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Abstract Real-time information can enable travelers to adapt to changing traffic conditions and 

make better routing decisions in uncertain networks. In this paper, a generic description of real-

time online information is provided based on three schemes using partial online information and 

one scheme with no online information. A theoretical analysis shows that more error-free 

information is always better than (or at least as good as) less information for optimal adaptive 

routing in flow-independent networks.  A heuristic algorithm is designed for the optimal adaptive 

routing problem for all the four information schemes, based on a set of necessary conditions for 

optimality. The effectiveness of the heuristic algorithm is shown to be satisfactory over the tested 

random networks. This study is of interest for traveler information system evaluation and design. 
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1. Introduction 

An advanced traveler information system (ATIS) provides travelers with real-time traffic 

condition information to enable better routing decisions.  In order to assess the effects of an 

ATIS, a comprehensive model is needed to consider travelers’ decisions and the demand-supply 

interaction under the influence of ATIS. This paper examines the demand aspect of the problem, 

and describes the optimal routing decisions a traveler can make using real-time information on 

realized travel times and the overall benefits obtained. No demand-supply interaction is modeled 

in this paper, i.e., travel times are not affected by travelers’ choices.  In order to better evaluate 

how the traveler uses real-time information to make decisions, it is assumed that he/she has 

already formed a clear perception of travel time. 

In order to evaluate different information schemes, decision makers’ behaviors must be 

consistent.  The realized benefit of information depends greatly on how decision makers use the 

available information. For example, an in-vehicle GPS unit with up-to-date traffic information 

does not provide any benefit if the driver chooses to ignore it, while a radio message announcing 

a traffic jam can help the traveler divert if he/she chooses to alter his/her route.  In this paper, it is 

assumed that a traveler optimizes an objective function (e.g., minimal travel time, minimal 

variability) and makes a series of optimal routing decisions based on time-of-day and realized 

link travel times during the trip.  The value of traveler information is therefore defined as the 

difference between optimal routing outcomes (e.g., minimal expected travel time) that a traveler 

would obtain with and without the information.   

This definition of value of information is comparable to that employed in decision 

analysis and information economics.  Marschak and Miyasawa (1968) offer the following 

definition:  

“An information system is a set of potential messages to be received by the decision 

maker. It is characterized by the statistical relation of the messages to the payoff-relevant events, 

and also by the message cost.  Neglecting this cost, the (gross) value of an information system 

for a given user is the (gross) payoff that he would obtain, on the average, if he would respond to 

each message by the most appropriate decision.”  
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Numerous studies have been conducted on the value of traveler information using the  

above definition, with explicit modeling of the probabilistic relation of the information to the 

benefits, including Arnott et al. (1996, 1999), Levinson (2003), Denant-Boemont and Petiot 

(2003), Chorus et al. (2006) and de Palma and Picard (2006). 

Traveler information can be characterized in a number of ways, including quantitative or 

qualitative, historical, prevailing (realized) or predictive, and level of noise.  This paper focuses 

on the scope of information in time and space using quantitative error-free information that 

reveals realized link travel times without error.  Gao and Chabini (2006) studied perfect online 

information that approximates an ideal in-vehicle system by providing information on all links at 

all time periods up to decision time.   However, realistic information situations are generally 

limited in scope temporally and/or spatially, and so it is called partial online information.  For 

example, a variable message sign (VMS) is usually fixed in one location and can only provide 

information to travelers who pass it on their route. Radio broadcasts can provide information to 

travelers anywhere within the radio coverage, but the scope is usually limited to major highways 

and arterials. Temporal limitations are also a concern; for example, radio traffic reports can be 

delayed for 15 minutes, making travelers commuting at 8:00am only aware of traffic conditions 

up to 7:45am.  The Internet can also be a source of pre-trip traffic information, but is likely 

unavailable en route. 

In this paper, three schemes of partial online information are introduced: delayed global 

information, global pre-trip information and up-to-date radio information.  Compared with 

perfect online information, the first two are limited temporally and the last, spatially.  This paper 

provides: 1) a theoretical proof stating that more error-free information is always better (or at 

least as good as less information) for optimal adaptive routing in a flow-independent stochastic 

time-dependent (STD) network; 2) an analysis of the optimal adaptive routing problem with 

partial and no online information indicating that Bellman’s principle of optimality does not 

apply, and the proposal of a set of necessary conditions for optimality; and 3) a heuristic 

algorithm based on the necessary conditions with polynomial running time and satisfactory 

effectiveness, tested computationally. 
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The paper is organized as follows. In Section 2, a literature review is presented in two 

areas: value of traveler information and optimal routing policy problems. Section 3 defines an 

optimal routing policy problem in an STD network for partial online information schemes. 

Section 4 presents a theoretical proof of the non-negative value of error-free traveler information. 

In Section 5, Bellman’s principle of optimality is shown to be invalid for the schemes with 

partial and no online information.  A set of necessary conditions for optimality is then proposed 

and proved.  A heuristic algorithm is designed based on the necessary condition and 

computational test results are presented. Section 6 gives conclusions and future research 

directions. 

2. Literature Review 

Over the last two decades, numerous studies have been conducted on traveler information.  

Accurately representing various types of information situations in a network has been a major 

concern in traveler information research.  Under a traffic equilibrium framework, some (e.g., 

Hall, 1996; Yang, 1998; Bottom, 2000; Levinson, 2003; Dong et al., 2006) have assumed that 

travelers with access to ATIS have complete information, which may be unrealistic. In 

Mahmassani and Jayakrishnan (1991), Hall (1996) and Engelson (2003), travelers are assumed to 

switch routes based on instantaneous path travel times, rather than ones they will actually 

experience. This assumption circumvents the need to retrieve future link travel times. In Yin and 

Yang (2003) and Lo and Szeto (2004), the imperfection of various ATIS is represented by 

introducing random errors to true path travel times, with varying degrees of error associated with 

different information systems.  Under a dynamic process framework, information can be 

included in travelers’ learning processes to represent traffic conditions from the previous day or 

time period (e.g., Ben-Akiva et al., 1991; Friesz et al., 1994; Emmerink et al., 1995; Jha et al., 

1998; Mahmassani and Liu, 1999). A common shortcoming of these studies is that the 

information representation cannot be directly related to real life situations, e.g., the spatially or 

temporally limited information systems discussed in Section 1. 
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Other researchers have conducted theoretical studies on simplified networks. Arnott et al. 

(1999) examined the effects of online information in a two-link network with random capacities 

under equilibrium in both departure time and route, using the bottleneck model to calculate 

congested travel times. Rigorous studies of zero information, full information, and imperfect 

information are carried out. Other studies working on simplified networks include Arnott et al. 

(1991, 1996), Emmerink et al. (1998), de Palma and Picard (2006) and Chorus et al. (2006). 

Denant-Boemont and Petiot (2003) evaluated travel information value using human subjects’ 

willingness to pay in an experimental setting with limited mode and route choices.   

It is difficult to compare the results in a highly simplified network to those in a typical 

network.  While the optimal choice problem can be solved by observation in a simplified 

network, algorithms are needed for a general network. Two possible types of routing problems 

exist in stochastic networks: non-adaptive and adaptive. Non-adaptive routing determines a fixed 

path at the origin that is followed regardless of the realizations of the stochastic network. In 

contrast, adaptive routing considers intermediate decision nodes, and a next link (or sub-path) is 

chosen based on collected information at each decision node.  Adaptive routing is  better than (or 

at least as good as) non-adaptive routing, since the latter can be viewed as a constrained version 

of the former.  In this review, the term “routing policy” is used to denote the adaptive routing 

process. The review focuses on problems in time-dependent (as opposed to static) networks, as 

summarized in Table 1 with various assumptions on link stochastic dependencies and 

information access.  

In the studies of schemes with no time-wise or link-wise dependencies and no online 

information, marginal distributions of link travel times are used and the routing is only adaptive 

to arrival times at decision nodes (hence the term time-adaptive). Hall (1986) studied for the first 

time the time-dependent version of the optimal routing policy problem, showing that in an STD 

network, routing policies are more effective than paths. Based on the concept of decreasing order 

of time, Chabini (2000) produced a dynamic programming algorithm, which is optimal in the 

sense that no algorithms with better worst-time complexity exist. The algorithm is later described 

in Gao (2005). Miller-Hooks and Mahmassani (2000) developed a label-correcting algorithm, 
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which Miller-Hooks (2001) compared with the dynamic programming algorithm (Chabini, 2000) 

computationally. Yang and Miller-Hooks (2004) extended the study to a signalized network.  

 

Table 1. Taxonomy of the optimal routing policy problems 

                   Information 

Network 

Perfect online 

information 

Partial online 

information 

No online information 

(time-adaptive) 

No time-wise or link-wise 

dependency 
 

Opasanon and Miller-

Hooks (2006) 
See the note below* 

Complete dependency 

Gao and 

Chabini 

(2002, 2006) 

This paper This paper 

Partial dependency  

Psaraftis and Tsitsiklis 

(1993), 

Kim et al. (2005), 

Boyles (2006) 

 

*: Hall (1986), Miller-Hooks and Mahmassani (2000), Pretolani (2000), Chabini (2000), Miller-Hooks 

(2001), Bander and White (2002), Nielson et al. (2003), Yang and Miller-Hooks (2004), Fan et al. (2005), 

Fan and Nie (2006), Pretolani et al. (2009). 

 

Pretolani (2000) used a hyper-path formulation of the adaptive routing problem based on 

arrival times. Bander and White (2002) designed a heuristic approach that terminates with an 

optimal solution if one exists. Fan et al. (2005) maximized the probability of arriving on time 

with continuous probability density functions on link travel times.  Fan and Nie (2006) later 

explored algorithmic issues for the same problem. Nielson et al. (2003) studied the bicriterion 

time-adaptive problem. 

In the case of partial online information, Opasanon and Miller-Hooks (2006) studied the 

multicriterion adaptive routing problem with information on traversed link travel times in a 

statistically independent network. Later, Pretolani et al. (2009) went on to distinguish between 

time-adaptive and history-adaptive routing in a multicriteron optimization context.  

Psaraftis and Tsitsiklis (1993) examined networks using a methodology where link costs 

evolve as Markov processes and travelers learn the current state of the Markovian chain at any 

time.  The network is assumed to be acyclic to enable the design of a polynomial-time algorithm.  

Kim et al. (2005) studied the problem in a general Markovian network with a wider information 
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range. In Boyles (2006), conditional probabilities of adjacent link travel costs are utilized and 

travelers are assumed to remember only the travel time on the last link they traverse.  The 

objective function is a general piece-wise polynomial function of arrival time at the destination. 

Gao and Chabini (2002, 2006) studied routing policy problems in a general STD network 

with both time-wise and link-wise dependency and perfect online information. This paper 

expands upon past research by examining the optimal routing policy problem in a general STD 

network with partial or no online information. A heuristic, rather than exact, algorithm is 

designed and employed based on a set of necessary conditions for optimality. 

3. Problem Definition 

3.1. The Network 

 

Fig. 1. An illustrative small network 

Table 2. Support points for the small network (p1 = p2 = p3 = 1/3) 

Time Link C
1
 C

2
 C

3
 

0 

(a, b) 1 1 1 

(b, c) 2 2 1 

(a, c) 3 3 2 

1 

(a, b) 1 1 2 

(b, c) 1 2 1 

(a, c) 3 2 2 

 

Let G=(N,A,T,C
~

) denote an STD network. N is the set of nodes and A is the the set of links, 

with |A|=m. Assume there is at most one directional link from node j to k, denoted as (j,k). T is 

the set of time periods {0,1,…,K-1}. A support point is defined as a distinct value (vector of 

values) that a discrete random variable (vector) can take. A probability mass function (PMF) of a 

random variable (vector) is a combination of support points and the associated probabilities. In 

a 

b 

c  
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this paper, a symbol with a ∼ over it is a random variable (vector), while the same symbol 

without the ∼ is the associated support point. The travel time on each link (j,k) at each time t is a 

random variable tjkC ,

~
 with a finite number of discrete, positive and integral support points. The 

time periods from 0 to K-1 are denoted as dynamic, while those beyond K-1 are static. In practice, 

the peak hour period is generally modeled as dynamic, while off-peak (when the traffic is more 

stable) is modeled as static. {C
1
,…,C

R
} is the universal set of network support points for the joint 

probability distribution of all link travel times at all times, where C
r
 is a vector of time-

dependent link travel times with a dimension of K×m, r=1,2,…,R. In the remainder of the paper, 

a support point is used for the joint distribution of all links at all times, unless otherwise specified. 

r

tjkC ,
 is the travel time on link (j,k) at time t in the r

th
 support point, with probability pr, and 

pr
r=1

R

∑ =1. The travel time on a given link (j,k) at any time t>K-1 is equal to that of time K-1 for 

any support point: . 

An example network is shown in Figure 1 and Table 2 with three nodes, three links and 

two time periods.  There are three support points, each with a probability of 1/3, for the joint 

distribution of six travel time random variables (links (a, b), (b, c) and (a, c) over time periods 0 

and 1). Travel times beyond time 1 are the same as those at time 1 in each of the three support 

points. 

The framework and methods developed in this paper can be extended to networks with 

turn penalties by modifying the framework to add additional links corresponding to turning 

movements.  As the focus of this paper is on imperfect information, we limit our discussion to a 

basic network without turn penalties. 

The discrete distributions of link travel times are assumed for the convenience of defining 

routing policies (Section 3.4), which are based on realized travel times. Even if the underlying 

travel time distribution is continuous, in order to define a routing policy with a finite number of 

states, the distribution must be made discrete.  The extension of the routing policy definition to a 

continuous travel time distribution is a challenging task and will be included in future work.  

C jk,t

r
=C jk,K−1

r
,∀( j,k),∀t >K −1,∀r
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3.2. Online Information 

Let H be a trajectory of (node, time) pairs a traveler could experience in the network to the 

current node j and time t: H={(j0,t0),…,(j,t)}, where j0 is the origin and t0 is the departure time. 

Denote the information coverage over links and time periods as Q ⊆ A×T.  Information is 

represented as travel time realizations on time-dependent links of Q. No predictive information is 

assumed, i.e., Q cannot contain elements beyond the current time t.  It is assumed that there is no 

error in revealing the true travel times. An information scheme is defined as mapping from a 

trajectory H to information coverage Q, meaning that information depends on traversed locations 

and times. Here are some examples of online information schemes with a trajectory 

H={(j0,t0),…,(j,t)}: 

• Perfect online information: Q(H) = A×{0,1,…,t} (all links up to the current time t) 

• Delayed global information with time lag Δ: Q(H) = A×{0,1,…,t-Δ} (all links up to Δ 

units of time ago) 

• Global pre-trip information with departure time t0: Q(H) = A×{0,1,…,t0} (all links up to 

the departure time t0) 

• Up-to-date radio information on B⊆A: Q(H) = B×{0,1,…,t} (a subset of links up to the 

current time t) 

• No online information: Q(H)=∅ (no information on any link at any time) 

The example in Figure 1 and Table 2 is used to illustrate different information schemes. 

At time 0, a traveler with perfect online information knows the travel time realizations of { ,

, }: either {1,2,3} or {1,1,2}; a traveler with global information with one unit of time 

lag (LAG1) does not yet have any information on the realization of travel time; a traveler with 

global pre-trip information with departure time 0 has the same knowledge as the traveler with 

perfect online information; a traveler with up-to-date radio information on link (a, b) knows the 

travel time realization of  that is 1; and a traveler with no online information does not have 

any realization of travel time whatsoever. At time 1, a traveler with perfect online information 

0,

~
ab
C

0,

~
bc
C

0,

~
ac
C

0,

~
ab
C
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knows the travel time realizations of {
1,1,1,0,0,0,

~
,

~
,

~
,

~
,

~
,

~
acbcabacbcab
CCCCCC }, which could be each of 

the three support points; a traveler with delayed information knows what happened at time 0 and 

gains the same information as with perfect online information at time 0; a traveler with pre-trip 

information does not gain any more information en route and thus his/her information remains 

unchanged; a traveler with radio information knows the travel time realization of {
1,0,

~
,

~
abab
CC } 

that could be {1,1} or {1,2}; and a traveler with no online information still has no realization of 

travel time. At time 2, only the traveler with delayed information will gain more useful 

information, as he/she now knows what happened in time 1. A traveler with perfect online, pre-

trip or radio information does not gain any more useful information, because of the static period 

assumption. A traveler with no online information does not gain any more information by 

definition.  Note that routing under the no online information scheme could still be adaptive to 

the arrival time at each decision node, which is random due to random travel times. 

3.3. Event Collection 

The concept of event collection is generalized from that in Gao and Chabini (2006) to a general 

information scheme. Let 
QC
~

 be the vector of random travel times of time-dependent links in Q. 

For a given support point CQ, there exists one or more support points of the whole network that 

are expansions of CQ. In other words, for any possible revealed link travel times of Q, a set of 

compatible support points can be identified. Such a set is defined as an event collection, EV.  It 

can be viewed as the conditional joint distribution of link travel times given realized link travel 

times in the coverage Q. With more information collected, the information coverage Q grows 

and the size of EV decreases or remains unchanged. When EV becomes a single support point 

each, a deterministic network (not necessarily static) is revealed to travelers. If a traveler has 

perfect online information, the network becomes deterministic no later than the start of static 

period K-1. If travelers have less than perfect online information, the network may remain 

stochastic beyond the dynamic period.   
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All possible event collections with the information coverage Q, denoted as EV(Q), can be 

generated by performing a partition of {C
1
,…,C

R
} based on . EV(Q)={EV1,EV2,…}, where 

 is invariant over r∈EVi, ∀((j,k),t)∈Q, ∀i, and ∃((j,k),t)∈Q such that , for r∈EVi, 

r’∈EVj, ∀j ≠ i. In other words, support points in an EV are indistinguishable in terms of revealed 

travel times of Q, but are distinctive from those in another EV. All possible event collections for 

a given information scheme can be generated in preprocessing.  

The generation of event collection can be carried out in an increasing order of time, as the 

information is error-free and later information will not contradict earlier information. An 

example from Figure 1 and Table 2 is shown here for a traveler with up-to-date radio information 

on link (a,b). Since the information coverage in question depends only on the current time t and 

not the whole trajectory, Q(H) is simplified as Q(t) and EV(Q) as EV(t). At time 0, the 

information coverage can be defined as Q(0)={(a,b)}×{0}. The travel time on link (a,b) at time 0 

is 1 for all three support points, so the partition yields only one event collection and 

EV(0)={{C
1
,C

2
,C

3
}}. At time 1, the information coverage Q(1)={(a,b)}×{0,1} where the 

incremental information is on {(a,b)}×{1}. The partition can be carried out on EV(0) based on 

travel time realizations of link (a,b) at time 1, which can be either 1 or 2. Therefore, 

EV(1)={{C
1
,C

2
},{C

3
}}. In the static period, no more useful information is available, so 

EV(t)={{C
1
,C

2
},{C

3
}}, for all t>1. The same logic can be applied to other information schemes. 

3.4. The Decision and the Optimal Routing Policy Problem 

It is assumed that travelers make decisions only at nodes. The decision of what node k to take 

next is based on the state defined as a triplet {j, t, EV}, where j is the current node, t the current 

time, and EV the current event collection.  

Definition 1. (Routing Policy) A routing policy µ is a mapping from state to decision, for 

all possible states and all possible next nodes of a given state, { } kEVtj →,,:µ . 

A routing policy can be visualized as a contingence table with as many rows as the 

number of possible combinations of node, time and event collection. For each combination, a 

QC
~

C jk,t

r
C jk,t

r
≠C jk,t

r'
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next node is given. A path (e.g., as defined in Ahuja et al., 1993) is a purely topological concept 

and a special case for routing, such that the same next node is given regardless of the time and 

event collection. The travel time by following a routing policy (sometimes termed routing policy 

travel time) from any origin and departure time to a destination is a random variable, with one 

realization in each support point.  The routing policy travel time can then be represented as a list 

of travel times in all support points with the associated probabilities.  The routing policy itself 

can also be viewed as a collection of paths with the associated probabilities. 

A routing policy is defined based on event collections, not support points, and an event 

collection includes a number of support points compatible with revealed information at the 

decision node and time. An event collection can be considered equivalent to a support point only 

in a scheme where a traveler is omnipotent and knows exactly what will happen in each day at 

the beginning of the day.  Because this is impossible, a set of possible support points must be 

considered, although the set size will likely decrease over time during the trip with more 

information collected, as described in Section 3.3.    

Definition 2. (Optimal routing policy problem) The optimal routing policy problem in an 

STD network is to find the routing policy that optimizes an objective function of routing policy 

travel times over all support points to a given destination, from a given origin and departure time.  

Let eµ(j,t) be the objective function (to be minimized) of following routing policy µ from 

origin node j at departure time t to a given destination. The optimal objective function value 

e*(j,t)=minµ eµ(j,t).  

Note that an optimal routing policy is not necessarily ex post optimal for any given 

support point (day), but is optimal on average over all possible support points.  

The objective function could be used to describe expected travel time, travel time 

variance, expected travel time schedule delay, or a combination of a number of criteria. The 

discussions in Section 4 are not restricted to a particular objective functional form. However, 

objective functional form does affect algorithm design and as such only expected travel time is 

evaluated in Section 5. 

Given an information scheme, a partition of the universal support point set {C
1
,…,C

R
} at 

(j, t) provides the initial set of event collections EV(Q(j,t)). If the objective function is additive 



	   13	  

over support points, e.g., in the case of expected travel time or expected schedule delay, an 

optimal routing policy for the initial universal set of support points is also optimal for any of the 

initial event collections. In this case, finding an optimal routing policy for the universal set of 

support points is equivalent to finding an optimal routing policy for each of the initial event 

collections, and as such Section 5 deals with optimal routing policies with regard to initial event 

collections.  However this is not necessarily true for a non-additive objective function, such as 

travel time variance, and in such cases, an optimal routing policy problem cannot be broken 

down to a number of similar problems with initial event collections. 

4. Theoretical Analysis of the Value of Information 

Optimal routing outcomes are compared under two information schemes (1 and 2) in the 

same network with different coverage.   

Assumption 1. For any trajectory H, information scheme 2 has a larger coverage Q2 than 

that of information scheme 1, Q1, that is, Q1(H) ⊆Q2(H). 

Definition 3. (S1 contains S2). Let S1 and S2 be two partitions of a set S. S1 is said to 

contain S2 if for any y∈S2, there exists z∈S1, such that y⊆z. In other words, any element of S2 is a 

subset of one and only one element of S1, and any element of S1 is the union of one or more 

elements of S1. See Figure 2 for a schematic representation. 

 

S a b c d e f g h 

S1 a b c d e f g h 

S2 a b c d e f g h 

Fig. 2. A schematic view of S1 containing S2 

Lemma 1. With Assumption 1, EV(Q1) contains EV(Q2) for any trajectory H.  

Proof. EV(Q1) and EV(Q2) are partitions of the set of support points {C
1
,…,C

R
}. By 

definition, for any EV2∈EV(Q2), travel times on time-dependent links of Q2 are invariant across 

support points in EV2. Since Q1⊆Q2, travel times on time-dependent links of Q1 are also invariant 
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across support points in EV2. Therefore there must exist EV1∈EV(Q1) such that EV2⊆EV1.  

Q.E.D. 

With Lemma 1, we can proceed to compare the optimal objective function values under 

two different information schemes.  Note that two travelers under different information schemes 

generally do not have the same starting information coverage and, therefore, have different initial 

sets of event collections, even with the same origin and departure time. For example, a radio may 

only report travel times on highways, while a pre-trip information source (e.g. a website) may 

report travel times on both highways and arterial roadways. There are two initial event 

collections under radio information with the highway being normal or congested, and four initial 

event collections under pre-trip information, with the additional combinations with the arterial 

being normal or congested.  The comparison of the two information schemes is based on 

performance over all of the possible initial event collections under each scheme, i.e. all support 

points.  

Theorem 1. With Assumption 1, the optimal objective function value under information 

scheme 2 is no worse than that under information scheme 1, for the same origin j0 and departure 

time t0, that is,  

  

Proof. Given any optimal routing policy µ1 under information scheme 1, an equivalent 

feasible routing policy µ2 under information scheme 2 can be constructed as follows: at the 

original node j0 and departure time t0, partition the universal set of support points based on the 

two information schemes to obtain the initial event collection sets: EV(Q1(j0,t0)) and 

EV(Q2(j0,t0)). For any EV2∈EV(Q2(j0,t0)), according to Lemma 1 there must exists 

EV1∈EV(Q1(j0,t0)), such that EV2⊆EV1. We can then set µ2(j0,t0,EV2)=µ1(j0,t0,EV1). As µ1 and µ2 

give exactly the same next node under any support point, they produce the same trajectory under 

any support point at the next decision node. Let the arrival at the next node j occur at time t, then 

the information coverage Q1 is a subset of Q2 from the same trajectory {(j0, t0), (j, t)}. By Lemma 

1, EV(Q1) contains EV(Q2), therefore we can set µ2(j0,t0,EV’2)=µ1(j0,t0,EV’1), ∀EV’2∈EV(Q2), 

EV’2⊆EV’1. The process continues and a routing policy µ2 is constructed with exactly the same 

e
2

*
( j
0
,t
0
) ≤ e

1

*
( j
0
,t
0
), ∀j0 ∈ N,∀t

0
∈ T.
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trajectory as µ1 under any support point, and thus the same objective function value, i.e., 

 

Since µ2 is a feasible routing policy under information scheme 2, the optimal objective 

function value under scheme 2 is at least as good as that from µ2 by definition, i.e., 

. 

Thus, the optimal objective function value under scheme 2 is at least as good as that 

under scheme 1, that is, 
   

Q.E.D. 

Theorem 1 indicates that with larger information coverage throughout the trip, a traveler 

has more flexibility in every decision node based on a finer partition of the possible outcomes 

(support points).  For example, instead of having to choose a next node based on whether the 

highway is congested, a traveler can now make the decision based on whether both the highway 

and arterial are congested. A traveler can always ignore the additional information on arterial 

roadways and use only highway information. Therefore, optimal actions under larger information 

coverage are at least as good as those under smaller information coverage. 

Theorem 1 also applies when only a subset of the universal set of support points is used 

to evaluate routing policies.  The proof is the same with the universal set replaced by the subset.   

The theorem can be alternatively stated as follows: more error-free information is always 

better than (or at least as good as) less information for adaptive routing in a flow-independent 

network.  It is consistent with Marschak and Miyasawa (1968)’s Theorem 11.3 regarding 

noiseless information systems: if two information systems are noiseless and one is finer than (in 

this paper’s terminology, contained by) the other, it can never have smaller value than the other 

for any payoff function defined on a given set of events.   However, the decision problem in 

Marschak and Miyasawa (1968) is single-staged, and Theorem 1 extends the result to a multi-

staged routing decision situation in a network context.  

) ≤ eµ2 ( j0,t0) = eµ1 ( j0,t0) = e1
*
( j
0
,t
0
).

e
2

*
( j
0
,t
0
) ≤ eµ2 ( j0,t0)

e
2

*
( j
0
,t
0
) ≤ e

1

*
( j
0
,t
0
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5. Solutions to the Partial and No Online Information Schemes 

Theorem 1 provides a theoretical comparison between two information schemes; however it is 

applicable only when coverage is larger or no smaller in both spatial and temporal dimensions.  

In reality, an information scheme can have larger coverage in one dimension but smaller 

coverage in the other. In order to evaluate the value of traveler information empirically for more 

complicated situations, computer algorithms are needed.  

Because a routing policy has a random travel time, there exist multiple optimization 

criteria.  Expected travel time is used in the remainder of the paper, as generally it is the primary 

criterion in routing choices. Other criteria regarding travel reliability, such as expected schedule 

delay and travel time variance, will be explored in future research. 

In this section, it is shown that Bellman’s principle of optimality does not hold for the 

three partial or no online information schemes even with additive objective functions.  For these 

schemes, a heuristic algorithm is designed and applied.  

In all the schemes studied, the information coverage Q is determined by the current time, 

instead of the whole trajectory, therefore EV(t) is used instead of EV(Q). Time lag Δ in delayed 

information, departure time t0 in pre-trip information and radio coverage B in radio information 

are treated as exogenous system parameters. In pre-trip information with departure time t0, EV(t) 

= EV(t0), ∀ t ≥ t0. 

Except for delayed information, no additional useful information is available in all other 

schemes during the static period, i.e., Q does not grow beyond K–1, because either no 

information is provided (pre-trip and no online information), or additional information will not 

enlarge Q (radio and perfect online information). In the case of delayed information, a traveler 

continues receiving information in the static period until K-1+Δ, at which time Q=A×T.  Let T* 

denote the time beyond which a traveler receives no more useful information and Q remains 

unchanged. We then have T*=K-1+Δ for delayed information, and T*=K-1 for all other four 

information schemes.  
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5.1.  Bellman’s Principle of Optimality 

Proposition 1. Bellman’s principle of optimality does not hold for the delayed, pre-trip, 

radio or no online information schemes with additive objective functions. In other words, if µ* is 

optimal for a given initial event collection EV0 at (j0,t0), and (j,t,EV) is an intermediate state 

during the execution of µ*, then the remainder of µ* is not necessarily optimal for the initial 

state (j,t,EV).   

Discussion. This can be shown through an example in Figure 3 and Table 3.  Note that 

only relevant link travel times are shown.  The travel time on link (d, c) is always 0 and not listed. 

No online information is assumed, such that the routing decision only depends on the arrival time 

at each decision node, i.e, EV = {C
1
, C

2
} at any node and time.   The primary problem is finding 

a minimum expected travel time routing policy from node a to c for departure time 0.   

 

 

Fig. 3. An illustrative small network 

Table 3. Support points for the small network (p1 = p2 = 1/2) 

Time Link C
1
 C

2
 

0 (a, b) 1 2 

1 
(b, c) 1 10 

(b, d) 3 3 

2 
(b, c) 10 1 

(b, d) 3 3 

 

Link (a, b) has two possible travel times at time 0: 1 and 2, therefore the arrival time at 

node b can be either 1 or 2.  As there are two alternatives to go from node b to c at each of the 

two possible arrival times, altogether there are four routing policies, listed in Table 4 along with 

the corresponding expected travel times.  

 

a b c 

d 
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Table 4. Routing policies from node a at time 0 

 At node a At node b Expected 

travel time Arrival time 1 Arrival time 2 

Routing policy 1 Node b Node c Node c 2.5 
Routing policy 2 Node b Node c Node d 3.5 

Routing policy 3 Node b Node d Node c 3.5 

Routing policy 4 Node b Node d Node d 4.5 

 

The optimal routing policy from node a to c at departure time 0 is therefore a-b-c 

(actually a path).  However, the optimal routing policy from node b to c at either departure time 1 

or 2 is not the policy b-c with mean travel time 0.5(1+10), but b-d-c with mean travel time 3.   

The key here is the treatment of the travel time on link (b, c).  The travel time of 10 on 

link (b, c) can never be realized if the traveler leaves node a at time 0, due to the stochastic 

dependency between link (a, b) and (b, c).  However if b is the origin, then the travel time of 10 

is possible and should be taken into account.  If link travel times are time-wise and link-wise 

independent, Bellman’s optimality principle will hold and the problem in the no online 

information scheme reduces to those studied by Miller-Hooks and Mahmassani (2000), Chabini 

(2000) and Miller-Hooks (2001).  

Examples for the three partial online information schemes can be constructed similarly. If 

j is an origin with EV, the calculation of expected travel time from j is not conditional on the past 

and thus includes all support points in EV. However, if j is an intermediate node, the calculation 

must be conditional on the traversed link travel times from the origin to the current node, which 

are not necessarily covered by online information. Since link travel times are stochastically 

dependent, the conditional expected travel time may differ from the unconditional one. Examples 

can be constructed resulting in different optimal policies based on whether or not the node is an 

origin. Details of these examples are not presented due to space limit.  

Bellman’s principle of optimality is valid for the perfect online information scheme 

(stated formally later in Proposition 4). Note that in this scheme, online information includes 

everything that happened in the past, including the traversed link travel times to any intermediate 

node. Therefore the expected travel time with perfect online information does not depend on 

whether the node is an origin.  
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5.2. Necessary Conditions for Optimality 

Proposition 1 indicates that we cannot generate an optimal routing policy by combining the 

optimal next node and the optimal policy from the next node.  The necessary conditions for the 

optimal solutions are presented in Proposition 2.  Any feasible solution to the optimal routing 

policy problem must provide an upper bound on the minimal expected travel time; however, a 

solution that satisfies the necessary conditions for optimality provides a tighter upper bound than 

an arbitrary solution.  Therefore a heuristic algorithm is proposed to solve for the necessary 

conditions, and its effectiveness (in terms of closeness to optimal solutions) is evaluated 

computationally.  The heuristic algorithm is a generalization of the algorithm for the perfect 

online information problem in Gao and Chabini (2006), with a distinction in the major recursive 

equation. 

Let eµ(j,t,EV) be the expected travel time to the destination node d by following routing 

policy µ, if the departure from origin node j happens at time t with the event collection EV. For 

each support point (at the end of a day), a routing policy is manifested as a path with a 

deterministic travel time.  We thus define Sµ(j,t,r) as the travel time to the destination node d if 

support point r is realized with an exit from node j (origin or intermediate) at time t by following 

routing policy µ. The relationship between eµ(j,t,EV) and Sµ(j,t,r) is as follows: 

eµ( j,t,EV ) = Sµ( j,t,r)Pr(r | EV )
r∈EV

∑                                     (1) 

where Pr(r | EV ) = pr pi
i∈EV

∑  is the probability of support point r given EV. Note that the 

algorithm in Gao and Chabini (2006) for perfect online information uses only eµ(j,t,EV) because, 

in this scheme, Bellman’s principle of optimality is valid, while Sµ(j,t,r) must be used to correctly 

calculate expected travel times for partial and no online information schemes.  

For a given time t and support point r, there is one and only one corresponding event 

collection EV(t,r), since EV(t) is a partition of the universal set of support points. This ensures 

that the next node of routing policy µ at (j,t,r) can be uniquely retrieved as µ(j,t,EV(t,r)), and 

Sµ(j,t,r) can be obtained by executing µ in support point r. In the example of Figure 1 and Table 

2, for a traveler with radio information on (a,b), the routing decision at node a and time 0 can 

only be made based on the event collection {C
1
,C

2
,C

3
}. Let µ{a,0,{C

1
,C

2
,C

3
}}=c. The travel 
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time by following routing policy µ starting from node a at time 0 is a random variable with 

different outcomes for different support points: Sµ(a,0,C
1
)=3, Sµ(a,0,C

2
)=3, and Sµ(a,0,C

3
)=2.  

The recursive relationship between Sµ at node j and the succeeding node k by following µ 

is critical to solving the optimal routing policy problem. Sµ(j,t,r) is defined for a trip leaving node 

j at time t. For all the information schemes except for pre-trip, the information coverage is not a 

function of departure time, and thus event collections at time t and node j are the same whether j 

is an origin or intermediate node. In this case, 

, where k=µ(j,t,EV(t,r)).             (2) 

With perfect online information, the travel time on the next link (j,k) at time t,  is the 

same for all support points in a given EV (denoted as ), and thus inputting an expectation of 

both sides of (2) over EV produces the following: 

   (3) 

where k=µ(j,t,EV). In the third equality, support points at a later time 
 
are re-partitioned 

into finer event collections EV’. In the fourth equality, support point travel times in each EV’ are 

summarized as the expected travel time.  

Such a relationship between expected travel times at adjacent nodes generally does not 

exist for partial or no online information schemes, since the derivation in (3) depends on the fact 

that the travel time on the next link is included in the information coverage at the next node. 

For the pre-trip information scheme, the information coverage depends on the departure 

time, and therefore is unclear in which event collection r is appropriate at a given time t.  A 

different variable Sµ(j,t,r;t0) can be defined as the travel time from node j (origin or intermediate) 

and time t to the destination node if support point r is realized by following routing policy µ, 

Sµ( j,t,r) =C jk,t

r + Sµ (k,t +C jk,t

r
,r)

C jk,t

r

π jk,t

EV

  

eµ ( j,t,EV ) = Sµ ( j,t,r)Pr(r | EV )
r∈EV

∑

= π jk,t

EV + Sµ (k,t + π jk,t

EV
,r)( )

r∈EV

∑ Pr(r | EV )

= π jk,t

EV + Sµ (k,t + π jk,t

EV
,r)Pr(r | EV ')Pr(EV ' | EV )

r∈EV '

∑
EV '∈EV (t+π jk,t

EV
)

∑

= π jk,t

EV + eµ (k,t + π jk,t

EV
,EV ')Pr(EV ' | EV )

EV '∈EV (t+π jk,t
EV
)

∑

t + π jk,t

EV
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with a departure time t0. EV(t,r;t0) then gives a unique event collection at time t corresponding to 

support point r with a departure time t0, resulting in a recursive relationship:  

 
where k=µ(j,t,EV(t,r;t0)). 

eµ(j,t,EV) the expected travel time from the origin j with departure time t can then be written with 

t0=t: eµ( j,t,EV ) = Sµ( j,t,r;t)Pr(r | EV )
r∈EV

∑ . 

 

We propose the following system of recursive equations to solve the perfect online, 

delayed, radio and no online information schemes based on the recursive equation in (2). 

             

 

(4) 

       
(5) 

∀j∈N\{d}, ∀t, ∀EV∈EV(t) 

where A(j) the set of downstream nodes out of node j.  The boundary conditions are:  

a) At the destination: Sµ*(d,t,r)=0, µ*(d,t,EV)=d, ∀t, ∀EV∈EV(t), ∀r∈EV. 

b) Beyond T*: µ*(j,t≥T*,EV)=µ*(j,T*,EV), ∀j, ∀EV∈EV(T*), T*=K-1+Δ for delayed 

information, and T*= K–1 for the other three schemes (radio, perfect and no online 

information). 

Note that, Sµ*( j,t,r) =C jk*,t

r + Sµ*(k*, t +C jk*,t

r
,r), where k*=µ*(j,t,EV(j,t)). Sµ*(d,t,r) is 

the travel time of the solution routing policy µ* in support point r, not the minimum travel time 

calculated using a deterministic shortest path algorithm in support point r. Sµ*(d,t,r) is obtained 

by executing µ* after µ* is generated.  

For the pre-trip scheme, a similar system of equations can be solved to obtain a solution 

from all nodes and all possible event collections, but with departure time t0  only.   

Proposition 2. Conditions (4) and (5) are necessary for µ* to be an optimal routing 

policy for all possible initial states for the perfect online, delayed, radio and no online 

information schemes.  

Sµ( j,t,r;t0) =C jk,t

r + Sµ (k,t +C jk,t

r
,r;t

0
)

eµ*( j,t,EV ) = min
k∈A( j )

 (C jk,t

r + Sµ*(k,t +C jk,t

r
,r))Pr(r | EV )

r∈EV

∑
⎧ 
⎨ 
⎩ 

⎫ 
⎬ 
⎭ 

µ*( j,t,EV ) = arg min
k∈A( j )

 (C jk,t

r + Sµ*(k,t +C jk,t

r ,r))Pr(r | EV )
r∈EV

∑
⎧ 
⎨ 
⎩ 

⎫ 
⎬ 
⎭ 
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Proof. Trivially, if the boundary conditions at the destination node are not satisfied, µ* is 

not optimal. 

At time period T* and beyond, the information coverage includes all links at all time 

periods.  Therefore there are R event collections, each with one support point.  The optimal 

routing policy beyond T* is not a function of time t, as travel times and event collections do not 

change over time. µ*(j,t≥T*,EV)=µ*(j,T*,EV), ∀j, ∀EV∈EV(T*).  Conditions (4) and (5) 

become 

                          

(6) 

                      (7) 

∀j∈N\{d}, ∀r 

plus boundary conditions. These are the optimality conditions of a static shortest path problem in 

a deterministic network where link travel times are , ∀(j,k).  If µ* is optimal, it must 

manifest as a shortest path in each deterministic network defined by a support point beyond T*, 

and thus (6) and (7) must be satisfied.  

Assume by contradiction that (4) and (5) are not satisfied for some state with a departure 

time earlier than T*. Let (j,t,EV) be such a state. Therefore there must exist an outgoing node 

k∈A(j), such that 

 

A different routing policy µ can be constructed such that µ(j,t,EV)=k, and µ=µ* for all other 

states. The following is obtained: 

 The third equality is due to the fact that µ and µ* are the same at all times later than t.  

The other equalities come from the definition of the expected travel time (1) and the recursive 

relationship between Sµ at node j and the succeeding node k by following routing policy µ (2). 

eµ*
( j,T*,{r}) = min

k∈A( j )
 {C jk,T*

r + eµ*
(k,T*,{r})}

µ*( j,T*,{r}) = arg min
k∈A( j )

 {C jk,T*

r + eµ*(k,T*,{r})}

C jk,T *

r

(C jk,t

r + Sµ*(k,t +C jk,t

r
,r))Pr(r | EV )

r∈EV

∑ < (C jk*,t

r + Sµ*(k*, t +C jk*,t

r
,r))Pr(r | EV )

r∈EV

∑

eµ ( j,t,EV ) = Sµ ( j,t,r)Pr(r | EV )
r∈EV

∑ = (C jk,t

r + Sµ (k,t +C jk,t

r
,r))Pr(r | EV )

r∈EV

∑

= (C jk,t

r + Sµ*(k,t +C jk,t

r
,r))Pr(r | EV )

r∈EV

∑

< (C jk*,t

r + Sµ*(k*, t +C jk*,t

r
,r))Pr(r | EV )

r∈EV

∑ = eµ*( j,t,EV )
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The equation contradicts with the fact that µ* is optimal, therefore (4) and (5) must be satisfied 

for t < T*.  Q.E.D. 

Proposition 3. Conditions (4) and (5) are not sufficient for optimality in the delayed, 

radio or no online information schemes. 

Proof. This can be shown through the same example in Proposition 1.  Solving the 

equations at node b at either time 0 or 1 gives b-d-c as the solution because it gives smaller 

expected travel time (over the event collection for no online information, which contains all 

support points) than b-c does.  The equation at node a is trivial, as there is only one outgoing link.  

The solution is then a-b-d-c (routing policy 4), which is not optimal.  Q.E.D. 

Similar conclusions can be drawn for the pre-trip information scheme following 

Propositions 2 and 3 with the modified routing policy travel time variables.   

Proposition 4. Conditions (4) and (5) are sufficient and necessary for µ* to be an optimal 

routing policy for all possible initial states in the perfect online information problem, and 

equivalent to the optimality conditions in Gao and Chabini (2006). 

Proof. With perfect online information,  is the same for all support points in a given 

EV, and thus taking expectations of both sides of (4) over EV and changing (5) accordingly gives 

the optimality conditions in Gao and Chabini (2006), similar to the derivation in (3). The 

sufficiency and necessity of (4) and (5) then follows from the optimality of the conditions in Gao 

and Chabini (2006). Q.E.D. 

Note that the optimality conditions for the perfect online information scheme in Gao and 

Chabini (2006) are neither sufficient nor necessary for optimality in the partial or no online 

information schemes, as the recursive equation is complicated by imperfect information.  

5.3. Algorithm DOT-PART 

In this section a heuristic algorithm is designed to solve the system of equations (4) and (5). The 

evaluation of eµ*(j,t,EV) only depends on Sµ*(j,t’,r) from a later time t’>t, due to the positive and 

integral link travel time assumption.  Therefore the problems can be solved in a decreasing order 

of time, making use of the acyclic property of the network in the time dimension (Chabini, 1998). 

C jk,t

r
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At time T* and beyond, any deterministic static shortest path algorithm can be used to compute 

eµ*(j,t,{r}), ∀j∈N, ∀t≥T*, ∀r. The procedure to generate event collections carries out partitions 

of the universal set of support points in an increasing order of time.  At time t, a partition is made 

on EV(t-1) based on each (link, time) pair in the incremental information coverage, Q(t)\Q(t-1). 

Note that Q is written as a function of t, because in all the five information schemes, Q only 

depends on t, not the trajectory. 

Generate_Event_Collection 

D = {C
1
, …,C

R
} 

If information scheme = no online, EV(t)  D, t = 0 to K-1, STOP. 

For t = 0 to T* 

If information scheme = perfect online, Q(t) = A × {0,1,…,t } 

If information scheme = delayed, Q(t) = A × {0,1,…,t - Δ} 

If information scheme = pre-trip, Q(t) = A × {0} 

If information scheme = radio, Q(t)  = B × {0,1,…,t} 

Q(-1) = ∅ //a proxy for convenience of representation 

For t = 0 to T* 

For each (link, time) pair ((j,k),t’) ∈ Q(t) \ Q(t-1) 

For each disjoint subset S∈D 

D’  A partition of S based on 
',

~
tjkC  

D  Union of all D’ 

EV(t)  D; 

Algorithm DOT-PART 

(Generic for perfect online, delayed, pre-trip with departure time 0, radio and no online 

information schemes) 

Initialization 

Step 1: 

If information scheme = delayed, T* = K – 1 + Δ; else T* = K – 1. 

Construct EV(t), t=0,…,T* by calling Generate_Event_Collection. 

Step 2: 

Compute eµ*(j,T*,{r}) and µ*(j,T*,{r}), ∀j∈N, ∀EV∈EV(T*) with a static deterministic shortest 

path algorithm in a network where link travel times are those at time T* for support point r. 

Compute Sµ*(j,T*,r) by executing µ* in the original static stochastic network, ∀j∈N, ∀r∈EV; set 

Sµ*(j,t>T*,r)=Sµ*(j,T*,r)  

Step 3: 

eµ* (j, t, EV)  +∞, ∀j∈N\{d}, ∀t<T*, ∀EV∈EV(t)  
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eµ* (d, t, EV)  0, Sµ* (d, t, r)  0, ∀t<T*, ∀EV∈EV(t), ∀r∈EV 

 

Main Loop 

For t = T*-1 down to 0 and for each EV∈EV(t) 

For each link (j, k)∈A 

 
If  temp < eµ*(j, t, EV) then 

eµ*(j, t, EV) = temp 

µ*(j, t, EV) = k 

For each r∈EV and each j∈N 

k* = µ*(j, t, EV) 

 
According to Propositions 2 and 3, Algorithm DOT-PART is exact for the perfect online 

information scheme. It generates approximate solutions with all initial states for delayed, radio 

and no online information schemes, and with departure time 0 for pre-trip information scheme. 

In order to solve pre-trip scheme with all departure times, a loop over all departure times t0 has to 

be added outside the main loop, and the main loop will be executed from T*-1 to t0 (not shown in 

the algorithm statement). 

Following a similar analysis as in Gao and Chabini (2006), Algorithm DOT-PART 

(including Generate_Event_Collection) has a time complexity of O(mKRlnR+R×SSP) and 

O(mK
2
RlnR+R×SSP) for pre-trip information, where SSP is the time complexity of the static 

deterministic shortest path algorithm. The algorithm is strongly polynomial in R, the number of 

support points. For real life applications, travel time observations on all (random) links from each 

day can be viewed as one support point. Such data are available with the advent of advanced 

sensor and surveillance technologies, such as GPS and probe vehicles. The number of support 

points might seem exponential to the number of links, however, if we consider the high stochastic 

dependencies among link travel times and use observations from each day as a support point, we 

can safely have several years’ data with the number of support points in the thousands, similar to 

the number of links in a medium-sized network and much less than its exponential. Running time 

tests are conducted with randomly generated networks that confirm the complexity analysis.  The 

reader is referred to Gao and Huang (2009) for a detailed account of the running time test results.   

temp = (C jk,t

r + Sµ*(k,t +C jk,t

r
,r))Pr(r | EV )

r∈EV

∑

Sµ*( j,t,r) =C jk*,t

r + Sµ*(k*, t +C jk*,t

r
,r)
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5.4. Computational Tests 

The objectives of the computational tests are to 1) systematically investigate the effectiveness of 

the heuristic Algorithm DOT-PART in generating optimal solutions to the partial and no online 

information schemes; and 2) study the (approximate) value of information empirically as a 

complement to the theoretical study in Section 4.  

Algorithm DOT-PART provides upper bounds on the minimal expected travel times in 

partial and no online information schemes by generating feasible solutions. However, the upper 

bound can be made arbitrarily loose by constructing an example similar to that in Proposition 1.  

Our main focus is evaluating average effectiveness through systematic testing over a large 

number of problem instances.  We do not have an exact algorithm that will solve for partial or no 

online information schemes.  However, Theorem 1 states that the optimal solution under a 

perfect online information scheme is at least as good as the optimal solution under any partial or 

no online information scheme, since the former coverage is larger with any given trajectory. 

 

 

    

 

 

 

 

 

 

 

 

Fig. 4. Relationships between heuristic and exact solutions 

Therefore the optimal solution with perfect online information, which can be computed exactly 

by Algorithm DOT-PART, provides a lower bound of the optimal solution with any partial or no 

online information.  The error of the heuristic algorithm, which is the difference between the 

Perfect Information 

exact solution 
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Information exact 
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solution (known) 
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information 
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information (known) 
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unknown exact solution to a partial or no online information scheme and the heuristic solution, is 

then limited by the difference between the perfect online information solution and the heuristic 

solution.  Furthermore, we can also view the same difference as an upper bound on the value of 

perfect information compared to partial or no online information.  A schematic view of these 

relationships for any given partial or no online information scheme is shown in Figure 4. 

 

Fig. 5. The test network 

The first test network is shown in Figure 5 with six nodes and eight directed links. There 

are diversion possibilities at nodes O, 1 and 2. The link travel time distribution is generated 

through an exogenous simulation with the mesoscopic supply simulator of DynaMIT (Ben-Akiva 

et al., 2001). The study period is from 6:30am to 8:00am. The time resolution is 1 minute for 

departures and arrivals at intermediate nodes, and there are 90 time periods in total. The travel 

time is in seconds. The demand between the origin and destination is low from 6:30am to 

7:00am and increases later in the day. There are random incidents in the network that result in 37 

support points.  Details of the network can be found in Gao (2005). 

Algorithm DOT-PART is run for the three partial online, no online and perfect online 

information schemes to derive the (upper bounds of) minimum expected travel times for each 

scheme from node O to D for all departure times and all event collections. The results are 

aggregated by departure time and include expectations over all event collections at a given time. 
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Fig. 6. Results for the 15-min delayed (LAG15) vs. perfect (POI) and no online information (NOI) 

 

Fig. 7. Results for delayed information with 5 (LAG5), 10 (LAG10) and 15-min time lags 

 

Fig. 8. Results for pre-trip (PRE) vs. perfect and no online information 
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Fig. 9. Results for radio on link 4 vs. perfect and no online information 

 

Fig. 10. Results for radio information with different radio coverage 
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10-min delay, 15-min delay, pre-trip, radio on link 4 and radio on links 4 and 5 schemes. 
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Algorithm DOT-PART are relatively tight, within 3% of the (unknown) exact solution.  It is also 

shown that in the specific settings, global pre-trip information is nearly as good as perfect online 
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schemes are not exact, they do exhibit the trend that more error-free information is better in a 

flow-independent network.  For example, in Figure 7 expected travel time with delayed 
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in Figure 10, expected travel times with radio covering both links 4 and 5 are better than those 
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with radio covering only link 4.  However this should not be viewed as a verification of Theorem 

1 as the solutions are approximate.  

Additional tests conducted on larger randomly generated networks were used to 

investigate the effectiveness of the heuristic algorithm. The random network generator takes the 

following as inputs: 1) the number of nodes; 2) the number of links; and 3) the number of time 

periods. Four levels of the number of nodes are considered: 50, 100, 250, and 500. The number 

of links is defined as three times the number of nodes, i.e., 150, 300, 750, and 1500. Three levels 

of the duration of the peak period are considered: 25, 50, and 100 time intervals. Other 

parameters include the number of support points fixed at 300, the range of link travel time fixed 

as [0, 10], and the maximum in-degree and out-degree fixed as 5. The topology of the network is 

randomly generated. The travel time on each link at each time interval for each support point is 

generated from a uniform distribution within the fixed range. More details on the random 

network generation can be found in Gao (2005). 

There are 12 different combinations of inputs, and 10 random networks are generated for 

each combination. Table 5 shows the upper bounds of heuristic errors, defined as the percentage 

difference between the results from the partial and no online information schemes and the results 

from the perfect online information scheme. The results are averaged over all departure times  

Table 5. Upper bounds of heuristic errors (% difference from perfect online information) 

Nodes Links 

Time 

Periods (K) 

No 

Online 

Pre-

trip 

Delayed by 

0.5K 

Delayed by 

0.25K 

Radio on one 

link 

50 150 25 40.3 0 14.9 6.1 2.2 

50 150 50 26.6 0 11.2 4.2 0.5 

50 150 100 22.3 0 10.5 4.9 0.3 

100 300 25 13.8 0 5.3 2.3 0.9 

100 300 50 24.4 0 10.5 4.1 0.6 

100 300 100 26.0 0 12.8 6.1 0.4 

250 750 25 31.4 0 12.0 5.1 1.8 

250 750 50 33.9 0 14.3 5.6 0.8 

250 750 100 27.0 0 12.4 5.6 0.3 

500 1500 25 21.6 0 6.5 2.3 0.8 

500 1500 50 26.5 0 11.4 4.5 0.7 

500 1500 100 28.8 0 13.3 6.0 0.3 

  Average 26.9 0 11.2 4.7 0.8 
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(except for the pre-trip scheme, where only departure time 0 results are reported) and all origins 

to a single destination for each network, and then averaged over the 10 networks. The radio 

information scheme covers only one link, randomly sampled 10 times for each of the 10 random 

networks. Thus in the radio column, the results are averages over 100 runs. 

Algorithm DOT-PART performs better than predicted by the theoretical worst case 

(arbitrarily large errors), with errors within 15% for partial online schemes and 30% for no 

online information scheme. Note that these are upper bounds of errors, and the heuristic 

algorithm may perform better in practice. Future research is needed to design an exact algorithm 

and perform a more comprehensive evaluation of the effectiveness of the algorithm.  Future 

research avenues include evaluating the effectiveness of the heuristic algorithm with real-world 

data, an important step towards its practical application.  

The data in the test scenarios again confirm that more error-free information is better in a 

flow-independent network. For example, information delayed for 0.25K units of time produces 

smaller expected travel time than information delayed for 0.5K units of time, which in turn does 

better than no online information.  Pre-trip information is as good as perfect online information 

in all test scenarios, and up-to-date radio information is almost as good. Note that pre-trip 

information as defined in this paper as real-time information on realized travel times at the time 

of departure (up-to-date when it is first available) is different from historical information. On the 

other hand, delayed information seems to perform less successfully than pre-trip information.  

This might suggest that delays are more detrimental to the value of information than spatial 

limitations.   

In order to investigate how Algorithm DOT-PART performs heuristically, we have also 

developed a brute-force method that enumerates all routing policies to find ones that are optimal. 

This method only works for very small network, as the number of routing policies grows 

exponentially with the problem size. 

As defined in Definition 1, a routing policy is a mapping from state to decision, for all 

possible states and all possible next nodes out of a given state. If there are, on average, Q 

outgoing links for each node, N nodes in total in the network, and X event collections over all 

time periods, the maximum number of routing policies is Q
NX

. 
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The computational tests agree with the analysis. The largest network in which we can 

conduct the brute-force method is the no online information scheme, with 6 nodes, 18 links, 10 

time periods and 10 support points. The computational results show that, in such small networks, 

the heuristic algorithm DOT-PART gives the same optimal solutions as the exact solutions given 

by the brute-force method for all information variants. 

6. Conclusions and Future Directions 

In this paper a generic representation of online information in a general stochastic network is 

developed, based on three types of information schemes: delayed global information, global pre-

trip information, and up-to-date radio information on a subset of links. The scope limitations of 

an information system on both the temporal and spatial dimensions are considered.  A theoretical 

proof of the non-negative value of error-free traveler information for adaptive routing in a flow-

independent stochastic network is presented.  It is shown that Bellman’s principle of optimality 

does not apply to the optimal routing policy problem in schemes with partial or no online 

information.  A heuristic algorithm is then designed based on a set of necessary conditions for 

optimality and is tested for effectiveness.  

Other information schemes will be studied in the future, e.g., VMS, which is one of the 

most common types of ATIS.  Because VMS is trajectory-based rather time-based, the 

optimality problem is more complex than those discussed in this paper. This increases the 

complexity needed in the algorithm design. The noise level of the information can also be 

evaluated, and then the information is no longer error-free.  Theoretical studies can be conducted 

to establish the conditions (if any) under which noisy information systems are comparable. 

Predictive information (Bovy and van der Zijpp, 1999; Bottom, 2000; and Dong et al., 

2006) that provides estimates of future travel times is not explicitly studied under the online 

information framework in this paper. One can easily build a mathematical information scheme 

where the coverage Q(t) contains realized travel times beyond t, and the analyses and algorithm 

described in this paper are applicable.  The more fundamental question is whether an analysis 

framework built upon error-free information assumption is good for predictive information. 
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Although the error in measuring realized travel times can be reasonably assumed to approach 

zero with the ever-increasing accuracy of traffic surveillance systems, the same cannot be said 

for predictive information. Therefore the effort to model predictive information should be 

connected with research on the incorporation of noisy information. 

As previously mentioned, the interaction between demand and supply must be considered 

to assess the value of real-time information with a large market penetration of information.  In a 

congested un-priced network, information could be detrimental, as shown in Gao (2005) and 

others (e.g., Arnott et al., 1991, 1999, Levinson, 2003). The next logical step would be a study of 

the value of various types of information systems in a congested network.   An equilibrium 

dynamic traffic assignment model or a day-to-day dynamic process model should be applied.   

Another interesting avenue for future research is the theoretical quantification of the 

value of traveler information as a function of an array of information system and network 

characteristics.  This would enable the cross comparison of different types of information 

systems.  For example, is up-to-date spatially-limited information better than delayed global 

information? Although answers can be obtained computationally as shown in Section 5.4, a 

theoretical solution would provide valuable insights and guidelines for optimal investment in 

ATIS. 
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Appendix: Notation 

Network   

N : set of nodes 

A : set of links, with |A|=m 

(j,k) : directional link from node j to k 

T : set of time periods {0,1,…,K-1} 

j0 : origin node 

t0 : departure time 

T* : the time beyond which a traveler receives no more useful information 

A(j) : set of downstream nodes out of node j 

   

Stochasticity   

C
~

 : vector of time-dependent link travel time random variables with a dimension 

of K×m 

tjkC ,

~
 : travel time random variable on link (j,k) at time t 

C
r

 
: network support point r, a vector of time-dependent link travel times with a 

dimension of K×m 

R : number of network support points for the joint distribution of all links at all 

time periods 

pr : probability of support point r 

QC
~

 : vector of random travel times of time-dependent links in Q (see the 

information group for the definition of Q) 

CQ : support point of 
QC
~

 

Pr(r|EV) : probability of support point r given EV 

   

Information   

H : trajectory of consecutive (node, time) pairs 

Q : information coverage over links and time periods, Q ⊆ A×T 

Q(H) : information scheme defined as a mapping from H to Q 

Δ : time lag of delayed information 

EV : event collection, set of network support points compatible with the realized 

link travel times 

EV(Q) : set of all the possible event collections with information coverage Q 
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EV(t) : set of all possible event collections at time t  

   

Routing 

policy 

  

{j t,EV} : state comprising of current node j, time t and event collection EV 

µ : { j,t,EV}→ k , routing policy mapping from states to next nodes 

µ( j,t,EV) : next node on routing policy µ out of the current state {j t,EV} 

eµ(j,t) : objective function value (to be minimized) of following routing policy µ from 

origin node j at departure time t to a given destination over all support points 

e*(j,t) : minµ eµ(j,t), optimal objective function value 

µ* : optimal routing policy 

eµ(j,t,EV) : expected travel time to the destination node by following routing policy µ, if 

the departure from origin node j happens at time t with the event collection EV 

Sµ(j,t,EV) : travel time to the destination node if support point r is realized with an exit 

from node j (origin or intermediate) at time t by following routing policy µ 

EV(t,r) : unique event collection corresponding to support point r at time t for the 

delayed, radio, no online and perfect online information schemes 

Sµ(j,t,EV; t0) : travel time to the destination node if support point r is realized with an exit 

from node j (origin or intermediate) at time t by following routing policy µ, 

with a departure time from the origin at t0  for the pre-trip information scheme 

EV(t,r;t0)  : unique event collection at time t corresponding to support point r with a 

departure time from the origin at t0 

 


