1; 2; . . .;m

yuni wTu Xun
i

� �

þ b
� �

� 1 i ¼ 1; 2; . . .; k

8

>

>

>

>

<

>

>

>

>

:

ð9Þ

where superscript st denotes stable samples; superscript un

denotes unstable samples; m is the number of stable sam-

ples; k is the number of unstable samples. The hyperplane

trained by CSVM corresponds to L3 in Fig. 1, which

makes unstable samples strictly limited to one side of the

boundary and ensures that the other side of the sample is

stable.

Referred to the solution of SVM, convert (9) into a dual

problem and transform the maximization problem into the

minimization problem, and finally the classification rule of

CSVM is presented in (10).

fCSVM Xð Þ ¼
X

k

i¼1

kiy
un
i K Xun

i ;X
� �

þ
X

m

i¼1

biy
st
i K Xst

i ;X
� �

þb

ð10Þ

where ki and bi are weights of Lagrangian multipliers k

and b. The ki corresponding to the unstable samples has no

upper limit, while bi corresponding to the stable ones has

upper limit C, the penalty factor. CSVMs are more likely to

classify samples as unstable.

3.2.2 ASVM

In contrast with CSVM, ASVM can be obtained by

removing the slack variable in the constraint condition

corresponding to the stable samples in traditional SVM

model, as shown in (11).

min
w;b;f

1

2
wTwþ C

X

nt

i¼1

fi

 !

s.t. ysti wTu Xst
i

� �

þ b
� �

� 1 i ¼ 1; 2; . . .;m

yuni wTu Xun
i

� �

þ b
� �

� 1� fi i ¼ 1; 2; . . .; k

8

>

>

>

>

<

>

>

>

>

:

ð11Þ

The hyperplane trained by ASVM corresponds to L2 in

Fig. 1, which makes stable samples strictly limited to one

side of the boundary and ensures that the other side of the

sample is unstable. Similarly, the classification rule of

ASVM is presented in (12).

fASVM Xð Þ ¼
X

k

i¼1

kiy
un
i K Xun

i ;X
� �

þ
X

m

i¼1

biy
st
i K Xst

i ;X
� �

þb

ð12Þ

It is worth noting that (12) is exactly the same as (10),

but the relative size of k and b are different: for ASVM, the

stable samples corresponding to a larger Lagrangian

multiplier, whereas CSVM is the opposite.

3.3 Stability assessment rules based on novel SVM

3.3.1 Basic process

The assessment rules are constructed by using CSVM

and ASVM to train two boundaries, and the rules naturally

divide the input space into three non-overlapping regions:

stable region, unstable region and GR.

For a post-fault system to be judged, the judgement rules

are summarized in Table 1.

As shown in Table 1, if the system is judged stable, the

output ypg ¼ 1; if the system is judged unstable, the output

ypg ¼ �1; and if the results of CSVM and ASVM are

different, the output ypg ¼ 0, which means the samples fall

into GR. Combine (10) and (12) and then the mathematical

description of stability assessment rule are following (ac-

cording to the value of the system Xpg in the input

space):

1) When fCSVM Xpg

� �

[ 0 and fASVM Xpg

� �

[ 0, the post-

fault system is stable.

2) When fCSVM Xpg

� �

\0 and fASVM Xpg

� �

\0, the post-

fault system is unstable.

3) For other situations, the post-fault system falls in GR,

and other methods are needed to make further

judgement.

The three regions are shown in Fig. 2. The red circle is

the CSVM margin, and the green circle is the ASVM

margin. The region outside the red and green circles are

unstable region, while the intersection of red and green
Stable; Unstable

L1

L2

L3

GR

Fig. 1 Stability classification diagram
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circles is the stable region, which means when the post-

system state is in this region, it can be sure that the system

is stable. The region in red circle and not in green circle is

GR, the same as region in green circle while not in red

circle.

3.3.2 Evaluation index

The expressions of percentage of false dismissal (PFD),

the percentage of false alarm (PFA) and the percentage of

grey (PG) are presented in (13), (14) and (15).

IPFD ¼
Nfd

Ntesting

� 100% ð13Þ

IPFA ¼
Nfa

Ntesting

� 100% ð14Þ

IPG ¼
Ngrey

Nall

� 100% ð15Þ

where Ntesting is the number of testing samples; Nfd is the

number of false dismissals; Nfa is the number of false

alarms; Nall is the number of training or testing samples;

Ngrey is the number of samples fallen into GR.

3.3.3 Instability probability assessment

In Section 3.3.1, the assessment process only uses the

sign of fCSVM Xð Þ and fASVM Xð Þ, while the magnitude of the

two values is not being used. In order to use this infor-

mation and describe the distance of samples in GR and

CSVM (ASVM) boundary, the indicator distance differ-

ence (DD) is defined as shown in (16).

IDD Xð Þ ¼ dASVM Xð Þ � dCSVM Xð Þ

¼
fASVM Xð Þj j

wASVMk k
�

fCSVM Xð Þj j

wCSVMk k

¼
fASVM Xð Þj j

wASVMk k
þ
fCSVM Xð Þ

wCSVMk k

ð16Þ

where wCSVM can be written in (17) and wASVM is similar.

wCSVMk k ¼
X

k

i¼1

X

k

j¼1

kCSVM;ikCSVM;jy
un
i yunj K Xun

i ;Xun
j

� �

þ
X

m

i¼1

X

k

j¼1

bCSVM;ikCSVM;jy
st
i y

un
j K Xst

i ;X
un
j

� �

þ
X

k

i¼1

X

m

j¼1

kCSVM;ibCSVM;jy
un
i ystj K Xun

i ;Xst
j

� �

þ
X

m

i¼1

X

m

j¼1

bCSVM;ibCSVM;jy
st
i y

st
j K Xst

i ;X
st
j

� �

ð17Þ

The larger the IDD value indicates that the distance from

the sample to the unstable region is greater than the

distance from the sample to the stable region, so that the

IDD value can characterize the relative positional

relationship between the sample in GR and other regions.

The instability probability curve can be fitted according to

the proportion of unstable samples under different IDD
values. In the real-time application, if the result of the

assessment is in GR, calculate the IDD value of the sample

and the instability probability is evaluated by using the

instability probability curve.

The process of generating the instability probability

curve is: � generate a large number of samples in GR; `

calculate the IDD; ´ calculate proportion of unstable sam-

ples under different IDD; ˆ obtain instability probability

curve by Platt correction.

The principle of Platt correction [19] is to fit the stability

probability curve to the sigmoid curve. After fitting the

curve with Platt correction, the stability probability p of the

CSVM margin

ASVM margin

GR GRStable region

Unstable region

Fig. 2 CSVM, ASVM and physical meaning of stability assessment

rule

Table 1 Stability assessment rules

Type Result of CSVM Result of ASVM Assessment result Output ypg

1 Stable Stable Stable 1

2 Unstable Stable Cannot judge 0

3 Stable Unstable Cannot judge 0

4 Unstable Unstable Unstable -1
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123



sample in GR is shown in (18), while the instability

probability is 1 - p.

p ¼
1

1þ exp a1IDD þ a2ð Þ
ð18Þ

where a1 and a2 are the parameters of the linear function in

(19), which is fitted to ln p= 1� pð Þð Þ.

�a1IDD � a2 ¼ g IDDð Þ ¼ ln
p

1� p
ð19Þ

a1 and a2 can be obtained by solving the optimization

problem in (20).

min
a1;a2

�
X

N

i¼1

ti ln pið Þ þ 1� tið Þ ln 1� pið Þ½ �

( )

pi ¼
1

1þ exp a1IDD;i þ a2
� �

8

>

>

>

>

<

>

>

>

>

:

ð20Þ

ti ¼

Nnewþ þ 1

Nnewþ þ 2
yi ¼ 1

1

Nnew� þ 2
yi ¼ �1

8

>

>

<

>

>

:

ð21Þ

where i ¼ 1; 2; . . .; Nnew; Nnew is the number of samples in

GR; Nnewþ is the number of stable samples; Nnew� is the

number of unstable samples.

This optimization problem can be solved by likelihood

methods [20].

4 Case study

4.1 IEEE 39-bus system

This section validates the stability assessment and

demonstrates the TSA process based on the IEEE 39-bus

system. There are 10 generators, 19 loads and 46 lines in this

system. Fix the pre-fault operationmode, andmake transient

stability simulation on the basic of that. In order to avoid

islanding, 35 of the 46 lines are involved in the fault scan, and

the location of the fault is at both ends of the line. Therefore,

there are 70 kinds of faults, the number of which is from 1 to

70. The fault is set as follow: three-phase short circuit occurs

at the end of the line, and after a period of time the fault line is

removed. Record the active power, reactive power of the

line, phase angle of bus voltage and generator information at

the moment of fault clearing time as alternative input fea-

tures. A total of 2500 samples are generated, and 2000 of

which are randomly selected as the training samples, which

are used to train the model, while the other 500 are the test

samples, using for testing the model.

1) Feature and parameter selection

The alternative feature types are shown in Table 2.

Adopt the method of forward search with wrapped

evaluation, and the index is IPG. In each turn, choose one

feature from the candidate features and minimize the IPG
index of the classifier. When the amplitude of the IPG
obtained at the end of a certain turn of feature selection is

lower than a threshold value compared to the previous turn,

it is difficult to reduce the GR by adding features and stop

the features selection. The result indicates that, with the

increase of input features, IPG decreases rapidly before 5

features, and after 10 features, IPG decreases very slowly,

as shown in Fig. 3.

Set the reduction threshold value of IPG to 0.2%, and 15

features are selected. The result is shown in Fig. 4.

Based on these 15 features, use 5-fold cross validation

method to test the 400 groups of C and c, and balance the

classification effect and the overfitting problem, and finally

determine the parameters C = 1.2, c = 0.5.

2) Result of the proposed strategy

Under the determined input characteristics and param-

eters, a stability assessment rule is obtained by training

Table 2 Alternative feature types and their number

Alternative feature type Alternative feature number

Amplitude of bus voltage 39

Phase angle of bus voltage 39

Active power of line 46

Reactive power of line 46

Power angle of generator 10

Rotor speed of generator 10

Active power output of generator 10

Reactive power output of generator 10

Fig. 3 Relationship between IPG and number of features after feature

selected
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2000 training samples and tested by 500 test samples.

There are 81 of the train samples fall into GR, and IPG is

4.05%. The proportion of test samples in GR is close,

4.8%. There are no false alarms and false dismissals in test

samples. Compared to the stability assessment rules based

on traditional SVM, the rules based on CSVM and ASVM

are more in line with the requirements of power system

TSA. The result is shown in Table 3, where N1 represents

false dismissal number, N2 represents false alarm number,

N3 represents number of samples in GR.

The instability probability curve of the samples in GR is

calculated below. First, samples in GR are needed. In this

case study, 4156 samples are generated, and 2134 of which

are stable and others are unstable. Then calculate IDD of

each sample: in the formula of IDD, the denominator

wCSVMk k ¼ 18:02, wASVMk k ¼ 18:31. These two values are

close because the stable and unstable samples are balanced.

After the IDD values are obtained, calculate the instability

probability of different intervals, and finally use Platt

correction to fit the instability probability curve. The

proportion of unstable samples and the instability proba-

bility curve are shown in Fig. 5.

The instability probability curve in Fig. 5 is Sigmoid

curve. It indicates that in this case the IDD value varies

from - 0.1 to 0.1. With the increase of IDD, the probability

of unstable samples decreases, which conforms with its

physical meaning: IDD value reflects the distance from the

sample point to GR, and the larger it is, the sample point is

closer to the boundary of CSVM and the stable region.

When IDD value is less than - 0.1, the instability proba-

bility is close to 100%; when IDD value is bigger than 0.1,

the instability probability is close to 0; and when IDD value

equals 0, the instability probability is about 50%. When in

real-time application, samples that fall into GR can be used

to calculate the instability probability based on their IDD
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Fig. 4 Result of feature selection in IEEE 39-bus system

Table 3 Training and testing results of TSA considering

conservativeness

Stage N1 N2 N3 Evaluation indicator

IPG (%) IPFD (%) IPFA (%)

Training 0 0 81 4.05 – –

Testing 0 0 24 4.80 0 0

Fig. 5 Proportion of unstable samples and instability probability

curve in GR
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Fig. 6 Result of feature selection based on traditional SVM in IEEE

39-bus system
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values, which can help operators make decision as a

reference.

3) Result of traditional SVM

Use forward search combined with encapsulated method

to train 2000 samples for feature selection. Taking SVM

classifier’s classification as the index of encapsulated

evaluation, and the input features selected in each round

are the features that make the classifier the highest accu-

racy. When the accuracy of one round of feature selection

compared with last round is less than a threshold value, the

feature selection is stopped. The feature selection result is

shown in Fig. 6.

Based on these features, a combination of 400 groups of

C and c is examined using a 5-fold cross validation method.

Calculate the values of overfit degree and verification set

misclassification under different combinations of parame-

ters. The overfit degree value is calculated by dividing the

verification set’s misclassification rate by the training set’s

misclassification rate. Set the overfit threshold to 1.5, and

the final parameters are confirmed: C = 1.4, c = 0.2. Under

the certain input features and parameters, a stability

assessment rule is obtained by 2000 training samples and

tested with 500 test samples. The result is shown in

Table 4, where Ac represents classification accuracy.

The training and test accuracy can reach 97%, which

means for the most cases, the method of TSA under the

concept of stability region can correctly judge the post-

fault system stability. Further analysis of the misclassified

samples: during the training stage, the stability assessment

rules judge 7 unstable samples as stable, 37 stable samples

as unstable, that is, 7 false dismissals and 37 false alarms.

In the test stage, the stability rule judges16 stable samples

as unstable, which means 16 false alarms. Due to the

influence of sample quality, dimension of input features,

simulation model error and other factors, the two sorts of

samples are not completely divisible. Therefore, the

accuracy of evaluation cannot reach 100%, and false dis-

missals and false alarms can not be avoided. Although this

stability assessment rule shows high accuracy in training

and test, it cannot be applied in real time application.

4.2 Case study based on provincial power system

In this section, the case is based on realistic provincial

power grid in China, referred to as HBPS. By the end of

2016, the total installed capacity of HBPS is about 67000

MW. The whole grid has about 200 generators, 1700 buses

and 1700 transmission lines. From the prospect of power

balance, hydropower resources are abundant in western

part and there is load center in eastern part. Therefore,

HBPS shows the characters of power transmission from

west to east and north to south, which is shown in Fig. 7.

This case is based on Hubei power grid of summer

operation mode. The training and test samples are gener-

ated by scanning the 426 faults. The faults are set as three-

phase short-circuit faults on 500 kV or 220 kV lines, and

the fault line is being cut off after a period of time. For the

fault of each location, select a certain range of fault

clearing time to simulate. Record power angle of generator,

rotor speed, active power and reactive power of line as

alternative features, and 3100 in total. Finally 12780

samples are generated, 10176 of which are selected as

training samples randomly, while the left 2604 as test

samples.

In the case study, forward search is being selected and

IPG index is used as the encapsulated evaluation index to

select features. Each turn as the number of features

increases, the IPG index gradually decreases, which means

the GR shrinks gradually. When the number of features is

less than 5, the IPG decreases rapidly, and the rate of

decrease of IPG after 5 features is slowed down, and almost

no longer decreases after more than 15 features. The

relationship between the IPG index and the number of

features is shown in Fig. 8.

Set the stop criterion of feature selection as

�DIPG\0:1%, and 20 features are selected, which are also

the active power and reactive power of line. It is worth

noticing that, compared with IEEE 39-bus system, the

amount of input features needed by Hubei power grid is not

directly proportional to the increase in scale. This is due to

the fact that the crucial factors that affect the stability of the

grid no not increase proportionally with the increase of

scale.

Confirm the parameter C = 1 and c = 0.3. Under certain

features and parameters, train the rules of stability

Table 4 Training and test results of stability assessment rules based on traditional SVM in IEEE 39-bus system

Stage Stable result of classification Unstable result of classification Evaluation indicator

Stable samples Unstable samples Stable samples Unstable samples Ac (%) N1 N2

Training 1267 7 37 689 97.8 7 37

Test 309 0 16 175 96.8 0 16
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assessment and compare the training and test results of two

assessment rules. The results are showed in Tables 5 and

6.

Similar to small system, there are no false dismissal and

false alarm in the training and test results of stability

assessment, considering the conservativeness, while the

GR is about 9%. Although the traditional SVM-based

stability assessment rules can reach 98% of the

Table 5 Training and test results of stability assessment rules based

on CSVM and ASVM

Stage N1 N2 N3 Evaluation indicator

IPG (%) IPFD (%) IPFA (%)

Training 0 0 892 8.77 – –

Testing 0 0 234 8.99 0 0

Table 6 Training and test result of stability assessment rules based

on traditional SVM in HBPS

Stage N1 N2 Ac (%)

Training 134 53 98.16

Testing 27 33 97.70

Fig. 8 Hubei power grid case: relationship between IPG and number

of input features

Bai He

Shi Yan

Fan Cheng

Xiang Fan II

Dou Li

Long Quan

Long Zheng

Wan Xian

Left bank of

San Xia

Jiang Ling

Jiang Cheng

Fu Xing

Right bank of

San Xia

Convertor

station
Ge Nan

Gang Shi

Xing Long
Xian Ning

Feng Huangshan

Xiao Gan

Yu Xian

Jun Shan

Nan Yang

Jing Men III

Jing Men

Ge Heyan

Chao Yang

Shuang He

Ge Dajiang

Yi Du
Yi Hua

Zhang 

Jiaba

En Shi

Yu Xia Shui Buya

Men Shan

Guang Gu

Guan Du

Shi He

Mu Lan

Yang Luo III

Dao Guanhe

Da Ji

Bai Lianhe

Ci Hui

Da Bieshan

Yong Xiu

Qing Jiang

/Ge Zhouba

 hydropower

delivery

 system

San Xia

 hydropower 

delivery

system

Shi Yan hydropower 

delievery system

En Shi hydropower 

delivery system

Thermal power plant

Transformer substation

Hydroelectric power station

Load

Fig. 7 HBPS 500 kV grid structure diagram

Real-time transient stability assessment in power system based on improved SVM 35

123



classification accuracy, false dismissal exits. Therefore, the

comparison between Table 4 and Table 5 shows the pro-

posed method is more in line with the actual operational

requirements of the power system. Compared with the

small system case, the factors affecting the stability of the

large system are more scattered. The number of input

features of the stability assessment rule needs to be

increased to provide enough information. As the input

features increase, the GR will gradually decrease. The

requirements for the size of GR should be determined

according to the requirements of assessment conserva-

tiveness in actual operation.

5 Conclusion

This paper proposes a strategy using CSVM and ASVM

for real-time TSA. In this strategy, GR is defined to solve

the problem that traditional analysis methods cannot avoid

false alarms and missed alarms, and it ensures the assess-

ment accuracy outside GR. Also, in order to adapt to the

TSA rule, new indicators are proposed, especially the

quantitative indicators of GR. In addition, the indicator IDD
is proposed to describe the stability probability of samples

in GR, and instability probability curve is fitted to be taken

as reference for the operators. Although it is very difficult

to realize online real-time TSA, this paper has made useful

explorations. There is still a long distance from real engi-

neering practice, but the works of this paper show great

application prospect.
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